
Title
Green Function and Density Functional Approaches
to Non Born-Oppenheimer and Proton and Electron
Cooperative Systems

Author(s) Shigeta, Yasuteru

Citation 大阪大学, 2000, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3169127

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



)> 
~ 

...4. 2-
1\) ~ 

G> 
(,) Ql 

'< 
~ Vl 

n 
c.n QJ -CD 

0') 

Green Function and Density Functional 

Approaches to Non Born-Oppenheimer and 

Proton and Electron Cooperative Systems 

Y asuteru Shigeta 

March, 2000 

Department of Chemistry, Graduate School of Science, 

Osaka University, Toyonaka 560-0043, Japan 



Green Function and Density Functional 

Approaches to Non Born-Oppenheimer and 

Proton and Electron Cooperative Systems 

Yasuteru Shigeta 

March, 2000 

Departlnent of Chemistry. Graduate School of Science, 

Osaka University, Toyonaka 560-0043 , Japan 



Acknolcdgerncnt 

Acknowledgment 

The present work has been completed under the superv1s1on of Professor Kiza­

shi Yamaguchi. The author would like to express sincere gratitude for many valuable 

discussions, suggestions and continued encouragement. The author is indebted to Profes­

sor Hidemi Nagao for collaboration, fruitful discussions, suggestions and encouragement 

throughout t he course of the present study. He wishes to express his sincere gratitude 

to Professor Kiyoshi :\ishikawa for helpful discussions: suggestions and encouragement 

throughout his research activity including the present study. 

He wishes to thank to Dr. Koji Ohta: Dr. Kenji Kamada: Dr. Keiko Tawa, and 

Kenji Kiyohara for their helpful discussions about nonlinear optics both experimental 

and theoretical sides at Osaka ~ ational Research Institute. He wishes to thank to Dr. 

Kenji Kinugawa for fruitful discussions and collaboration with him. He also acknowledges 

Professor :.Iasahiko Suhara. Professor Kazuo Endo, Dr. :vlasaharu Mizuno, Dr. Hiroyuki 

Kawabe, and all the members of the theoretical chemistry laboratory, Kanazawa uni­

versity. He wishes to thank to Dr. Takashi Kawakami , Dr. Syusuke Yamanaka, Dr. 

Masaki Mitani, Dr. Hideaki Takahashi , Dr. Masayoshi Nakano, and Professor Yasunori 

Yoshioka for their continued encouragement and helpful discussions. He also thanks all 

the members of the quantum chemistry laboratory, graduate school of science, Osaka 

University. 

He also is grateful to Professor Fredy Aryasetiawan , Dr. Masanori Tachikawa, Dr. 

Eric Shirley Dr. I\1artin Springer Dr. Bengt Holm, and Dr. Yuji Suwa for sending many 

manuscripts and doctoral t hesis. 

The author's works were supported by Research Fellowships of the Japan Society for 

the Promotion of Science for Young Scientist from January 1999 to March 2000. 

Last , the author wishes to thank his parents for many years of encouragements and 

their affections. 



Contents 

I Development of molecular theory without the Born- Op­

penheimer approximation 

1 Introduction 

2 Theoretical background 

2.1 Overview of the 1\BO DFT: formalism and Kohn-Sham equation . 

2.2 

2.3 

2.4 

Definition of Green functions in :\BO regime . . . . . . . 

G~' approximation for multi-component fermion ystems 

Choice of basis set 

3 Numerical approach 

3.1 Self Consistent field method for coupled Kahn-Sham equations 

3.2 Exchange and Correlation potential 

4 Results 

5 Concluding remarks 

II Theoretical studies on anomalous phases of proton and 

1 

3 

6 

6 

9 

14 

15 

19 

19 

21 

23 

28 

electron coupled systems 33 

1 Introduction 

2 Theoretical background 

2.1 g-model ..... . . . 

11 

35 

44 

44 

Contents 

2. 2 Screening effects . 

3 Numerical results 

4 Concluding remarks 

III Future prospects 

1 Introduction 

2 Application to quantum dynamics 

3 Excited state and other problems 

4 Micro- and macroscopic quantum effects 

Appendices 

A Outline of density functional theory for electron 

A.1 Hohenberg-Kahn theorem 

B 

A.2 Kohn-Sham equation ... 

Greeen function and field theory . 

B.1 Definition of the Green function for zero temperature 

B.2 GW approximation . . . . . . . . . . .. 

B.3 Definition of temperature Green function 

B.4 Bardeen-Cooper-Schrieffer theory for superconductivity 

lll 

48 

50 

57 

59 

61 

62 

66 

68 

71 

72 

72 

74 

77 

77 

79 

80 

81 



Part I 

Developlllent of lllolecular theory 

without the Born- Oppenheimer 

approxilllation 

1 



Chapter 1 

Introduction 

The quantum mechanical behavior of molecules and molecular subunits in condensed 

matter, which is usually observed at low temperatures, is a subject of considerable cur­

rent interests in experiments[1 ]-[14]. Substitution of hydrogen by deuterium leads to 

large isotope effects. For example, transition temperature from a ferroelectric phase to 

paraelectric phase of KH 2P04 crystal increases by 90 In such systems: coupling of the 

electronic structure with protonic motions is crucial for describing the transition proper­

ties. In general , the position of proton and deuteron can not be determined precisely by 

the X-ray diffraction experiments because of the weak scattering power of the hydrogen 

atom. Also quantum mechanical fluctuation makes the determination of the position 

of a proton more difficult at a more fundamental level. On the other hand density of 

the proton and deuteron in crystals are obtained by the neutron diffraction experiments. 

Therefore, at least in crystalline systems it may be preferable to describe the proton 

not as the point charge but as density distribution of a quantum mechanical particle. 

There are a few theoretical methods to determine the nuclear and electronic densities in 

molecules and bulk systems simultaneously. 

One of the most fundamental approximations for the molecular and crystalline struc­

ture is the Born-Oppenheimer approximation (BOA) [15] . The basic idea of the BOA 

is to separate the degree of freedom of a molecule into the electronic, vibrational, rota­

tional, and translational motions. This is justified because the mass ratio of an electron 

to nucleus (mez/mNu) is very small. A product form of the solutions of corresponding 

3 



4 Part I Chapter 1 Introduction 

Schrodinger equations therefore. represent a total wavcfunction of the molecule. The 

electronic wavefunction is determined bv an electronic Hamiltonian with fixed nuclei 
~ l 

and thus implicitly depends on the nuclear configuration (coordinates) as par am ters. 

The eigenvalues obtained from the electronic Schrodinger equation also d p nd on thr 

parameter. and are known a the adiabatic potential. On the other hand, th nuclear 

wavefunction de cribes motion of the nuclei in the resultant adiabatic potential. How­

ever. the BOA breaks down in the region of potential curve rossing · and exp rimental 

progresses [16] need more sophisticated theories beyond th BOA including the non­

adiabatic effects explicitly. 

Quite independently of problems concerning to the implementation oft he BO , th r 

has been a debate on the relation between quantum mechani and rn l cular tructur . 

The discussion was initiated by Woolley[17]. The main theme of th de bat w~ the 

impossibility of reconciling the notion of the molecular tructure with quantum th ory. 

because the molecular structure is a classical concept. Later, the most con tructive cri­

tique of the BOA was provided by Essen[18]. The conclusion of hi work wa that th 

form of the Coulomb interaction, and not the smallness of the ratio metfm 11 , is re­

sponsible for the approximate separation of collective and individual internal molecular 

motions. Although Essen did not provide a workable formalism. the re ulting fram -

work is very instructive. There exist many ideas and methods grounded on the l on 

Born-Oppenheimer ( 1 BO) treatment for molecular systems in both static and dynamic 

cases [19]-[30] . Thomas and Joy applied the Hartree-Fock (HF) method not only to the 

electrons but also the protons, which are fermions with spin 1/2. and investigated th 

protonic spectra for several small molecules [19]. Pettitt discussed analogue of Koop­

mans ' theorem for the protonic spectra [20]. Monkhorst presented a BO molecular 

theory based upon the coupled cluster formalism for both time independent and depen­

dent cases as an implementation of Essen 's molecular theory. Lathouwers and co-workers 

applied the the generator coordinate method (GCM), which is originally introduc d by 

Wheeller , Hill and Griffin in order to describe the collective motion in a nucleus [31],[32]: 

to molecular systems and treated vibrational and rotational motions of hydrog n mol cul 

non-adiabatically [30]. Recently, I have developed the NBO mean field method based 
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upon the GC 1 [25] and have calculated molecular spectra and wavefunctions directly. 

The non Born-Oppenheimer (NBO) treatments for molecular systems [21]-[26] have 

been pr sentcd by many workers. Particularly. the ~BO density functional theory ( BO 

DFT) has been formulated by many authors, individually [21]-[23]. I proposed a numer­

i al scheme that solves electron and nuclear coupled Kohn-Sham (KS) equations within 

the local spin density approximation(LSD) [26]. To reduce the many-body problem into 

the one-body picture based upon the KS theory makes the resulting total wavefunction 

parable into electronic and nuclear parts, which means that the KS theory is still under 

the BO regime. In order to overcome this difficulty, I need to go beyond the LSD and to 

improve on a treatment with the many-body effect. 

The Green function method has been successful in providing efficient schemes for the 

accurate theoretical determination of many physical properties not only in solid state 

physics [33] but also in molecular physics [34]-[35]. The GW approximation (GWA), 

where the self-energy is a convolution over Green function G and effective interaction 

~r. and related methods have been used largely in solid state such as the electron gas 

[36]-[37] conductors and insulators metals [38L and atoms [39] . The accuracy of the 

GWA in these systems varies, though the results are better than those given by either 

the HF or the LSD. 

In the present thesis, I present a calculation scheme for the BO DFT based upon 

the Green function techniques within a static part of the GWA. The aim of this work is 

to examine an fficiency of this method. In chapter 2, I review the electron and nuclear 

coupled KS equations and pre ent the detail of the NBO DFT formalism by means of the 

Gr en function techniques . I employ the GWA in order to develop the method beyond 

the LSD and to take account of the many-body effects. I discuss a basis set used here 

and consider its physical meaning. Numerical approach and programming algorithm 

are discussed in chapter 3. Chapter 4 concerns with the numerical examples of some 

physical properties of the individual motion in H2 and J.1 2 . In chapter 5, the summary is 

presented. 



Chapter 2 

Theoretical background 

First. the non Born-Oppenheimer(.\'"BO) density functional theory. especially th 

electron and nuclear coupled Kohn-Sham(KS) equations. is briefly reviewed. A tradi­

tional density functional theory for electron is summarized in Appendix A (40)-(42). The 

formulation of the coupled KS equations is an extension of the work by Gidopoulos (23] 

to multi-component systems. ::Jext , I briefly explain the defini tion of \'BO Green func­

tions based upon the density functional formalism and formulate an expression for the 

generalization of the GWA to multi-component fermion systems. A summary of Green 

function method and the GW approximation are given in Appendix B. I also discuss the 

choice of basis used in this article and its physical meaning. 

2.1 Overview of the NBO DFT: formalism and Kohn-

Sham equation 

The full Hamiltonian if for a molecular system consisting of N electrons and M nuclei 

is given as (atomic unit is used throughout in this text.) 

(2. 1) 
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where r i and R a are the coordinate for i-th electron and for a-th nucleus, respectively. 

Za and ma denote the atomic number of a-th nucleus and its mass. One defines one 

particle density for an electron with a spin; 

(2.2) 

and an a-typ nucleus with I spin; 

(2.3) 

wh re 'II ( { r 1 . at} , { R a, I a}) is an exact ground state of a given system. dT (dT' ) denotes 

the product form of all spin-space volume element except for da1dr 1 (dhdR o: 1 ). ~ate 

that Greek indices (a, !3. · · ·) denote types of nuclei~ for example a proton, a muon and 

etc., whereas Roman indices (a, b, · · ·) in Eq.(2.1) denote an order corresponding to one 

nucleus. 

I now define a ground state energy density functional for the l'\BO case as 

(2.4) 

E searches all wave functions in the domain of the full Hamiltonian of Eq. (2. 1) if of 

appropriate symmetries and the statistics of particles. 

Next, I define two functionals as follows: 

E({n~} . {n~}] 

Eo [ { n ~} , { n ~}] 

min (w iTe + Tn +Vee+ Vnn + Venl'll) , 
1~¥ ) -+( {nn,{n~}) 

min (x iTn iX) + min (¢! Tel¢) , 
l x ) ->{n~} 1¢)->{nn 

(2.5) 

(2.6) 

where t he minimization of E searches over all w which is obtained from ( {n~}, {n~} ), 

while the minimization of £ 0 searches over aN-particle Slater determinant for electrons, 

1¢) and the product of M0 -particle Slater determinants for fermion nuclei and/or per­

man nts for boson nuclei. lx), which are obtained from ({n~}, {n~} ), as 

with 

1¢) 

lx) 

det I { ¢~a ( r )} I , 

II lxo:), 
0: 

{ 
detl { f 1 (R )} I 

lxo:) = 
peri { xf1 (R )} I 

(for fermion nucleus) 

(for boson nucleus ) , 

(2.7) 

(2 .8) 

(2.9) 
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where det and per mean the determinant for the f rmion and th permanent for the 

boson. respectively. Aier(AJ = l:er lvfer) denotes the number of the a nucl us in a given 

system. 

I assume that there i a tate which minimize the above functionaL. I define \]! {n:iJ , {n~}. 

Xni. and Ona which minimize above functionals. 
Q e 

E[{n~}. {n~}] 

Eo[{ n~}. { n~}] 

I now define the exchange-correlation energy functional a 

I obtain the KS functional for the molecular sys em as 

(2.1 O) 

(2.11) 

(2.12) 

(2.13) 

E[¢ x] is the functional of orbitals ¢f and xj1 , because noninteracting states ¢and X are 

constructed by the Slater determinants or permanents which consists the orbitals ¢f and 

xj1 . If the orbitals minimize the functional , I obtain the electron and nuclear coupled 

KS equations (CKSE) as 

[-~2 

+ v~,[{ n~}, { n~}](r) + VH(r ) ]<t{(r ) 

t:f ¢f(r ) , (2.14) 

Part I Chapter 2 Theoretical Background 

[- 2:;a + V,~1 [{ n~},{ n~}](R)- ZYH(R)] xf1 (R ) 

Ef' Xf1 (R) , 

9 

(2.15) 

where pecr(peri) and t:f(Ef1 ) are the KS operator and corresponding i-th eigenvalue for 

the electron with the spin CJ(the a nucleus with the spin I) and depend on their spin. 

Th classical Coulomb potential (Hartree potential) is given by 

VH(r) = jdr'[l:an~(r')_Lzer2:1 n~ (r')l· 
I r - r' I er I r - r' I 

(2.16) 

Th xchange-correlation potential for the electron and nucleus are defined as 

5Exc[{n~}. {n~}] 
Sna e 

(2.17) 

5Exc[ { n~}. { n~}] 
5n1 

Cr 

(2.18) 

where n~ and n; denote the densities of electron and nucleus. respectively, as follows: 

.Y 

n~(r) L l6f(r )l 2 
• (2.19) 

t=l 

MQ 

n~(R) 2:::: lxj1 (R )I 2
. (2.20) 

j=l 

2.2 Definition of Green functions in NBO regime 

In order to introduce the one-particle Green function. I here use the second quantized 

formalism. The full Hamiltonian is expressed as 

where ,(/;~( x)(,(/;a( x)) and J~1 (R)(¢eri(R)) are the creation(or annihilation) operators for 

an electron with pin CJ and a nucleus a with spin I, respectively. They satisfy the 
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ordinary or anb- commutation relation depending upon th ir statistics. 

[{;a (X t) . 11~'~ (X' t')] + 

[oai (R t ). o1I'(R 't')]± 

[~a (xt ) . ~p ( x't')]+ 

b(x- x')b(t- t' )bap , 

b(R - R')b(t - t')6a!3 6II' , 

[cPoi(xt). cbaf'(x't')] ± = · · · = 0. (2.22) 

where (- ) sign denotes the ordinary commutation relation for t h bo · ns. whil ( +) 

sign denotes the anti-commutation relation for the fcrmions . I as ·ume that the bose 

condensation dose not occur even at zero temperature. 

The single-particle Green functions for those particle are defined in t rms of th s 

creation and annihilation operators in the Heisenb rg representation a 

(2.23) 

(2.24) 

where T[· . ·] denotes the time ordering product. jwN,AJ ) is the exact ground state in the 

Heisenberg representation for the interacting molecular sy tern and obeys the chrbdinger 

equation 

(2.25) 

The creation and annihilation operators for the electron obey the equation of motion 

(2.26) 

Tote that the creation and annihilation operators for the nuclei obey the same equation. 

By means of the definition of the Green functions of Eqs.(2.23) and (2.24) , the equa­

tion of motion of Eq. (2.26), and the Hamiltonian of Eq. (2.21), I obtain coupled Dyson 

equations 

[i! + ~
2

] G'(xt, x't')"P b(x - x' )b(t- t')bup 

+ i L j d3 y'Vee(x , y )(2)Gee(xt , yt , x't' , yt+t>.;p>. 
).. 

+ i L j d3 RVeo(x R)(2 )Ge0 (xt Rt, x't' Rt+tl ;pl 
o.I 

(2.27) 
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where the 2-body Green function for the electron is defined as 

(2.28) 

The 2-body Green function for the electron interacting with a particle is defined as 

(2.29) 

Self-energy :E is defined through the following Dyson equation 

b(x- x ')b(t- t')bap 

+ i L j d3ydt1:Eee(xt. yt l)a>-.ce(yt1: x't')>-.p 
).. 

+ iLL j d3 ydt1:Eeo(xt: yt1t>-.ce( ytl : x't' )>.p. 
).. 0 

(2. 30) 

These equations hold for the nuclear Green functions as 

~- + -- xt xt [
. 8 \7

2
] Go( t ')II' 

8t 2mo 
b(x- x' )b(t- t')bn' 

+ iLL J d3ydtl:E013 (xt, ytl )IJ G0 (ytl, x't' )11
' 

J /3 

+ i j d3ydt1l:o.e(xt. ytl) 11G0 (ytl , x't'V 1' . 

(2 .31) 

I call these equation electron and nuclear coupled Dyson equations because of cross terms 

:Eeo and :Eoe in Eqs(2.27) and (2.31). As the Hamiltonian of Eq.(2.21) is independent 

of time, I can carry out the Fourier transformation with respect to time for the above 

formula, then obtain 

[w + ~i] C'(l, 2, w)"P 

X 

6(1, 2)6ap + J d3 (3) L 
).. 

( I":"(l.3, W )u), + ~ I":w (1. 3, W )"") G'(3. 2, W )"P . 

(2.32) 
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o(L 2)off' + j rt3 (3) L 
J 

x ( Jt L:06 (1, 3)! 1 +I:"' (1, 3)JJ) G" (3. 2, w )JJ' . 

(2.33) 

I here use abbreviations for the coordinate. ( 1) = ( x 1). 

By definition. zero-th order Green functions are given by the solution of following 

equations: 

[w+ ~i] Ge(D)(L2.w)"P 8(12)8ap. 

[
w + Vi l ca(0)(1, 2. w)JJ' = 5(1. 2)5II'. 

2m a 

(2.34) 

(2.35) 

By means of the zero-th order Green functions. the coupled Dy on equation become 

ce(O) (1. 2, w t(7 Oup + L J d(3)d( 4)Ge(O) (1. 3, w )(7(7 
.X 

X [ Eee(3, 4, W )"" + ~ E'0 (3, 4 W )""] G' ( 4. 2 U' )"P . (2 .36) 

ca(O) (1, 2, w )II OIJ' + L J d(3)d( 4)Ga(O) (1' 3, 'IJ.) )II 
J 

X [E0 '(3 ,4,w)IJ + JtE0~(3,4,w)IJ] G0 (4.2.w) 1
J' . (2 .37) 

Therefore, a main problem is now reduced to calculate the self-energy E. 

Although I choose the zero-th order Green function as the solutions of the non­

interacting free particles, in general, the choice of the zero-th order Green function i 

arbitrary. For example, I can use those of the non-interacting free particles, of the Hartre 

or the Hartree-Fock approximation, and of the local spin density(LSD) approximation. 

In this work, I adopt those of the LSD. I rewrite the coupled Dyson equations within th 

LSD as 

ge(1, 2, w)auOap + L j d(3)d(4)ge(l, 3, w)au 
.X 

x [L'.Eee(3,4,w)"" + ~L1E'0 (3 , 4,w)""] G'(4,2,w)"P, 

(2.3 ) 
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ga(l, 2, w)IIoii' + L j d(3)d(4)ga(1, 3, w)II 
J 

X [ L'.E0 '(3, 4, w )11 + Jt L'.E0~(3. 4, w )IJ l G0
( 4. 2, w )1

I' , 

(2.39) 

where ge and ga are non-interacting Green functions for the electron and for the nucleus 

a within the LSD , respectively, and obey the coupled KS equations 

[w +peal ge(l, 2. w)aa 

[w +pal] ga(l. 2. w)II 

0. 

0. 

(2.40) 

(2.41) 

wh re p eu and pal are the KS operators appearing in Eqs(2.14) and (2.15), and the one 

particle densities are evaluated by means of the Green functions 

ge(l. 1. 'IJ.) -7 ota . 

ga(l. 1. U' -7 O)Il . 

ilL: represents a elf-energy within the LSD 

(2.42) 

(2.43) 

where Eab denotes the proper self-energy of a particle a interacting with a particle b, Vff 

is the classical Coulomb potential between particles a and b, and v~c is the exchange­

correlation potential of the particle a within the LSD. _ ote that the indices for types of 

particles (a, b ···)include both the electron( e) and nuclei(a. {3, · · ·). 

The noninteracting Green functions ge and ga are, then. expressed in terms of the KS 

orbitals and its eigenvalues: 

[
ace ¢!!* (1 )q'F (2) unocc q'F* (1 )¢a (2) ]-LJ ] + I: ] ] o 

· W - Eu -in . W - Ea +in ap 1 

J J 'I J J 'I 

ga(l 2,w)II' = [occ Xj1*(1)Xj1(2) + unoccXjl*(1)Xj1(2)]0IJ'. 
~ w- E~1 - i'Tl L w- E~1 + i'Tl 

] J J J 

(2 .44) 

In what follows I u e the matrix representation such as G , g , and Ll'E whose elements 

are (ijGIJ), (ijgjj), and (ij ilE jj), respectively . 

So far, I formulate the coupled Dyson equations for both fermi and bose particles. 

Although there exist many bose nuclei. I restrict ourselves on treating multi-fermion 

systems for simpli ity. Derivation for the bose nuclei will be done in a future article. 
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2.3 GW approximation for multi-component fer1nion 

systems 

I next introduce the G\\-A that was first developed bv Hedin [36]-[37]. The GWA is 

derived systematically from the many-body perturbation theory. 1\Iany applications to 

wide class of systems in solid state physics have been reported [38]. I here extend the 

GWA to multi-component fermi systems treated in previous section. 

Within the simplest GvVA. the self-energy !l:E and the polarization function P ar 

approximated as 

where W is the matrix form of the screened Coulomb interaction defined as 

wab (w) = yaa5ab + yab p bb(w)(Vab)t 

+ yaa p aa(w)Vab p bb(w)(Vab)t(l- 5ab) 

+Vab p bb(w)(Vab)t p aa(w)Vaa(l- 8ab) . 

(2.45) 

(2.46) 

(2.4 7) 

Note that W , V , and Pare four-component supermatrices in contrast to G. g. and D..:E. 

which are ordinary matrices. 

Using zero-th order polarization functions p , which are obtained from Eq.(2.46) with 

the noninteracting Green functions g , the coupled Dyson equations for the polarization 

functions are given as 

(Paa (w))-1 = (paa(w))-1 _ (vaa + 'LWab(O)(w)) , 
bop a 

(2.48) 

where W ab(O) is obtained from substituting p aa(O), which is defined as 

(2.49) 

for Eq.(2.47). Although these equations are solved self-consistently, I truncate the itera­

tion in actual calculations. 
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In order to clarify the terms appearing in the GWA for two component fermion 

systems, I analyze the structure of the GWA by using the Feynmann diagrams. The 

diagram expansion of the GWA for the electron is illustrated in Fig.2.1. Here, the zero­

th order Green functions for both the electron ge and nucleus gcx are denoted by a straight 

line and dashed line with an arrow, respectively, where the arrow shows the direction of 

propagation. On the other hand, a straight wavy line and dashed wavy line denote the 

bare Coulomb interactions for electron-electron( e-e) vee and nucleus-nucleus(n-n) vaa, 

respectively. and a dashed line without an arrow is the Coulomb interaction between 

electron and nucleus( e-n) vea. In the traditional framework, only (a) type diagrams are 

included. On the other hand, I include (b) and (c) type diagrams in the formulation. 

The diagrams (a) come from first term and second term in Eq.(2.47) when a = b. The 

diagrams (b) and (c) come. respectively, from second and third term in Eq. ( 2.4 7) when 

a =/:- b. Those for the nucleus are obtained by alternating ge to ga and vee to vcxa. 

f\Ioreover. I restrict myself on treating the static limit of the GWA as the self-energy. 

This approximation is known as the static COHSEX( coulomb hole and static exchange) 

approximation which was first introduced by Hedin in order to investigate the static 

properties of homogeneous electron gas, and reliable for the states close to the Fermi 

level. With the approximation. the real part of self-energies becomes 

occ 

-Re 'LWab (w- Ek), 
k 

(2.50) 

In these equation. SEX and SCOH mean the "screened exchange" and the "static coulomb 

hole", respectively. 

2.4 Choice of basis set 

According to the Essen 's view of molecules [18], where the motion of a whole system 

is separated into the translational, the individual and collective motions, I start with a 

coordinate transformation for the classical Hamiltonian. Since I am interested in internal 

motions in a molecule. I first eliminate the translational motion from the Hamiltonian. 
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To avoid introducing independent variables. I impo e some conditions as follows. ew 

coordinates are defined with two conditions as 

0 

0 

e C I 
r + r l(i) + r i 

2:::m 1r; 
l(i) 

M 

L:.:mpr~ 
p=l 

(p = 1, . . . ' .A I) . 

(mp = L mi). 
!(i)=p 

(2.51) 

(2.52) 

(2.53) 

where re. r~(i). and r{ are the coordinate of the center of rna s(CO?\I) for a whol sy tem. 

that of C0.\1 for a subsystem( atom) p. and that of individual motion. re pcctively. The 

superscripts of G, C. respectively. and I denote 'center of rna for a v:hol syst m··. 

··collective motion·'. and "individual motion''. hereafter. r ( i) represents a 'ubsy tern in 

which particle i is inherent. The velocity of particle i can be \\Titten by 

(2.54) 

and the classical kinetic energy becomes 

1 N+M 
T = - ~ mv2 

2 L__. zz 
z 

1 1 M 1 N+M 
2 ~ ( c) 2 ~ ( J) 2 ec ei C I -Mev e + - L-- mp vP + - L mi v z + T + T + T , 

2 2 2 p z 

(2.55) 

where Me is total mass of the system. From the conditions, cross terms of yec , ycJ. 

and yci in the right hand of Eq.(2.55) become identically zero for the classical ca e. I 

can now write the kinetic energy of the internal motions in the molecule: 

(2.56) 

In analogous to the ordinary canonical commutation relation between a coordinate and a 

momentum, the kinetic energy operator of the internal motion in a quantum mechanical 

form is approximated as 

(2.57) 
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Although Eq. (2.57) does not strictly hold in the quantum case because of the cross terms, 

I neglect the cross terms as a first approximation. 

I next introduce approximate one particle wavefunctions for an electron and nuclei as 

p 

x(R) ~ L c;I x(R- r;) ' (2.58) 
p 

where rc_; are approximated to be set on the position of atom p, and C denotes an 

expansion coefficient determined from the variational principle. Here. the position of 

COI\1 for the whole system re is implicitly set at origin. These basis sets physically 

repre ent the individual motions of particles in the molecular system. 

In actual calculations, I use the Gaussian basis set whose center is r;. for both dJ and 

x. I assume that the centers of the Gaussian are treated as parameters r;, which are also 

determined by the variational principle minimizing the total energy, and that only the 

kinetic energy operator for the individual motions acts on the basis. These assumptions 

imply that the equations to be solved are those for internal motions around atoms with 

relatively small variations. Then, the method may be inappropriate for describing the 

dynamical collective motions such as the large amplitude vibrational motion. i.e. , the 

inversion of TH3 umbrella. The basi depending on the centers leads to the analogy 

to the nonadiabatic effect. Extension to include the nonadiabatic correlation will be 

considered in future works. 
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Figure 2.1: Dyagramatic expression of GWA for electron. (a), (b) and (c) denote type of 

the Feynman diagrams. 

Chapter 3 

N urnerical approach 

Here I give details of a calculation scheme of the density functional method discussed 

above. I first explain the manner of the self consistent field method for coupled systems 

of electron and nuclei. i.e. I call it coupled Kohn-Sham equations( CKSE) as an extension 

of traditional unrestricted Hartree-Fock approach, secondly a numerical treatment with 

exchange-correlation potentials appearing in the CKSE [44]. 

3.1 Self Consistent field method for coupled Kahn-

Sham equations 

I here discuss calculation method for solving the CKSE by using the linear combi­

nation of molecular orbital (LCAO) method. Note that spin indices are neglected for 

simplicity. The extension of including spin variables is quite easy. 

By expanding the molecular orbital using a set of known basis functions {fi} (i = 

1, 2, · · ·, K) as 

K 

¢i ( r ) L Cir fr ( r ) , 
r 

K 

xf(R ) = L Cgfr(r ) l (3.1) 
r 

where K denotes a number of a basis set. In generaL K for electron can differ form that 

for nucleus. For simplicity, I use the same number of the basis. From Eqs. (2 .14), (2.15). 

19 
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and (3 .1 ). the problem of calculation the coupled Kohn-Sham equat ion reduced to t he 

problem of calculating the set of expan ion coefficient' [ { cc}' {co }]. 

By ubstituting the linear expansion Eq. (3.1) into the CKSE. I obtain a matrix equa­

tion for the expansion coefficients [ { ce}' {co}] as 

0, (3.2) 

0. (3.3) 

,,·here Ei and Ei are i-th orbital energy for electron and nucleus. respectiY ly, and Frs 

and Srs are matrix elements of the Kohn-Sham and overlap integral . respectiv ly. Th 

equations can be \\Titten more compactlv as the coupled matrix equation a 

(3.4) 

(3.5) 

where Cis a K x K square matrix of the expan ion coefficients and E (E ) i a diagona1 

matrix of the orbital energies for electron (nucleus). ote that the columns of C de crib 

the molecular orbitals. Using the basis. t he density of each particle is giv n by 

ace K 

ne(r ) L L GirGis* fr(r)J; (r ) , (3.6) 
i T.S 

ace K 

no(r) = LLCfrCfs*fr(R)J; (R ) · (3.7) 
i T.S 

These equations are solved self-consistently by t he same procedure for solving the 

unrestricted Hartree-Fock (UHF) equations for the electron. The total energy is evaluated 

as 

(3. ) 

In this treatment , the total energy of the ground state includes so-called the zero point 

vibrational energy due to the nuclear kinetic energy term. 

Each matrix elements in p e and F 0 except for the exchange-correlation potential can 

be calculated by analytical function {fr} explicitly. On the other hand, It is difficult to 

calculate the exchange-correlation potential because the fractional powers of the d nsity 

of particles. I discuss the problem and its prescription in next section. 
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3.2 Exchange and Correlation potential 

The primary computational difficulty in density functional techniques arises from 

the form of the exchange-correlation potential energy. These involve. at a minimum, 

fractional powers of the electron density: such as n 113 and n413 . For example, I utilize 

the X-a approximation for the exchange energy as 

(3.9) 

where 

(3.10) 

For all the calculations reported here. I use a = 0. 7. When the wave function and 

orbitals are expressed in many-center LCAO expansions as Eq. (3.1 ): the fractional power 

of the density does not have a simple closed form as a sum of separate terms. V\ ith few 

exceptions, all of the published LCAO density functional algorithms address this problem 

by using a three-dimensional grid of points, either to perform the integrations involving 

the potential by numerical methods: or to fit the potential to a simpler functional form . 

Because the electron density decreases roughly exponentially away from the nuclear cusps, 

overlapping atom-centered grids are used almost universally. The alternative is to develop 

analytical methods that eliminate the grid entirely. Werpetinski and Cook implemented a 

density functional technique that requires no molecular grid and that includes analytical 

expressions for the calculations of energy gradients [44]. This method gives smooth 

energy surfaces in a fraction of the computational time of a grid-based method. The 

mathematical formalism for this method was originally developed by Dunlap [45] . 

I start with assuming that the functions n 113 and n213 are fitted to sets of integrable, 

atom-centered functions: 

Na 

nl/3 ~ iil /3 = L aiAi 

.b 

(nl/3)2 ~ n2/3 = L biB i , 

(3 .11) 

(3.12) 

where the overbar denotes a fitted approximation to a quantity. In the present imple­

mentation, { Ai} and { Bi} are identical sets of Hermite Gaussian functions , although , 
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in general. this is not required. Taylor expansions of the exchange energy to first order 

n- (n113 ) 3 and (n113 ) 2 - ii213 give the expression: 

(3.13) 

in which angle brackets indicate integration O\'er all space. 

Variational minimization of the exchange energy with respect to the fitting coefficients 

{ ai} and {bi} then gives a set of coupled, nonlinear equations 

Na Nb 

(Ain) - L L ajbk(AiAjBk ) = 0. (3. 14) 
J k 

.Va .Vb 

L ajak(AjAkBi)- L bi(BiBj) = 0. (3.15) 
j.k j 

These equations are solved via the :\ewton-Raphson method to determine the fitting 

coefficients. Equation (3.14) and (3.15) involve at most three-center integrals. so that 

this is still an N 3 method. The particular form of Eqs (3.14) and (3.15) depends on the 

n 113 form for the exchange potential; the addition of correlation corrections or nonlocal 

exchange-gradient terms would produce a more complicated set of nonlinear equations 

to solve. 

Chapter 4 

Results 

I use the uncontracted 4-31G basis set for both electron and nucleus multiplying the 

scale factor (e and (n as 

cb~(r) 
T 

T 

( 4.1) 

(4.2) 

where br is an exponent of 4-31G basis set for the hydrogen atom. The scale factors and 

centers of atom are optimized so that total energy is minimized at the HF leveL Table 

4.1 is listed the optimized scale factors and distance between two atom centers with mass 

of particles used in the actual calculation. 

Using the variational principle I determined scaling parameter of exponents for par­

ticles, (e = 0.88651 and (p = 35.269 for H2 and (e = 0. 78244 and (f.J. = 2.0912 for J-L2 , 

Table 4.1: Mass, optimized exponent and distance between two centers (a.u.). 

Type Mass ( R 

H2 e 1.0 0.88651 1.4698 

n 1836.0 35.269 

/-L2 e 1.0 0. 78244 1.6375 

n 207.0 2.09120 

23 
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and also determined the distance between two atom centers( center of Gauss:ian func­

tions). 1.4698 for H2 and 1.6375 for J.-L2. From these results. I found that exponents for 

electron are smaller. i.e. molecular orbitals for electron are more broaden, than that 

of BO ( (e = 1.0) due to the averaging by nuclear motions. The scale factor for proton 

is larger, i.e. corresponding molecular orbitals are narrower. than that of muon due to 

mass. A ratio between main contribution of the exponents for H and for J.-L is about 18. 

On the other hand, ratio between mass is about 9(H/ J.-L). The optimized int ~r atomic 

distance of H2 is shorter than that of J.-L2 because of the difference of their rna s. meaning 

that J.-L2 is loosely bound than H2. 

Density for the electron and the nucleus along the z-axis are defined as 

ne(z) 

n 0 (Z) 

L j dx j dyn~(r). 
L j dX j dYn~(R). 

The difference of density is also defined as 

(4.3) 

( 4.4) 

where e and n denote electron and nucleus, respectively. The density of particles in 

Eq.(4.3) and its difference in Eq.(4.4) between H2 with J.-L 2 along the z-axis are depicted in 

Figs. 4.1-(a) and -(b), respectively. The electronic density of H2 has difference from that 

of J-L2 mainly classified under two regions . I divide the difference of electronic density ~ne 

into two regions, (i-a) inside region of two peaks of density of proton( about z = ±0.735) 

and (ii-a) outside region of two peaks of density of proton. In (i-a), the electron density 

difference is positive. On the other hand, in (ii-a), the electron density difference is 

negative. These results are due to the delocalization of density of the muon(see Fig. 4.1-

(b)). The density of the proton is localized at atom centers in comparison with density 

of muon, which is delocalized as the electron, as expected by results from Table 4.1. The 

difference of the nuclear density .6.nn is mainly classified under three regions, (i-b) center 

of whole system, (ii-b) inside region of atom centers of the proton, and (ii i-b) outside 

region of the atom centers. In (i-b), the difference is negative due to the non-negligible 

overlap of wavefunctions for the muon. On the other hand , wavefunctions for proton 
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have little overlap. In (ii-b), the difference is positive, because the density of the proton 

is localized at the atom centers owing to heavy mass. In (iii-b) , the difference is negative 

due to the delocalization of the density of muon. These indicate that the proton is less 

mobile than the muon from the centers of subsystem. Table 4.2 shows the energy of 

Table 4.2: Total energy (a.u.) obtained by several methods. 

HF LDA Static GWA CI Exact 

NBO H2 -1.04638372 -1.00843168 -1.07825734 -1.06758843 -1.1744746a 

~BO J.-L2 -0.92061958 -0.88714924 -0.93751595 -0.94157746 

a [46) : Kolos et al. obtained by Hylleraas type wavefunction at re=L401 a.u. 

the individual motion obtained from several methods. The energy obtained by the HF 

method is lower than that by the LSD. because, in general , the LSD does not contain 

the self-interaction correction(SIC) in contrast with the HF method. From these results, 

I found that results obtained by the static GWA are improved compared with those by 

the HF or the LSD and however, the result for H2 is lower than that by the CI because 

of the effects of decoupling, the choice of static limit , and so on. Then, I conclude that 

the GWA works well to the molecules in the framework of the NBO DFT theory rather 

than the LSD or HF, though the correlation effects are too much overestimated. 

Table 4.3: HOMO-LUMO orbital energy gap for electron obtained by several meth­

ods(a.u.). 
================================================= 

HF LDA Static GWA 

.6.EHoMO-LU MO for H2 -0.77728993 -0.31131811 -0.72868981 

.6.EHOMO-LUMO for J-L2 -0.69213000 -0.26489982 -0.64642737 

Table 4.3 shows the orbital energy gap between HOMO and LU?v10(HO IO-LUMO 

gap) ~EHOMO-LUMO = EHOMO- ELuMo for the electron obtained from the HF: LSD , 

and GWA. As it is likely to be much underestimated for the HO.lV10-LU:NIO gap by 
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the LSD for lack of the SIC and to be overestimated by the HF because of shortag of 

correlation effects, although the HF contains the effect of the SIC. The results by the 

GWA are much improved with respect to the LSD and are lower than those by the HF, 

meaning that the gap is improved by the GWA. 
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Electronic density. (b) Nuclear density. Density difference is defined as n~~rn) - n~(orn ) . 
In figures, M u means f-l· 



Chapter 5 

Concluding rernar ks 

A :\BO-DFT calculation scheme based upon the Green function techniques is pre­

sented to apply molecular systems. I generalize the G'A: approximation to t reat a molec­

ular system consists of the mixture of electron and fermion nuclei and depict diagrams 

appearing in the expansion of the GWA. A numerical calculation for indzvidual 1notion of 

simple systems such as hydrogen molecule and muon molecule is attempted by means of 

the Gaussian basis sets. Using the variational principle I determined scaling parameter 

of exponents for particles and the distance between two atom centers. From these re­

sults, I found that exponents for electron are smaller, i.e. molecular orbitals for electron 

are more broaden, than that of BO ((e = 1) due to the averaging by nuclear motions. 

I also found that the optimized inter atomic distance of H2 is shorter than that of J.L 2 

because of the difference of their mass: meaning that muon molecule is loosely bound 

than hydrogen molecule. I depicted density of particles in Fig. 2.1. I found that density 

of proton is much less broaden than that of muon and that wavefunctions for muon have 

non-negligible overlap. I evaluate the total energy of individual motion of those molecules 

and orbital energy gap between HOMO and LUMO for the electron at several approxi­

mation levels. From these results , I found that results obtained by the static GWA are 

improved compared with those by the HF or the LSD. Then, I conclude that the GWA 

works well to the NBO treatment of molecular theory. 

The results obtained from the method are far from in such small systems because 

of the lack of cusp in the basis used here. This feature may not be essential for the 

28 
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physical properties, because the cusp condition is improved by using the Slater type 

function. Although Totsuji et al. carried out self-consistent calculation of the proton 

tunneling system by using the Slater orbital for electron and proton at zero temperature 

[4 7), to evaluating the atomic orbital integrals by using the Slater type function are very 

expensive in the calculation. 

The present method is useful for crystalline systems for two reasons. First , in the crys­

tallin system, there exist so many normal modes that it is tractable to calculate averaged 

electronic state with respect to the motion corresponding to the normal mode. Although 

an approach of present method is direct. the method has an information of averaged 

electronic states with respect to nuclear motion(density), so-called zero point vibration. 

In particular. I consider that the electronic density obtained by X-ray experiment[48) of 

KD3(S04)2 may correspond to the averaged density. Second, the present method can be 

extended to framework within the finite temperature based upon the Matsubara Green 

function method [33). This extension may enable us to investigate the phase transition 

of the systems mentioned at the introduction. 

Let us consider the transition properties of KH2 P04 (KDP) type crystals. In these 

compounds, large isotope effect on the transition temperature is found. For example, 

the transition temperature of phase transition increases by deuteration as listed in Table 

5.1.The ratio ofT~ toT? is about 1.5 ---- 1.7. As other examples. there exists deuteration­

induced phase transition found in M3H(X04 )2 (M=K Rb, Cs and X=S. Se) type crystals 

derivatives of 9-hydroxyphenalenone and (l\H4 )2MC16 (tv1=Sb. Pb , Pt, Te, Se) type 

crystals. There are few materials with such a large isotope effect on the transition 

temperature except for these hydrogen-bonded materials. 

To explain the mechanism of the phase transition of these hydrogen-bonded (anti-

ferroelectronic materials. two different approaches have been proposed. One is the 

proton tunneling model, which is classified as a dynamical effect. The model tells that the 

mechanism is owing to a quant urn effect of the proton (deuteron) transferring between two 

equilibrium positions, i.e. the quantum tunneling. Because lighter mass nuclei experience 

the effect more strongly, Tc of protonated compounds decreases due to the tunneling of 

proton disturbing a long-range order associated with a static position of the protons. 
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Table 5.1: Several compounds with large isotope effect on the transition temperature by 

deuteration and their transition temperature. 

Compounds T~ (K) T?(K) TD / TH c c 

KH 2P04 123 213 1.7 

RbH2P04 146 218 1.5 

KH4H2P04 147 242 1.6 

CsH2P04 153 267 1.7 

The tunneling behavior has not been elucidated bv experiments. Recently. ~\1at uo et 

al. observed an indication of the proton tunneling in 5-bromo-9-hydroxyphenalenone 

[49]. The other concerns with an empirical correlation between transition t mperature 

and a discrepancy of 0-0 distances between a protonated compound and a deuterated 

one, where the former is shorter than the later in general. The discrepancy is called the 

geometrical isotope effect, usually called as Ubbelohde effect, which is classified a static 

effect. These two model are, however , contrary to each other , because a potential for the 

proton is identical with that for the deuteron in tunneling model. 

By using the present method, these two different models can be comprehended sys­

tematically as follows: First, the dynamical tunneling of proton may be interpreted by 

dynamics of the nuclear wavefunctions localized at two energy minima. The ground state 

and first excited state are the linear combination of the nuclear wavefunctions localized 

at two minima and energy level of the localized states split into two levels. the time­

dependent probablity amplitude obtained by the nuclear wavefunction. The tunneling 

occurs when the energy level of the two energy minima and/or the energy level of ther­

mally activated states at minimum and the ground state localized at anther minimum 

are consistent with each other. The former is classified by the resonant tunneling and the 

later the thermally activated tunneling. Under the NBO point of view, these tunneling 

energy levels can be calculated directly including the effect of all the other particles and 

a potential energy surface along unknown reaction paths should not be needed. U ing 
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Table 5.2: Inter particle distance of H2 and HD (A) 

HD 

n-n ([29]) 0.7964 0.7859 

n-n (Exptl. ) 0. 7 4677( 10) 0. 7 4604(10) 

e-e 1.042 1.034 

quantum dynamics under the :\BO regime can perform the tunneling dynamics. Second: 

the geometrical isotope effect is as a result of the expectation values of positions of par­

ticles including the effect of vibrational motion. At lower temperature: the zero point 

vibration mainly dominates the effect. In the present method, the quantum effect of the 

nuclei. especially the zero point vibration. is included. In the previous work. I have eval­

uated the inter-nuclear distance of the hydrogen molecule and its isotopomers as shown 

in Table 5.2. From the result. the expectation values of inter-nuclear distances of H2 and 

HD are different from each other due to the difference of mass. Tendency of the inter­

nuclear distances is H2 >HD. Although the absolute values are worse in comparison with 

the experimental data, their behavior is accord with that of the experimental data. This 

behavior is expected to 0-H and 0-D bonds. i.e. 0-H>O-D: which is responsible for the 

discrepancy of the 0-0 distance af following mechanism: Because the zero-point motion: 

electronic density on the deuteron has more localized behavior than that on the proton, 

the electron on the proton more strongly interact with the electrons on the hydrogen­

bonded oxygen atom than the electron on the deuteron does. Then the proton with a 

bonded oxygen is attracted toward the hydrogen-bonded oxygen by this effect because of 

weak chemical bond between the proton and the hydrogen-bonded oxygen. In order to 

calculate the transition temperature, I need to proceed the method by using temperature 

Green function method or the centroid molecular dynamics method discussed in the final 

part. I will cope with the difficult problems in future. 
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Chapter 1 

Introduction 

Finding novel and unique functionality by means of organic molecules is one of the 

most attractive problems in the physical chemistry. So far a lot of models for functional 

molecules have been suggested and proposed in view of molecular technology. However, 

there are many problems to make the functionality realized at macroscopic size. If one 

makes the molecular assembled systems by constructing the molecules with the function­

ality, the designed functionality may vanish at macroscopic size. Moreover, in general, 

it has been known that a formation of assembly of the organic molecules is anisotropic 

and there is an intrinsic instability in such low dimensional systems. In the molecular 

assembled systems inter-molecule interactions play the important role in the formation. 

Character of each molecule are varied by the inter-molecule interaction and the systems 

exhibit new characters correspond to the formation of assembly. Therefore: when I find 

new functionality, the key point is to predict cooperative effects between the characters 

of each molecule and a field generated by the assemblies. 

The cooperative proton and electron transfer (PET) reactions have been attracted 

much attention from theoretical and experimental point of view. One of such systems, 

there exists in a DNA double strand [50]-[52]. They may give a critical information on 

cooperative effect between the electron and the proton. Structure of DNA is shown in 

Fig. 1.1. The structure is a one-dimensional spiral chain consists of two chains around a 

central axis. These two chains are stabilized by two base pairs (A and T, C and G). It is 

well known that an arrangement of these pairs determines a certain genetic information. 

35 
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These pairs ha\·e two or three hydrogen-bonded interactions. Each acid is electron donor 

or acceptor corre ponding to it ionicity. The hydrogen bonds arc also t:1trongly affected 

from the ionicity of the bases. 

One of the most simple t PET s~rstems there exists quinhydr ne rysta l [53]. The 

quinhydrone which con i ts of quinone (electron acceptor) and p-hydroquinon . ( 1 ct.ron 

donor) is one of the charge transfer complexes. The crystallin quinhydrone i .. an insulator 

at atmospheric pressure. The quinhydrone and it · derivativ s may be f ur differ nt cba.rgc 

transfer states (see Fig. 1.2): (a) a normal tate. (b) an lectron tran ·fer (ET) tat , (c) 

a proton transfer (PT) state. and (d) a combination of ET and PT. s call d th PET 

state. These states can exhibit different conductivity because the ET and PT .. t.ates ar 

ionic and the PET state is characterized by hydrogen-bond d neutral radical. At th 

high pressure. ~Iitani et al. observed vibrational pectra of CO and H bonds d pict d 

in Fig. 1.3 and found the indication of PET state [54) . 

History of studying conductivity and superconductivity of organic material i. shorter 

than that of inorganic materials. Because the first ob ervation of onductivity and ' U­

perconductivity in an organic material were reported in 1973 and in 19 0, re pe tiv ly. 

Following this, many organic (super-) conductors have been synthe ized. Th highe t 

transition temperature of the organic superconductors is almost llK. which i , howev r, 

about one fifteenth of the highest inorganic one. Synthesizing a novel material with th 

higher transition temperature is one of important topics in this area. These compounds 

mainly consist of a combination of the charge transfer complexes, in which an intermole -

ular charge transfer, which is essential to the conductivity occurs. Organic mol cular 

crystals are different from the inorganic ones in their constituent element . Th form r 

consists of molecules and the later consists of one atom or plural atoms. Then th fa tors 

dominating their physical properties of the organic ones are properties of the constitu nt 

molecules, combinations of molecules , intermolecular distance , and orientation of th 

molecules. Tuning the factors can easily control the properties On the oth ~r hand , the 

factors of the inorganic one are the combinations of atoms or impurities. It is r lativ ly 

difficult to predict their properties at the present time . 

In usual metallic materials. one can consider that conduction el ctrons freely move 
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in an averaged single particle potential and can predict their conductivity by means of 

the band theory based on the single-particle picture. However , there exist materials 

exhibiting a different nature with respect to the usual metals. Some materials, which 

are predicted exhibiting metallic property and indeed show metallic conductivity at a 

certain temperature and higher, becomes the insulator at lower temperature. One of the 

typical phenomena is the charge density wave (CDW) or the spin density wave (SDW). 

Th CDW and SDW states have spatial periodicity, which are in general longer than 

lattice constants. of electron charge density and spin density: respectively. :V1any-body 

effect . say the electron-phonon interaction or the electron correlation: causes them. The 

chematic diagram of the CD\V in a one-dimensional chain, which consists of identical 

atoms, is depicted in Fig. 1.4. Fig. 1.4-(a) and Fig. 1.4-(b) denote a normal (metallic) 

state and a CD\\' state with the periodic length 2a1 where a denotes a lattice constant. 

The CD\\' is due to the dimerization of the two atoms as shown in Fig. 1.4-(b) causing 

band gap around k = 1r / 2a. This phase transition is also called as the Peierls transition 

and usually follow with distortion of lattices. The schematic diagram of the SDW also 

is shown in Fig. 1.5. (a), (b). (c), (d) represent paramagnetic. antiferromagnetic, spin 

Peierls, delocalized antiferromagnetic cases, respectively. At high temperature: spins 

on the atoms turn to random orientations. As temperature decreases, the spins are 

arranged to bring about order due to the magnetic interaction between atoms shown in 

(b). Dimerization of two spins, whose combined spin is zero, is responsible for the spin 

Pei rls transition as an analogy of the CD\V depicted in (c). As the case of (d), densities of 

up and down spin wave with a periodicity and the whole system is weak antiferromagnetic. 

Comparison with (b), magnitude of spins on each atom is smaller and consequently total 

energy of the state is lower than (b). The SDW states do not follow with distortion of 

lattices as is often the case of the CD\iV. The SDW is collective excitation associated 

with magnetism and occurs in both ferromagnetic and antiferromagnetic systems. 

In this part, I investigate transition properties of a model PET system by using 

the band theory. In chapter 2, I explain a theoretical background of calculation of 

transition temp rature of singly ordered phases as the singlet superconductivity (SSC), 

SDW, and CDW in term of the temperature Green function method. Especially. I 
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apply an approximation method known as g-model to this problem [55]-[56]. Chapter 

3 concerns with numerical results of the energy band and transition temperature of 

anomalous phases in the pseudo one-dimensional quinhydrone crystal. I consider the 

two model cases: unit cell consists of (1) benzoquinone and p-hydroxyquinone and (2) 

of two semiquinones forming a pseudo one-dimensional chain. A possible mechanism 

of appearing these anomalous phases is discussed in relation to the PET reaction and 

applied field. Chapter 4 concerns concluding remarks. 
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Figure 1.2: Schematic diagram of the PET react ion path. There exist two different paths 

of transition from normal state to proton and electron transfer (PET) st ate. 
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Figure 1.3: The pressure dependence of unpolarized absorption spectra of monotonic 

quinhydrone crystals at 300K in the energy region of (a) C=O and (b) 0-H stretching 

motions. [54] 
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Figure 1.4: Charge density wave (CDW) in one-dimensional chain: (a) normal case and 

(b) dimerized case where a denotes cell length. Wavy lines denote density of electron. 

Comparison (a) with (b), the period of (b) is twice as long as that of (a). 
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Figure 1.5: Spin density wave (CDW) in one-dimensional chain: (a) ferromagnetic case, 

(b) antiferromagnetic case, (c) dimerized spin case, and (d ) delocalized ant iferromagnetic 

case, where a denotes cell length. A wavy line and doted wavy line in (d) denote up and 

down spin density of electron. Comparison (a) with (c) and (d ), the period of (c) and 

(d ) are twice as long as that of (a). 

Chapter 2 

Theoretical background 

In this section, theoretical background for the evaluation of phase properties based on 

the temperat ure Green function method is summarized. First. we derive an expression for 

crit ical temperature of phase t ransit ion of anomalous phase in the systems by using the g­

model which is an extension of Gor 'kov 's approach, originally reformulated the Bardeen­

Cooper-Schrieffer (BCS) theory for superconductivity in terms of the temperature Green 

function , into the SDW, CDW and SSC phases. Details of mathematical foundation 

on the derivation are almost identical with the original one (see appendices 2-3 and 2-

4). Next , we discuss a screening effect on the Coulomb potential due to the electron 

correlation. Finally. we explain the calculation scheme of the present method. 

2.1 g-model 

I investigate anomalous phases of coupled system of electron and proton by means of 

the approach by Kimura et al [55]. Before I discuss the condensed phase of the system, 

it is instructive to summarize the single-particle states of the system. Here I arrange 

the electron-electron interaction in a manner which is known as g-model and derive the 

expression of transition temperature Tc. The interaction Hamiltonian is given as 

(2.1 ) 

43 
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where the vertex function and matrix element of interaction are defined as 

(io:Jf3 1k, l5)oa5o13, - \io:J.f3 ll5k, )oa, o135 , 

j j dr 1dr 2¢;o:(r l)@jf3(r 2)V(r l , r 2)<1>kf3 (r 2)<DLa( r t) . 

(2 .2) 

(2 .3) 

Oia means a wavefunction of an i-th level with a spin ex. I here restrict ourselves to take 

account of only the lowest conduction c and the highest valence v bands. A role of the 

other bands which lie far from the Fermi surface is to screen the interaction of v and c 

bands. Thus. Eq. (2.1) is reduced to 

1 

4 :2::::: o(k1 + k2 + k3 + k4) :2::::: 
kl k2k3k4 o:{3,5 

(2.4) 

where f' is a screened vertex part. In the following analysis, I parameteriz · the matrix 

elements of t he interaction by the values evaluated at the Fermi momentum Then the 

coupling constants are approximated a 

(2 .5) 

(2.6) 

(2.7) 

where they are evaluated from the screened interaction at Fermi momentum which is 

mentioned in section 2.2. 

Now I define the order parameters, which are helpful to construct the mean field 

Hamiltonian, as defined as 

- t t 2L~q=~ (ak ak ) =~ (ak ak ) ~ v o c o: ~ c a v a 
(2.8) 

ka ka 

- ' t 
2.6.2 = ~ ex(aTk a k ) = ~ ex(a k a k ) , ~ vaca ~ cava (2 .9) 

ka k a 

(2.10) 
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for the singlet exciton, triplet exciton, and singlet Cooper pair , respectively. ex = ± for 

the spin up and down. Thus, I can derive a mean field Hamiltonian from Eqs.(2 .8)-(2.10) 

as 

where 

92 + 94 

and 

X= 1. 2. 3 . 

The total Hamiltonian with the mean field approximation is given as 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2. 15) 

(2.16) 

Let us define the following Green functions to characterize the CDW: SDW. and SSC 

phases as 

G~(k,t) = -(T[avka (t)a:k a(O)]) , 

F::(k . t) = -(T[a k (t)at k (0)]) , 
c 0: v 0 

In addition, there is another set that is obtained by interchanging v and c. 

(2.17) 

(2. 18) 

(2.19) 

From the equation of motion within the mean field approximation or by the decoupling 

procedure to the equation of motion for the Green function , I obtain equations for the 

Green function , which are separated into two parts for up and down spins. Then, obtain 

G~(k,wn) 

F~(k , Wn) 

P::_aa( k , Wn) 

1 
-(iwn- Ea( k)) 

.6.1 + .6.2 

a.6.3 

(2.20) 
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where 

(2.21) 

(2.22) 

and a= ±1 is for the spin up and down. respectively. 

For the simplicity, in Eq. (2.20) I suppose a symmetry (fJ ( k) = - c ( k ). €i( -k) = Ei ( k)) 

hereafter. I turn to the solution for the order parameter L~q. From Eqs. (2. )- (2.10) and 

(2.17)-(2.19) , I obtain 

61 = )...; L F: ( k t = 0) = ~l T L F: ( k · Wn ) 
~ kCt k . ..Vn .Ct 

(2.23) 

Inserting Eq. (2.20) into the above. I get a set of self-consistent equation: 

)... l 1 Ek 1 Ekl] 6 1 = ~ (61 + 6 2) L -_-tanh 2T + (6 1 - 62) L ~tanh 2T 
4 k EkT k k ~ 

(2.24) 

(2.25) 

>..3 1 'Ek 
6 3 = -63 L ~ tanh 2T 

2 k f.k 

(2.26) 

According to the procedure[57], I also suppose that the parameters of g in Eqs.(2.5)­

(2. 7) is constant in the energy region ending at the cut-off value - Ec· Physically Ec 

must be determined by the energy at which the velocity of the holes becomes so large 

that during than the correlation length . I designated also J.L = -( (( > 0). Here , it is 

supposed that the top energy of the higher band (v band) with the width E: is -Ev and 

the top energy of the lower band (c band) is -Ec· I consider the case when Ev = 0. 

For ( < Ec the transition temperatures of various singly ordered phases is given by 

{ 

1.13 [( (Ec- ()]1 /2 e- Kp~ase 
yphase = 

c 0 

Kphase > 0 

Kphase ::::; 0 
(2.27) 
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where 

A1Pv , for CDW 

Kphase = A2Pv . for SDW (2 .28) 

A3Pv . for SSC 

Pi corresponds to the density of states for the cylindrical isoenergetic surface for v band. 

2.2 Screening effects 

The screening effect for the electron-electron interaction is treated by the perturbation 

method. The effective interaction is written in k space as 

W (k) = [1- u(k)IT (k)r1 u(k) . (2.29) 

where W and u are the effective and bare potentials. respectively. I employ the random 

phase approximation (RPA) for the proper polarization part IT which is given by the 

ring diagram in Fig. 2.1 and denoted by II0 , it follows that 

II~r(k , w) = i 2:.f:I: (s lb.k+q)(b,k+q lr)(r lb'.q)(b'.q ls) 
v q b b' w- tb(k + q) + f.b'(q) 

(2.30) 

I make a small cut-off around the fermi momentum in carrying out the summation with 

respect to q, because electrons in this small region are responsible for the instabilities 

associated with phase transitions. I use the cutoff energy Ecut = 0.098 (eV). In order 

to improve the RPA for the polarization part , I take into account the oyster diagram. 

I am obliged to use an approximation in which the bare electron-electron interaction is 

restricted only to the one-center type. Thus I have 

1 
II!r(k) = -- L IT~t (k)wtt(k)II~r(k) . 

2 t 
(2.31) 

For the bare potential Urs(n)(eV) I adopt the Ohno potential[58]: 

Urs( n) = 14.40 ' J Rrs(n)2 + 51.8328(1/ Fr + 1/ F5 )
2 

(2.32) 

where Rrs(n) is the distance from the r-th site of the 0-th cell to the s-th site of n-th cell 

(in the unit of A) and Fr is a constant value for atom at site r listed in Table 2.1. Because 
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Table 2.1: Parameter appearing in the Ohno pot ntial 

c 0 H 

F(atom) 11.089 13.599 12.845 

the Dyson equation for the effective potential is an integral equation in the coordinate 

space and is difficult to solve. I take the Fourier transform of vVrs(n) and its inv rs as 

(2.33) 

]1.-

Wrs(k) = L e- iknWrs(n) . (2 .34) 
n=-1\. 

Once the screened Coulomb potential ~F is calculated. Tc can be evaluated substituting 

them into Eqs.(2.5)-(2.7) instead of the bare Coulomb potential V Eq.(2.3). 

+CD 
II 

Figure 2.1: Fynman diagrams of the polarization part considered in this work . 

Chapter 3 

N urnerical results 

A model system is given in Fig. 3.1. I construct two models as follows: (i) the 

molecule A is a p-hydroquinone and the molecule B is a benzoquinone and (ii) both 

the molecule A and B are semiquinones. ~Iolecular structures for the p-hydroquinone 

and the benzoquinone used here are experimental values for the case of triclinic crystal 

obtained by Sakurai [59) . On the other hand, that for the semiquinone used here is an 

optimized structure obtained by the ab initio calculation. I assume that the structure of 

the monomers does not change by the displacement ~x , which denotes distance form a 

center of molecule A to a right overhead center of molecule B and vertical separation R 

also depicted in Fig. 3.1. 

I performed band structure calculations of the model systems within the tight-binding 

approximation , where I use an extend Ruckel program package [60). Figs. 3.2 list the av­

eraged energy of the model systems for various values of ~x and R obtained by assuming 

two-dimensional periodicity. Note that the experimental values are nearly ~x = 2.25 (A) 

and R =3.25. The average energies of both model (i) and (ii) have minimum at ~x = 2.5. 

These results tell that the model (i) is more stable than the (ii) in energetically. I found 

that the model (ii) has metastable state at ~x = 0 and the model (i) does not. Figs. 3.3 

depicts the highest valence ( v) and the lowest conduction (c) band structures of model 

(i) and (ii) at R = 3.25 A. From these figures. I found that the model (i) is an insulator 

for each ~x and R, because there exists a band gap between v and c bands. I found 

that these situation does not change by tuning the vertical separation at least R =2. 75 
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A. On the other hand. the model (ii) has a metallic character, because the energies of 

v and c band at the Fermi momentum kF are degenerate. With decrea ing the verti al 

separation. it appears the two-band character. In general. the energy gap betw n c and 

v bands at kF is increased bv the electron correlation effect o that mod l (i) is till a 

insulator and model (ii) may be the insulator or metal after taking into account of the 

electron correlation. 

In order to clarify their conductivity. I next evaluate the Xs of CD\V. SD\\·. SSC 

phases only for the model (ii). I found that Acvw < 0 . Asvw > 0, and Assc < 0 for each 

case and then the system exhibits the SD\V insulator. Fig. 3.5 shows critical ternperatur 

of the SDW phase at various Rand ~x values. This result tell me that wh n 6..x = 0. i .. 

the molecule A is placed on the molecule B. the critical temperature is minimiz d . This 

results shows that their conductivity strongly depends on an overlap of mainly IT orbitals 

between A and B molecules. Indeed. the TTF-TC:\Q complex~ which is on of the organic 

metals at room temperature, has large overlap between donor and acceptor molecules. 

The structure of quinhydrone at room temperature and atmospheric pressure . however. 

has less overlap than the TTF-TCNQ. ~akasuji et al. have synthesized derivatives of the 

quinhydrone whose structure has large overlap. They may exhibit metallic conductivity 

if the PET state is possible to realize under high pressure. From the results. I conclude 

that the model (i) exhibits the insulator and the model (ii) exhibits the SDvV insulator 

at low temperature. 

From the molecular orbital: these systems have no ionic character rather than neutral 

character. From these results, I found that the quinhydrone crystal is possible to be 

mainly (a) and (d) states. However, comparing the averaged total energy of model (i) 

with that of (ii), the state (a) is more stable than the state (d). If external fields , say 

pressure, electromagnetic field, and etc., are applied in order to stabilize the state (d), 

the quinhydrone crystal may exhibit the SDW insulator. Moreover, when the system 

undergoes to the metastable state of state (d), i.e. ~x = 0.0, the crystal may exhibits 

metallic character at room temperature. 

Part II Chapter 3 Numerical results 

Displacement from center: 

Vertical 
Separation : R 

c!1x \ 
j 

Figure 3.1: A model of a unit cell of the pseudo one-dimensional system 
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Figure 3.3: HOMO and LUMO energy band of model (i) as a functional of ~x at R = 

3.25A. (a) 0.0, (b) 0.5 , (c) 1.0, (d) 1.5, (e) 2.0, (f) 2.25 A. 
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Chapter 4 

Concluding rernar ks 

In this study, I investigated conductivity of two model PET systems. which consist 

of quinone and hydroquinone and of two semiquinones forming a pseudo one-dimensional 

chain, respectively, by using single particle representation of electronic structure calcu­

lation. I give a theoretical background of calculation of transition temperature of singly 

ordered phases as the singlet superconductivity (SSC): SDW. and CD\\l in terms of the 

temperature Green function method. Especially, we apply an approximation method 

known as g-model to this problem. 

The numerical results suggest that the model (j) exhibits insulator and model (ii) 

does metallic at the tight binding approximation level and that the model (i) is stable 

than the model (ii) for all configurations. I calculate the transition temperature of the 

singly ordered phases of model (ii). These results show that the model (ii ) is possible 

to become the SDW insulator at low temperature and dose not exhibit other phases. 

CDW and SSC, at any temperature. Moreover , the transition temperature of the SDW 

becomes lower when the overlap between the donor and acceptor molecules is larger. I 

suggested a possible mechanism of appearing of the organic metal at room temperature 

in relation to the PET reaction and applied field. Results of the transition ternperature 

presented here are, however, qualitative rather than quantitative. Although the ab initio 

treatment and extension to two- and three- dimensional crystals are essential t o obtain 

more quantitative results : it takes vast computational costs and long cpu time. To 

overcome these difficulties is future problem. 
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Chapter 1 

Introduction 

Here I discuss future problems concerning with a calculation scheme of KBO-DFT 

and the application to PET systems. I first show the manner of the extension to the 

quantum dynamics by using real space grid (RSG) method. I next give a short comment 

about treatment with electronic and nuclear excited states. The excited state DFT is 

recent topics and many works have been proposed. The time dependent and excited state 

extension of the NBO-DFT formalism should be very exciting in that from a viewpoint of 

chemical reactions. Finally, I comment on the thermo filed dynamics , which may mediate 

between micro and macroscopic phenomena, i.e. quantum and classical phenomena. I 

also discuss strategy of calculating biological systems in relation to present approaches. 
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Chapter 2 

Application to quanturn dynamics 

For dynamic cases. molecular dynamics based upon the DFT. which is initiated by 

Car and Parrinello in 1985 [61]. is current topics in the molecular physics. In this method. 

nuclei are treated as classical particle. However. it is difficult for the method to describe 

the light mass nuclei such as proton and muon. :\ agao have presented the molecular wave 

packet (MWP) method to investigate the isotope effect on the (hyper) polarizability of 

one dimensional hydrogen molecule and its isotopomers [62] based upon~ BO view point. 

It is, however, actually trouble to extend these methods into three- dimensional many 

particle systems, because the method is computationally demanding. In order to reduce 

the computational efforts, it is necessary to introduce an approximation as possible as 

retaining accuracy. 

I mention here a detail of a real time calculation scheme by means of the RSG. which 

is an extension of my previous work [26]. I use the fat Fourier transform (FFT) method 

and local spin density approximation through this section for a first approximation. A 

discretized one-particle wavefunction is expressed as 

Ns Ns Ns 
¢f(r ) = 2:::: 2:::: L crlmn¢f(xz, Ym, Zn)' (2.1) 

l=-N m=-Ns n=-Ns 

Although summations are counted over infinite in principle. Ns is restricted to be finite 

number in actual calculations. I assume that this wavefunction obeys th KS equation. I 

adopt the higher order expansions for the kinetic operator in Eq.(2.1) by using a uniform 
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grid. Laplacian operator i::lr¢e(Xi, yj, zk) is approximated as 

Nh 
L Cnx¢f(xz + nxh. Ym, Zn) 

Nh 
+ L Cnv6f(xz, Ym + nyh: Zn) 

ny=-Nh 
Nh 

+ L Cnz¢f(xz, Ym, Zn + nzh), (2.2) 
nz=-Nh 

where h is a grid spacing, Ci are constants in the differential method and Nh is a positive 

integer describing accuracy of this approximation. The accuracy is ordered as O(h2Nh+2). 

The nuclear kinetic terms are also represented in analogical forms. Other approximations 

for the kinetic operator are referred in (64] and [68]. For isolated systems, I can yield 

VH by the FFT in forcing the supercell periodicity. which is commonly used in the 

calculations of the band structures. Fourier form of the classical Coulomb potential is 

given by 

(2.3) 

where nt(K) is fourier form of generalized density defined as 

(2.4) 

Other treatments to obtain the VH are the multigrid method solving the Poisson equation 

(65],[68) and the direct summation method [63]. The exchange-correlation potentials, 

which depend on the spins of particles, consist of the three parts, which are the exchange 

part, the correlation with identical particles, and correlation with other particles. The 

exchange-correlation potential in Eq.(2.18) can be represented as 

v~c[ { n~}, { n~}] = 

V:C1
[ { n~}, { n~}] 

(J+ (J+ (J vex vc ven ' 

vo! + voi + vof 
ex c en ' 

(2.5) 

(2.6) 

Because practical forms of the exchange-correlation potentials are not known yet: then I 

consider a bold approximation for the potentials. v\iith these kinetic operators in Eq. (2.2) 

and the local spin density approximation (LSD). I can construct an one-particle CKSE 



62 Part III Chapter 2 Quantum dynamics 

over the grid as 

[- 2 1~In ~R- Zn VH(X£, Ym, Zn) + v;a(Xl , Ym, Zn)] 

xx[a (X1. Ym, Zn ) 

E[ox[o(X 2 • Y;. Zk). (2.7) 

I can obtain the ground state by using the reduction technique (62] , which is availabl 

from the Taylor expansion of imaginary time evolution operator, 

~ ~vi (1- dTF; (T)) of( T) + O(dT2
) . 

x{o (T + dT ) e-Fg(T)dTxfo (T) 

~ ~ T: (1- dTF:(T )) x{0(T) + O(dT 2
) 0 (2. ) 

where Ni and N; mean the normalization constant, P; ( T) and P~o ( T) are generated by 

means of the set of wavefunction { ¢~ ( T) , x~o ( T)} at time T. I can obtain the ground state 

by successively acting the imaginary time evolution operator on the wave function. 

This method can be extended into the real time dynamics . Several procedures to 

expand the real time evolution operator are proposed and their stability has been inves­

tigated [69]. For example, second order differential method and the Lanczos method are 

often used for wavepacket dynamics. Recently, Suzuki [70) proposed a systematic scheme 

of decomposition of exponential operators and tested its efficiency. Watanabe applied the 

decomposition method to the real time dynamics of a hydrogen atom under a magnetic 

field and calculated the spectra of scattering light [71]. This method can be favorable for 

the real time dynamics of the NBO-DFT calculation scheme, because the method affords 

a good stability and high accuracy. However , the resultant information on the excited 

state is approximate one, because the conventional DFT was formulated for evaluation 

of the ground-state energy. The DFT for excited states is much important for describing 

the transition states and chemical reactions even for BO case and is current topics in thi 
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area. In the following section, we consider the excited state DFT and its implementation 

to the NBO case. 

An alternative way of real time dynamics including nuclear quantum effects is path­

integral based method, i.e. centroid molecular dynamics method , which was initially 

proposed by Cao and Voth [72] and enable us to treat with the dynamical properties 

at finite temperature simultaneously. Many applications are performed by using the 

method , for example, liquid para-hydrogen and that containing the Li impurity, liquid 

He, and excess proton in water [73]-[75]. I have proposed an extension of the method 

using spin variables (76]. Recently, fully quantum molecular dynamics method which 

combines ab initio Car-Parrinello molecular dynamics with centroid molecular dynamics 

(AIC?YID) was reported and its application to excess proton translocation along a model 

water wire was presented [77]. They observed the blue shift from the classical spectra of 

0-H-0 bond and red shift from the classical spectra of weak hydrogen bond Q .. ·H-0. 

These shifts are due to quantum effect of the protons. In this method, nuclear motion 

is treated as an average motion of centroid of an isomorphic classical polymer. It is 

difficult to perform the calculation with increasing the system size, because the AICMD 

requires the ab initio calculation for each configuration of the isomorphic polymer. On the 

other hand, the l\BO-DFT requires less computational costs than the AIC~1D does and, 

moreover, the extension of the l\BO-DFT at finite temperature by using the temperature 

Green function method and the causal Green function method can be performed. 



Chapter 3 

Excited state and other problems 

Several extensions of the ground state DFT have been contriYed to cope with excited 

states. They are based either on the Reyleigh-Ritz principle for the lm\·est eigenstate of 

each symmetry class [79].[80] or on the variational principle for ensemble [ 1].[ 2]. The 

crucial problems are how to determine the exchange-correlation energy functionals for 

excited states. Recently, Garling suggested a computational scheme for the treatment 

of excited states within the DFT and the time dependent Kohn-Sham formalisrn which 

is generalization of the DFT perturbation [83]. Gross et al. also derived another time 

dependent DFT with excited states [84]. Levy and ::\ agy formulated variational scheme 

for calculation of excited states [85]. They evaluate inonization energy for several atoms, 

which show good agreements with experimental values. At next stage, making use of 

these methods may enable us to treat the time dependent molecular dynamics including 

both ground and excited states by means of the DFT. 

Quite independent of the problems connected with the exchange-correlation energy 

functionals for the excited states, there are some questions that how to uniquely choose 

the functionals for both the fermion and boson nuclei and for electron-nuclear coupling. 

At this stage, I have neglected such effects in Eq.(3 .9) . Here, I will make some remarks 

about it briefly. For the fermion nucleus, due to the anti-commutation relation or Hund's 

rule , the identical nuclear-nuclear exchange-correlation terms may be represented as th 

same form for the electronic-electronic ones. On the other hand, the boson nuclei ar 

satisfied the commutation relation. For the boson nucleus,the Kohn-Sham equation may 
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be represented as only one differential equation with a density. The identical exchange­

correlation terms may be obtained from imperfect Bose gas model taking all these con­

siderations into account . Electron-::\ucleus correlation terms, which are third term in the 

right hand of Eq.(3.9) , and different nuclear-nuclear correlation terms are indispensable 

for describing the nonadiabatic effects. I can never neglect these coupling terms. There 

are many cases in calculating such terms, for example, a correlation between electron and 

fermion or boson nucleus, between fermion and boson nuclei. Though the last terms are 

very small in comparison with the other terms, when one investigations on a deuteron 

in metallic hydrogen and a mixture system of 3He and 4 He, the last terms seem to be 

very significant. Much progress is exceedingly expected to search them, for example, the 

generalized gradient approximation [86] method with taking advantage of the scaling low 

generated by the virial theorem [87]. 

Recent years. applications of time dependent density functional theory (TDDFT) to 

molecular systems have been performed in order to obtain the excitation spectra, ioniza­

tion potentials, (hyper-) polarizability and etc. within the RPA and is with !ITeat success 0 

in describing not only low-lying excited states but also Rydberg states [88]-[90]. The 

frequency dependent (hyper-) polarizability by using the TDDFT has been performed 

by Baerends and co-workers [91] and another formulation by using quasi-energy deriva­

tive method is derived by Aiga [92]. The GWA also enable us to calculate these values 

with approximation levels going beyond the RPA systematically. I should take account 

the contribution of frequency dependent terms in the GWA, the vertex correction to the 

polarization function, the dynamical collective motions, and the nonadiabatic correction. 

In fut ure work, I consider these problems in detail. 
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Micro- and n1acroscopic quantum 

effects 

One can observe many phenomena of nature. which are almost macro copi . and the 

macroscopic systems exhibit surprisingly various phases. For example. gases --t liquids 

----+ crystals ; metal ___,. superconductor; antiferromagnet ___,. ferromagnet, which are char­

acterized by crystalline. superconducting and magnetic orders. respectively. It is natural 

to expect that macroscopic objects are created in a quantum system and the states of the 

quanta are influenced by the presence of the macroscopic objects. As one of theoretical 

methods treating thermal effects, I use the temperature Green function method in present 

work, which is the one of the most widespread methods in the physics .. 1oreover. in or­

der to investigate the magnetization of model ring molecules I utilized the ab initio path 

integral approach [78]. I observed the magnetic field induced spin crossover phenomena 

in the magnetization at low temperature. However, it is difficult for these methods to 

describe dependency of the thermal effects and thermal averages on real time , because 

the temperature is interpreted as imaginary time and one need to use mathematically 

complicated analytic continuations in order to transform it into the real time represen­

tation. Moreover, the temperature Green function method is limited to apply to the 

thermal equilibrium states. There are many other methods based upon the field theory 

treating thermal phenomena. For example , method of C* algebra, the Liouville equation 

and superoperator method, the path ordered method, and thermo field dynamics (TFD) 
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[93],[94]. In these methods except the TFD, temperature is introduced as an additional 

parameter. The TFD can treat with temperature and time simultaneously and can be 

extended to nonequilibrium cases. 

It seems that in biological systems motions of the proton and electron mainly dom­

inate the biological phenomena and play an important role in controlling the systems. 

These are obvious fact because deuteration of water in the biological systems causes to 

be lost balance of life. In proteins. DNA. and R~A, there exist many hydrogen-bonded 

networks. The motions of the proton and electron in the hydrogen bond deeply depend 

on the system and are not sufficiently understood. The hydrogen bonds not only con­

trol structure of the systems but also actively contribute to chemical reactions in the 

systems. The chemical reactions. \Yhich partly happen in microscopic active sites of the 

systems. change into functionalities of life. which can be observed macroscopically. This 

problem is one of the important subjects to be solved after the 21st century. In the 

chemical region. it will be crucial to elucidate a mechanism of functionalities in both 

a molecule (microscopic) and molecular cluster (mesoscopic) levels. Controlling of the 

chemical reactions and functionalities in the molecular clusters are also matters of great 

importance. On that occasion the chemical reactions and functionalities in the bio­

logical systems certainly hold the key to the solution and hints of the above questions. 

As one of interesting problems, there exists a problem that how can Nature chooses 

the quantum-mechanical, chemical reactions (microscopic) and classical motions (macro­

scopic) as mentioned before. There is some doubt whether the biological systems make 

actively use of the quantum mechanical mechanism because the motions of the solvent, 

which prevent and promote the chemical reactions in solutions, are well understood in 

terms of the classical model and the chemical reactions locally happen. Nevertheless, 

there exists a model for a brain which is based upon quantum field theory so-called 

quantum brain dynamics which is based upon the TFD [95], [96]. In this model, dipole 

moments of the water molecules collectively move. The brain is active due to the bose 

condensation of the collective motion in the brain. which occurs through evanescent light. 

If the proton and electron transfer reactions collectively occurs in the hydrogen-bonding 

networks, the mechanism also is applicable to the other biological systems and the :\BO 
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treatment of the molecular systems may be aid for the elucidation of a new mechanism. 

vVith progress in computational equipment and the density functional method, calcula­

tion of whole biological molecules \vill be performed in the near future. However, the 

elucidation of the chemical reaction and functionalities and as a result of its controlling 

are farther in the future. Especially: applications of the density functional theory to ex­

cited states are begun in the last five years and many quantum chemists are incredulous 

of them. The :\'BO Green function method here I present is also a challenging problem. 

However, this method provides me to treat with quasiparticles of collective motion of 

the electrons and nuclei and those of nuclei and other kind of nuclei. These treatments 

with the TFD may open a possibility for describing new phenomena in the biological 

systems. 

Chapter 

Appendices 
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A Outline of density functional theory for electron 

I here outline the density functional theory for the many electron system. which 

shows that the ground-state energy of an interacting system is a unique functional of the 

ground-state density. originally introduced by Hohenberg and Kohn [40] and modifi d 

by Levy[42]. :\ext. I derive the Kohn-Sham (KS) equation [41] for the system. For 

simplicity. I restrict ourselves on treating non-degenerate and spin independent cases. 

Extensions of different cases are straightforward. 

A.l Hohenberg-Kohn theorem 

Here. I briefly show the Hohenberg-Kohn theorem and its proof according to a for­

mulation of Levy's constraint search. This theorem is attractive and nable us to treat 

many-electron system as non-interacting system with an effecti,·e potential. In what 

follows, it is shown that the ground-state energy of an interacting ystem is a unique 

functional of the ground-state density and that the functional has a minimum at the 

exact ground-state density. 

Let us define for the system a particle density function p( r ) as 

(A-1) 

where w is ground-state wavefunction normalized to unity and T is product of volume 

element except for dr 1 . If the system is under the influence of an external field , which is 

derivable from a local scalar potential u( r i), there is a term in the Hamiltonian describing 

this interaction: 

(A-2) 

Hohenberg and Kohn originally showed that u(r) is a unique functional of p(r). However. 

it was pointed out that there is not always u( r ) for physically reliable density p( r ). In 

what follows , the Levy 's version of density functional theory is shown. 

A" ext consider a functional as 

(A-3) 
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where \llmin is antisymmetrized wavefunction minimizing an expectation value of sum of 

the kinetic energy T and electron repulsion Vee· 

Theorem 1: Variational principle for ground-state energy functional 

For ·-representable p( r). an energy functional is defined as 

E[p] = j dru(r)p(r) + F[p] . (A-4) 

The ground-state energy Ecs is lower bound of E[p]. 

Proof of theorem 1 

The ground-state energy is given in terms of ground-state wavefunction \ll cs as 

Ecs = (Wcs iT + V + UIWcs ). (A-5) 

where U = Li u(r l). On the other hand, Eq.(A-4) is rewritten as 

(A-6) 

because of the expression as follows: 

J dru(r)p(r) = (\llminiUI Wminl · (A-7) 

From Eqs.(A-5) and (A-6) and the variational principle Ecs is lower bound of E [p], 

because they are expectation value of the same Hamiltonian. 

Theorem 2: N-representablity for ground-state 

The ground-state energy Ecs is given as a functional with respect to one-particle density 

of the ground-state 

Ecs = j dru(r)pcs(r) + F[Pcs]. (A-8) 

Proof of theorem 2 

W~~ is antisymmetrized wavefunction minimizing an expectation value of sum of the 

kinetic energy T and electron repulsion Vee and gives exact ground-state density Pes· 

Note that w~~ do not always identical with w GS· From theorem 1, Ecs is lower bound 

of E[p] 

(A-9) 
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Because both 'I' ~~; and 'Ir es give the same density peS, then, it is found to be 

(A-1 0) 

Equation (A-9) can be rewritten as 

(A-ll) 

The right side of this equation coincides '"'ith F[pes]. From the definition of F[pes], the 

sign of inequality in Eq. (A-9 ) is contrary. Therefore. the ground-statE' energy can be 

represented by Pes and the following expression holds for exact density: 

Ees = j dru(r)Pes(r) + F [pes ] . (A-12) 

A.2 Kohn-Sham equation 

Kohn and Sham proposed a good approximation for calculations of the ground-statE> 

energy and construction of the ground-state density by more effi cient way. Ground-stat 

energy of the many-electron system is given by energy functional as Eq.(A-3). vVithout 

any approximation. kinetic energy is represent ed by means of the orbital as follows: 

.v \72 
T = L ni(~il- 2 11/Ji) , (A-13) 

t 

where '1/Ji and ni are natural spin orbital and its occupation number. Pauli 's principle 

imposes 0 2-. ni 2-. 1 and Hohenberg and Kohn theorem guarantees that T is unique 

functional of total density p defined as 

N 

p(r ) = L niL 17/Ji(r , s)l 2 
.. 

(A-14) 
s 

For interacting systems, it is tractable to calculate the kinetic energy, because th r 

are infinite number of terms in Eq.(A-14). Kahn and Sham introduced a quit different 

method for evaluating T[p], which is separated into a major part that is known and a 

minor correction showed that one can construct a theory using simpler formulas as 

N \12 
Ts[P] = L (?/Jil - 2 17/Ji) (A-15) 

t 
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N 

p(r) = L L 17/Ji(r, s)l 2 
· · (A-16) 

s 

Equations (A-15) and (A-16) are the special case of (A- 13) and (A-14) having ni = 1 for 

N orbitals and ni = 0 for the rest orbitals. 

One can define an energy functional as 

F[p] = Ts [p] + J[p] + Exc[P] , (A-17) 

where 

Exc[P] = T [p]- Ts[P] +Veep]- J [p] . (A-18) 

J[p] is an energy functional of the classical part of Coulomb interaction and Exc is 

exchange-correlation energy functionaL which contains the deference between T and Ts 

and non-classical part of Vee- KS effective potential is given by 

( ) 
bJ[p] bExc[P] 

VeJJ( r ) = u r + bp(r) + bp(r) 

J , p(r') 
u(r ) + dr lr _ r' l + Vxc( r ). (A-19) 

Now. the Hohenberg-Kohn variational problem is interpreted in terms of Kohn-Sham 

orbitals appearing in Eq. (A-16). The energy functional can be rewritten as 

E[p] = Ts[P] + J[p] + Exc[P] + j drp(r)u(r ) 

= 2:.: j drWi( r )( ~ ~
2 

)1P;(r ) + J[p] + Exc[P] + j drp( r )u(r ) , 
2 

(A-20) 

and electron density as 

N 

p(r) = L I?/Ji(r)l 2 
· (A-21) 

Define the functional of N orbitals 

N 

D[{?/;i}] = E[p]-~ Eij j dr?/J;(r)?j;1(r). (A-22) 
t,J 

where Eij is Lagrange multiplier ensuring a normalization constraint 

(A-23) 
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For E[p] to be minimum. it is necessary that 

8 n [ { 'wd] = o . (A-24) 

which leads to an equation 

(A-25) 

where Veff is determined through Eq.(A-18). Because heff is Hermite op rator E 2J can 

be diagnalized to obtain the KS equation in the canonical form as 

[- ~ \72 + Veff] Wi 

Veff( r ) 

p(r ) 

(A-26) 

J , p(r') 
v(r ) + dr \r _ r '\ + Vxc(r). (A-27) 

j\; 

L L \Vis (r )\ 2 . (A-2 ) 
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B Greeen function and field theory 

In this appendix, the many-body theory for an electron is presented. To describe a 

system of I\' electrons, the second quantized formalism is used. I follow the outline of 

Fetter and Walecka [33], chapters 3, 7, and 13. The utility of the Green function technique 

is manifold. For one thing, it has a clear and physical interpretation and enables to 

study single-particle behavior as well as collective phenomena. Further, as stated before, 

knowledge of the Green functions of a system enables calculating the expectation value 

of all one-particle operators in the system. There is also a clear prescription how to 

calculate G, and from this. various schemes of approximation can be developed. I use 

atomic units through out this appendix. 

B.l Definition of the Green function for zero temperature 

The Hamiltonian for the system is given by 

~ J A [ \72 l A H = dx7j}(x) - 2 + u(x) 7/J( x ) 

+ j dx,J}( x )J}(x' )v(x ,x' ){i;(x' ){i;(x ). (B-1 ) 

where u(x) is an external potential and v(x. x' ) is the Coulomb interaction. The field 

operators satisfy the anti-commutation relations as 

[~(xt). Jt(x't' )]+ 

[~(xt) , ~(x't') J + 

8(x- x' )8(t - t') 

[~t (xt) , Jt (x't') J + = 0 . (B-2) 

For time independent cases, their time dependence is governed by the Hamiltonian H of 

the system through the field operators in the Heisenberg picture as: 

(B-3) 

This follows from the equation of motion for the field operators as 

(B-4) 
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Kow. the Green function of the system is defined as 

(2VjT [u( 1)ut(2)] jJV) 
iG(1 , 2) = Uvl IV) 

(B-5) 

where abbreviation for a coordinate and time, i.e .. (1) = x 1t 1, is used. In what follows , 

denominator of Eq. (B-5) is normalized to be unity. T is the time ordering operator 

and jN) is the Heisenberg ground-state of the interacting I\-electron system. obeying the 

Schrodinger equation 

H jN ) = E j.iV) . (B-6) 

The Dyson equation is derived from Eqs. (B- 1) and (B-4). 

[ a v2 ] 
i &t

1 
+ -f- u(1) G(l. 2) 6(1.2) 

- i j d(3)v(l. 2)G2(1, 3 2, 3+)6(t3 - t t) , (B-7) 

where the two-particle Green function is 

(B-8) 

and 6(1, 2) = 6(x 1 - x 2 )6(t1 - t2 ) and t3 = lim77~ 0 (t3 + TJ ) are used. The self-energy 2:: 

is defined through 

[i ~1 + ~i - u(l) l C(l , 2) = 6(1. 2) - i j d(3)I:(l. 3)C(3. 2) . (B-9) 

The non-interacting Green function G0 is defined as the solution of the following equation 

[ 
a v2 ] 

i &t
1 

+ -f- u(1) G0 (1, 2) = 6(1 , 2) . 

Combining the Eqs. (B-9) and (B-10) , the Dyson equation Eq. (B-7) becomes 

G(1, 2) = G0 (1, 2)- j d(3)d( 4)G0 (1 , 3)2::(3 , 4)G( 4, 2) . 

(B-10) 

(B-11) 

Although Eq. (B-5) implies luck of much detailed information about the ground-state , 

the single-particle Green function still contains the observable properties of great interests 

as follows: (1) the expectation value of any single-particle operator in the ground--state 

of the system, (2) the ground-state energy of the system, and (3) the excitation spectrum 

of the system. 
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B.2 GW approximation 

In 1965 Hedin [36] presented a set of coupled equations the should be solved self­

consistently to obtain physical properties of G or 2:: . I first give some definitions and here 

present the coupled equations. 

The screened interaction W is defined as 

W(1 , 2) = j d(3)v(1 , 3)c-- 1(3 , 2) , (B-12) 

where the inverse dielectric function c-- 1 is defined through the density-density correlation 

function , which is an extraction of the two-particle Green function defined in Eq. (B-8). 

This function describes the linear response of the system to an applied external field. 

The point of the coupled equations is to expand the properties ~ and G in terms of W 

rather than v . The irreducible polarization propagator P is defined through 

c- (1. 2) = 6(1. 2) - j d(3)P (3. 2)v(l. 3) . 

and the three-point vertex function is 

62:: (1. 2) r ( 1 , 2; 3) = 6 ( 1 , 2) 6 ( 1 , 3) - 6v ( 
3

) , 

(B-13) 

(B-14) 

where Vis the total average potential of the system, and 6JJ~3~ ) is the functional derivative 

of the self-energy with respect to this total average potential. 

Finally a set of coupled equations determining 2:: is derived as 

2::(1 , 2) = i j d(3)d(4)W(1+.3)G(l.4)f(4,2:3). (B-15) 

W(1, 2) v(1 , 2) + j d(3)d(4)W(1,3)P(3, 4)v(4,2), (B-16) 

?(1 , 2) = -i j d(3)d(4)G(2 3)G(4, 2)f(3, 4·1), (B-17) 

f(1,2 ;3) 6(1 , 2)6(1 , 3) 

+ j d( 4)d(5)d(6)d(7) !~~~: ~i C( 4. 6)C(7. 5)f(6, 7: 3) . (B-18) 

These equations are in principle to be solved iteratively to obtain the self-energy 2:: as a 

functional of G. However, this process becomes computationally too complicated to be 
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carried out even for the electron gas. This mostly due to the pre enc of the vertex r. 
As a first approximation. Hedin suggested to keep the vertex fix d a,s l. This means 

that Eqs.(B-15) and (B-17) take the form 

~ (L 2) = i j d(3)H-(1+. 3)G(1, 2). ( 13-19) 

P(l. 2) = -iG( l. 2)G(2.1). (B-20) 

The neglect of vertex is similar to the random phase approximation(RPA), but now 

interacting Green function is used. Thi scheme is known as G\V approximation , 

because the self-energy in Eq.(B-19) is a convolution over G and n·. 

B.3 Definition of temperature Green function 

It is obvious that including thermal effects is essential to deal wi h probl m in the 

solid state physics. The finite temperature ( ~Iatsubara) Green function. which enable 

us to discuss dependency of physical properties such as sp cific heat on temperature and 

consequently a critical temperature of phase transitions. is presented . The generalization 

to finite temperature is obtained by replacing the expectation in the ground-state by an 

average over some statistical ensemble. I here restrict on the case of the grand canonical 

ensemble. 

The average of an operator 0 in the grand canonical ensemble is 

(0) 
Tr [e-!3(H-J.LN)O] 

Tr [ e-tJ(k-.. J.LN ) J 

Tr[,OcO], (B-21) 

where n, fi ' J-L , and N denote a free energy, a Hamiltonian, chemical potential, and a 

number of particle of a given system, respectively, .De is the statistical operator , and 

the short-handed notation f3 = 1/ k8 T is used. The trace (Tr) goes over a complete set 

of states in which the number of particles is unrestricted. The Heisenberg operator is 

introduced in terms of grand canonical Hamiltonian k = (if - J-LN) as 

( B-22) 
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where T denotes imaginary time, iT = t. Thus, the temperature Green function is defined 

by 

(B-23) 

where the abbreviation of coordinate and (imaginary-) time is again used. 

B.4 Bardeen-Cooper-Schrieffer theory for superconductivity 

The theoretical explanation of the superconductivity was given by Bardeen, Cooper , 

and Schrieffer in 1957 and is known as the BSC theory. According to the theory, an 

electron moving through an elastic lattice creates a distortion of lattice as a result of the 

Coulomb interaction between ions and the electron. This distortion causes an attractive 

force between two electrons forming the Cooper pair. A mechanism of the su percon­

ductivity is considered as a bose condensation of the Cooper pair. I here summarize a 

temperature Green function approach for superconducting systems originally proposed 

by Gor 'kov based upon the generalized Hartree-Fock approximation. 

For a model of singlet superconductivity. the theory starts from the following model 

effective grand canonical Hamiltonian for electron gas in a magnetic field 

(B-24) 

where A(1) is vector potential and neglected hereafter for simplicity and I use a unit of 

(h=e=c=1). 

Three different Green functions are defined as follows: 

G(l. 2) 

F(1 , 2) 

pt (l. 2) 

~ ~ t 
-(T7'[wr (1)V;r (2)]) . 

-(TT[~r(1){J1(2)]) · 

-(T7'[~!(l)wt( 2)]) . 

(B-25) 

(B-26) 

(B-27) 

~- ... · . 
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The equation of motions for these Green functions are given by 

with 

[- :T-Pm+11] -o(1,2) o 
~( 1 ) [-:T-~+11] 

~ ( 1) 

0 

~ ( 1 )* 0 [ _§_ - ~ + II] 8T 2m ,_., 

G(t 2) 

X F(L 2) = 0 I 

pt (1, 2) 

~( 1 ) = gF(1+; 1) = -g (-J; (1)-0 (1)) = g(J; (1)Jr(1)) . 

These equations should be solved iteratively. 
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(B-28) 

(B-29) 

In almost cases of interest. the Hamiltonian is time independent and the correspond­

ing Green functions depend only on the difference of time. ;vioreover. if the system is 

translationally invariant. it is useful to introduce a Fourier representation. 

The same relation folds for F and p t. Pair of algebraic equations are obtained as 

0 , 

where ~k = k2 /2m - Jl- These equations are readily solved to give 

-(iwn + ~k) 
w~ +~~ + 1~12' 

-~* 

(B-30) 

(B-31 ) 

(B-32) 

(B-33) 

In the absence of an applied field , the parameter ~ may be taken as real with no loss of 

generality, thereby ensuring pt (k , wn) = F( k , wn)-

A self-consistent equation for ~ is then given 

(B-34) 

Appendix B 81 

Canceling the common factor~ and using a cut off energy in performing above integral, 

I obtain 

fWD d~ (~2 + ~2)1/2 
1 = gN(O) Jo (~2 + ~2)1 /2 tanh 2kBT (B-35) 

where N(O) = mkp/2712 is the density of states in the present modeL In a limit of 

T -+ Tc, the gap vanishes identically and critical temperature Tc can be evaluated as 

(B-36) 
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