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Abstract

This work proposes a theory of the light transport at the corneal surface
of the human eye including multiple eye poses. The theory is subsequently
applied to solve two practical problems in scene reconstruction and interaction
techniques. Related with these are the solutions to two general problems in
scene reconstruction from multiple eye images.

As the eyes are the interface between a human body and the visual in-
formation of the physical world, their movements also convey rich details for
interpreting a person’s affective state, behavior, and relation with the envi-
ronment. Despite having numerous applications in a variety of fields, current
approaches to extract information from eyes are lacking, being intrusive, re-
stricted to laboratory conditions, and not providing sophisticated ways to in-
tegrate the eye with its environment. Recently, the geometric relation between
eye and camera, that can be obtained from a face image, has been formalized
to analyze light reflections in the cornea of a single eye or in a pair of eyes to
recover simple scene structure. Nevertheless, there exist no solutions for re-
lating reflections among multiple eyes, probably imaged by different cameras,
with the structure of the surrounding environment. This, however, is cru-
cial to develop sophisticated strategies for geometric eye analysis in arbitrary
environments. This study aims to provide a solution.

The first practical problem lies in calibration to obtain display pose in
display-camera setups. Understanding the combination of display and cam-
era as a controlled system enables a range of interesting vision applications
in non-professional environments, including object/face reconstruction and
human–computer interaction, but attempting to do this in average homes has
been difficult as current approaches require special hardware and tedious user
interaction. This work proposes a novel calibration approach that simplifies
this by building on the observation that a user is commonly located in front of
the setup and that screen reflections in the cornea of the eye can be extracted
from face images. Despite the difficult constraints, results obtained are fea-
sible and should be sufficient for many applications involving non-intrusive
calibration-free dynamic setups.

The main question then becomes what accuracy can be expected for scene
reconstruction from multiple eye images. For this discussion, significant fac-
tors that affect accuracy are identified among individual eye geometry, camera
parameters and geometric relation in the setup. Comprehensive experimental
evaluation shows that, due to common errors in eye image processing and
an unknown shape for the individual eye, scene reconstruction results in a
large error and cannot be applied directly. To compensate for this, an opti-
mization strategy is developed that exploits geometry constraints within the
system to jointly improve eye poses and scene structure. Results show that
the method performs accurately and stably with respect to varying subjects,
scene alignments, eye positions, and gaze directions.
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The second practical problem relates to non-intrusive eye gaze tracking
in arbitrary environments. Flexible techniques for tracking a person’s point
of regard enable human–computer interaction and diagnostic studies with a
range of applications in different fields. While eye gaze tracking has been
an active area of research for over five decades, state-of-the-art approaches
share major limitations restricting applications to controlled laboratory con-
ditions with experienced personnel and a high degree of intrusiveness. This
work proposes a novel system architecture that overcomes this by building
on the observation that projected invisible structured light assigns environ-
ment locations with information that can be uniquely identified from corneal
reflections. The approach is the first to support arbitrary surfaces and not
require geometric calibration. Combined with unobtrusiveness and robustness
to practical conditions, it enables a wide range of applications for novel user
groups and situations.

Applying invisible structured light projection to corneal reflection analysis
provides a solution to the general problem of accurate and robust feature
matching among multiple eye images. The existing approach based on the
epipolar geometry between a pair of eyes suffers from several shortcomings
related to dependency on pose, shape, and reflection properties of the eye.
Beside eliminating these, the proposed strategy provides a dense matching, is
purely image-based, and thus, naturally enables feature matching between eye
and conventional images. This is crucial for combining eye-specific information
such as point of regard, peripheral vision, and visual field with high quality
image data or scene geometry.

The results of this work have implications on several fields. The findings
provide general insight on the application of eye reflections for geometric re-
construction and are an important contribution. Linking eye and environment
information can lead to novel insights and understanding.

Keywords— Computer vision, image analysis, calibration, reconstruction,
interaction, visual system, eye model, eye pose estimation, eye gaze tracking,
catadioptric imaging system, corneal reflection, light transport,
display-camera system, projector-camera system, structured light
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Chapter 1

Introduction

Our eyes are one of the most important sense organs allowing vision and pro-
viding us with rich information content about our physical world. They are
important to the exploration, analysis, perception of, and interaction with
visual information. Thus, eye movements contribute a key part to the in-
terpreting and understanding of a person’s wishes, needs, tasks, cognitive
processes, affective states, and interpersonal relations. As this information is
relevant to a large number of applications in a variety of fields (Duchowski,
2002), eye gaze tracking is one of the most common problems with a long
tradition in the image-based analysis of eye-related information (Duchowski,
2007; Young and Sheena, 1975; Hansen and Ji, 2010). At the present day,
however, it has not emerged from the status of merely being applied as a re-
search tool in laboratories, operated by professionals with technical knowledge
and long-time experience. It is necessary to develop novel strategies enabling
eye gaze tracking and eye context analysis to meet the requirements of the
outside world.

Traditionally, interaction with computer systems is restricted to a small
number of input modalities, such as typed text using a keyboard, or free-form
drawing and gestures using a mouse and other mouse-like pointing devices.
The lack of sophisticated and powerful multimodal input capabilities remains a
bottleneck in human computer interaction (Sharma et al., 1998; Dumas et al.,
2009). This may not concern the average user, but it is essential for a disabled
user with limited motor function depending on alternative forms of input.
Another issue relates to the rapid progress in computing technology and usage
scenarios. While barely 30 years ago the personal computer just emerged, we
are now surrounded by networked information infrastructures and ubiquitous
devices. Furthermore, electronic machinery in our environment comes with
basic computing and input/output capabilities, what can be interpreted as
an indicator for upcoming ambient environments. However, while technology
rapidly evolves, a lot of effort is required to keep algorithms and paradigms
up with this pace.

Image-based Eye Analysis. Vision-based analysis techniques have the
ability to facilitate remote non-intrusive interfaces or smart sensors in an am-
bient environment. There exists a variety of visual information that can be
exploited in images and videos of the human body, relating to vision tasks
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such as body, hand, and head tracking; recognition of postures, gestures, and
activity; face detection, location, recognition, and expression analysis; and
eye gaze tracking (Turk, 2004). Due to the range of potential applications,
especially eye gaze tracking receives large research interest. It is, however,
not the only task in image-based eye analysis. Since eyes are one of the most
salient features of the human face, their unique geometric and photometric
properties provide important visual cues for obtaining face-related informa-
tion, for application in face detection, recognition, or expression analysis. The
unique appearance of structures of the eye is exploited in biometrics for iris
recognition or retinal scanning. The cornea is the protective and optical outer
layer of the eye covering the iris. Due to its transparency, the cornea itself
is not relevant to image analysis. What is often overlooked, however, are
its mirror-like reflection characteristics that cause specular reflection of en-
vironmental light. Regarding this property, the combination of camera and
corneal reflector can be seen as a catadioptric imaging system capturing a
wide-angle view of the environment. Calibrating this system by retrieving the
pose of the eye—for example from eye features that can be detected in an
image, such as the contours of iris and pupil—and aligning a model of the
corneal surface geometry, enables a variety of applications for omnidirectional
vision (Yagi, 1999). Refer to Figure 1.1 for close-up views of an eye showing
corneal reflections, iris texture, and corneal surface characteristics.

Relation between Eye and Environment. More important than tradi-
tional vision applications solely focusing on information about the environ-
ment, however, are probably applications relating this information to the con-
text of the individual (eye). For example, by projecting an environment map
from corneal reflections onto the retina to obtain an image of what a person is
seeing and looking at, or by computing a spherical frontal-view panorama to
determine the location and situation under which a person is photographed.
Relating environment and gaze allows for a combined analysis of stimulus
and response in higher-level tasks, such as the study of human behavior and
affect (Nishino and Nayar, 2006).

Scene Reconstruction from Corneal Reflections. When capturing two
eyes of a person with a static camera—for example in a single face image—the
two corneal reflectors and the camera act as a catadioptric stereo system where
each environment location is imaged from two different viewpoints. Finding
correspondences between both cornae, the 3D structure of the scene can be
obtained by triangulation. The generalization of this strategy would be a
scenario where a moving camera captures a moving eye—for example in flex-
ible non-intrusive tracking applications. Recovering eye poses and matching
feature correspondences among video images, a 3D model of the scene can
be obtained and aligned with camera and eye pose trajectories. Such simul-
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(a) (b)
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Figure 1.1: Corneal reflections. (a) The reflected office environment is clearly visible in the
eye image. The superimposed diffuse reflections from the pattern of the iris tissue disturb
the image of the specular reflections. Note that the camera is placed directly in front of
the eye and, therefore, the central area remains dark. (b) A similar scene, but with focus
on the pattern of the iris tissue. (c) A view from the side shows the transparent reflective
surface of the cornea. (d) A close view reveals the corneal limbus which is the surface
shape discontinuity where the transparent cornea dissolves into the white sclera with lower
curvature.

taneous localization and mapping (SLAM) (Muhammad et al., 2009) for the
corneal imaging system naturally integrates eye gaze tracking and environ-
ment information, enabling for the described applications as well as unobtru-
sive, uncalibrated future interfaces in ubiquitous and ambient scenarios.

Nevertheless, there is a long way from a first theoretical model of the corneal
stereo system between two eyes (Nishino and Nayar, 2006) towards a prac-
tical strategy for corneal SLAM from multiple eyes, requiring comprehensive
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knowledge about the geometry between camera, eyes, and scene, and solutions
to a range of problems. With this work, we want to approach this goal and
present the first study on corneal reflection and environment relation anal-
ysis under multiple eye and camera poses. In the next section, we identify
particular problems and explain our proposed solutions.

1.1 Contribution
This work proposes a theory of the light transport at the corneal surface of
the human eye including multiple eye poses (Chap. 3). The theory is sub-
sequently applied to achieve a range of contributions for corneal reflection
analysis from eye images, categorized into four topics. The first two topics are
related to novel methods that are proposed in order to solve practical prob-
lems in display-camera calibration (Chap. 4) and eye gaze tracking (Chap. 5).
The remaining two topics cover the general problems of accuracy in scene
reconstruction and matching of feature correspondences. The respective find-
ings and derived strategies are integrated with the novel methods and can be
of general relevance to other work in corneal reflection analysis.

Beside this, an overview of the anatomic structures of the eye related to
the model-based estimation of its pose from an image is given (Sec. 2.1).
Reviewing studies on anthropometric variation, schematic eye models, and
eye models applied within related work, a geometric eye model with spherical
curvature and constant parameters is developed. The results of this work are
based on that model.

In the context of eye pose estimation (Sec. 2.2), a detailed derivation is
given for the projection of a circle with arbitrary 3D position and orientation
into an image. Based on the imaged contour, two methods for either perspec-
tive and weak-perspective projection are explained to reconstruct the 3D pose
of the original circle. It is shown how the methods can be applied to eye pose
estimation from circular eye features, such as pupil and iris contour.

Display-Camera Calibration from Eye Reflections. With advances in
vision algorithms, the webcam emerges from its status of solely being a tool
for videoconferencing. Relating the camera to the physical context of the PC
setup, camera and CRT/LCD monitor form a controlled system. In the past,
there have been two major areas of application for such display-camera sys-
tems. One is the acquisition of object shape and reflectance using the display
as a controlled illumination device, the other is human–computer interaction
(HCI) where the result from image processing produces a feed-back on the
screen. Applications typically require a calibration of the geometric relation
between display and camera. Since display and camera face the direction of
the user, calibration is achieved interactively where the user moves a planar
or spherical mirror to make the display visible from the view of the camera.
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A novel calibration technique for display-camera setups is described, build-
ing on the observation that the cornea of the human eye acts as a partial mir-
ror. For a user moving in front of the setup, it exploits the fact that corneal
reflections of display content can be extracted from face images to reconstruct
the position of the display itself. The method has several benefits compared
with other approaches:

• It requires only off-the-shelf hardware that commonly exists in PC se-
tups.

• It does not need user interaction or awareness.

• It supports dynamic setups since at least a single face image is required.

• Additionally, it estimates eye poses which is beneficial when eye gaze
tracking applications are involved.

The method is motivated by Nishino and Nayar’s method for image-based
eye pose estimation without using active controlled illumination (Nishino and
Nayar, 2006) and Francken et al.’s method for display-camera calibration using
a spherical mirror (Francken et al., 2007). Thorough experimental evaluation
shows that the straightforward application of both methods results in a large
error. To compensate for this, an optimization strategy is proposed that
jointly improves display-camera calibration and eye pose estimation, subject
to geometry constraints in the scene.

A closed-form linear least-squares solution is developed for the triangula-
tion of multiple inverse reflection rays. The method reconstructs a 3D scene
location as the point with minimal distance to the set of corresponding in-
verse reflection rays obtained under multiple eye poses. This can be relevant
to scene reconstruction from eye images in general.

Calibration-free Non-intrusive Eye Gaze Tracking in Arbitrary En-
vironments. While recent developments in the field of remote eye gaze
tracking are promising, state-of-the-art techniques are still far from being
unobtrusive and usable for practical applications. There are different charac-
teristics that restrict their application to work-intensive controlled laboratory
conditions with experienced instructors and trained users. Moreover, tech-
niques still feature a high degree of intrusiveness ranging from setup require-
ments to operation restrictions due to their technical approaches and hardware
limitations.

A novel system architecture is proposed to overcome several limitations of
existing eye gaze tracking techniques. Specifically, it removes the need for geo-
metric calibration and enables application with arbitrary dynamic scenes. The
architecture combines a number of benefits compared with other approaches:

• no requirement for geometric calibration,
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• no requirement for body-attachments,

• support of arbitrary environments,

• support of free head-movement,

• support of challenging conditions,

• improved accuracy.

The proposed system architecture allows for increased applicability, not pos-
sible with existing techniques. Due to easy setup, tolerance to environmental
conditions, and the same time increased accuracy, it has the potential to
make eye tracking available for non-professional users in everyday environ-
ments. Furthermore, due to absence of calibration, body-attachments, and
tolerance to operation conditions, it enables practical applications generally
requiring unobtrusiveness, either to achieve natural and unbiased conditions
in diagnostic scenarios or to develop interactive interfaces for ubiquitous and
ambient environments.

The system uses at least two cameras, a non-attached eye camera with ei-
ther high-resolution or a pan-tilt-zoom (PTZ) tracking architecture to capture
a close-up view of the eye, and one or multiple environment cameras capturing
the gazed scene. A method is developed to estimate the corneal reflection of
the gazed point of regard (PoR) in the eye image and map it into the envi-
ronment images based on scene feature correspondences. In order to robustly
obtain a large number of accurate feature matches under severe conditions
in arbitrary environments, non-intrusive coded structured light projection is
applied, which is not perceived by the user but recovered from the camera
images. In case of a known geometric relation between projector and environ-
ment cameras, a 3D model of the scene can be reconstructed.

There are several contributions involved with the proposed method that
are relevant to corneal reflection and environment relation analysis in general:

• A closed-form solution is developed to calculate the forward projection
for an imaged sphere as the surface location where light from a source
reflects into the direction of the camera. Five methods are proposed, re-
garding the available knowledge about the distance between sphere and
light source (scene). The methods are applied to calculate the location
where the PoR reflects on the corneal surface.

• A closed-form solution is developed to calculate the distance between
back-projection rays after reflection at the surface of a sphere. Three
methods are proposed, regarding the available knowledge about the dis-
tance between sphere and lights source (scene). The methods are applied
to calculate interpolation weights for neighboring corneal reflection rays
at image locations where no correspondence information is available.
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Accuracy of Scene Reconstruction from Eye Images. There are a
lot of parameters involved in scene reconstruction from corneal reflections,
regarding individual eye geometry, camera settings, and image quality; and
regarding the geometric relation between camera, eyes, and scene. Careful
evaluation is important to understand their effect on the overall accuracy,
where the insight is helpful to develop compensation strategies.

Applying the proposed display-camera calibration framework, a large num-
ber of comprehensive experimental studies is conducted with real and syn-
thetic data to evaluate the accuracy of scene reconstruction from corneal re-
flections, comparing the results to ground-truth data and results obtained
with spherical mirrors of known size. The findings provide a tool to assess
the quality that is expected for a particular setup, and an aid for the decision
where compensation strategies are best applied.

Straightforward triangulation of inverse reflection rays is found to gener-
ally result in a relative high error. To compensate for this, an optimization
framework is proposed that performs joint refinement of eye poses, reflection
rays, and scene points subject to known geometry constraints from the scene.
The performance of this framework is demonstrated in the context of the
display-camera calibration algorithm with a large number of comprehensive
experimental studies. The proposed framework can be generally relevant to
scene reconstruction from eye images when geometry constraints are available.

To obtain synthetic data, a framework is developed for physically based
rendering of eye images with corneal reflections from environmental illumina-
tion. It uses an extended eye model with aspherics where eye structures are
modeled as ellipsoids and cross sections. The framework provides a general
tool to analyze the impact of different parameters on scene reconstruction
from, especially where ground-truth measurements are difficult to obtain as
with parameters related to the individual eye.

Accurate and Robust Correspondence Matching among Multiple
Eye and Scene Images. While in theory the epipolar geometry of the
corneal stereo system (Nishino and Nayar, 2004b, 2006) is a helpful tool to
simplify the correspondence problem—providing a reduced search-space and,
therefore, inherently increased accuracy—there are several problems related
with this approach in practice:

Accuracy The epipolar geometry depends on the result of eye pose estima-
tion. Small estimation errors lead to different epipolar curves resulting
in false matches. Performing this strategy with multiple eye images
causes error accumulation.

Robustness While the correspondence problem among views of perspec-
tive cameras is well studied (Tuytelaars and Mikolajczyk, 2008), the
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available techniques cannot be directly applied to corneal reflection im-
ages. Specific problems are the overlap of iris texture and corneal reflec-
tions (Wang et al., 2008), the low reflectivity of the cornea of less than
1% (Kaufman and Alm, 2003), and the non-planar surface geometry of
the cornea (Hansen et al., 2007; Scaramuzza et al., 2008). Furthermore,
it is necessary to match correspondences not only among eye images,
but also between eye and scene images to integrate eye and scene re-
lated information. This is an important requirement, since the result
enables the computation of eye related information from conventional
images with much higher quality. Solving the problem of accurate and
robust correspondence matching is not only a key contribution to scene
reconstruction, but can also be relevant to improve eye pose estimation
itself.

To solve the described problems, a novel strategy is proposed for the
matching of feature correspondences among corneal reflection and scene im-
ages, based on non-intrusive coded structured light. Up to the knowledge of
the author, this is the first approach to apply coded structured light projection
to eye image and corneal reflection analysis. The proposed strategy includes
a range of benefits described in the following.

• The projected feature points define a calibration-free relation between
eye and environment camera views.

• Projecting feature points into the environment is a flexible way to obtain
high spatial resolution and wider area-coverage on the corneal surface
than achieved with a small number of point light sources in front of the
user, a common approach in active light methods for eye pose estimation.

• Applying coded structured light increases spatial resolution and allows
for robust detection. Experimental results verify the robustness under
challenging conditions, such as short exposure, image noise, and envi-
ronmental light.

• Applying imperceptible or invisible structured light, the dynamic code
projection is not perceived by human observers. Additionally, impercep-
tible codes can be removed from camera images to recover the texture
of the scene.

1.2 Relation

1.2.1 Image-based Eye Analysis

Eyes are one of the most salient features of the human face. Thus, their unique
geometric and photometric properties provide important visual cues for ob-
taining face-related information, for example in face detection (Hsu et al.,
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2002), face recognition (Zhao et al., 2003), and facial expression understand-
ing (Fasel and Luettin, 2003). A detailed overview of the interests and appli-
cations in image-based eye analysis follows. It focuses on the two major areas
of corneal reflections and iris appearance.

1.2.1.1 Corneal Reflections

Corneal Shape and Position. Since the cornea of the human eye ex-
hibits mirror-like properties, specular reflections from eye images have been
exploited by several works in different areas. The main application is to obtain
information about the eye. In biomedicine, a detailed knowledge of corneal
surface geometry is required for various ophthalmologic applications, such as
refractive surgery, change monitoring, disease diagnosis, or contact lens de-
velopment. The corneal topography is usually measured by a non-intrusive
optical technique known as videokeratography (Mandell, 1996; Bogan et al.,
1990). Halstead et al. (1996) describe a popular algorithm that reconstructs
a 3D surface model of the human cornea from an image. It analyzes specular
reflections from a pattern of concentric rings generated by a special illumina-
tion device. A model is then fit to the surface normals computed from the
imaged reflection features and the geometry of the videokeratograph device.
Another application for specular highlights from known light sources is eye
position and gaze direction estimation in eye gaze tracking.

Environmental Light. More recently, the cornea is exploited as a light
probe to obtain information about the light distribution in the environment
of a person. Without involving explicit eye modeling, Backes et al. (2008)
present an eavesdropping technique to recover screen content from reflections
in the user’s eyes at faraway locations using a telescope mounted on a camera.
As the resulting quality is largely affected by system parameters, the particular
causes for blur from motion, defocus, and diffraction are analyzed. While it
is appealing to exploit corneal reflections, drawbacks include the small radius
and low reflectance of the cornea. This requires long exposure times and
large apertures which leads to motion and defocus blur. To account for that,
Backes et al. (2009) apply non-blind image deconvolution techniques. The
corresponding point spread functions are determined by either an offline or
online approach. Previous results in Backes et al. (2008) could be noticeably
improved, allowing for larger distances and smaller content sizes. While this
work is interesting in terms of improving the detail of environmental reflections
in eye photography, it does not exploit information about the geometric and
photometric properties of the eye.

The majority of applications, analyzing eye reflections by relying on 3D
modeling of eye pose and geometry, do not require detailed knowledge of
the individual corneal shape. In fact, since deviation among different per-
sons is relatively small (Snell and Lemp, 1997; Kaufman and Alm, 2003), the
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cornea can often be approximated as an ellipsoid with average parameters. In
computer graphics and vision, corneal reflections are exploited because they
capture the illumination distribution surrounding the person. Tsumura et al.
(2003) are the first to recover information about lighting from specular high-
lights in the eye. They place three point light sources at known positions and
extract the corresponding highlights in an eye image. The inverse reflection
directions towards the light sources are then estimated to reconstruct a 3D
face model by photometric stereo (Woodham, 1980) which is applied for face
relighting. Johnson and Farid (2007) analyze corneal reflections to identify
digital forgeries where an image is composed from individuals photographed
under inconsistent lighting conditions. They perform eye pose estimation,
specular highlight extraction, and inverse raytracing to estimate the direction
of light sources from eye images. Internal camera parameters are automati-
cally obtained from the perspective distortion of the iris contour.

Corneal Imaging System. Looking at a photograph of an eye, it can be
observed that many details of environmental structure and illumination are
captured over a wide angle. Thus, beyond the simple task of obtaining light
directions from specular highlights, it is eligible to ask how to recover the
entire visual information of the environment captured in an eye image. By
formally describing the imaging characteristics of the eye-camera geometry, it
becomes possible to apply standard vision theory and algorithms to flexibly
analyze the system and process the information content.

Nishino and Nayar (2004b, 2006) provide the first comprehensive analysis
of the visual information that is embedded within an image of the human
eye. They find that the cornea and a camera viewing the eye form a cata-
dioptric imaging system which they refer to as the corneal imaging system.
In contrast to common catadioptric configurations, the relation between the
corneal reflector and the camera does not remain fixed, and thus, calibration
is required for each frame in the form of eye pose estimation. Due to the flex-
ible relation and the individual shape of the cornea, the catadioptric system
generally does not have a single viewpoint (Baker and Nayar, 1999; Geyer
and Daniilidis, 2001) but rather a caustic of viewpoint locations (Kuthirum-
mal and Nayar, 2006; Swaminathan et al., 2006). Nishino and Nayar further
introduce a geometric model of the cornea based on anthropometric studies
and describe how to determine its pose from an eye image. Several properties
of the corneal imaging system, such as field of view, resolution, and locus
of viewpoints, can be analyzed from this model. The extracted environment
map can be transformed into a spherical panorama to obtain a frontal view
of the environment or projected onto the retina to obtain an image of what
a person is seeing. The detailed irradiance map allows for face reconstruction
and relighting (Nishino and Nayar, 2004a).

Another application of eye images is security systems using biometrics to
automatically identify a person. A method enabling non-intrusive and large-
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scale crowd surveillance is face recognition (Zhao et al., 2003). Practical solu-
tions are required to perform reliably under the large variation of facial poses
and illumination found in real scenarios. Regarding illumination, Nishino et al.
(2005) use the described corneal imaging system to estimate the environment
map and propose an appearance-based approach for face recognition that ex-
ploits lighting conditions estimated from corneal reflections. Advantages are
an increased recognition rate and the ability to use only a single database im-
age per person, instead of multiple images taken under varying illumination.
They analyze face appearance variation across different persons under tar-
get lighting conditions to synthesize database images for recognition. While
the face information is purely image-based, 3D model-based face recognition
may be realized with photometric stereo from corneal reflections (Nishino and
Nayar, 2006; Tsumura et al., 2003).

Corneal Stereo System. The combination of two eyes imaged by a static
camera, for example the two eyes in a face image, can be seen as a catadioptric
stereo system (Nayar, 1988; Nene and Nayar, 1998). The system is calibrated
by estimating the poses of both eyes. Then, not only the direction towards a
scene location, but also its position can be reconstructed as the intersection
of the inverse reflection rays from both eyes. As for a conventional stereo
system consisting of two perspective cameras, the epipolar geometry can be
also formulated for a catadioptric stereo system consisting of a single camera
and two reflectors (Pajdla et al., 2001; Svoboda and Pajdla, 2002). Regarding
the corneal stereo system (Nishino and Nayar, 2004b, 2006), the epipolar plane
formed by the two viewpoints1 and the reflection of a scene location on the
surface of one cornea, intersects the surface of the second cornea in an epipolar
curve. The search for the corresponding scene reflection, thus, reduces to a
search along the epipolar curve.

Separation of Corneal Reflections and Iris Texture. Techniques for
image-based eye analysis either exploit specular corneal reflections or diffuse
reflections of iris texture. Often both are present in a single eye image and
act as mutual noise. Iris recognition systems, for example, apply active in-
frared (IR) illumination to reduce specular corneal reflections. On the other
hand, diffuse iris reflection can cause substantial distortion when analyzing
corneal reflections, especially in blue or green eyes. Separating both kinds
of reflections is an ill-posed task if no other constraints are available. Wang
et al. (2005a, 2008) introduce a method that exploits reflections and physical
characteristics of a pair of irides to separate corneal reflections of complex
environments from diffuse iris texture.

1This is a feasible approximation as the viewpoint locus is small compared to the baseline
between two eyes.
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1.2.1.2 Iris Appearance

Light arriving at the eye which is not specularly reflected at the cornea is
refracted and enters the eye. A large part of that light illuminates the iris
and reflects back in a diffuse manner (Wang et al., 2008). The resulting iris
images have been exploited for various applications.

Iris Analysis. A well known application is biometrics to identify persons
based on unique bodily features. Iris recognition is a more intrusive, but
highly reliable method that uniquely identifies individual patterns from the
detail-rich structure and intricate texture of the iris in high-resolution im-
ages (Daugman, 1993, 2004; Wildes et al., 1996; Wildes, 1997; Bowyer et al.,
2008). Advantages of the technique include robustness to glasses and con-
tact lenses, validity of the database as the iris texture does not change with
age, and comparison speed. The corresponding approaches for iris detection
and segmentation can be relevant to other fields such as medical imaging or
eye gaze tracking. Note that there exists another less common image-based
biometrics method, retinal scanning. It requires a special camera to identify
the unique structure of blood vessels (vascular pattern) in the retina at the
backside of the inner eye (Simon and Goldstein, 1935; Hill, 2002).

Iris Synthesis. Eye information is also explored for iris synthesis in pho-
torealistic rendering. Lefohn et al. (2003) adopt the layered approach that
ocularists take when creating physical models of the iris. They give an in-
depth explanation of their applied geometric eye model. Lam and Baranoski
(2006) introduce the first biophysically-based light transport model for the iris
that simulates the light scattering and absorption processes within the iradial
tissues. Pamplona et al. (2009) extend iris synthesis to animation and de-
rive a biophysically-based model for the pupil light reflex with iradial pattern
deformation under varying illumination.

1.2.2 Eye Gaze Tracking

As one of the most prominent features of the human face, eyes and their
movements contribute a key part to the interpreting and understanding of a
person’s wishes, needs, tasks, cognitive processes, emotional states, and inter-
personal relations. Eye movements are important to the navigation, analysis,
perception of, and interaction with visual information. As this information is
relevant to a large number of applications in a variety of fields (Duchowski,
2002), eye gaze tracking is and has been an active research area for over five
decades with foundations dating back further in time.
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1.2.2.1 Methods

An eye tracker is a device for measuring eye position, orientation, and move-
ment over time. Depending on physical type and implemented method, eye
trackers either measure the position of the eye relative to the head or the pose
of the eye in space. Depending on the application, the result is either the loca-
tion of the eye or the point of regard (PoR) where the eye is looking. Mainly
three types of methods for eye tracking systems are distinguished: the contact
lens method, electro-oculography (EOG), and video-oculography (VOG).

Contact Lens Method. The most precise measurements of eye movement
are achieved with techniques where a special contact lens is attached to the
eye (Ditchburn and Ginsborg, 1953; Riggs et al., 1953; Yarbus, 1967). The
tracking is done with an embedded radiant spot, mirror, or magnetic search
coil. Since conventional contact lenses would slightly slip when the eye rotates,
a tight fit is achieved by special designs and methods to increase pressure
between contact lens and eye. This causes discomfort in all of the systems,
up to requiring the application of a topical anesthetic.

Electro-Oculography. Another type of system tracks the position of the
eye by measuring differences in electric potential with skin electrodes attached
around the eye (Marg, 1951; Kris, 1960; Shackel, 1967). The source of the elec-
trical energy is a potential field with the positive pole at the cornea and the
negative pole at the retina. As the eye rotates, the change in the orientation
of the dipole generates a variation in the EOG signal measured from the elec-
trodes. The technique has several advantages: Since it does not require access
to the eye, it can be applied even when the eye is closed. It is independent
of illumination conditions and, thus, can be used in total darkness or bright
outside conditions. Since the EOG signal directly describes the eye position,
no further processing is required resulting in a low computational cost.

The contact lens method and EOG are highly intrusive and lack a han-
dling of head movements. Both are early eye tracking techniques where the
output has the form of electrical or simple image data that does not require
complex post-processing. With advancements in computational power, these
methods are nowadays only used for special applications when their unique
characteristics are required. A good review is given by Young and Sheena
(1975).

Video-Oculography. In this work, we focus on image-based eye tracking
known as video-oculography where the information is obtained from a single or
multiple cameras with possible use of external light sources emitting invisible
light (IR). Tracking the eye consists of two subtasks: eye localization and gaze
estimation. Eye localization includes different aspects, such as the detection of
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the existence of eyes in an image, the detailed localization and representation
of eye features, and the tracking of this information between subsequent frames
in video data. Common features for eye localization are the contours and
centers points of pupil and visible iris, less common ones are the eye lids
and corners. Gaze estimation uses the information from eye localization and
corneal reflection analysis to estimate and track the 3D pose of the eye or the
PoR on the destination surface.

Types of Calibration. Depending on the particular eye gaze tracking tech-
nique, unknown parameters may be determined by a calibration procedure.
There exist several classes of parameters that relate to different system proper-
ties and can, therefore, change independently. Often parameters from different
categories are determined by a joint calibration. According to Hansen and Ji
(2010), the following categories are commonly distinguished:

Camera calibration to determine intrinsic camera parameters. For static
cameras, this can be done once per camera using standard methods (Hart-
ley and Zisserman, 2003; Zhang, 2000; Bouguet, 2010). For dynamic
zoom cameras, the changing focal length is either interpolated from cal-
ibration data obtained in advance, or estimated from scene features such
as the shape of the visible iris (Wu et al., 2005b). If an explicit calibra-
tion cannot be performed, the intrinsic parameters may be completely
estimated from the shape of the visible iris (Johnson and Farid, 2007).

Geometric calibration to determine the relative position and orientation
among the components of the setup, such as camera, light sources, and
scene model (typically a planar surface). This is required once per setup.

Personal calibration to determine parameters of the individual eye geom-
etry, such as corneal curvature, and angular offset between visual and
optical axes. This is required once per user and can be subsequently
applied to different setups.

Gaze-mapping calibration to determine an implicit regression-based map-
ping function between eye image measurements (features or appearance)
and corresponding gaze locations (PoR) on a planar surface under fixed
head pose. This is required once per setup, user, and user pose; and
typically performed by asking the user to look at known markers in
the scene (Merchant et al., 1974; Stampe, 1993; Morimoto and Mimica,
2005).

Intrusive Stationary Systems. Early image-based systems measure eye
movement under a fixed head position where a gaze-mapping to the viewed
surface is calibrated in advance. Stationary table- or head-mounted systems
track the PoR on a static computer screen, projection canvas, or other planar
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surface in front of the user. Bite bars, chin rests, head-mounts, or other
forms of fixation are used to ensure that the head remains in its initial pose.
Several methods are proposed for compensating head-pose changes with a once
calibrated gaze-mapping (Kolakowski and Pelz, 2006; Karmali and Shelhamer,
2006; Zhu and Ji, 2007; Li et al., 2008).

IntrusiveWearable Systems. With advancements in computational power
and devices, wearable head-mounted eye gaze tracking systems are introduced
more recently to combine mobile tracking in arbitrary environments with
head-pose invariance between head and scene. There exist research (Babcock
and Pelz, 2004; Li et al., 2006; Wagner et al., 2006) and commercial sys-
tems (Tobii Technology AB, 2011b; SR Research Ltd., 2011b; SensoMotoric
Instruments GmbH (SMI), 2011a; Mangold International GmbH, 2011a). A
tight head-mount ensures that the relation between head and camera remains
fixed. The functional principle is similar to that of stationary systems, with
the difference that the PoR is tracked in the image of an environment cam-
era recording the scene. The corresponding 3D location of the PoR can be
obtained via triangulation using either multiple cameras or tracking scene
features in a single moving camera (Munn and Pelz, 2008; Takemura et al.,
2010). Gaze-mapping calibration is performed by asking the user to look at
a planar surface with a number of projected markers or other feature points
that can be identified in the image of the environment camera. After cal-
ibration, head pose is required to remain fixed with respect to camera and
surface. Therefore, while being wearable, the systems can basically not be ap-
plied to moving users and arbitrary environments. The discussed stationary
and wearable systems achieve good accuracy, however, are intrusive, station-
ary, and require a tedious calibration, limiting their application to controlled
laboratory environments with experienced personnel.

Requirements for Ideal Systems. An ideal gaze tracking system for prac-
tical application needs to follow two main requirements: non-intrusiveness and
high accuracy. These, however, are typically mutually exclusive.

Non-intrusiveness There are three requirements related to this point:

Absence of attachments The system should not require attachments
to head or body since these need a dedicated setup with time and
technical understanding, lead to increasing fatigue even from light-
weight attachments, and have an impact on natural behavior due to
direct effects on motor activities and perception or due to indirect
effects when interacting in society.

Absence of calibration The system should not require an interactive
individual calibration since the task needs time, technical under-
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standing, and training. That means, parameters are either not
required or measured by an automatic calibration approach.

Free head-movement The system should allow relatively free head-
movement without the assumption of a fixed relation between head,
camera, and scene as in stationary systems. Similar to the use of
head and body attachments, non-allowed head movement prevents
the user to become comfortable with the system. It causes increas-
ing fatigue from intrusive bite bars and chin rests or from the user
trying to keep the head fixed, and error accumulation from possible
movements (drift). Further, the configuration requires setup time
and user training.

High accuracy The system should maintain a high accuracy. This typi-
cally contradicts non-intrusiveness which introduces simplification as-
sumptions to increase usability. Eliminating these assumptions requires
compensation with sophisticated, and probably complex, hardware and
software architectures yet to be developed.

Non-intrusive Remote Systems. In the last few years a new type of eye
tracking systems emerges, having the inherent potential to fulfill the described
requirements. So-called remote eye gaze trackers are less intrusive by not
requiring body attachments. They use stationary high-resolution cameras
or dynamic camera systems to track close-up images of the eye. Dynamic
systems have been proposed using either a wide-field-of-view camera for face
tracking in conjunction with a moveable PTZ camera for eye tracking (Oike
et al., 2004; Yoo and Chung, 2005; Reale et al., 2010), or a static camera
with movable mirrors (Kim et al., 2004). Remote eye gaze tracking is usually
model-based where imaged eye features are located to track the 3D pose of
the eye. Thus, systems do not perform gaze-mapping calibration and instead
rely on a combination of camera, geometric, and personal calibration. The
gaze direction is obtained by recovering at least two points on the optical axis
of the eye such as the centers of pupil, iris/limbus, cornea, or eyeball.

There exist several passive remote eye gaze tracking methods that esti-
mate the gaze direction without using active illumination. These methods
are based on locating the center of the limbus by tracking the contour of the
visible iris, and either directly estimate the gaze direction like our proposed
method (Sec. 2.2) (Wang and Sung, 2001, 2002; Wu et al., 2005b; Nishino
and Nayar, 2006; Wu et al., 2007; Schnieders et al., 2010) or in conjunction
with head-pose estimation (Chen and Ji, 2008; Yamazoe et al., 2008; Reale
et al., 2010). The majority of remote eye gaze tracking methods applies ac-
tive illumination commonly in form of IR LEDs, and is based on the pupil-
center–corneal-reflections (PCCR) technique (Shih et al., 2000; Ohno et al.,
2002; Guestrin and Eizenman, 2006; Villanueva and Cabeza, 2007; Zhu and
Ji, 2007; Villanueva et al., 2009). The center of the cornea is not directly
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visible and usually estimated from corneal reflections of two light sources and
a single camera in case of average eye parameters, or two cameras in case of
individual eye parameters (Shih et al., 2000; Guestrin and Eizenman, 2006).
If required, at least a single-point calibration is necessary to calculate the
offset to the visual axis (Shih and Liu, 2004; Villanueva and Cabeza, 2008).
Since active illumination usually increases accuracy and robustness, this is
the strategy commonly applied in commercial systems (Tobii Technology AB,
2011a,c; SR Research Ltd., 2011a; Smart Eye AB, 2011a,b; Seeing Machines
Inc., 2011; SensoMotoric Instruments GmbH (SMI), 2011b; Mangold Interna-
tional GmbH, 2011b).

After computing the gaze direction, the PoR is obtained through geometric
modeling as the first intersection of either optical or visual axis with the 3D
model of the destination surface. Such a model can be obtained by triangula-
tion using multiple calibrated environment cameras or a single moving camera
in conjunction with feature tracking (Smart Eye AB, 2011b; SR Research Ltd.,
2011a; Seeing Machines Inc., 2011). Model-based approaches usually assume
spherical curvature for cornea and eyeball. Only a few allow generalization
to spheroid or ellipsoid models that better describe the eye geometry in the
periphery of the cornea and may lead to better accuracy at large gaze an-
gles (Beymer and Flickner, 2003; Nishino and Nayar, 2006; Nagamatsu et al.,
2010)

1.2.2.2 Applications

Robust non-intrusive eye detection and tracking is, essential for both, diag-
nostic offline information retrieval to understand human behavior, cognition,
and affective states, and active online analysis with feedback generation to
develop interactive and attentive user-interfaces.

There exists a wide range of applications for eye gaze estimation and track-
ing (Duchowski, 2002). As a tool for passive information retrieval, eye track-
ing provides an objective and quantitative representation of a person’s visual
processes. Eye movements are usually recorded to study attentional and be-
havioral patterns over a provided stimulus. In this context, the observation
is typically performed unobtrusively, and the stimulus is not affected by the
measurements. The obtained data is then evaluated offline. Experimental
assessment is currently the main application of eye tracking, used in a wide
variety of disciplines, including cognitive science, psychology, medicine, in-
dustrial engineering and human factors, marketing research and advertising.
Specific applications are the analysis of human behavior, attention, cognition,
and communication; the analysis and diagnosis of anomalies and disease pat-
terns in the visual system or other systems affecting vision; studies on human
factors and usability; or studies on the perception of advertising.

Advances in computer systems, computational power, display hardware,
and interaction paradigms foster eye tracking to become a powerful input
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method for graphical user interfaces and visual applications. While infor-
mation retrieval is typically an offline process, eye movement as an input
modality requires an interactive system that responds to and interacts with
the user in real-time. There are mainly two types of paradigms: selective
and gaze-contingent. Selective systems apply the PoR as a pointing device
such as the mouse cursor to control an application. This is an alternative
approach in scenarios where hands can hardly be used, or where eye tracking
is found to be faster and less fatiguing than other means of communication. It
is, however, a key approach to enable interaction for motor disabled persons
who still maintain eye movement control. Gaze-contingent systems exploit
knowledge of the user’s gaze to adjust the behavior of an application. The
paradigm is mainly applied to increase the performance of rendering and data
transmission in complex graphical environments (Duchowski et al., 2004). In
the future, an improvement of online information retrieval techniques for eye
tracking may create novel high-level sensors to establish a broad foundation
for gaze-contingent systems.

1.3 Dissertation Overview
The remainder of this dissertation is organized as follows:

Chapter 2 explains the structures of the eye related to this work and
surveys studies on eye anatomy and anthropometric variation to introduce
a geometric model of the eye. It then surveys approaches to detect and track
the eye in an image, followed by introducing methods for estimating the pose
of the eye from imaged features.

Chapter 3 builds on eye pose estimation to develop a theory of the light
transport at the corneal surface. It introduces a corneal reflection model to
enable inverse light path construction for light source direction estimation,
and position estimation under multiple eye poses. It further explains the in-
verse case that searches the unknown light path corresponding to a (partially)
known light source and provides a distance measure between light paths and
gaze direction.

Chapter 4 applies the developed theory to introduce a novel method for
the calibration of the geometric relation in display-camera setups. After ex-
plaining the algorithm, a comprehensive set of experiments is described to give
insights on the accuracy of scene reconstruction from corneal reflections under
multiple eye poses. A summary discusses the method and its implications.

Chapter 5 applies the developed theory to introduce a novel method for
calibration-free eye gaze tracking in arbitrary environments and discusses ex-
perimental results. With this, a solution to the general problem of accurate
and robust correspondence matching among multiple eye and scene images is
developed and verified. A summary discusses the method and its implications.



1.3. Dissertation Overview 19

Finally, Chapter 6 summarizes and concludes this dissertation with a de-
tailed overview and discussion of the contributions and findings of this work.





Chapter 2

Eye Geometry

This chapter introduces a geometric eye model and explains how to obtain
the pose of the model from an image of an eye.

For this purpose, Section 2.1 reviews the anatomical background for struc-
tures of the eye, related to its shape and features visible on the outside.
Variation in their individual manifestation is studied, surveying information
in anatomical literature, and parameters of eye models describing either the
imaging characteristics of the visual system or the geometric and photometric
properties of the eye. A spherical-curvature model with average parameter
values is developed and subsequently applied to the methods and results in
the remainder of this work.

Section 2.2 then deals with estimating the pose of this model from an
image, consisting of two tasks: image-based eye detection and tracking to
identify and describe the eye and its features, and 3D eye pose estimation
to calculate the 3D location and orientation of the model using this infor-
mation. Eye detection and tracking methods are surveyed, leading over to
passive methods based on circular eye features that are relevant to this work.
After surveying directly related work in eye pose estimation, the perspective
projection of arbitrary circles in 3D is explained. This forms the basis of two
methods for circular pose estimation from elliptical feature contours, assuming
perspective and weak-perspective projection models respectively.

2.1 Eye Model

2.1.1 The Human Eye

The human eye is the organ that provides the optics and photo-reception
for the visual system. Received light energy is converted into nerve action
potentials and sent through the optic nerve to the brain, where the information
is further processed. The anatomy of the eye follows its function in this
physiological process. Figure 2.1(a) shows an outer view of the human eye.
The most distinctive components are the color-textured iris and the pupil in
its center. The iris is surrounded by the white sclera, a dense and opaque
fibrous tissue, mainly having protective function.
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Figure 2.1: Geometric eye model. (a) Outer view and (b) cross-section of the human
eye with important components marked red. (c) Geometric eye model with components
involved in the eye pose estimation.

2.1.1.1 Eyeball

A cross-section of the eyeball in Figure 2.1(b) reveals that its main part is
located behind skin and components visible from the outside. Geometrically,
the eyeball is not a plain sphere; its outer layer can be subdivided into two
approximately spherical segments with different radii and separated centers
of curvature: the anterior corneal and the posterior scleral segment. The
smaller anterior segment covers about one-sixth of the eye and contains the
components in front of the vitreous humor, including the cornea, aqueous hu-
mor, iris, pupil, and lens. It has a radius of curvature rC of ∼8 mm. The
posterior segment covers the remaining five-sixths with a radius of curvature
rE of ∼12 mm. Both centers of curvature are separated by a distance dCE

of ∼5 mm. The eyeball is not symmetric; its diameters are approximately
23.5 mm horizontal (dH), 23 mm vertical (dV), and 24 mm anteroposterior
(dAP) (distance between anterior pole at the apex of the cornea and the pos-
terior pole at the retina) (Remington, 2004). See Table 2.1 for an overview of
parameter values from different sources.

Axes of the Eye. The eye has several axes. The two major ones are the
optical axis and the visual axis. The optical axis (also axis of the eyeball) is
usually defined as the line joining the centers of curvatures of the refractive
surfaces. It is the line connecting the corneal apex A, the center of the limbus
circle L, and the centers of corneal and eyeball sphere, C and E. The visual
axis describes the gaze direction of the eye. It is defined as the line joining the
fovea on the retina and the object being viewed, which slightly differs from
the optical axis. Both axes intersect at the nodal point of the eye where the
image of the object becomes reversed and inverted. The nodal point is located
directly behind the back surface of the lens and remains within a distance of
1 mm from the center of corneal curvature for varying eye orientations (Young
and Sheena, 1975). For a typical adult, the deviation of the visual axis is
4◦–5◦ nasal and 1.5◦ superior to the optical axis with a standard deviation of
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3◦ (Hansen and Ji, 2010).

2.1.1.2 Cornea

The transparent cornea is the outer layer of the eye that covers the iris and dis-
solves into the sclera at the corneal limbus. Beside having protective function
the cornea plays the main role for the eye as an optical system in focusing
images on the retina. Its transparency and optical clarity stem from three
factors (Kaufman and Alm, 2003; Crick and Khaw, 2003):

• the uniform size and arrangement of submicroscopic collagen fibrils in a
special lamellar structure,

• the absence of blood vessels (avascularity), and

• the relative state of dehydration where the water content remains con-
stant.

The internal pressure of the eye is higher than that of the atmosphere.
This maintains the corneal shape and produces a smooth external surface. In
addition, the surface is coated with a thin film of tear fluid which ensures that
it remains smooth and helps to nourish the cornea. As a result, its surface
shows mirror-like reflection characteristics.

Shape. Although the corneal surface approximates to a sphere, it has only
spherical curvature near the apex and generally flattens towards the periphery.
The cornea is subdivided into four anatomical zones with increasing radius
from the optical axis (Snell and Lemp, 1997, Tab. 6-2): The central optical
zone (≤2.0 mm) is the most spherical and symmetric area which overlies the
pupil. The paracentral/mid zone (2.0–3.5 mm) is mainly spherical but flatter.
In the peripheral zone (3.5–5.5 mm) the cornea flattens the most, and finally
transitions into the sclera at the limbal zone (5.5–6.0 mm).

Details of the corneal shape are examined by several studies since these
are important to the fit of contact lenses and the modeling of the eye as an
optical system, e.g., to predict aberrations in retinal image formation. Re-
fer to Table 2.2 for an overview of the population distributions of corneal
shape parameters. The general finding is that the surface curvature is steep-
est at the apex and progressively flattens towards the periphery. To model
this asphericity, the corneal surface is often described by a three-dimensional
conicoid expressed in the form

x2 + y2 + (1 +Q) z2 − 2z rC = 0, (2.1)

where z denotes the optical axis of the eye and rC the radius of curvature
at the corneal apex. The asphericity parameter Q specifies the form of the
conicoid, whereQ < −1 is a hyperboloid, Q = −1 is a paraboloid, −1 < Q < 0



Table 2.2: Population distributions for corneal vertex radii of curvature rC and anterior
surface asphericity coefficients Q (Atchison and Smith, 2000, Tabs. 2.2, 2.3).

No. of subjects/eyes Radius rC [mm] Asphericity Q

Donders (1864)
females 38/— 7.80 —
males 79/— 7.86 —

Stenstrom (1948) —/1000 7.86± 0.26 —
Sorsby et al. (1957) —/194 7.82± 0.29 —
Lotmar (1971) — — −0.286
Mandell and St Helen (1971) 8/8 — −0.23 [−0.72,−0.04]
El Hage and Berny (1973) 1/1 — +0.16
Lowe and Clark (1973) 46/92 7.65± 0.27 —
Kiely et al. (1982) 88/176 7.72± 0.27 −0.26± 0.18
Edmund and Sjøntoft (1985) 40/80 7.76± 0.25 −0.28± 0.13
Guillon et al. (1986) 110/220 7.78± 0.25 −0.18± 0.15
Koretz et al. (1989)

females 68/— 7.69± 0.23 —
males 32/— 7.78± 0.24 —

Dunne et al. (1992)
females 40/40 7.93± 0.20 —
males 40/40 8.08± 0.16 —

Patel et al. (1993) 20/20 7.68± 0.40 −0.01± 0.25
Lam and Douthwaite (1997) 60/60 — −0.30± 0.13

Note: Values show the mean with standard deviation or range.

Figure 2.2: Asphericity of the cornea. (left) Effect of asphericity on the shape of a conicoid.
All curves have the same apex radius of curvature. (right) Anterior surface of a cornea with
a radius of curvature rC of 7.8 mm and varying values of asphericity Q. (With permission
from Atchison and Smith (2000), Atchison, D and Smith, G: Optics of the Human Eye,
Butterworth-Heinemann, pp 14,15. Copyright © 2002 Elsevier Science Limited. All rights
reserved.)
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is a prolate ellipsoid with its major axis in the z-direction, Q = 0 is a sphere,
and Q > 0 is an oblate ellipsoid with its major axis in the xy-plane (Fig. 2.2).

The eyeball is usually not rotationally symmetric around the optical axis
but slightly flat in the vertical direction. This leads to a toricity in the corneal
surface with the curvature being higher in the vertical direction.

Results from different studies on the shape of the eye show considerable
individual variation in surface curvature, component separation, and axial
length. The mean apex radius of curvature for the anterior surface of the
cornea rC is approximately 7.8 mm. The typical surface approximates to an
ellipsoid with −1 < Q < 0. Asphericity values for individual eyes are widely
distributed and can include some cases where the cornea steepens rather than
flattens towards the periphery.

Recent advances in measurement techniques make it possible to acquire
a detailed map of the corneal topography. Bogan et al. (1990) find that the
variation of topographies in normal eyes can be classified into five qualitative
patterns (Fig. 2.3). The distribution of patterns coincides with the before-
mentioned asphericity and toricity characteristics of the corneal contour. An-
other study by Liu et al. (1999) leads to broadly similar conclusions.

2.1.1.3 Limbus

The area where the transparent cornea dissolves into the opaque sclera is called
the corneal or corneoscleral limbus. It is a band, approximately 1.5–2.0 mm
wide, that surrounds the periphery of the cornea (Snell and Lemp, 1997;
Remington, 2004). The radius of curvature immediately changes at this in-
tersection, creating a shallow groove with a shape discontinuity on the outer
surface of the eye. Refer to Table 2.1 for an overview of common values for
horizontal radius rLH, vertical radius rLV, and average radius of the limbus rL.

Histological, the limbus contains the transition from the regular lamellar
structure of collagen fibrils of the cornea to the irregular and random orga-
nization of collagen bundles in the sclera. The layers of corneal tissue either
merge into scleral tissue or terminate at different landmarks. The limbal area
further contains blood vessels and lymphatic channels. This leads to a smooth
and non-uniform transition (Fig. 2.4(1)).

2.1.1.4 Iris

The iris is a thin, pigmented, circular structure located directly in front of the
lens. Its average radius rI is 6 mm. The outer structures of the iris extend
behind the limbus and the beginnings of the sclera. The area visible on the
outside is delimited by the transparent corneal tissue that inhomogeneously
dissolves at the limbus.
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Figure 2.3: Topography of the cornea. Five quantitative patterns for corneal topography
with their distribution in 216 normal eyes. (top) The degree of curvature is represented by
11 discrete color values from red (steep) to blue (flat). The range of curvature represented
by each color varies among eyes since the scale is normalized to the particular degree of
corneal asphericity. (bottom) The five patterns are found to probably form a continuum.
(With permission from Bogan et al. (1990), Bogan, SJ et al.: Classification of Normal
Corneal Topography Based on Computer-Assisted Videokeratography, Arch Ophthalmol.
1990;108(7):945–949, p 946. Copyright © 1990 American Medical Association. All rights
reserved.)

Color. Iris colors for normal eyes range from light blue to dark brown, de-
pending on the arrangement and density of connective tissue components, the
density of pigment-producing cells, and the pigment-density within these cells.
The color may vary between both eyes of the same person and different parts
of the same iris (Snell and Lemp, 1997). The blue iris color results from light
scatter and absorption of light with long wavelength in the iris tissue—the
same effect that makes the sky appear blue. Darker iris colors are caused
by the general amount of light absorption, which depends on the pigment
density. The surface of a heavily pigmented brown iris appears smooth and
velvety, whereas the surface of a lightly colored gray, blue, or green iris ap-
pears rough and uneven, with collagen fibrils in the iris tissue visible as white
fibers arranged in radial columns (Fig. 2.4(2)).

Pupil. The iris forms the diaphragm of the optical system with a central
circular aperture, the pupil. The size of the pupil controls retinal illumination
with a diameter varying between 1 and 8 mm depending on lighting conditions.
In about 25% of individuals it slightly differs in size (Snell and Lemp, 1997).
The image of the pupil visible on the outside of the eye is the entrance pupil,
which is magnified by the cornea and does not correspond to the location
and size of the physical pupil. Compared to the smooth appearance of the
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Figure 2.4: Physiology of the visible iris. (1) The limbus where the transparent cornea
dissolves into the opaque sclera marks the boundary of the visible iris. (a) Shape discon-
tinuity at the outer surface of the eye. (b) Histological landmark that probably marks the
onset of the visible boundary. In that area, several corneal layers (c,d) terminate, scleral
layers and blood vessels (g) start and corneal tissue (e) begins to merge with scleral tis-
sue (f). (h) The iris extends below the limbus and the beginnings of the sclera into the
iris root (i). (2) The cross-section shows the pupillary (A) and ciliary portions (B) for
the different surfaces and layers of the iris. (d) Compared to the smooth and irregular
boundary at the limbus, a forward extension of the inner layer, the pupillary ruff, and the
sphincter muscle account for a clear circular boundary at the pupillary margin. (With per-
mission from Remington (2004), Remington, LA: Clinical Anatomy of the Visual System,
second edition, Butterworth-Heinemann, pp 27,41. Copyright © 2005 Elsevier. All rights
reserved.)

iris boundary seen through the corneal limbus, the circular pupillary margin
is a rather sharp edge. It is formed by the pupillary ruff, a dark-pigmented
forward extension of the posterior tissue (Fig. 2.4(2)). The pupil appears black
because most of the entering light is absorbed by the tissues of the inner eye.
The pupil can appear red in an image when the eye is photographed in low-
intensity ambient light under bright flash illumination. This so-called red-eye
effect is caused by the large amount of light, reflected from the back of the
eyeball in the direction of the camera when the flash is located near to the
lens.

2.1.2 Geometric Eye Model

2.1.2.1 Schematic Eye Models

With the knowledge of shape and parameter distribution for the human eye,
it becomes possible to construct eye models. Several so-called schematic eye
models with different level of sophistication have been developed over the last
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150 years; motivated by the aim to describe the imaging characteristics and
performance of the eye as an optical system. There are several applications in
research and development, e.g., the prediction of retinal images and adjust-
ment from correcting lenses, and surgery.

Most of the early models, such as Gullstrand’s No. 1 (exact) and No. 2 (sim-
plified) eye (Gullstrand, 1909) and Le Grand’s (1945) full theoretical eye (Le
Grand and El Hage, 1980) can be referred to as paraxial models. This means
that they only result in adequate accuracy near the optical axis. The eye
is described by several spherical refracting surfaces. Due to their simplicity,
paraxial models differ significantly from the physiological structure of the eye.

Since the last 40 years, more realistic anatomically inspired finite or wide-
angle schematic models are proposed in order to overcome the paraxial limita-
tions. These models provide a more reasonable prediction of on- and off-axis
aberrations, e.g., by applying non-spherical refractive surfaces, and a lack of
surface alignment along the optical axis. Examples include the finite model
eyes of Lotmar (1971), Kooijman (1983), and Liou and Brennan (1997). Refer
to Table 2.1 for an overview of parameter values.

Recently, Goncharov et al. (2008) and Sakamoto et al. (2008) proposed a
method to create an individually parameterized eye model by optimizing a
generic eye model through reverse ray-tracing using wavefront sensor data.

2.1.2.2 Applied Eye Model

Sophisticated schematic eye models are the outcome of a long research process
to understand and model the complex individually varying optics of the human
eye. For applications related to this dissertation, such as finding the position
and orientation of an eye and recovering environmental structure from eye
reflections, it is not necessary to deal with refractive surfaces of the inner
eye. Often, it is not feasible to determine parameters of the individual eye
geometry. Related works, therefore, usually apply a simple paraxial model
with spherical or ellipsoid curvature for the outer surfaces of the eye.

Within this work, we follow this approach and assume that the eyeball can
be approximated by two overlapping spheres with different radii and separated
centers of curvatureC and E as shown in Figure 2.1(c). The cornea is modeled
as a spherical cap that is cut off from the corneal sphere by the limbus plane1.
For the corneal sphere, we apply the common average radius of curvature rC

of 7.8 mm (Kaufman and Alm, 2003). The circular limbus marks the surface
shape discontinuity at the intersection between corneal and eyeball sphere. For
an adult, the radius of the limbus rL averages approximately 5.5 mm (Nishino
and Nayar, 2006). The iris has a slightly larger radius rI of approximately
6 mm (Snell and Lemp, 1997). Since the visible part of the iris is bounded by

1For more complex aspherical representations of corneal shape as a spheroid cap, ellipsoid
cap, or surface of revolution, refer to Atchison and Smith (2000); Baker (1943); Nishino and
Nayar (2006); Nagamatsu et al. (2010).
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the limbus circle, we assume its radius to be equal to rL. The displacement
dLC between the centers of limbus circle and corneal sphere are obtained from
the given known parameters as in

dLC =
√
r2

C − r2
L

≈ 5.53 mm.
(2.2)

The height of the cornea is defined as the distance dAL between the corneal
apex A and the center of the circular limbus L. It is obtained as in

dAL = rC − dLC
≈ 2.27 mm.

(2.3)

All eye movements can be described as rotations around the geometric
center of the eye E, located at a distance dCE of approximately 5.70 mm
posterior to the center of the corneal sphere (Remington, 2004). For this
work, however, it is not necessary to model eye movements or the surface of
the eyeball sphere. For reference, the applied parameter values are listed in
Table 2.1. The gaze direction is assumed to be equal to the optical axis. If
required, the offset to the visual axis may be obtained by additional personal
calibration.

2.2 Eye Pose Estimation
The 3D pose of an eye describes the location and orientation of the eye model
in the camera coordinate frame, where the origin O = (0, 0, 0)T is placed at
the camera pupil.

All eye movements occur as rotations around three different axes of the
eye that intersect at a fixed non-moving point, the approximate geometric
center of the eye (Alpern, 1962), located at about 13.5 mm behind the apex
of the cornea (Remington, 2004). The set of eye gaze directions is limited to a
subset of anatomically possible positions, described by Donder’s and Listing’s
law (Tweed and Vilis, 1990). Donder’s law states that the gaze direction
uniquely defines the orientation of the eye, which is independent of preceding
positions. Listing’s law explains that the set of valid eye positions is obtained
from the primary position by a single rotation around an axis perpendicular
to the gaze direction.

When changing gaze direction, usually first the head is moved to a comfort-
able pose from where detailed adjustment is done through eyeball rotations.
Therefore, gaze direction is affected either by the described movements of
the eyeball or by movements of the head. Head pose invariance in eye gaze
tracking is achieved either by explicit head pose detection or by direct 3D eye
modeling. This work employs the latter to estimate the 3D pose of the eyeball
relative to the measurement device, a camera in this case.
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2.2.1 Eye Detection and Tracking

The pose of the eye can be deduced from its shape, location, and other infor-
mation in an image. In the following, we will give a survey on eye detection
and tracking which involves finding the approximate eye region in an image,
identifying meaningful eye features, and modeling their shape and location.

Classification of Methods. The corresponding methods for eye detection
and tracking are mainly distinguished into shape-based, appearance-based,
other, and hybrid methods. Shape-based methods consist of a geometric eye
model and a similarity measure relating the model to the imaged eye. Typical
shape features are contour features, such as pupil, iris, and eye-lid contours,
or point features, such as pupil and iris centers or intersections of contour fea-
tures. Appearance-based methods do not incorporate eye-specific geometric
information, and detect and track eye or eye feature regions directly by their
unique distribution of intensity values or filter responses in the image. This
requires training of a model with large amounts of data from different subjects
under various conditions. Other methods may detect unique characteristics of
eyes such as symmetry, blinks, and motion. Hybrid methods combine differ-
ent concepts to overcome their respective disadvantages. Eye detection and
tracking methods can be also distinguished by their setup, regarding remote
or rigid head-mounted camera-placement, passive or active controlled illumi-
nation, and the requirement for calibration or training data. For a recent
survey refer to Hansen and Ji (2010).

Shape-based Methods. This work focuses on non-intrusive measurement
with a single non-attached camera, not requiring active illumination and cal-
ibration or model training. The described characteristics are achieved by
detecting and tracking a geometric eye model in the image using a shape-
based method, followed by estimating the 3D pose of the eye. Shape-based
methods are distinguished by which features they model and track: Simple
methods only include the contours of the pupil or the iris. More complex
methods also model the sclera, the eyelids or the eyebrows. This enables han-
dling iris occlusion by eyelids, exploiting eyelid intersection at the corners of
the eye, and modeling the relative alignment of features with an active shape
model (Yuille et al., 1992; Xie et al., 1994; Lam and Yan, 1996; Cootes et al.,
1995). Complex models also comprise further information about the eye that
can be beneficial in eye pose estimation. The detection performance of shape-
based methods can be improved by integration with appearance, reflection,
or other characteristics in a hybrid method.
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2.2.1.1 Iris and Pupil Contour Segmentation

Though there exists individual variation in eye shape and parameters, the
visible iris and the pupil are often assumed to be circular. We follow this
practice with the proposed geometric eye model, where cornea and eyeball
have spherical curvature. Under perspective projection, a circle with arbitrary
position and orientation in 3D projects to a general ellipse in an image (Semple
and Kneebone, 1952; Hartley and Zisserman, 2003). Methods for pupil and
iris segmentation are proposed in the context of eye tracking (Hansen and
Ji, 2010), iris recognition (Bowyer et al., 2008; Shah and Ross, 2009; Matey
et al., 2010), and medical image processing, and are either based on voting or
model-fitting strategies.

Voting-based Methods. Voting-based methods accumulate votes for im-
age locations where local features support a given model hypothesis. In case
of an ellipse model, voting is performed in a five-dimensional parameter space
from which the detected parameter values are obtained as the local maxima.
A typical voting-based strategy may apply a Hough transform with an edge
image (Ballard, 1981; Aguado et al., 1996; Guil and Zapata, 1997; Bennett
et al., 1999). However, so far only circular features have been practically used
with voting-based methods to either detect and track eyes at small gaze an-
gles (Nixon, 1985; Young et al., 1995; Kothari and Mitchell, 1996) or segment
the iris region from frontal eye images in biometrics (Wildes et al., 1996; Li
et al., 2010).

Model-Fitting-based Methods. Model-fitting-based methods detect the
elliptical contours directly in the image, either with a combined approach
through a model-based contour detection or by first segmenting pupil or iris
regions and subsequently fitting a model through the data points. While the
majority of pupil and iris fitting methods supports only circular features, a
few methods are proposed to deal with elliptical features, which is required for
3D eye pose estimation. Combined approaches directly fit a shape model to
continuous features defined over the image, such as intensity gradients or the
distance to edges: Nishino and Nayar (2006) generalize the circular integro-
differential operator proposed by Daugman (1993) to elliptical features. The
method detects the iris contour by non-linear maximization of an elliptical
integral of intensity gradient magnitudes. Arvacheh and Tizhoosh (2006) also
adapt the circular integro-differential operator and find the pupil and iris
contour by fitting an active contour model. Iris occlusion is compensated by
eyelid modeling. Hansen and Pece (2005) propose a likelihood model of the
elliptical iris contour that incorporates also neighborhood information. The
model is fit to the image through an EM and RANSAC optimization strategy
that allows for multi hypothesis tracking using a particle filter and avoids
explicit thresholds. Wu et al. (2007) propose a likelihood model of the iris
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contour based on image intensity and gradients. It is used in conjunction
with a complex 3D eye model to robustly track the non-occluded iris contour
through a particle filter.

More common are two-step approaches that first detect the pupil or the
iris without assuming any shape model. The result is a set of points either
describing the feature area or its contour. Detection usually involves a cascade
of image filters followed by an image-based search with a contour detection
method. Area segmentation is commonly applied to pupil detection. The ma-
jority of methods uses active IR illumination to exploit the so-called red-eye
effect (Miller et al., 1995; Nguyen et al., 2002; Agustin et al., 2006). On-axis
illumination from a light source near the optical axis of the camera is re-
flected back through the pupil and produces a bright pupil area in the image.
Off-axis illumination from a light source located farther from the optical axis
does not reflect back and produces a dark pupil area. The difference between
both images leads to robust and performant pupil detection and segmenta-
tion. Under active IR illumination, the contrast of the pupil contour is much
higher compared to the contrast of the iris contour. Under visible light, the
effect reverses (Grabowski et al., 2006). There exist only a few methods for
pupil segmentation in visible light: Stiefelhagen et al. (1996, 1997) propose an
iterative thresholding algorithm, first locating the face by a skin-color model,
and subsequently locating the pupils as the darkest regions. Vezhnevets and
Degtiareva (2003) locate the eye in an eye image using a specular highlight on
the cornea. The pupil area is then segmented by detecting candidate pixels in
the neighborhood. Yamazoe et al. (2008) propose a method for iris segmenta-
tion. They first localize the eye by facial-feature detection and tracking, and
subsequently segment the eye into the three regions iris, sclera, and skin.

Another category of methods detects the pupil or iris contour instead of its
area: Wang and Sung (2001, 2002) automatically extract the non-occluded iris
contour from an eye image using a tailored vertical edge operator. (Colombo
et al., 2007) explain an integrated approach for iris localization and tracking.
Localization is performed using morphological operators and intensity his-
tograms. Tracking between subsequent images detects vertical iris contours.

Several approaches detect the contours of pupil and iris along radial direc-
tions starting at a location near the pupil or iris center. To compensate for
iris occlusion by eyelids and eyelashes, usually only the valid (horizontal) iris
sectors are taken into account, or eyelids are explicitly modeled. Barry et al.
(1997) first segment the pupil area by finding its corresponding peak in the
histogram of an eye image. Both contours are then accurately detected along a
set of radial strip ROIs starting from the pupil center. Morelande et al. (2002)
detect the iris contour to describe the corneal limbus in videokeratoscopy. Ob-
taining the location of the corneal apex from the apparatus, the eye image is
transformed into polar coordinates. The iris contour is then found along the
radial direction with a gradient-based strategy. Iskander et al. (2004) improve
and extend this method to find the pupil and iris contours in ordinary eye
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images. Iskander (2006) argue that common non-parametric edge detection
techniques have relatively low precision as the numerical gradient is sensitive
to noise. They propose a parametric approach where a sigmoidal function is
fit to radial intensity profiles of the iris contour.

Li et al. (2005) describe an iterative radial search strategy to detect the
contour of the pupil in an eye image. Their Starburst algorithm starts at
an initial guess for the pupil center that does not necessarily lie inside the
pupil area, and detects edges along a number of radially extending rays. The
result is iteratively refined until convergence. For subsequent frames, the
location of the pupil center from the previous frame is used as initial guess.
The method takes advantage of the high-contrast pupil contour under IR
illumination but can also be applied to visible light images. Ryan et al. (2008)
improve the Starburst algorithm to detect pupil and iris contours, evaluate
multiple contour hypotheses, and compensate for eyelid and eyelash occlusion.
Reale et al. (2010) track a close-up image of an eye using a PTZ camera and
detect the iris contour with an approach similar to the Starburst algorithm.
The initial guess for the iris center is obtained using a modification of the
pupil segmentation algorithm proposed by Vezhnevets and Degtiareva (2003).

Since the pupil and iris contours are not exactly circles or ellipses and,
thus, their image is not exactly an ellipse, active contour models (Kass et al.,
1988) have been used to accurately detect the pupil and iris contours by fitting
a deformable model. He et al. (2009) propose an accurate and fast iris contour
detection method. After removing specular highlights from the eye image, the
iris region is located with an Adaboost-cascade iris detector based on Haar-like
features that is trained in advance. The pupil and iris contour are found by
edge detection in radial direction and fit with a spline-based active contour
model. The eyelids are explicitly modeled. Shah and Ross (2009) segment
the pupil area in an eye image and fit its contour with a circular model.
The iris contour is then searched and iteratively refined using geodesic active
contours that combine the energy minimization approach of classical snakes
with geometric active contours based on curve evolution (Caselles et al., 1997).

Ellipse Fitting. After the pupil or iris is identified in the image, an el-
lipse model needs to be fit through its contour. Most of the described meth-
ods either directly fit an ellipse model or describe a tailored fitting strategy.
Generally, ellipse fitting through scattered data is achieved using a linear
least squares method, such as the simple method described in Appendix A.4
or more sophisticated methods like the ones described by Halir and Flusser
(1998) and Fitzgibbon et al. (1999). Robustness can be increased with outlier
removal techniques such as RANSAC.
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2.2.1.2 Eye Pose Estimation from Elliptical Feature Contour

Eye pose estimation requires known camera parameters, obtained for static
cameras using standard methods (Hartley and Zisserman, 2003; Zhang, 2000;
Bouguet, 2010), and for dynamic cameras by interpolation of calibration data
or estimation from circular scene features, such as the shape of the visible
iris (Wu et al., 2005b). If a dedicated calibration procedure cannot be per-
formed, intrinsic parameters may be estimated directly from the shape of the
visible iris (Johnson and Farid, 2007). Starting from the identified location
of the ellipse in the image, and knowing camera intrinsics and radius of the
circular feature, the 3D pose of the feature can be recovered. An inherent
two-way ambiguity, however, leads to two possible sets of solutions, and needs
to be resolved using additional geometry constraints. The estimated center
point and surface normal of the base plane of either visible iris or pupil com-
pletely describe the optical axis of the eye and, therefore, the position and
orientation of the geometric eye model in 3D.

2.2.1.3 Comparison between Iris- and Pupil-based Strategies

While the pose of the eye can be estimated from either pupil or iris contour,
using the pupil involves several drawbacks compared to using the iris:

Radius The radius of the pupil varies in response to the light intensity at
the retina due to the pupillary light reflex (Beatty and Lucero-Wagoner,
2000), and has to be determined separately. Regarding pose estimation
of the pupil circle in 3D, an unknown radius defines two groups with an
infinite number of parallel planes intersecting the back-projection cone
at increasing distance from the camera. The unknown distance needs
to be resolved using a corneal reflection from at least a single point
light source at known position (Villanueva and Cabeza, 2007) or other
knowledge.

Refraction The pupil as seen from the outside of the eye does not corre-
spond to the real pupil or physical aperture of the eye. Light rays from
the real pupil undergo refraction twice, between aqueous humor and
cornea, and between cornea and air. Thus, the image of the pupil is
a virtual image corresponding to the entrance pupil which is forward
to and slightly larger than the real pupil (Atchison and Smith, 2000).
Refraction causes bending of a light ray, and depends on the refractive
indices of the involved media, the location of the surface point at which
light enters the other medium, and the angle between incident light ray
and surface normal. As this affects each ray individually, it leads to
a non-linear displacement and distortion in the shape of the imaged
pupil. Refraction is an important factor in eye pose estimation from
pupil images and may account for errors >1◦ in gaze angle (Villanueva
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and Cabeza, 2007). The 3D location of the real pupil contour and its
center point can be calculated from the image of the virtual pupil under
known shape, refractive indices, and location of the eye. The shape is
defined by the geometric eye model using either population means or
estimating individual parameter values (Shih et al., 2000; Ohno et al.,
2002; Guestrin and Eizenman, 2006); the refractive indices of aqueous
humor, cornea, and air are assumed as 1.336, 1.376, and 1 (Atchison
and Smith, 2000) respectively; and the location of the corneal sphere
is obtained from corneal reflections of at least two known point light
sources (Shih et al., 2000; Guestrin and Eizenman, 2006; Villanueva and
Cabeza, 2007). However, the applied values are only approximations,
and additional hardware is required which involves further geometric
calibration.

Shape and location The pupil is generally not centered at the optical axis
of the eye, with its shape showing a relatively large non-circularity in-
creasing with age (Wyatt, 1995; Rakshit and Monro, 2007; Atchison and
Smith, 2000). On average, about half of the non-circularity of the pupil
contour is described by its best fit ellipse. An accurate representation
is obtained using a circular Fourier series where most of the contribu-
tion to shape is made by the first four or five harmonics. The shape of
the pupil and the location relative to limbus and optical axis vary with
incident illumination due to the pupillary light reflex, and largely vary
among individuals.

Note, that there are also several drawbacks related to eye pose estimation
using the iris contour, e.g.,

• occlusion by eyelids and eyelashes, especially at large gaze angles,

• refraction at large gaze angles,

• a low-contrast, varying, and non-smooth transition between corneal and
scleral regions due to iris texture and blood vessels, and

• unknown individual radii of visible iris and limbus.

The majority of these effects, however, can be accounted for by using sophis-
ticated algorithms, without the need of additional hardware and calibration.
Therefore, this work focuses on iris-contour/limbus-based methods for eye
pose estimation.

2.2.2 Limbus-based Eye Pose Estimation

We assume the visible iris contour to represent the corneal limbus. This is
feasible since the iris is larger than the limbus and extends behind the be-
ginnings of the sclera. The shape of the visible iris is, thus, defined by the
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shape of the transparent cornea. Moreover, as the iris is located directly be-
hind the limbus, their relative distance is negligible compared to the distance
between eye and camera. The circular limbus in 3D is described by its center
point L = (Lx, Ly, Lz)

T; the normal vector of its base plane g = (gx, gy, gz)
T

corresponding to optical axis and gaze direction; and the radius rL, a constant
specified by the geometric eye model. Eye pose estimation aims in recover-
ing these values from the visible iris contour represented by an ellipse in the
image.

Before explaining the perspective projection of the limbus and introduc-
ing two methods for pose estimation under a full-perspective and a weak-
perspective camera projection model, in the following, we want to survey
directly related works for monocular eye pose estimation from the iris contour
in visible light, without active illumination and additional hardware.

2.2.2.1 Related Work

Monocular Circle Pose Estimation. There exists a large body of works
on closed-form solutions to the monocular reconstruction of circles under pro-
jective transformation, usually with application to external camera calibra-
tion, where it is necessary to identify the location and orientation of a cam-
era relative to a calibration rig from various arrangements of planar circles.
Dhome et al. (1990) recover the pose of an object of revolution from an image
of a circular cross-section for which the supporting plane, the center, and the
radius are known in an object coordinate system. Shiu and Ahmad (1989)
present a solution for the pose estimation of 3D circular features on the ba-
sis of analytic geometry that also handles the position of spherical features.
Safaee-Rad et al. (1991, 1992) present an integrated approach to the fitting of
quadratic curves in an image that result from the projection of circular arcs.
Based on analytic geometry, a solution is then given for the estimation of the
3D pose of the corresponding circular features, considering the two cases of
known and unknown radius. Kanatani and Liu (1993) develop a new formu-
lation of properties of conics with special emphasis on computational aspects
in projective geometry. They describe the two cases where the conic results
from either a circle or an ellipse with known shape. Chen and Huang (1999)
propose a method for circle pose estimation based on two particular projected
chords of a circle image. Chen et al. (2004) describe a two-circle algorithm
that jointly estimates the pose of two coplanar circles and the unknown focal
length of the camera. The approach is extended by Wu et al. (2005b) to allow
for two parallel but non-coplanar circles, and applied to the estimation of the
base planes of the two irides in a face image. Gurdjos et al. (2006) general-
ize the pose estimation of N ≥ 2 parallel circles and describe the problem in
terms of a system of linear equations, increasing applicability and numerical
stability. Zheng et al. (2008) present a novel projective equation of a circle
that naturally encodes the pose parameters. The theory is used for circle pose
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estimation and to give an explanation on the reasonability of the two sets of
solutions and their mutual relationship. The framework is applied to camera
calibration by Zheng and Liu (2008) who estimate the pose of two coplanar
circles and the focal length of the camera.

The works for eye pose estimation described in the following depend on
the surveyed closed-form solutions for monocular reconstruction of circles un-
der projective transformation and differ in the way they resolve the inherent
ambiguity in the two sets of solutions.

Two Eyes. When both eyes are present in a face image, constraints on their
relative pose have been applied to resolve the ambiguity. For example, if a
person focuses on an object moving towards infinity, the gaze directions of
both eyes become parallel. Based on this constraint, Wang and Sung (2001)
assume the person is focusing on a sufficiently far-away object. They explain
a two-circle algorithm where the correct solution for each eye is obtained as
the one leading to a minimal angle between the surface normals of both eyes.
According to their work, this is a valid strategy since the baseline between
both eyes is generally much smaller than the distance to the focused object,
and the angular deviation between the two correct normals is much smaller
than the deviation among other combinations of normal directions.

Chen et al. (2004) also explain a two-circle algorithm applied to camera cal-
ibration. The algorithm uses two coplanar circles to simultaneously estimate
the external parameters and the focal length of the camera. The coplanarity
constraint determines a unique solution for focal length and plane normal. If
the circle radii are unknown, their center points are reconstructed up to a
scale ambiguity that is resolved if one of the radii is known. Simultaneously
estimating the focal length enables the use of zoom lenses, for example, to
track a close-up region of the eye (Oike et al., 2004). Wu et al. (2005a) apply
this work to estimate the gaze direction of two eyes assuming the irides to be
coplanar circles. Wu et al. (2005b) propose an extended two-circle algorithm
allowing the two irides to be located on different but parallel planes.

Schnieders et al. (2010) extend the idea of display-camera calibration in
Chapter 4 (Nitschke et al., 2009) for eye gaze tracking. The pose of a 3D
display plane is estimated from the edges of screen content reflecting at the
cornae of both eyes captured in a single face image. Their method for eye pose
estimation is based on Chen et al. (2004), where the ambiguity is resolved by
assuming the PoR to be located on the display. Under that assumption, the
correct pair of eye poses is obtained as the one leading to minimal distance
between the intersection points of the gaze rays with the display plane.

Single Eye. Wang and Sung (2002) andWang et al. (2003, 2005b) state that
the requirement of both eyes being visible in the same image in Wang and Sung
(2001) leads to a relative low resolution for each particular eye region and an
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increased error in eye pose estimation. To compensate for this, they introduce
the so-called one-circle algorithm based on anthropometric knowledge. The
eye model is extended by the upper and lower eyelid, intersecting in the two
corners of the eye, and by modeling eye orientation as a rotation around
the center of the eyeball. This enables formulation of a geometric constraint
stating that the distances between each corner and the center of the eyeball
are equal and independent of eye gaze. Under this constraint, the ambiguity
for the back-projected limbus circle is resolved by selecting the solution that
minimizes the deviation.

Johnson and Farid (2007) explain a method to identify digital forgeries,
in the form of composite images, from inconsistencies in corneal reflections
among persons originally photographed under different lighting conditions.
Their work estimates the pose of a single eye under the assumption that each
person looks into the camera. They formulate a non-linear optimization to
simultaneously recover the limbus circle and its projective transform, based on
the visible iris in the image. If the photograph is taken with an unknown cam-
era, the focal length can be estimated using another non-linear optimization
strategy.

Nishino and Nayar (2004a,b, 2006) and Nishino et al. (2005) do not pro-
pose an automatic way to resolve the ambiguity for the solution of the back-
projected limbus circle. However, their work is important since it is the first
comprehensive analysis of the visual information that is embedded within
corneal reflections in an image of the human eye. There are two main differ-
ences to the other works in this section. First, the pose of the eye is estimated
by a simple and straightforward method under the assumption of weak per-
spective projection, directly relating the parameters of the imaged ellipse to
the pose of the 3D limbus circle. The method described in Section 2.2.2.3 is
based on this approach. Second, the shape of the corneal surface is modeled
as a spheroid (instead of a sphere) which better approximates the mean shape
of the cornea discovered in anatomical studies.

Video-based Tracking. Wu et al. (2007) introduce an integrated 3D model
of two eyes, consisting of two single-sphere eyeballs with circular irides and
B-spline eyelid curves. After manually initializing the model to a face image
of a frontal-looking person, the model is tracked in subsequent frames with
a particle filter using a likelihood model for irides and eyelids. Yamazoe
et al. (2008) follow a completely different strategy to estimate and track the
gaze direction in a continuous sequence of video images based on structure-
from-motion and bundle-adjustment. A set of keypoints is identified and
tracked among subsequent face images. Assuming a rigid shape for the face,
its 3D pose is reconstructed at every video frame. The imaged eye region is
detected and segmented based on color and brightness assumptions. Knowing
the approximate 3D position of the eye, the pose of a single-sphere eyeball
model is optimized by minimizing the re-projection error to the imaged eye.
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Reale et al. (2010) adopt a similar approach but add a five-point personal
calibration to determine the individual size and visual axis offset for a single-
sphere eyeball model. They obtain close-up images of a face with a PTZ
camera system and track facial features to reconstruct the 3D pose of the
head for estimating the positions of the two eyeball spheres. For each eye,
the gaze direction is estimated by mapping the imaged iris contour onto the
eyeball and accounting for the offset to the visual axis. Chen and Ji (2008) also
rely on facial feature tracking to estimate the 3D pose of a rigid face model.
Assuming known face direction and a rigid relation between eye corners and
center, the position of an individually calibrated double-sphere eye model is
estimated. The gaze direction is subsequently obtained from the imaged pupil
center and the known distance between eyeball center and pupil.

2.2.2.2 Method for Perspective Projection

Let us now derive the perspective projection of a circle and apply it to recover
the original 3D pose of the circular limbus from the elliptical contour of the
visible iris in the image.

Perspective Projection of the Limbus. Without loss of generality let us
assume the limbus to be centered at the origin (0, 0)T of its base plane. Any 2D
point on its boundary, given in homogeneous coordinates as p = (px, py, 1)T,
satisfies the implicit equation

pTQp = 0, (2.4)

where

Q =

 1 0 0
0 1 0
0 0 −r2

L

 (2.5)

is a symmetric matrix describing the circle.
The limbus is located with an arbitrary position and orientation in 3D

that we want to recover from an image. When taking a photograph of an eye,
the circular limbus is mapped by a projective transformation to an ellipse in
the image (Semple and Kneebone, 1952; Hartley and Zisserman, 2003). This
relation is expressed by

pe = Hep, (2.6)

where pe denotes a pixel on the boundary of the limbus ellipse in the image
plane. The 3× 3 matrix

He = K
[
r1 r2 t

]
, (2.7)
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is a planar homography or collineation that describes the projective transfor-
mation. It is composed of a rotation, a translation t = L, and a projection
with camera matrix K. The rotation is completely described by the first two
columns r1 and r2 of a 3× 3 rotation matrix R. This is easily verified since He

does not map between arbitrary points in 3D but rather points located on 2D
planes (planar subspaces). Without loss of generality assume the plane to be
aligned with the xy-plane at z = 0 which eliminates the effect of r3 (Bradski
and Kaehler, 2008).

Under projective transformation He, the circular limbus Q maps to the
ellipse Q′e in the image, given by

Q′e = H−T
e QH−1

e

=
(
K−T

[
r1 r2 t

]−T
)
Q
([

r1 r2 t
]−1

K−1
)
.

(2.8)

This is derived as follows

pTQp = 0
∣∣p = H−1

e pe ,(
H−1

e pe

)T
Q
(
H−1

e pe

)
= 0,

pT
e

(
H−T

e QH−1
e

)︸ ︷︷ ︸
Q′e

pe = 0.
(2.9)

Such as limbus circle Q, also its image Q′e is described by a symmetric matrix
as in

Q′e =

 A B D
B C E
D E F

 , (2.10)

where a pixel pe on its boundary satisfies

pT
e Q
′
epe = 0. (2.11)

Expanding equation (2.11) describes the ellipse in the normal form of a quad-
ratic equation in two variables, given by

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0, (2.12)

where A, B, C are not all zero and B2 − AC < 0. If also A = C 6= 0 and
B = 0 then Q′e represents a circle, which is the case when the base plane of
the limbus and the image plane are parallel. Refer to Appendix A for details
on the representation of an ellipse.

Pose Estimation of the Limbus. Now, consider a supporting plane coor-
dinate system with the same origin as the camera coordinate system, but the
image plane aligned parallel to the limbus base plane with the z-axis being
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perpendicular to both planes and representing the gaze direction (Fig. 2.5).
Since both coordinate systems share the same origin, the transformation is
described by a pure rotation R. A projective transformation Hc maps the
circular limbus Q to the general circle Q′c in the image2, given by

Q′c = H−T
c QH−1

c

=
(
K−T

[
i1 i2 t

]−T
)
Q
([

i1 i2 t
]−1

K−1
)
,

(2.13)

where i1 and i2 are the first two columns of the 3× 3 identity matrix I3. The
derivation is carried out analogue to equation (2.9). Such as ellipse Q′e, also
circle Q′c has the form of a symmetric matrix, given by

Q′c =

 A 0 D
0 C E
D E F

 . (2.14)

Since Q′c represents a circle, B = 0 holds. A pixel pc on its boundary satisfies

pT
c Q
′
cpc = 0. (2.15)

Removing the effect of camera matrix K from ellipse Q′e and circle Q′c
creates their respective back-projection cones Qe and Qc as in

Qc = KTQ′cK,

Qe = KTQ′eK.
(2.16)

Both describe the same cone surface and are related by the rotation R of their
coordinate systems as in

Qe = RQcRT. (2.17)

Qc, represented by

Qc =

[
I2 −lc
−lc lTc lc − r2

c

]
, (2.18)

where I2 is the 2× 2 identity matrix, describes the limbus circle with center
and radius defined as in

lc =

(
xc

zc

,
yc

zc

)T

, rc =
rL
zc

. (2.19)

2Note that this only holds when elements k12, k21, k31, and k32 of camera matrix K are
all zero. That means the camera model only defines focal length and principal point, with
zero skew.
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Figure 2.5: Eye pose estimation (perspective method). The 3D circular limbus with center
L and normal direction g projects to a general ellipse Q′e in the image. Now, consider a
rotated image plane parallel to the limbus plane, where the limbus projects onto a general
circle Q′c. From the corresponding back-projection cone Qc = KTQ′cK it is possible to extract
the center position and normal direction of the limbus. It is obtained as in Qc = RTQeR,
where the rotation R can be recovered from Qe.

At this point, the relation between the circular limbus on its base plane
coordinate system Q′, its projection onto the image plane as ellipse Q′e, and its
projection onto the image plane in a simplified supporting plane coordinate
system as circle Q′c are defined. We will now show how to recover rotation R
that relates both projections and helps to obtain the position and orientation
of the limbus in the camera coordinate system.

Let Qe = VAVT describe the eigen decomposition that transforms Qe into
a diagonal matrix A representing its eigenvalues and an orthogonal matrix V
with columns representing its eigenvectors, as in

A =

 a 0 0
0 b 0
0 0 c

 , V =
[
v1 v2 v3

]
. (2.20)

The geometric interpretation of this decomposition is that matrix VT defines
a rotation that transforms the general ellipse Qe into an ellipse A, axis-aligned
and centered at the origin of the image plane. Now, Qc is given by

Qc = RTQeR

=
(
RTV

)
A
(
VTR

)
.

(2.21)

Since Qe describes a real ellipse, all eigenvalues cannot have equal sign. With-
out loss of generality, it can therefore be assumed that

ab > 0, ac < 0, |a| ≥ |b| . (2.22)
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Note that if necessary, the eigenvectors can be re-organized to meet these as-
sumptions. Chen et al. (2004) derive a solution for VTR from equation (2.21),
given by

VTR =

 g cosα S1g sinα S2h
sinα −S1 cosα 0

S1S2h cosα S2h sinα −S1g

 , (2.23)

where

g =

√
b− c
a− c

, h =

√
a− b
a− c

. (2.24)

Angle α represents the rotation of the limbus circle around the normal on its
base plane. It can only be recovered when introducing further knowledge and,
therefore, remains a free variable. S1 and S2 are two undetermined signs.

Now, circle Qc can be computed by replacing VTR in equation (2.21). Its
center lc and radius rc are obtained according to equation (2.19) as in

lc =

 −S2

√
(a− b) (b− c) cosα

b

−S1S2

√
(a− b) (b− c) sinα

b

 , rc = S3

√
−ac
b

, (2.25)

where S3 is another undetermined sign. The center of the circular limbus in
camera coordinates is computed by applying rotation R = V (VTR), leading to

L = zcRlc = zcV


S2h

c

b
0

−S1g
a

b

 , (2.26)

where the scale zc is also given from equation (2.19) as in

zc =
rL
rc

. (2.27)

Finally, the normal of the limbus base plane, describing the gaze direction, is
obtained in the same way, as in

g = R

 0
0
1

 = V

 S2h
0
−S1g

 . (2.28)

Since there are three undetermined signs, the number of potential solutions
for limbus position and orientation is 23 = 8. The signs S1 and S3 can be
resolved by implying the two constraints that L is located in front of the
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camera with its normal g facing the camera. Further knowledge is necessary
to break the remaining two-way ambiguity. Therefore, other works either
apply anthropometric properties of the eyeball or constraints from the relation
of the gaze directions of both eyes in the same face image. In Chapter 4 we
introduce an approach to jointly resolve the ambiguities for multiple eyes using
geometry constraints from a static scene that is reconstructed using corneal
reflections.

2.2.2.3 Method for Weak Perspective Projection

The method described in the last section recovers the location and orientation
of an eye from its image by computing the center L and the normal vector g
of the circular limbus in 3D. The computation is accurate but complex since
it involves a matrix diagonalization. A simpler method that acts under the
assumption of weak perspective projection follows.

Perspective projection is a non-linear transformation, modeled as in

KpP = Pzpp, f 0 0 0
0 f 0 0
0 0 1 0



Px
Py
Pz
1

 = Pz

 fPx/Pz
fPy/Pz

1

 = Pz

 ppu

ppv

1

 , (2.29)

where P = (Px, Py, Pz, 1)T is a 3D point in homogeneous representation,
pp = (ppu, ppv, 1)T its 2D projection in the image, and f the focal length of
the camera. If an object has a relatively large depth, the effect of perspective
distortion (foreshortening) becomes noticeable. That means the scaling varies
within the projection of the same object. Weak perspective projection is an
approximation that removes the perspective distortion, and is modeled as in

KwpP = z̄pwp, f 0 0 0
0 f 0 0
0 0 0 z̄



Px
Py
Pz
1

 = z̄

 fPx/z̄
fPy/z̄

1

 = z̄

 pwpu

pwpv

1

 , (2.30)

representing a linear transformation where an orthographic projection onto a
plane, located at the average depth of an object z̄, is followed by a perspective
projection from that plane (Fig. 2.6). The resulting projection in the image
is denoted pwp = (pwpu, pwpv, 1)T.

Let us assume weak perspective projection since the depth of the tilted
limbus is much smaller than the distance between eye and camera. As in the
full perspective case, the circular limbus projects to an ellipse that can be
described by five parameters. These parameters are the center l = (lu, lv)

T,
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Figure 2.6: Comparison of perspective and weak perspective projection models. Weak
perspective projection consists of an orthographic projection onto an average depth plane,
followed by a perspective projection from the plane. A comparison of results from differ-
ent depth planes demonstrates that the projection error f∆/d decreases with increasing
distance d from the center of projection.

the major and minor radii rmax and rmin and the rotation angle φ. This repre-
sentation of an ellipse is obtained by applying the conversion in Appendix A
to the representation as a quadratic equation used in the last section.

The 3D position of the limbus center L is estimated from the center of the
ellipse l and the distance to the camera d as in

L = d

(
lu − c0u

f
,
lv − c0v

f
, 1

)T

, d = f
rL
rmax

, (2.31)

where f is the focal length in pixels and c0 = (c0u, c0v)
T the principal point.

Figure 2.7 shows estimation results with increasing distance from the display-
camera system.

The orientation of the eye is described by its optical axis that is parallel
to the surface normal of the limbus base plane. The normal direction is equal
to gaze direction g and obtained as in

g =

 sin τ sinφ
− sin τ cosφ
− cos τ

 , (2.32)

where φ ∈ [0, π] is already known as the rotation angle of the limbus ellipse in
the image. Angle τ ∈ [0, π/2] corresponds to the tilt of the limbus base plane
with respect to the image plane (Fig. 2.8). It is estimated from the shape of
the ellipse up to a sign ambiguity as in

τ = ± cos−1

(
rmin

rmax

)
. (2.33)

The ambiguity is explained in the perspective method (eqs. (2.26),(2.28)) and
can only be resolved by introducing further knowledge.
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Figure 2.7: Experimental results for eye position estimation. For an increasing camera-eye
distance, the figure shows (a) face image, (b) detected iris ellipses, and (c) estimated 3D
limbus center positions.
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Figure 2.9: Eye pose estimation (weak-perspective method). The 3D position and orien-
tation of the eye model is obtained from the imaged limbus that is described by an ellipse
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2.2.3 Corneal Sphere Position

The cornea is modeled with spheric surface curvature. The corneal sphere
is described by its radius rC and center C, located at distance dLC from L
(Fig. 2.9), and obtained as in

C = L− dLC g. (2.34)

A point S = (Sx, Sy, Sz)
T on the corneal surface is modeled as in

S (φ, θ) = C + rC

 sin θ cosφ
sin θ sinφ

cos θ

 , (2.35)

with the two angles φ ∈ [0, 2π] and θ ∈ [0, π]. Knowing gaze direction g,
parallel to the optical axis, we are also able to construct the eyeball sphere
with radius rE around center E given by

E = C− dCE g. (2.36)

However, this is not necessary for this work.



Chapter 3

Light Transport
at the Corneal Surface

This chapter builds on eye modeling and pose estimation to develop a theory
of the light transport at the corneal surface.

Section 3.1 introduces a corneal reflection model for inverse light path
construction to obtain the direction towards a light source from an imaged
reflection.

Combining direction information obtained under multiple eye poses, Sec-
tion 3.2 describes the triangulation of light paths to estimate the position of
the corresponding light source.

Now consider the opposite case where the position of the light source is
known and the location of the corresponding corneal reflection in the image is
required. Section 3.3 studies this problem to estimate the position where light
from the PoR reflects at the corneal surface into the camera. After formulating
the problem, five methods are developed regarding available knowledge about
the distance between eye and PoR along the gaze direction.

Computing the imaged reflection is necessary to look up information about
the light source in an image. As features are usually sparse, information may
not exist at the calculated location, and require approximation by inter- or
extrapolation. The corresponding weights depend on the distances between
the inverse reflection rays and the PoR. Section 3.4 derives a distance metric
and develops three methods regarding available knowledge about the distance
between eye and PoR along the gaze direction.

3.1 Corneal Reflection Model
Light that reaches the eye undergoes reflection and refraction at several trans-
parent components—namely cornea, aqueous humor, lens, and vitreous humor—
until finally reaching the fovea. The reflection at a particular transition is
called the n-th Purkinje image (Duchowski, 2007). For the scope of this work,
we only need to deal with the most prominent reflection at the outer surface of
the cornea (the first Purkinje image) since later reflections along the light path
cannot be detected without special hardware (Morimoto and Mimica, 2005).
For what follows, we assume the pose of the eye model from Section 2.1 has
been estimated using one of the techniques described in Section 2.2. Thus,
the cornea is modeled as a sphere with known center C and radius rC. We
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Figure 3.1: Inverse light path towards point light source. The back-projected light ray from
the camera image intersects the corneal surface and reflects into the direction of the light
source located at unknown distance.

will now develop a corneal reflection model used to calculate the inverse light
path towards a point light source at an unknown distance (Fig. 3.1).

A point light source is located at an unknown position P. Assuming the
surface of the cornea to be a perfect mirror, light from P specularly reflects
at surface point S into the direction of the camera. Taking an image of the
eye captures the specular reflection as a bright patch (glint) located within
the bounds of the visible iris. Let s = (su, sv, 1)T denote the subpixel location
of the patch centroid in the image. The corresponding location s′ in the
normalized image plane is obtained by removing the effect of camera matrix
K as in

s′ = K−1s. (3.1)

Computing the normalized direction vector r1 = s′/‖s′‖, the point of reflection
S on the corneal surface can be formulated as in

S = t1r1, (3.2)

where t1 is the unknown distance from the camera. To recover S we calculate
the intersection with the corneal sphere by solving the quadratic equation

‖S−C‖2 = r2
C. (3.3)

Expanding and re-arranging leads to

t21r
2
1 − 2t1

(
r2

1C
)

+ C2 − r2
C, (3.4)

from which we construct the simplified quadratic formula

t1 =
(
r2

1C
)
±
√

(r2
1C)

2 −C2 + r2
C. (3.5)

The first intersection at the front side of the cornea is described by the smaller
value of t1. Knowing S and the corresponding surface normal nS = ‖S−C‖,
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Figure 3.2: Estimation of point light source position P as the intersection of the set of
inverse reflection rays. Since the rays generally do not intersect in a single point, we find
the least-squares approximation as the point P with minimal distance to the set of rays.

the normalized direction vector r2 of the reflection ray is obtained by calcu-
lating the specular reflection as in

r2 = 2 (−r1 · nS)nS + r1. (3.6)

The position of light source P then lies on the reflection ray extending from
S, defined as P = S + t2r2, at unknown distance t2.

3.2 Light Source Position Estimation
While the point light source remains static at position P we capture a set of
images under varying eye poses. Applying the knowledge introduced so far
we recover the corresponding eye poses and inverse reflection rays from N ≥ 2
eye images. The unknown position of P is then obtained as the intersection
of the inverse reflection rays. However, as a result of measurement errors and
system model simplifications, the rays are generally skew and do not intersect.
Thus, the task is to estimate the point P with minimal distance to the set of
rays (Fig. 3.2).

Geometric approach for N = 2. There exists a simple geometric approach
for the triangulation of two rays in 3D. The idea is to compute P as the
midpoint of the shortest line connecting the two rays

P1 = S1 + t21r21,

P2 = S2 + t22r22.
(3.7)
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From the orthogonality constraint for the shortest connecting line we obtain
the two equations

(P1 −P2) · r21 = 0,

(P1 −P2) · r22 = 0,
(3.8)

that need to be solved for t21 and t22. Inserting the ray equations (3.7) into
the constraints (3.8) and expanding the dot product leads to

(S1 − S2) · r21 + t21 (r21 · r21)− t22 (r22 · r21) = 0,

(S1 − S2) · r22 + t21 (r21 · r22)− t22 (r22 · r22) = 0.
(3.9)

Solving for t21, back-substituting, and then solving for t22 gives

t21 =
((S1 − S2) · r22) (r22 · r21)− ((S1 − S2) · r21) (r22 · r22)

(r21 · r21) (r22 · r22)− (r22 · r21) (r22 · r21)
,

t22 =
((S1 − S2) · r22) + t21 (r22 · r21)

(r22 · r22)
.

(3.10)

Finally, the searched point with minimal distance to both rays is obtained as

P = P1 +
P2 −P1

2
. (3.11)

Note that when the denominator t21 becomes zero both rays are parallel and
do not intersect. Practically, this case does not occur since different eye poses
result in different reflection directions. Nevertheless, it is beneficial to increase
the baseline between the corneal spheres as this increases the denominator
and, thus, numerical stability.

Algebraic approach for N ≥ 2. In the general case, P can be obtained
using matrix algebra as follows. At frame l, the distance between P and the
nearest point on the ray Pl = Sl + t2lr2l is defined as

‖Pl −P‖ =
‖r2l × (Sl −P)‖

‖r2l‖
. (3.12)

Knowing ‖r2l‖ = 1 and re-arranging leads to

‖Pl −P‖ =
∥∥[r2l]×P− r2l × Sl

∥∥ , (3.13)

where [r2l]× represents vector r2l as a skew-symmetric matrix, given by

[r2l]× =

 0 −zr2l yr2l
zr2l 0 −xr2l
−yr2l xr2l 0

 , (3.14)
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and expresses the cross product as a matrix multiplication. To solve for P
we combine the N equations and formulate the problem as a least-squares
minimization in the form ‖AP− b‖. Finally, point P is estimated through
the pseudo-inverse as

P =
(
ATA

)−1
ATb, (3.15)

A3N×3 =

 [r21]×
...

[r2N ]×

 ,
b3N×1 =

 r21 × S1
...

r2N × SN

 .
3.3 Surface Reflection Position Estimation
The last section explains how to recover the position P of a point light source
from inverse reflection rays obtained under multiple cornea positions. In this
section we will examine the inverse case of this problem where the 3D posi-
tion of a point P is known, and the corresponding point of reflection S on the
corneal surface is unknown. In practice, this problem occurs in Chapter 5,
where a person is gazing at a surface that contains a set of projected light
sources. Capturing an image of the eye, the task is to find the pixel s that
corresponds to the corneal reflection S of the gazed PoR, denoted as P. There-
fore, without loss of generality, let us assume P lies at distance dCP from the
center of the corneal sphere C along gaze direction g, described by

P = C + dCP g, dCP ≥ rC. (3.16)

The searched point of reflection on the corneal surface lies at distance rC from
center C along the normal direction nS, described by

S = C + rC nS. (3.17)

3.3.1 Transformation of the Problem into the Plane

Directly using this parameterization leads to complex expressions that are
difficult to handle. To simplify the problem we observe that the solutions for
S are not arbitrarily distributed on the surface of the corneal sphere, but on
a circular subspace, arising from the intersection with the plane containing
the center of the camera O, the center the corneal sphere C, and the gazed
point P (Fig. 3.3(a)). This is easily verified from the law of reflection stating
that the incident ray, the reflected ray, and the surface normal at the point
of reflection are coplanar. Since O lies on the incident ray, P on the reflected
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Figure 3.3: Transformation of the plane of reflection. Since incident ray, reflected ray, and
surface normal are coplanar, a rotation R aligns the plane of reflection with the xy-plane
of the camera at z = 0.

ray, and C on a ray along the inverse normal direction in S, the points must
be coplanar.

A rotation R, given by

R =

 xT

yT

zT

 , x = − C

‖C‖
, y = z× x, z =

x× g

‖x× g‖
, (3.18)

aligns the plane of reflection with the xy-plane of the camera at z = 0
(Fig. 3.3(b)). In the following, we omit the z-coordinate for rotated quan-
tities X′ = RX, obtaining

C′ =

[
−dOC

0

]
, g′ =

[
cosα
sinα

]
, nS′ =

[
cos β
sin β

]
,

P′ = C′ + dCP g′,

S′ = C′ + rC nS′ .

(3.19)

Angle α ∈ [0, π/2) is defined as in

α = cos−1 g′x. (3.20)

The searched angle β ∈ [0, α] depends on the distance to the PoR, becoming
smaller with increasing distance.

3.3.2 Formulation of the Problem

After having obtained a simpler representation in the plane we will now explain
how to compute the searched point of reflection S′. At first, we choose a
formulation for the problem. This should be done with much care as a wrong
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choice easily leads to a complex expression which becomes difficult to handle.
The task is to find the particular inverse reflection ray

L (β) = S′ + t2r
′
2, (3.21)

that intersects the PoR P′ at distance dCP along the gaze ray. In case of an
intersection the distance between L (β) and P′ is zero. Therefore, we search
the particular β0 that minimizes a distance function d, so that

β0 = arg min
β

d (β) . (3.22)

We define dPL as the signed length of the line connecting P′ and L, perpen-
dicular to gaze direction g′, as

dPL (dCP, β) =
r′2 × (P′ − S′)

r′2 · g′
, (3.23)

where the inverse light path is specified by the two direction vectors

r′1 =
S′

‖S′‖
, r′2 = 2 (−r′1 · nS′)nS′ + r′1. (3.24)

Note that this formulation of the distance between a point and a line, along
a direction not parallel to the normal of the line (Fig. 3.4(a), blue), differs
from the common distance definition (red). We choose this formulation since
it expresses the deviation from the gaze ray. For practical application in eye
gaze tracking we normalize the value of dPL by the distance dCP between
circle center and PoR, and express the signed deviation in the visual angle α
as in

dα (dCP, β) = tan−1 dPL (dCP, β)

dCP

. (3.25)

3.3.3 Different Methods based on PoR

In practice, the detailed distance to the PoR along the gaze ray is often un-
known. However, there probably exists some knowledge, such as a particular
interval, or a relation to the distance between camera and eye. We will, there-
fore, explain the solutions for five different cases starting with the case of
known a position for the PoR (Fig. 3.4(b)).

3.3.3.1 Method 1: Known P′ with dCP = dCP0

Without loss of generality, let us assume that camera center and PoR are
located at the surface or outside the corneal sphere, with dOC ≥ rC and
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Figure 3.4: Comparison of different methods for estimating the point of reflection S′ (β) on
the surface of a circle in the plane of reflection, regarding the position of the gazed point
of regard (PoR). (a) Geometry for computing the distance in visual angle which forms the
basis for defining the objective functions f . (b) Method 1 covers the simplest case when the
position of the PoR is known. (c) Method 2 covers the case when the position is unknown
in a given interval, by minimizing the average distance to the gaze ray.
In case the approximate relation between PoR-eye distance and camera-eye distance is
known instead of the actual PoR, we provide three different methods: (d) method 3 where
the PoR-eye distance is much smaller, (e) method 4 where both distances are approximately
equal, and (f) method 5 where the PoR-eye distance is much larger than the camera-eye
distance.
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dCP ≥ rC. To find the reflection ray L (β) that intersectsP′0, with dCP = dCP0 ,
we search the β0 where the distance function

f1 (β) = dα (dCP0 , β)

= tan−1 dPL (dCP0 , β)

dCP0

= tan−1

(
r′2 × (P′ − S′)

dCP0 (r′2 · g′)

) (3.26)

becomes zero. The solution

β0 = tan−1

(
dCP0 sinα (dOC − 2R2dOC +RrC)

rC (dCP0 cosα + dOC)− 2RdCP0dOC cosα
,R

)
(3.27)

is expressed in terms of a root R of a fourth-order polynomial equation

P4 (x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0 (3.28)

with coefficients

a4 = 4d2
CP0

d2
OC,

a3 = −4rCdCP0dOC (dCP0 + dOC cosα) ,

a2 = −4d2
CP0

d2
OC + 2r2

CdCP0dOC cosα + r2
C

(
d2
CP0

+ d2
OC

)
,

a1 = 4rCdCP0dOC

(
dOC cosα + dCP0 − 0.5dCP0 sin2 α

)
,

a0 = d2
CP0

sin2 α
(
d2
OC + r2

C

)
− r2

C

(
d2
CP0

+ d2
OC + 2dCP0dOC cosα

)
.

(3.29)

The four real roots x01, x02, x03, and x04 of P4 (x) are found using the algebraic
method described in Appendix B, from where we obtain the corresponding
solutions β01, β02, β03, and β04 by back-substitution as root R into the equation
of β0. The final solution β0 (Fig. 3.5) is selected as in

β0 =

{
β01 if β01 > β02,

β02 otherwise.
(3.30)

3.3.3.2 Method 2: Known Interval for P′ with dCP ∈ [dCP0 , dCP1 ]

Let us now generalize the problem to the case where we only know a lower
and an upper bound for the distance of the PoR along the gaze ray, with
dCP ∈ [dCP0 , dCP1 ] (Fig. 3.4(c)). Under this assumption, we minimize the
average deviation in visual angle over the given interval by searching the β0

where the distance function

f2 (β) =

dCP1∫
dCP0

dα (dCP, β) ddCP (3.31)
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Figure 3.5: Solution function β0 (dCP) [deg] for increasing dCP from 0 to 60 mm, where
α = 60 deg, rC = 7.8 mm, and dOC = 30 mm. (The values for dCP and dOC are uncom-
mon but demonstrate the characteristic behavior of β0.) Note that β0 is only defined for
dCP ≥ rC. If dOC becomes larger, the function becomes stretched in the positive horizon-
tal direction. The two special cases occur at dCP = rC, where β0 = α, and at dCP = dOC,
where β0 = α/2. The final choice between β01 and β02 depends on the relation to the in-
flection point of function β0, where β02 is the appropriate value when dCP is smaller, and
β01 when it is larger than the value at the inflection point.

becomes zero. Note, that dα represents a signed distance which is positive
when the angle from r′2 to (P′ − S′) is counterclockwise and negative other-
wise. Another indicator for the sign of dα is the distance dCP, where the sign
is positive when the distance is smaller than the distance to the intersection
with L, and negative otherwise. For the optimum value β0, the intersection
is located inside the interval. When dCP1 approaches dCP0 , the value of f2

converges to the value of f1 with

lim
dCP1

→dCP0

f2 (β) = f1 (β) . (3.32)

The solution involves handling the arc tangent in the definite integral over
the distance function dα. Removing the arc tangent from the expression leads
to the same solution β0, but reduces the complexity of the objective function
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to

f2 (β) =

dCP1∫
dCP0

dPL (dCP, β)

dCP

ddCP

=

2 (dCP0 − dCP1) dOC sinα cos2 β − (dCP0 − dCP1) dOC sinα
− (dCP0 − dCP1) (2dOC cosα sin β + rC sinα) cos β
+rC ((dCP0 − dCP1) cosα + (ln dCP0 − ln dCP1) dOC) sin β

rC sinα sin β + dOC cosα− 2dOC cosα cos2 β
+ (rC cosα− 2dOC sinα sin β) cos β

.

(3.33)

The solution

β0 = tan−1

 (dCP0 − dCP1) sinα (dOC − 2R2dOC +RrC)

rC ((dCP0 − dCP1) cosα + (ln dCP0 − ln dCP1) dOC)
−2R (dCP0 − dCP1) dOC cosα

,R


(3.34)

for f2 (β) = 0 is obtained the same way as explained for f1, where the coeffi-
cients of the fourth-order polynomial equation are defined as in

a4 = 4 (dCP0 − dCP1)
2 d2

OC,

a3 = −4rC (dCP0 − dCP1) dOC

((ln dCP0 − ln dCP1) dOC cosα + dCP0 − dCP1) ,

a2 = 2r2
C (dCP0 − dCP1) (ln dCP0 − ln dCP1) dOC cosα

+ r2
Cd

2
OC (ln dCP0)

2 − 2r2
Cd

2
OC ln dCP0 ln dCP1 + r2

Cd
2
OC (ln dCP1)

2

+ (dCP0 − dCP1)
2 (r2

C − 4d2
OC

)
,

a1 = 4rC (dCP0 − dCP1) dOC(
(ln dCP0 − ln dCP1) dOC cosα− 0.5

(
sin2 α− 2

)
(dCP0 − dCP1)

)
,

a0 = (dCP0 − dCP1)
2 (d2

OC + r2
C

)
sin2 α

− r2
C (2 (dCP0 − dCP1) (ln dCP0 − ln dCP1) dOC cosα

+ d2
OC (ln dCP0)

2 − 2d2
OC ln dCP0 ln dCP1 + d2

OC (ln dCP1)
2

+ (dCP0 − dCP1)
2) .

(3.35)

3.3.3.3 Method 3: Unknown P′ with dCP � dOC

We now discuss three special cases that can be used as an approximation if the
position of the PoR is unknown, but the relation to the camera-eye distance is
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known. If the PoR-eye distance is much smaller than the camera-eye distance,
with dCP � dOC (Fig. 3.4(d)), we use the approximation assumption

dCP = min dCP = rC, (3.36)

where the solution is given as in

β0 = α. (3.37)

3.3.3.4 Method 4: Unknown P′ with dCP ≈ dOC

If the PoR-eye distance is approximately equal to the camera-eye distance,
with dCP ≈ dOC (Fig. 3.4(e)), we use the approximation assumption

dCP = dOC, (3.38)

where the solution is given as in

β0 = α/2. (3.39)

3.3.3.5 Method 5: Unknown P′ with dCP � dOC

If the PoR-eye distance is much larger then the camera-eye distance, with
dCP � dOC (Fig. 3.4(f)), we use the approximation assumption

dCP →∞, (3.40)

where the reflection ray L will intersect the gaze ray in P′∞ at infinity and
both rays are parallel with

r′2 (β0) ‖ g′. (3.41)

Thus, we search for the β0 where the distance function

f3 (β) = lim
dCP→∞

dα (dCP, β)

= tan−1


sinα (−2dOC cos2 β + rC cos β + dOC)
− cosα sin β (rC − 2dOC cos β)

cosα (−2dOC cos2 β + rC cos β + dOC)
+ sinα sin β (rC − 2dOC cos β)

 (3.42)

becomes zero. The solution β0 < α/2 for f3 (β) = 0 with

β0 = tan−1

(
tanα (−2R2dOC +RrC + dOC)

−2RdOC + rC

, R

)
(3.43)
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is obtained the same way as explained for f1, where the coefficients of the
fourth-order polynomial equation are defined as in

a4 = 4d2
OC

(
tan2 α + 1

)
,

a3 = −4rCdOC

(
tan2 α + 1

)
,

a2 =
(
r2

C − 4d2
OC

) (
tan2 α + 1

)
,

a1 = 2rCdOC

(
tan2 α + 2

)
,

a0 = d2
OC tan2 α− r2

C.

(3.44)

3.3.4 Back-Transformation from the Plane

Remember, that for simplification we aligned the plane of reflection with the
xy-plane of the camera at z = 0 (Sec. 3.3.1). Now we need to transform the
obtained point of reflection S′ (β0) back into 3D camera coordinates. This is
done according to transformation

X = RTX′, (3.45)

where X′ =
(
X ′x, X

′
y, 0
)T represents a point in the plane, X = (Xx, Xy, Xz)

T

the corresponding transformed point, and RT the inverse of the rotation de-
fined in equation (3.18). The searched pixel s is obtained by projection into
the image plane using camera matrix K according to

x =
1

Xz

KX, (3.46)

where x = (xu, xv, 1)T denotes the pixel in homogeneous coordinates.

3.4 Distance between Inverse Reflection Rays
The last section explained how to analytically solve for the point of reflection
on the corneal surface for a given PoR in 3D. Now imagine the application
of this result: Knowing the location where light from the PoR reflects at the
cornea and projects into image we can obtain further information by image
analysis. However, generally there exists only sparse information, defined for a
particular subset of points on the corneal surface. To picture this, assume the
eye image has been preprocessed by some feature-correspondence matching
method, tracking environmental reflections on the cornea. The method will
only identify a sparse set of features at certain discrete locations. When
projecting the corneal reflection S of the PoR into the image, this may hit
a location where no feature has been found. Moreover, this will generally
be a subpixel location. Therefore, it is necessary to define an appropriate
distance measure between neighboring feature points in the image, e.g., for
interpolation.
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The Euclidean distance between 2D points in the image plane does not
provide an optimal measure since, in our case, each feature relates to a 3D
point on a ray reflected at the corneal surface. The Euclidean distance between
3D points also does not provide an optimal measure since it does not account
for eye position and gaze direction. Instead, we apply the distance in visual
angle as in the last section. Having obtained the distance values for different
neighboring locations, it is possible to compute the corresponding weights.

3.4.1 Formulation of the Problem

Assume the positions of the PoR P, the point of reflection on the corneal
surface S, and the pixel in the image plane s are known. Further, assume
a set of neighboring locations {si |i = 1, . . . , N } are identified. We seek the
distance in visual angle, regarding gaze ray and inverse reflection ray at si,
obtained using the method described in Section 3.2, and given as in

Li = Si + t2ir2i. (3.47)

Since Li is not necessarily coplanar with L in the plane of reflection, we cannot
use the planar distance formulation introduced in the last section and, thus,
apply its extension to three dimensions. Similar to the planar case, we define
dPL, now as the absolute length of the line connecting P and Li, perpendicular
to gaze direction g. To determine this line we need to find the intersection
with reflection ray Li, parameterized by t2i. Since in 3D, there exists a plane
of perpendicular directions, the line is known to lie in this plane. This gives
rise to the following constraint from the plane equation

(Li (t2i)−P) · g = 0,

(Si + t2ir2i −P) · g = 0,
(3.48)

which holds when r2i is not perpendicular to g. Solving for t2i yields

t2i =
(P− Si) · g

r2i · g
, (3.49)

with the length dPL of the connecting line given as in

dPL (dCP, Li) = ‖Li (t2i)−P‖

=

∥∥∥∥Si +
(P− Si) · g

r2i · g
r2i −P

∥∥∥∥ . (3.50)

The distance in visual angle is then obtained as

dα (dCP, Li) = tan−1 dPL (dCP, Li)

dCP

. (3.51)
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Figure 3.6: Comparison of different methods for estimating the distance between the PoR
along the gaze ray and the inverse reflection ray towards a 3D feature. (a) Method 1 covers
the simplest case when the position of the PoR is known. (b) Method 2 covers the case
when the position is unknown in a given interval. (c) Method 3 covers the case when the
position is unknown and the PoR-eye distance is much larger than the camera-eye distance.

3.4.2 Different Methods based on PoR

As done before, we assume that the position of the PoR along the gaze ray
may be unknown and explain the solution for three different cases, starting
with the case of known position (Fig. 3.6(a)).

3.4.2.1 Method 1: Known P with dCP = dCP0

In case dCP = dCP0 , distance d1 is simply defined as the distance in visual
angle as in

d1 = dα (dCP0 , Li) . (3.52)

3.4.2.2 Method 2: Known Interval for P with dCP ∈ [dCP0 , dCP1 ]

In case we only know the lower and the upper bound of the distance to the
PoR along the gaze ray, with dCP ∈ [dCP0 , dCP1 ] (Fig. 3.6(b)), the average
distance d2 is obtained by computing the definite integral over the distance
function in the given interval as in

d2 =
1

dCP1 − dCP0

∫ dCP1

dCP0

dα (dCP, Li) ddCP. (3.53)
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3.4.2.3 Method 3: Unknown P with dCP � dOC

If the distance to the PoR is unknown, but known to be equal or smaller than
the camera-eye distance, method 1 or 2 can be applied. If the distance, how-
ever, is much larger, with dCP � dOC (Fig. 3.6(c)), we use the approximation
assumption

dCP →∞, (3.54)

and obtain the distance d3 as in

d3 = lim
dCP→∞

dα (dCP, Li)

= tan−1

(
‖r2i × g‖
|r2i · g|

)
.

(3.55)



Chapter 4

Display-Camera Calibration
from Eye Reflections

This chapter applies the developed theory for eye pose estimation and light
transport at the corneal surface to introduce a novel method for the calibration
of the geometric relation in display-camera setups.

Section 4.1 provides an introduction to applications of display-camera set-
ups and their required calibration, the principle and advantages of the pro-
posed method, and the contributions of this work.

Section 4.2 surveys and discusses related work in geometric calibration and
eye gaze tracking.

Section 4.3 then describes the proposed method to estimate the location
of a display plane from marker reflections under multiple eye poses. The basic
light transport theory in sections 3.1 and 3.2 is integrated with an optimization
framework to improve the results of eye and display pose estimation by using
known geometry constraints.

A prototype implementation is explained in Section 4.4 and subsequently
applied in section. 4.5 to perform a comprehensive analysis of the applica-
bility of eye reflection analysis for display-camera calibration. The gained
understanding on the impact of factors regarding individual eye geometry,
camera parameters, and geometric relation of the components also provides
an answer to the general question about the accuracy that can be expected
for scene reconstruction from multiple eye images.

Section 4.6 concludes this chapter, discussing results and findings, outlin-
ing potential implications on application scenarios and fields, stating limita-
tions of the prototype implementation, and providing ideas for future work.

4.1 Introduction
Personal computers are turning more and more into multimedia processing
machines that come with a large number of peripheral devices. One of these
devices is a camera. Historically a tool for videoconferencing, advances in
vision algorithms extend its area of application. As the camera is mounted
on a PC, it can be related to its physical context. The main output device of
a PC system is a (CRT or LCD) monitor. Together with a camera as input
device, the monitor forms a controlled illumination system. Widely known are
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projector-camera systems for scene reconstruction of lambertian surfaces (Bat-
tle et al., 1998) or novel display techniques (Bimber et al., 2008). While not
every setup comes with a projector, the monitor facilitates a low-cost con-
trolled illumination system, enabling a wide range of similar applications in
non-professional everyday environments. In the past, there have been two
major areas of application for display-camera systems: One is scene recon-
struction to measure shape and reflectance properties from display reflections
on the surface of an object. The other is human–computer interaction (HCI),
where the content of the display is adapted according to information about a
user, obtained from the camera.

Applications of Display-Camera Systems. In scene reconstruction, prop-
erties of static surfaces are recovered from series of images under varying
screen illumination. Photometric stereo methods (Woodham, 1980) have been
proposed to estimate the shape of lambertian (Clark, 2006, 2010; Funk and
Yang, 2007; Schindler, 2008) or partially lambertian objects (Francken et al.,
2008b). Compared to a digital video projector, monitor illumination is not
directed and focused and is, therefore, ideal for coping with non-lambertian
objects (Ihrke et al., 2008). Shape reconstruction methods for specular objects
identify display-camera correspondences and estimate the respective surface
normals (Tarini et al., 2005; Bonfort et al., 2006; Francken et al., 2008a; Nehab
et al., 2008). Transparent and translucent objects are more difficult to han-
dle, as only the minor part of the light is specularly reflected while the major
part is refracted, enters the object, and might undergo subsurface scattering
or reflection at the background (Kutulakos and Steger, 2008; Morris and Ku-
tulakos, 2007). Display illumination has been further applied to analyze the
complex light interaction with objects for scene compositing (Zongker et al.,
1999) and relighting (Shah and Ross, 2009).

Vision-based user interfaces employ computer vision to “look at people”
and perform tasks such as face recognition; head, face, eye, hand and body
detection and tracking; facial expression and body movement analysis; and
gesture, posture, and activity recognition (Turk, 2004; Porta, 2002; Jaimes
and Sebe, 2007). Closely related with this work are eye gaze tracking tech-
niques (Duchowski, 2007; Hansen and Ji, 2010). Often, the resulting infor-
mation does not only passively affect display content but may also depend
on information about the display itself. Such knowledge is usually obtained
through calibration.

Calibration of Display-Camera Systems. Most of the described appli-
cations require calibration to find the relation between the display and the
camera. There are mainly two forms of calibration, geometric and radiomet-
ric. Geometric calibration determines the internal camera parameters as well
as the external display pose with respect to the camera (Bonfort et al., 2006;
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Funk and Yang, 2007; Francken et al., 2009; Tarini et al., 2005). Radiometric
calibration establishes the relation between the light emitted by the display
and the light measured by the camera (Tarini et al., 2005; Funk and Yang,
2007; Francken et al., 2008b).

In this work, we focus on geometric calibration where we seek to find the
pose of the display with respect to the camera for which internal parameters
are known. If the screen is directly visible to the camera, such a calibration
can easily be performed using standard techniques with correspondences ob-
tained through patterns shown on the screen (e.g., checkerboard, structured
light) (Hartley and Zisserman, 2003; Bouguet, 2010; Bradski and Kaehler,
2008). This is, however, not possible in the common case where the display
and camera face a similar direction. In such a configuration, the calibration
is achieved by analyzing reflections of a screen pattern from mirroring ob-
jects with known shape and pose (Sturm and Bonfort, 2006; Kumar et al.,
2008). Methods have been proposed for planar (Bonfort et al., 2006; Funk
and Yang, 2007) and spherical mirrors (Francken et al., 2009; Tarini et al.,
2005). However, the process is cumbersome as it involves a special mirror as
well as tedious physical user interaction.

Advantages of the Proposed Method. We describe a novel calibration
technique that builds on the observation that the cornea of the human eye
acts as a partial mirror and provides rich cues about environmental light.
When exploring display-camera setups, we found that the reflected content
is clearly visible in eye images of a person in front of the display. This pro-
vided the motivation for introducing the idea of using corneal reflections for
display reconstruction. The foundation for the proposed approach lies in a
combination of Nishino and Nayar’s method for recovering the pose of an eye
from its image (Nishino and Nayar, 2006) and Francken et al.’s method for
screen-camera calibration using reflections on a freely moving spherical mir-
ror (Francken et al., 2007). We discuss a thorough experimental evaluation of
this strategy, regarding individual factors, display pose, eye position, and gaze
direction, and show that it results in a large error and deviation due to the
unknown geometry and size of the individual eye. To compensate for this, we
introduce an optimization framework based on known geometry constraints
in the setup, achieving considerable improvement that should be sufficient for
many applications.

Our novel method makes display-camera calibration substantially more
practical and leads to several benefits compared to previous approaches:

• Since no additional hardware is necessary the method is easily dis-
tributed and can be applied in existing off-the-shelf setups.

• Without interaction and awareness the calibration can be seamlessly
performed by non-expert or disabled persons and children, or, in situa-
tions where it is not desired to disclose technical details.
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• Accuracy increases with the number of images used. Nevertheless, the
minimum requirement is a single face image. This enables online calibra-
tion of dynamic setups and allows applications such as camera tracking.

• The method does not only reconstruct the pose of the display, but
also provides information about eye locations and gaze directions. This
makes it ideal to realize human–computer interfaces based on eye gaze
tracking.

Table 4.1 compares the features of the proposed method with previous ap-
proaches for display-camera calibration.

Contribution. The following contributions are achieved with this work:

• The idea is introduced, to analyze corneal reflections of computer mon-
itor or projection screen illumination in eye images for reconstructing
the position and orientation of the screen.

• To verify the proposed strategy, thorough experimental evaluation is
conducted for the straightforward combination of eye pose estimation
(Nishino and Nayar, 2006) and screen-camera calibration (Francken et al.,
2007), which is found to result in a large error and deviation.

• To compensate for this, an optimization framework is introduced that
jointly refines eye poses, reflection rays, and display pose subject to
known geometry constraints in the setup.

• A large number of comprehensive experimental studies demonstrates
that stable results can be obtained under varying conditions. A quan-
titative and qualitative comparison with spherical mirror ground truth
is provided. The gained insights are not only applicable to the sub-
ject of this work, but could also be helpful when analyzing geometric
reconstruction from eye reflections in general.

• A framework for physically correct rendering of synthetic eye images,
with corneal reflections from environmental illumination, is designed.
This provides a general tool to analyze the impact of specific system
parameters on scene reconstruction from corneal reflections, especially
when GT measurements are difficult to obtain as with parameters re-
lated to shape and reflection characteristics of the eye.

• The described developments and findings enable a novel method for the
geometric calibration of display-camera setups that does not require spe-
cial hardware, explicit user interaction or awareness, and allows online
calibration.
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4.2 Related Work
We will now review existing methods within the two fields related to this work.
First, we discuss approaches for mirror-based geometric display calibration for
the case when the screen is not directly visible to the camera. In the second
part, we survey eye gaze tracking techniques exploiting corneal reflections
either from display illumination or from other light sources in an arrangement
that approximates the bounding quadrilateral of the screen.

These two fields have one property in common, the combination of a mirror
and a lens that forms a catadioptric imaging system (Nishino and Nayar, 2006;
Francken et al., 2009). While a camera has a single viewpoint, catadioptric
systems can have a single or multiple viewpoints, depending on the shape of
the mirror and its pose relative to the lens of the camera. Here, we cope with
both kinds of systems, single viewpoint for planar and multiple viewpoints for
convex mirror methods. Overviews of the optical properties of catadioptric
systems are given by Baker and Nayar (1999); Geyer and Daniilidis (2001)
and Swaminathan et al. (2006); Kuthirummal and Nayar (2006) respectively.

4.2.1 Geometric Display Calibration

Planar Mirror. Funk and Yang (2007) use a planar mirror and compute
its pose from an additional pattern attached to it. The process is cumber-
some as it involves a special prepared mirror, several known parameters, and
physical user interaction. Bonfort et al. (2006) simplify the planar pose es-
timation by not requiring any marker attachments. Their first method uses
a circular hard-drive platter with known interior and exterior radii. Its pose
can be obtained from a single image of the circular boundaries that project
to concentric ellipses. The second method (Bonfort et al., 2006; Sturm and
Bonfort, 2006) uses at least three poses of an arbitrary planar mirror: At
first, a virtual camera pose is calibrated with respect to the reflected screen in
each mirror plane. Then, the planes themselves are recovered from the virtual
camera poses.

Spherical Mirror. Tarini et al. (2005), and in more detail Francken et al.
(2007), propose calibration techniques that use a spherical mirror of known
size. The position of the mirror is uniquely determined from an image. Ex-
tracting the corners from the reflected screen allows to compute the corre-
sponding light rays by inverse raytracing. The real corners are obtained by
intersecting rays from different sphere positions. More recently, Francken et al.
(2009) propose a refined approach using a time-series of Gray code patterns
to recover a large number of correspondences from only a small number of
images. They are able to increase accuracy while reducing the number of
sphere positions. Applying a convex mirror also has the advantage that rays
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are reflected from a wider field-of-view. This makes the corresponding meth-
ods ideal for the calibration of large-sized displays, for example, TV screens
in home entertainment setups together with a game console and an attached
camera. Spherical mirror techniques simplify the calibration process, however,
still require special hardware and user interaction.

Our proposed method does not need any special hardware or interaction.
It solely analyzes screen pattern reflections from eye images of a moving user
to estimate the pose of the display. We employ a simple shape model to
reconstruct the pose and reflection characteristics of the eye. Appropriate
accuracy for this difficult geometrical configuration is achieved by non-linear
optimization exploiting geometry constraints from screen size, planarity, and
ray triangulation to adjust initial eye pose and reflection measurements.

4.2.2 Eye Gaze Tracking

Display illumination. There are only a few eye gaze tracking methods
exploiting corneal reflections of screen illumination. Iqbal and Lee (2008)
propose a method that identifies the reflection of a whole CRT monitor from
its periodic flicker pattern using a high-speed camera at framerates larger than
twice the screen refresh rate. The detected reflection patch is used to locate
an eye in a face image. The patch centroid acts as a glint, where the PoR
on the screen is obtained from the pupil-glint vector under a calibrated gaze-
mapping. The drawbacks of this method are that it does not compensate
for head movements and needs initial calibration of the mapping function.
However, the method is interesting, since it is the first approach making use
of screen illumination in eye gaze tracking. There are several differences to our
proposed technique: The method requires special hardware in the form of a
CRT monitor and a high-speed camera. The technique is purely image-based
and does not handle geometric information about eye, camera, and display.
Instead, it relies on a tedious calibration for a regression-based mapping that
does not allowing head movement.

Recently, Schnieders et al. (2010) apply our proposed idea for reconstruct-
ing the pose of the display from corneal reflections (Nitschke et al., 2009) to
eye gaze tracking. Instead of analyzing reflections of a special marker pattern,
they directly use the curved edges from the reflection of a screen with bright
content to recover the corresponding edges in 3D and, thus, the display plane.
While this method applies a single face image with two eyes and assumes the
user to look at the screen, the goal of our work is to provide a general method
without constraining gaze direction, and to present a comprehensive perfor-
mance analysis for scene reconstruction from eye reflections under multiple
eye poses from different images regarding a large number of factors.
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IR LED Markers. While this work focuses on passive eye pose estimation,
the majority of eye gaze tracking techniques relies on active illumination.
Commonly used are IR LEDs to create glints in both, image- and geometry-
based techniques. A method that has received several focus over the last few
years is the cross-ratios method originally introduced by Yoo et al. (2002)
and Yoo and Chung (2005). Four LEDs are attached to the corners of the
screen, leading to a similar arrangement as in the marker pattern that we use
for the implementation of our method. The cross-ratios method describes an
image-based remote eye gaze tracking method based on several simplification
assumptions to allow slight head movement. The cornea is assumed to be flat;
so when the user looks at the screen, the pupil center will be located within
the bounding quadrilateral of the screen area created by the four glints. The
approach then exploits the property of invariant cross-ratio of four points
under projective transformation (Hartley and Zisserman, 2003) to estimate
the PoR on the screen from the location of the pupil center within the reflected
screen area. Since the technique is purely image-based and does not handle
geometric information about eye, camera, and display, camera calibration is
not required.

Several works propose extensions to the original method and achieve sig-
nificant improvements in accuracy. Coutinho and Morimoto (2006) and Ko
et al. (2008) introduce a personal calibration to estimate the angular offset
between visual and optical axis. Ko et al. (2008) describe several modifica-
tions, accounting for robust detection of the specular highlights, replacing the
cross-ratio with a more stable geometric transform for the mapping function,
and compensating for errors introduced by head movement. Coutinho and
Morimoto (2010) propose an extension to compensate for the dependency on
the display-eye distance. Kang et al. (2008) carry out a theoretical analysis
of the cross-ratios method that is found highly sensitive to the individual eye.
They derive an analytic prediction of the subject-specific estimation bias and
propose a compensation method.

The cross-ratios method relates to our proposed method as it exploits
corneal reflections from screen corners. Nevertheless, it requires additional
hardware in form of IR LEDs, and does not obtain any geometric information
about the relation between camera, eyes, and screen.

4.3 Method
The controlled illumination system consists of three components: (1) a raster
display device which acts as a light source, (2) the cornea of a human eye
which reflects the light from the screen, and (3) a camera which captures the
light reflected from the cornea. We assume a simple lightpath where the light
is reflected only once at the outer surface of the cornea.
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Figure 4.1: Display-camera calibration algorithm. A pattern with M markers is shown on
the screen. The corresponding 3D positions in the camera coordinate frame are estimated
by intersecting the inverse reflection rays obtained under N different eye poses. The results
are improved with a non-linear optimization strategy that jointly refines eye poses, reflection
rays, and display pose. Finally, the transformation between screen coordinates and locations
on the estimated plane is computed from the M correspondence pairs.

4.3.1 Basic Algorithm

4.3.1.1 Overview

The geometric calibration algorithm (Fig. 4.1) computes the transformation
between screen plane and its 3D estimate in the camera coordinate frame.
For that purpose, the display shows a pattern encoding M pixel positions on
the screen plane. The camera records images of a moving person facing the
display, where the pattern reflection on the cornea is visible in an image. De-
tecting an eye and fitting an ellipse to the contour of the visible iris enables
to recover the 3D position and orientation of the eye. After finding the M
pattern correspondences from the imaged iris region, the inverse light rays
are constructed and reflected at the recovered eye pose into the direction of
the 3D screen plane. The actual positions are then computed from the in-
tersections of N rays obtained under varying eye poses. Due to uncertainties
in eye modeling and feature extraction, results from this basic approach may
show a large error and deviation. The accuracy is, therefore, improved us-
ing a non-linear optimization strategy that jointly refines eye poses, reflection
rays, and display pose subject to known geometry constraints in the setup.
Finally, the transformation describing the relation between 2D screen coordi-
nates and the estimated plane in 3D camera coordinates is obtained from the
M correspondence pairs.

4.3.1.2 Display-Camera Transformation

A display is modeled as a screen plane containing the pixels p = (pi, pj)
T that

we want to describe as points P = (Px, Py, Pz)
T in the camera coordinate sys-

tem (Fig. 4.2). The transformation is expressed in homogeneous coordinates
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Figure 4.2: Setup for computing the direction towards a light source (on the display). The
model is applied to estimate the 3D pose of the screen plane from a set of eye images
showing corneal reflections of M ≥ 3 displayed markers Pk.

as in [
P
1

]
= T

[
p
1

]
(4.1)

=

[
Pi −P0 Pj −P0 P0

0 0 1

] [
p
1

]
.

Since T describes a planar homography, the inverse transformation from points
P on the plane in camera coordinates to pixels p on the screen plane, is ob-
tained with the inverse matrix T−1. Matrix T itself depends on the three un-
known correspondence pairs at p0 = (0, 0)T, pi = (1, 0)T, and pj = (0, 1)T, and
can be estimated fromM ≥ 3 arbitrary correspondence pairs where the points
{Pk |k = 1, . . . ,M } are coplanar (and not collinear) on the screen plane. From
the correspondences, we formulate the equation system At = b as in



p1i p1j 1 0 0 0 0 0 0
0 0 0 p1i p1j 1 0 0 0
0 0 0 0 0 0 p1i p1j 1

...
pMi pMj 1 0 0 0 0 0 0
0 0 0 pMi pMj 1 0 0 0
0 0 0 0 0 0 pMi pMj 1





t11

t12

t13

t21

t22

t23

t31

t32

t33


=



P1x

P1y

P1z
...

PMx

PMy

PMz


, (4.2)

and solve for the vector t = (ATA)−1 ATb containing the nine unknown matrix
elements by computing the pseudo-inverse.
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4.3.1.3 Correspondence Representation

To obtain the M required correspondence pairs, the display shows a pattern
representing M screen locations, and the corresponding corneal reflections
are identified from the eye images. We choose a simple direct representation,
where a uniform filled circular marker is placed at each pixel location on a
black background, and find the center of the corresponding reflection patch
in the image. The relative spatial alignment of the markers is not affected
by projection and reflection since the cornea has a convex shape. However,
the method has an inherent ambiguity, where the index k of a reconstructed
point Pk is unknown. This can be resolved if the reflected display is approxi-
mately aligned with the camera image plane (by initially adjusting the camera
orientation around the viewing direction).

4.3.2 Optimization

Using the proposed algorithm to estimate light source positions (Sec. 3.2)
leads to a larger error than using a spherical mirror of the same size, with the
estimated positions usually being about halfway between the eyes and their
true position accompanied by a large ray intersection error. This has several
possible reasons. The two main sources of error are the following:

1. The individual shape and parameters of the eye are unknown. Distortion
effects increase with gaze angle when reflections move away from the
corneal apex towards the boundary. Moreover, the unknown radii of iris
rI and corneal limbus rL influence the eye pose estimation.

2. It is difficult to exactly locate the contour of the iris which gradually
dissolves into the sclera. Due to iris landmarks and blood vessels, this
transition is not smooth (Iskander, 2006). Noisy measurements directly
affect the orientation in eye pose estimation which itself is crucial for
the overall accuracy.

4.3.2.1 Error Function from Known Geometry Constraints

The error for the reconstructed display can be largely decreased with a small
modification of the estimated eye poses and imaged reflections. These serve
well as initial guesses and are further adjusted by an optimization that min-
imizes a convex error function e defined as the weighted sum of three error
terms as in

e =
w1e1 + w2e2 + w3e3

w1 + w2 + w3

. (4.3)
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The intersection error e1 is defined as the average distance of the reflected
light rays to their estimated intersection points as in

e1 =
1

MN

M∑
i=1

N∑
j=1

‖Pij −Pi‖, (4.4)

where Pij is the point on ray j having minimal distance to the corresponding
intersection point Pi. If the absolute size of the screen plane is known, for
example from a database of model specifications, the size error e2 is defined
as the average absolute error of the distances between allM estimated marker
positions as in

e2 =
2

M (M − 1)

M∑
i1=1

M∑
i2=i1+1

∣∣‖Pi1 −Pi2‖ −GTi1,i2

∣∣, (4.5)

where Pi1 and Pi2 are two estimated marker positions and GTi1,i2 the ground-
truth distance obtained from the known display size. Finally, the plane error
e3 is defined as the average absolute deviation of the M estimated marker
positions to their approximated best fit plane, containing the centroid, as in

e3 =
1

M

M∑
i=1

|Pi · n + p|. (4.6)

This plane is given by Pi · n + p = 0 in Hessian normal form and obtained
from orthogonal regression. In order to calculate it, the estimated light source
positions are stacked into a matrix AM×4

1 as in

A =

 PT
1 1
...

...
PT
M 1

 . (4.7)

The singular value decomposition (SVD) describes A as a product of three
matrices, with A = UDVT, where UM×4 is a matrix with orthogonal columns,
V4×4 is an orthogonal matrix whose columns are the singular vectors of A, and
D4×4 is a diagonal matrix whose non-negative entries are the singular values.
The plane unit vector n and distance from origin p are obtained as[

n
p

]
=

1√
v2

1 + v2
2 + v2

3

v, (4.8)

where v is the singular vector corresponding to the smallest singular value.
1Note that this formulation of the SVD requires the number of rows to be equal or larger

than the number of columns, withM ≥ 4. If the plane is estimated from onlyM = 3 points,
it is appropriate to extend A by adding a row of zeros to obtain a square matrix.
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4.3.2.2 Optimization Strategy

The proposed optimization strategy comprises three subsequent steps:

1. First, we jointly optimize the estimated positions of all corneal sphere
centers {Cj |j = 1, . . . , N } with the weights for the error terms set as
w1 = 0, w2 = 1, and w3 = 1.

2. Next, we add the imaged reflection centroids {sij |i = 1, . . . ,M ; j = 1, . . . , N }
and jointly optimize them together with the adjusted corneal sphere cen-
ters from the last step. The weights remain unchanged.

3. Finally, we set weight w1 = 2 and repeat the last step.

Each step is performed using Powell’s direction set method (Press et al., 2002)
with the number of brackets set to nine, advancing to each subsequent step
after convergence is achieved.

Evaluating the proposed technique, we found the adjustment for the corneal
sphere projections to be small, where the projected contours correctly con-
tain the imaged irides. Pupillary distances between left and right eye were
matching their measured ground truth. This leads to the conclusion that a
spheric corneal curvature model of constant size is a feasible assumption for
the proposed approach. The technique performs robustly when adding small
perturbations to the initial estimation, thus, enabling application with low
quality hardware. This can be useful for developing robust solutions for eye
gaze tracking. The technique, further, performs well at correcting calibration
results obtained from a spherical mirror.

4.3.2.3 Resolving the Sign Ambiguity in Eye Orientation

Regarding 3D eye pose estimation in Section 2.2, there remains a sign ambi-
guity for the limbus tilt angle τ that could not be determined from only the
ellipse parameters. However, after obtaining an initial guess for all eye poses
and reflection centroids, it is possible to jointly estimate the missing signs
{S (τj) ∈ {−1, 1} |j = 1, . . . , N } by applying the geometry constraints intro-
duced within this section. This is done by computing the value of size error
e2 under all 2N sign combinations and selecting the one resulting in minimal
error.

4.4 Implementation
The last section explained the general concepts behind the display-camera
calibration algorithm. We will now explain the actual implementation in terms
of chosen methods and algorithms to execute the different subtasks. The goal
of this implementation is not a fully automatic prototype that can be applied
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Figure 4.3: Marker pattern used for the implementation.

right away, but rather a research tool to support this first analysis on the
applicability of eye reflections for display-camera calibration. The developed
framework is applied for in-depth experiments explained in the next section.
Figure 4.1 gives an overview of the calibration algorithm where each part will
be covered in detail in the following.

4.4.1 Correspondence Representation

For the correspondences on the screen plane, we use a simple direct represen-
tation and draw 4 markers at the corners as white circles with radius r around
each pixel location {pk |k = 1, . . . , 4} (Fig. 4.3). In the ideal case (with a point
light source at infinity), r spans only a single pixel. However, it has to be set
to some higher value to achieve a measurable camera response. On the other
hand, r cannot be set too high so as not to overexpose imaged reflections. To
resolve the ambiguity of unknown index k, when extracting corneal reflections
of multiple markers from a single image, we assume camera and display are
facing the user and are approximately aligned.

4.4.2 Image Acquisition

While the display shows the marker pattern, we capture face images of a
moving person in front of the display, where each eye region exhibits corneal
reflections from the pattern (Fig. 4.16). In order to eliminate spurious reflec-
tions from other light sources and increase the signal-to-noise ratio (SNR) for
marker reflection patches, capturing is done in the absence of environmental
light. To obtain enough camera response, we use maximum aperture and an
exposure time of 133 ms. This leads to difficult capturing conditions: The
opened aperture limits the depth of field, where objects appear sharp, to a
depth range of approximately 5 cm. To prevent defocus blur, persons are
required to restrict their movement to that depth plane. The high exposure
time requires persons to keep their heads still while an image is recorded. To
prevent motion blur, we support controlled head movement by using a low
effective framerate of 1 FPS and by showing a small blue flashing mark that
signals image capture.
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To generally avoid quality degradation from blur, we analyze the sharpness
of an eye region and remove images that fall below a certain threshold. In order
to guide head movement, the result is then mapped to the frequency range
between 500 and 5000 Hz to provide an audible feedback in form of a 100-ms
beep sound through the PC speaker. The corresponding image processing is
done as follows: At first, we find the eye regions by smoothing the face image
with a Gaussian filter and subsequently applying the boosted cascade-classifier
of Haar-like features contained with OpenCV (Bradski and Kaehler, 2008).
We then calculate the sharpness for each rectangular bounding box using the
method of Shen and Chen (2006), that is robust to low-contrast images, by
calculating the energy ratio EAC/EDC between high and low frequency band.
Here, EDC denotes the square of the constant-component coefficient and EAC

the sum of squares of the varying-component coefficients in the discrete cosine
transform (DCT) of the image.

4.4.3 Eye Detection and Iris Contour Fitting

Detecting the contour of the iris comprises two tasks, eye detection and iris
fitting. At first, the rough eye region is identified in the image. There exists
a multitude of approaches for automatic eye detection and tracking; and a
suitable one has to be selected based on the constraints of the particular
system. An overview is given in Section 2.2.1. We apply a simple interactive
strategy where an initial guess for the ellipse parameters is obtained from a
user selecting four points on the contour of the imaged iris.

For automatic fitting, the image is transformed into a binary edge image
by smoothing with a Gaussian filter and extracting edges with an adaptively-
thresholded Canny edge detector. Starting from the initial guess, an accurate
contour is estimated by iteratively minimizing the error function

eval =
∑

(u,v)T∈E

D′ (u, v), (4.9)

D′ (u, v) =

{
D (u, v) for D (u, v) ≤ Dmax,
Dmax otherwise,

where E is the set of pixels representing the ellipse contour, and D (x, y) is
a particular pixel value in the distance-transformed binary edge image. For
each value, we apply a constant upper bound Dmax to reduce the effect of non-
edge contour points on the estimation. This is necessary to robustly handle
occlusions by the eyelids which especially occur at increasing gaze angles.

4.4.4 Eye Pose Estimation

Physiologically, the iris is located directly in front of the lens. Its outer struc-
tures extend behind the transparent cornea and the beginnings of the opaque
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white sclera. The contour of the visible iris marks the corneal limbus which
is the surface shape discontinuity where the corneal sphere transitions into
the eyeball sphere. Having fit an ellipse to this contour, we use the method
described in Section 2.2.2.3 to estimate the position and orientation of the cir-
cular limbus in 3D. The method is based on the weak-perspective projection
model which is a feasible assumption since the depth of the tilted limbus is
small compared to the camera-eye distance. The correct solution for the pose
of the limbus is automatically selected from the two possible ones by jointly
exploiting constraints of the display-camera geometry for multiple eyes as de-
scribed in Section 4.3.2.3. Having obtained the pose of the limbus plane, we
calculate the center of the corneal sphere located at some distance from the
center of the limbus along the negative optical axis.

4.4.5 Correspondence Detection

To extract the marker reflections in image, we find the four intensity peaks
within the boundary of the iris and segment the corresponding regions by
connected-component analysis with an adaptive threshold for background sub-
traction. Having extracted the pixels corresponding to a particular region Rk,
where I (u, v) is the intensity value at pixel (u, v)T, we calculate the intensity
centroid sk of the region with subpixel accuracy as in

sk =

∑
(u,v)T∈Rk

I (u, v)

[
u
v

]
∑

(u,v)T∈Rk

I (u, v)
. (4.10)

4.4.6 3D Display Reconstruction

Assume N ≥ 2 eye images are captured for a moving person. Having obtained
the eye poses and corresponding corneal reflections sk, we are able to construct
the inverse reflection rays pointing towards the marker positions Pk on the
display. Each position is estimated as explained in Section 3.2, as the intersec-
tion of reflection rays obtained for marker k under different eyes poses. The
display-camera transformation is recovered fromM ≥ 3 reconstructed marker
positions.

4.4.7 Optimization

Due to uncertainties in eye modeling and feature extraction, it turns out that
the estimation error for the basic algorithm becomes large. We, therefore, ap-
ply the optimization strategy described in Section 4.3.2 to iteratively improve
the reconstructed display plane, the positions of the estimated cornae, and
the imaged reflection centroids. Beside obtaining a better estimate for the
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Figure 4.4: The experimental setup with display, camera, and test subject exhibiting corneal
reflections from the light source pattern in both eyes.

display plane, the improved eye positions may be used for other applications
such as eye gaze tracking.

4.5 Experiments
In the following section we explain several comprehensive experimental series
that were conducted in order to thoroughly analyze the performance of the
proposed method and to obtain further knowledge about scene reconstruction
from eye reflections in general.

4.5.1 Single Eye

To verify the general feasibility of the approach, we first investigate the effect
of display size, camera-eye distance, and individual eye anatomy experimen-
tally using only off-the-shelf components.

4.5.1.1 Setup

The setup consists of a 57-in, 16:9 Epson Livingstation LS57P2 TFT LCD dis-
play and a Point Grey Flea2 camera with 1024× 768 resolution. The intrinsic
camera parameters are calibrated using OpenCV functions. The camera is
placed at a distance dDC of 15 cm in front of the display center. Test subjects
are seated with the head fixed at increasing camera-eye distance dCE from 25
to 95 cm in front of display and camera (Fig. 4.4). We display a time-series of
patterns with diagonal size dv increasing from 10 to 43 at steps of 1 in2 and,
for each pattern, capture a single image including both eyes. The radius r of
the circular markers had to be linearly increased with diagonal size dv from
0.5 to 3 in due to radiance attenuation at high viewing angles.

2Inches are used for better comparison with display sizes.



82 Chapter 4. Display-Camera Calibration from Eye Reflections

0

20

40

60

80

100

120

25 35 45 55 65 75 85 95

Iri
s 

E
lli

ps
e 

R
ad

ii 
[p

x]

Camera-Eye Distance dCE [cm]

rmax rmin

0

5

10

15

20

25

30

10 13 16 19 22 25 28 31 34 37 40 43

R
ef

le
ct

ed
 D

ia
go

na
l 

Le
ng

th
 [p

x]

Pattern Diagonal Length dv [in]

Average Diagonal Length

Figure 4.5: Results of image analysis. (left) The average size of the imaged pattern reflection
increases with pattern size dv (camera-eye distance dCE fixed to 35 cm). The influence of
corneal shape curvature can be noticed. (right) The resolution of the imaged iris decreases
with increasing camera-eye distance dCE (pattern size dv fixed to 25 in).

4.5.1.2 Image Analysis

At a fixed distance dCE of 35 cm, diagonal sizes for the imaged marker pattern
reflections span a range of 7 to 24 pixels (Fig. 4.5, left). For large pattern sizes
we notice a distortion of marker reflection patches from corneal curvature.
This does, however, not lead to a measurable decrease in accuracy. The impact
of decreasing resolution can be noticed with increasing camera-eye distance,
where the size of the iris decreases from about 100 to 20 pixels (Fig. 4.5, right).
Although the optical axes of eyes and camera are approximately aligned, the
shape of the imaged irides is slightly elliptical, with the vertical axis constantly
measuring 92% of the horizontal axis. This finding coincides with common
anthropometric data (Sec. 2.1). Corneal reflection extraction works successful
for typical distances up to 75 cm, begins to fail at larger distances for small
pattern sizes, and completely fails above 85 cm. Refer to Figure 4.6 for results
of image data evaluation.

4.5.1.3 Results

Each marker position on the display plane is estimated from only a single eye
image by intersecting the corresponding inverse reflection ray with the display
plane located at known GT display-eye distance dDE = dDC + dCE. We define
the estimation error as the signed deviation of the reconstructed pattern size
from the GT dv. Figure 4.7 shows experimental results. As corneal curvature
can have a high local variation, we apply an especially large range for radius
rC. Its direct influence on the inverse reflection ray results in a high impact on
performance. We obtain highest accuracy for all test subjects using a radius
of 7.8 mm. Regarding camera-eye distance, we do not observe any significant
deviation in results for common distances between 25 and 55 cm. At larger
distances, the variance increases with noise in corneal reflection extraction
resulting from low resolution. While the variance is low among multiple data
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Figure 4.6: Face images of two test subjects. (a) Increasing camera-eye distance dCE of 25,
45, 65, and 85 cm with a fixed pattern size dv of 25 in. (b) Corresponding left eye images.
The limbus size decreases from about 100 to 20 pixels. (c) Corneal reflection extraction
results, showing the boundary of each reflection patch (green with intensity decreasing in
clockwise direction) and the corresponding intensity centroid (blue). Extraction is success-
fully performed for common distances up to 75 cm, begins to fail for small pattern sizes at
85 cm, and completely fails at larger distances. (d) Increasing pattern size dv of 10, 21,
32, and 43 in with a fixed camera-eye distance dCE of 35 cm. (e) Corresponding left eye
images. The size of the reflected pattern increases from 7 to 24 pixels. A small distortion
of the reflection area, resulting from corneal curvature, can be noticed for large pattern
sizes. Note that gamma correction is applied for better visibility to (a), (b), (d), and (e).
(f) Corneal reflection extraction results.



-2
-1
0
1
2
3
4
5

10 13 16 19 22 25 28 31 34 37 40 43

E
rr

or
 [i

n]

Pattern Diagonal Length dv [in]

(c) Left/Right Eye

Set1 RE Set2 RE
Set1 LE Set2 LE

-2
-1
0
1
2
3
4
5

10 13 16 19 22 25 28 31 34 37 40 43

E
rr

or
 [i

n]

Pattern Diagonal Length dv [in]

(d) Different Persons

Person1 Set1 Person1 Set2
Person2 Set1 Person2 Set2

-2
-1
0
1
2
3
4
5

10 13 16 19 22 25 28 31 34 37 40 43
E

rr
or

 [i
n]

Pattern Diagonal Length dv [in]

(b) Camera-Eye Distance dCE

dCE=25cm dCE=35cm
dCE=45cm dCE=65cm

-10

0

10

20

30

40

10 13 16 19 22 25 28 31 34 37 40 43

E
rr

or
 [i

n]

Pattern Diagonal Length dv [in]

(a) Corneal Sphere Radius rC

rC=2.18mm rC=3.00mm
rC=4.00mm rC=7.80mm

Figure 4.7: Results for the single eye image experiment. The error is obtained as the signed
deviation between reconstructed and GT pattern sizes dv for a range of 10 to 43 in, at a
camera-eye distance dCE of 45 cm (if not stated otherwise). (a) Increasing corneal sphere
radius rC. Small radii result in high errors and failing reflections at large pattern sizes. A
value of 7.8 mm achieves the highest accuracy among all test subjects and is used for the
following results. (b) Increasing camera-eye distance dCE. Variance increases with distance
because of deviations in iris fitting and reflection extraction due to low resolution. (c) A
comparison between two data sets for left and right eye from the same subject does not show
any significant deviation. (d) In contrast, a comparison between two data sets from two
subjects shows significant deviation for results obtained from different persons, suggesting
a correlation with individual eye anatomy.
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sets of left and right eyes from the same subject, it is significantly higher
among data sets of eyes from different subjects, increasing with pattern size.
We relate this to differences in individual eye anatomy.

4.5.1.4 Discussion

The described experimental setup used only off-the-shelf components in con-
trolled and unnatural conditions to conduct a first evaluation for recovering
information from eye reflections. Results show a significant influence of indi-
vidual eye geometry and a relatively large reconstruction error within 20% of
pattern size dv. Nevertheless, the obtained results are promising and success-
fully verify the basic feasibility of the proposed approach. The findings are
summarized in the following.

Coinciding with common anthropometric data, the shape of imaged irides
is found slightly elliptical and flattened in the vertical direction. In reconstruc-
tion, the corneal sphere radius that is applied with the eye model achieves the
highest accuracy. No significant deviation is found for common display-eye
distances and different datasets for the same subject. In contrast, a signif-
icant deviation is found for datasets from different subjects, relating to the
individual eye geometry.

4.5.2 Two Eyes

The results obtained for the single eye experiment suggest that further evalu-
ation is necessary. Different geometric eye models have to be tested in order
to better approximate the eye shape. We are interested in common model
parameter deviation and its respective effect on reflection estimation. As the
aim is to apply the technique with off-the-shelf hardware, we need to con-
sider practical problems such as image resolution or noise. To evaluate and
understand these effects, we introduce a test framework using synthetic data.

4.5.2.1 Rendering Framework

It is not a trivial task to create valid synthetic data. There are several re-
quirements that have to be fulfilled:

• The complete scene consisting of display, eyes, and camera has to be
modeled.

• The synthetic system parameters have to resemble the real system pa-
rameters.

• The parameters have to be adjustable to generate experimental data.

• The modeling has to be physically correct.
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Figure 4.8: Scene model for rendering synthetic image data using the pbrt framework.
Modeling parameter values and relationship between display, eyes, and camera are chosen as
to reproduce the physical setup used for the real experiments. The eye model is constructed
of two overlapping ellipsoids to allow analysis of asphericity. The display is represented as
a planar arrangement of spherical area light sources, resembling the marker pattern.

Designing a complete physically correct eye reflection modeling system from
scratch is an ambitious task and out of the scope of this work. Instead, we
create an experimental framework based on the free physically based renderer
pbrt (Pharr and Humphreys, 2004) that implements a state-of-the art ray-
tracer for photorealistic rendering. It is distributed with sources and, thus,
can be extended and re-compiled. This work applies pbrt version 1.033.

4.5.2.2 Scene Model

We create a scene model that closely resembles the setup for the real exper-
iments in order to obtain comparable results. The camera is placed at the
origin of a left-handed coordinate system looking along the positive z-axis.
The eyes are located at z = 700 mm with a baseline separation of 60 mm.
The display is modeled as its planar light source pattern, and located below
and in front of the camera, slightly tilted towards the positive z-axis. See
Figure 4.8 for an overview of the setup.

Display. The display is represented by its planar pattern. The correspond-
ing markers are modeled as spherical area light sources with radius r = 0.25 in,
in a rectangular arrangement with diagonal separation dv = 18 in.

3By the time of writing, pbrt version 2 has been released together with the second
edition of the book.
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Eye. The algorithm for eye reflection analysis explained in this work uses
the eye model derived in Section 2.1, where the eyeball and the cornea are rep-
resented as two intersecting spheres. While the shape of the real eye varies in-
dividually, its average shape is very close to two intersecting ellipsoids, slightly
flattened in the vertical direction. In order to analyze the effect of this as-
phericity we represent the eyeball and the cornea as ellipsoids with horizontal,
vertical, and curvature radii, rEH/rCH, rEV/rCV, and rE/rC respectively. Since
an ellipsoid shape model is not available in pbrt version 1.03 we implement
it as a plug-in extension into the renderer. Note that the radii for eyeball and
cornea, in a particular dimension, are correlated with a constant ratio.

In the synthetic eye model, the center of the cornea C marks the origin
of the eye coordinate system that is align with the camera coordinate sys-
tem, where the gaze direction points towards −z. The center of the eyeball
E is located at distance dCE from the center of the cornea along the opti-
cal axis. The eyeball surface is modeled using material “uber” with a small
roughness value of 0.001, and equal diffuse and glossy reflection coefficients
kd = ks = 0.8. This creates a white shiny “kitchen-sink”-like appearance. The
corneal surface is modeled using the “translucent” material with roughness 0,
fraction of light reflected 0.2, and specular reflection coefficient ks = 1.0. The
iris is not modeled explicitly, but emerges as the base plane of the part of the
corneal shape that is not occluded by the eyeball. Thus, the iris boundary is
equal to the limbus. The color of the iris is controlled by the diffuse reflection
coefficient of the cornea, where the default value kd = 0 represents a black
iris without any impact on corneal reflection extraction. As to not affect the
appearance of the iris, the part of the eyeball in front of the limbus is removed,
creating an ellipsoid cap.

Camera. The rendered scene is captured by a virtual camera with similar
specifications as the Point Grey Flea2G camera used for the multiple eyes
experiments. We set the resolution rx = 2448, ry = 2048 pixels, and the field
of view fovy = 10.50◦. The intrinsic parameters for the virtual camera are
required to run the display-camera calibration algorithm on synthetic data.
For a real camera, we need to perform a calibration, e.g., by recording images
of a known calibration rig, detecting known point-correspondences, and min-
imizing the re-projection error in the image. For the virtual camera, this is
not necessary since its behavior is described by the imaging model of pbrt in
Pharr and Humphreys (2004, pp 255).

The image plane is aligned parallel to the xy-plane at z = 1, with the image
bounded by the camera viewing frustum, where xl, xr, yb, and yt denote the
left, right, bottom, and top coordinates respectively. The field of view fov
corresponds to the smallest of both image dimensions with resolution r and
range [−1, 1] on the image plane. In case of a square image, we have xl = −1,
xr = 1, yb = −1, yt = 1, and r = rx = ry. In case of a rectangular image, we
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generalize this, and distinguish two cases based on image orientation as inxl ← axl, xr ← axr, r = ry if rx ≥ ry,

yb ←
1

a
yb, yt ←

1

a
yt, r = rx otherwise,

(4.11)

where a = rx/ry is the aspect ratio.
Camera matrix K as derived from the given imaging geometry as in
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where f is the focal length and c0 = (c0u, c0v)
T the principal point. Since the

camera is modeled as an ideal pinhole camera, non-linear lens distortions do
not occur.

4.5.2.3 Setup

We perform experiments for varying eye shape, iris color, marker size, image
resolution, and image noise. The data for each experiment is an image series
generated from a pbrt scene description according to the format specification
in Pharr and Humphreys (2004, pp 911). Since we use high quality settings
for resolution, pixel sampling, and surface integration, the rendering time for
each image amounts to approximately 15 min on a Intel Core2 Duo CPU.

Display-camera calibration is performed using the standard algorithm ex-
plained in Section 4.4. Where applicable, we compare the results obtained
with and without eye pose estimation. Using the known GT eye position al-
lows to separately analyze the effect of parameter variation on inverse light
path and reconstructed display. On the other hand, using eye pose estima-
tion increases the overall error, but better describes reality. Comparing both
results allows to analyze the effect of eye pose estimation.
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Accuracy is estimated using the three measures

eC =
1

2

2∑
i=1

‖Ci −GT (Ci)‖

eP =
1

4

4∑
k=1

‖Pk −GT (Pk)‖

eS =
1

2

2∑
l=1

‖dl −GT (dl)‖

(4.13)

where the cornea position error eC describes the average deviation between
reconstructed and GT corneal center positions C, the display pose error eP

describes the average deviation between reconstructed and GT marker posi-
tions P, and the display size error eS describes the average absolute deviation
between reconstructed and GT diagonal lengths dv.

4.5.2.4 Corneal Shape

Corneal shape is an important parameter that we want to analyze in multiple
experiments. Regarding the calibration algorithm, we set the values for limbus
and corneal sphere radii rL = 5.75 and rC = 7.80 mm.

Corneal Sphere Radius rC. At first, we represent the eye as two over-
lapping spheres and vary the scale according to radius rC ∈ [7.65, 7.95] with
steps of 0.05 mm. As the whole eye model scales, other parameter values are
calculated accordingly. Important parameters in rendering are the distance
between eyeball and cornea dCE; and in eye pose estimation, the distance
between limbus and cornea dLC, and the size of the limbus rL. Refer to
Table 4.2(a) for an overview of all eye shape parameter values in rendering.
Figure 4.9 shows the results. As expected, the error becomes minimal when
parameter values are equal to the values chosen for the estimation algorithm.
Interestingly, the impact of rC turns out rather small.

Corneal Ellipsoid Radii rCH and rCV. We now test the effect of aspheric-
ity. Starting with spherical shape, we either decrease the vertical ellipsoid
radius rCV or increase the horizontal ellipsoid radius rCH. The actual val-
ues for all eye model parameters are based on varying limbus radii accord-
ing to common anthropometric ranges (Snell and Lemp, 1997; Kaufman and
Alm, 2003): We independently vary the vertical and horizontal limbus radii,
rLV ∈ [5.25, 5.75] and rLH ∈ [5.75, 6.25], with steps of 0.10 mm. The boundary
of the iris is equal to the limbus. Since other parameters remain constant at
their average value, the curvature at the corneal apex rC, the distance dCE,
and the distance dLC are not affected. Refer to Table 4.2(b) for an overview
of eye shape parameter values.
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Table 4.2: Eye parameter variation [mm] in synthetic experiments on corneal shape.

rLH rCH rEH rLV rCV rEV rL rC rE dCE

(a) Corneal sphere radius rC

rL rC rE rL rC rE 5.64 7.65 11.28 4.60
5.68 7.70 11.35 4.63
5.71 7.75 11.43 4.66
5.75 7.80 11.50 4.69
5.79 7.85 11.57 4.72
5.82 7.90 11.65 4.75
5.86 7.95 11.72 4.78

(b) Corneal ellipsoid radii rCH, rCV

5.75 7.80 11.50 5.25 7.44 10.97 — 7.80 11.50 4.69
5.35 7.51 11.07 —
5.45 7.58 11.18 —
5.55 7.65 11.28 —
5.65 7.73 11.39 —
5.75 7.80 11.50 —

5.85 7.87 11.61 —
5.95 7.95 11.72 —
6.05 8.02 11.83 —
6.15 8.10 11.94 —
6.25 8.18 12.05 —

Note: The three groups of values separated by vertical lines corresponding to the three
dimensions of an ellipsoid. The values for a particular configuration (row) and group are
calculated from the bold-marked parameter value. The corresponding ranges are based on
common anthropometric variation.

(a) A varying corneal sphere radius rC changes the size of the eye equally in all three
dimensions.

(b) Keeping the curvature at the corneal apex rC fixed, we either decrease the size in the
vertical dimension or increase the size in the horizontal dimension.

The estimation error does not only depend on varying eye parameters but
also on the relative arrangement of eye positions in the xy-plane of the camera
coordinate frame: Assume an equal shape variation is applied to both eyes.
Then, a variation in a direction parallel to the baseline of both eyes has a
higher impact than a variation in any other direction. To explain this effect,
we perform evaluation under three different eye arrangements, with a baseline
in x-direction (x = ±30, y = 0 mm), y-direction (x = 0, y = ±30 mm) and
both, xy-directions (x = ±30, y = ±30 mm). The latter two cases correspond
to rather uncommon face positions and might in fact be taken from multiple
images.

Figure 4.10 shows the results. As in the last experiment, the error becomes
minimal for a spherical shape at parameter values equal to the constants of
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Figure 4.9: Result for experiment on synthetic data for corneal size variation. The eye
is represented as two overlapping spheres with varying corneal sphere radius rC. Other
shape parameters are calculated accordingly. (top) Rendered right eye with minimum and
maximum size. (bottom) Reconstruction error, with and without eye pose estimation.

the geometric eye model assumed for reconstruction. Comparing the different
arrangements, without eye pose estimation, we observe the explained effect
where the error is larger for variation in a direction parallel to the baseline.
With a baseline in xy-directions, the effects overlap and significantly decrease
the average error. Applying eye pose estimation, the result becomes affected
by the varying iris contour. The eye pose behaves corresponding to the prop-
erties of the algorithm under weak-perspective projection (Sec. 2.2.2.3), where
a varying minor radius for the limbus ellipse affects only eye orientation, but
a varying major radius affects orientation and position. With eye pose esti-
mation, the overall display reconstruction error increases. The display pose
error becomes independent of eye arrangement. The display size error behaves
more differentiated, however, with the same effect mentioned before where an
arrangement in xy-directions significantly decreases the average error.

4.5.2.5 Iris Color

Caused by an increasing density of light-absorbing pigment in the iris tissue
the color of normal irides among individuals ranges from gray to green, blue,
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Figure 4.10: Result for experiment on synthetic data for corneal shape variation. The eye is
represented as two overlapping ellipsoids with varying either the vertical radius rCV or the
horizontal radius rCV. Other shape parameters are calculated accordingly. (top) Rendered
right eye with minimum, average, and maximum radii. (bottom) Reconstruction error, with
and without eye pose estimation, for three different eye arrangements, with baseline in x-,
y-, and xy-directions.
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Figure 4.11: Result for experiment on synthetic data for iris color variation. The iris is
not rendered explicitly, but emerges as the base plane of the limbus where cornea and eye-
ball intersect. Therefore, varying iris color is simulated by increasing the diffuse reflection
coefficient of the cornea kd. (top) Rendered right eye with increasing kd. (bottom) Recon-
struction error without eye pose estimation.

brown, and black. To simulate this effect, we vary the diffuse reflection coef-
ficient of the rendered cornea kd ∈ [0.0, 1.0] with steps of 0.1. Since iris color
variation does not significantly influence robust iris contour fitting, we only
discuss an analysis without eye pose estimation.

Figure 4.11 shows the results. An increasing iris reflectivity leads to in-
creasing background subtraction threshold for the connected component anal-
ysis in corneal reflection finding, which decreases the size of each marker re-
flection patch. While the display size error increases with higher coefficient
values, we do not measure any significant influence on the average display
pose error. However, variance slightly increases for both error measures.

4.5.2.6 Light Source Size

The display pattern shows four white circular markers with radius r. In the
ideal case, the marker spans only a single pixel. In reality, it needs to be set
to some higher value to achieve a measurable camera response, which leads to
increasing size, distortion, and probably overexposure for each imaged reflec-
tion patch. We simulate this effect by increasing the radius of the spherical
area light sources representing the markers r ∈ [0.1, 1.0] with steps of 0.1 in.
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Figure 4.12: Result for experiment on synthetic data for light source size variation. The
markers on the display plane are rendered as spherical area light sources. The experiment
simulates varying marker size by increasing light source radius r. (left),(right) Results for
different simulated iris colors. (top) Rendered right eye with increasing radius r. (bot-
tom) Reconstruction error without eye pose estimation.

Because an increasing light source size increases the amount of light reflected
from the iris, we simulate two different iris colors with diffuse corneal reflec-
tion coefficients kd = 0.0 and kd = 0.1. Eye pose estimation is omitted since
variations in iris color and reflectance do not have any significant impact on
iris contour fitting.

Figure 4.12 shows the results. We do not measure any significant impact of
light source size on the estimation. Comparing different iris colors shows the
same effect discussed before, where a brighter color leads to a slight increase
in error variance.

4.5.2.7 Camera Quality

Understanding the impact of imaging parameters is important since the cal-
ibration algorithm is potentially applied with low-quality camera hardware.
We perform experiments for varying image resolution and noise.
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Figure 4.13: Result for experiment on synthetic data for image resolution variation. To
examine the effect of varying spatial sampling we render images with increasing resolution.
(top) Rendered right eye with increasing resolution. (bottom) Reconstruction error with
and without eye pose estimation.

Image Resolution. Image resolution describes the number and size of the
pixels and, thus, the spatial sampling distance in the image plane. A decreas-
ing resolution increases the threshold for the size of captured details and acts
as a low-pass filter on light from smaller structures that integrates at a partic-
ular pixel. To examine this effect we render images with increasing resolution,
starting at 160× 120 and doubling dimensions until reaching a maximum of
2560× 1920 which compares to the resolution of the Point Grey Flea2G cam-
era used for multiple eyes experiments. As resolution affects both, iris contour
fitting and corneal reflection extraction, we compare results with and without
eye pose estimation. Note that camera parameters change with resolution,
and have to be adjusted for data processing.

Figure 4.13 shows the results. At the lowest resolution, corneal reflection
extraction fails because the whole pattern blurs into a single patch. With
increasing resolution, the overall error exponentially decreases and converges.
The inflection point of the error function represents the best trade-off between
resolution and accuracy. It depends on the particular arrangement of display,
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Figure 4.14: Result for experiment on synthetic data for image noise variation. To study the
effect of noise we generate a series of images from the same source image by adding indepen-
dent Gaussian noise with increasing standard deviation σ. Due to failing corneal reflection
extraction at σ > 5.0, we apply a Gaussian blur to the raw images. (left, top) Rendered
right eye with increasing standard deviation. (left, bottom) Reconstruction error without
eye pose estimation, for minimal successful blur kernel size 3× 3. (right, top) Rendered
right eye with increasing blur kernel size at σ = 25.0. (right, bottom) Corresponding re-
construction error without eye pose estimation.

eyes, and camera, and lies at 640× 480 for the current setup.

Image Noise. Image noise refers to a random variation of pixel intensity
produced by the sensor and circuitry of the camera. It is a mixture of different
types of noise, regarding source, characteristics, and probability distribution.
The most common type is independent additive Gaussian noise (Gonzalez
and Woods, 2007; Boncelet, 2005), that will be used as a placeholder to study
the effects of an unknown mixture. Therefore, we render a single image with
default parameters and generate a series of images by adding independent
Gaussian noise with increasing standard deviation σ ∈ [0.0, 25.0] at steps of
2.5.

Figure 4.14 shows the results. Since we did not observe any significant
impact on iris contour fitting, we only show results without eye pose estima-
tion. Because of failing corneal reflection extraction for σ > 5.0, we apply a
Gaussian blur to the raw images before further processing. The complete data
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series could be successfully processed with the minimum filter kernel size of
3× 3. The error mean and variance increase exponentially with noise. The
figure further shows the effect of increasing filter kernel size on the result
obtained from the image having maximum noise with σ = 25.0, a relatively
high value that can be regarded as an upper bound for common use cases.
The error rapidly decreases at small kernel sizes, then reaches its minimum,
stabilizes, and slightly increases at larger kernel sizes. Because kernel size has
an impact on time performance, we note that small values between 5× 5 and
9× 9 are sufficient.

4.5.2.8 Discussion

With the described experimental series we analyzed the effect of several impor-
tant parameters, in a controlled environment using synthetic data generated
by physically based rendering. Anatomic parameters are difficult to examine
using real data, because these require measurement with complex machinery
and occur with uncontrolled variation, making it necessary to perform large-
scale experiments for statistical evaluation. Imaging parameters are important
as these especially affect results in low-quality hardware; and the proposed al-
gorithm is intended for non-professional setups. Let us now summarize the
findings.

If the cornea has spherical curvature, as assumed by the majority of eye
models, the impact of its radius is relatively small. The real cornea, however,
does not have a spherical curvature. Thus, we analyzed the effect of aspheric-
ity by varying only the radius in vertical or horizontal dimension which creates
an ellipsoid shape. The impact is about one magnitude larger than the com-
bined variation in all three dimensions. We further noticed a dependency on
the arrangement of the applied eye positions. The average error can be signif-
icantly decreased when sampling non-degenerate eye positions with variation
in both, x- and y-dimensions.

We simulated the effect of brighter iris colors by adding an increasing dif-
fuse reflectivity to the specular cornea. As a result, the contrast for specular
pattern reflections decreases. The mean reconstruction error remains rela-
tively low, with a slight increase in variance. Note that we did not model iris
texture which can have an additional effect on pattern extraction and becomes
more evident in bright irides.

Increasing the size of the display markers may become necessary to achieve
a measurable response in setups with diffuse environmental illumination, low
quality image sensors, or short exposure at high framerates. On the other
hand, this invalidates the point-light-source assumption and creates a larger
marker reflection patch with distortion. More light is diffusely reflected from
the iris, which has a larger effect for brighter irides and slightly increases the
error variance as explained before. As a result, we did not find any significant
impact for increasing marker size.
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The negative effect of imaging parameters on the result is disproportionally
larger under low specifications and rapidly becomes smaller with increasing
quality. We observed convergence for the error with increasing image reso-
lution. The inflection point of the error function marks the best trade-off
between resolution and accuracy, and lies at VGA resolution for the current
setup representing a common usage scenario. A linear increase in the standard
deviation of the image noise causes an exponential increase in the error. To
avoid failing image processing, a noise reduction strategy should be applied
to the raw contaminated data. We found a simple Gaussian blur with mini-
mal kernel size to be effective, even for the maximum amount of tested noise
that lies above common scenarios. The error rapidly decreases with increas-
ing kernel size, and achieves highest accuracy and convergence for kernel sizes
between 5× 5 and 9× 9.

4.5.3 Multiple Eyes

Previous single-eye experiments employed a simple setup together with the
basic algorithm, to verify the general feasibility of performing geometric dis-
play calibration from corneal reflections. While the results are promising, the
error remains relatively large. Subsequent two-eyes experiments examined
the impact of different parameters under controlled synthetic conditions. The
results are not only important to display calibration, but may also help to un-
derstand scene reconstruction from eye reflections in general. Interpreting the
findings, however, we predict a high error for common parameter variations
and system configurations, suggesting the basic algorithm to be insufficient
for accurate scene reconstruction.

Available geometric knowledge for the reconstructed scene enables an opti-
mization strategy that achieves highly improved results. The following exper-
iments are based on that algorithm assuming known display size. To simulate
conditions of practice we apply more than two images, capturing eyes under
general varying poses.

4.5.3.1 Setup

The setup comprises a 19-in display with 1280× 1024 (5:4) resolution, 250-
cd/m2 brightness, 500:1 contrast ratio, and 170◦/170◦ (H/V) viewing angles.
We use a Point Grey Flea2 camera at 2448× 2048 resolution mounted on a
Fujinon HF35SA-1 lens with viewing angles 14◦35′/10◦58′. Intrinsic camera
parameters are calibrated using OpenCV functions. The camera is placed at
about 30 cm above and behind the display. Test subjects are seated with
their faces positioned about 50–60 cm in front of the display (Fig. 4.15(a)).
The pattern uses a constant marker radius r of 0.25 in (6.35 mm) creating
a pattern with diagonal size dv of 18 in (457.2 mm) (Fig. 4.3). We capture
face images of a test subject moving in front of the display. Regarding eye
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orientation, we apply random measurements with a tilt angle τ < 20◦. As
shown in experiment 4, calibration accuracy does not vary significantly within
this range, however, decreases rapidly at larger angles.

4.5.3.2 Experiment 1: Test Subjects

Experimental verification was performed with 11 test subjects. Table 4.3
shows that there is no significant correlation between individual parameters
such as age, body height, and pupillary distance. We acquired data sets of
10 face images per subject that are used for reconstruction (Fig. 4.16). The
imaged irides have an average diameter of 160 pixels with the reflected screen
occupying about 30× 25 pixels (Fig. 4.17(a)–(d)).

Experimental results for the accuracy of reconstructed display poses are
found in Table 4.4 and Figure 4.18. After optimization, the standard de-
viation between the center points of the estimated screen planes decreased
considerably from 81.60 to 10.28 mm. It is important to note that no statis-
tical significance could be observed between test subjects with normal eyes,
near-sightedness uncorrected, and corrected with contact lenses (Tab. 4.5).
This means that the method can be applied to any of these conditions despite
them having an impact on corneal shape. Figures 4.15(b)–(d) show results
where the reconstructed screen matches the real one given in Figure 4.15(a).
The average and standard deviation of corneal sphere position adjustment
in optimization are <0.01/0.67, 0.02/0.39, and 8.94/11.92 mm for x, y, and
z-coordinates respectively. This shows that the error in corneal position esti-
mation is largest along the depth direction.

4.5.3.3 Experiment 2: Display Pose

We mounted the display on a turntable, operated by a Chuo Seiki QT-CM2
stage controller, and took data sets of 10 face images of a single person at
discrete display orientations of 0◦, 10◦, 20◦, 30◦, and 40◦ that act as ground
truth (Fig. 4.19(a)). We further took data sets for a large and a small spherical
mirror with 20 images per mirror. The large mirror with a radius of 25.4 mm
is similar in size to the one used by Francken et al. (2007) and acts as ground
truth. The small mirror with a radius of 7.9 mm is similar in size to the
corneal sphere. This makes it possible to independently analyze the errors
from small reflector size and unknown shape difference (asphericity). The
eye pose estimation algorithm was adapted for the mirror. The imaged large
and small mirrors have an average diameter of about 650 and 210 pixels with
the reflected screen occupying about 95× 75 and 30× 25 pixels respectively
(Fig. 4.17(e)–(h)).

Accuracy is estimated using two measures: The position error eP describes
the deviation in the center position of the display. The orientation error eO

describes the deviation in the normal direction of the display. Let XGT and
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Figure 4.15: (a) An experimental setup. The camera is placed about 30 cm distance above
and behind a 19-in display. Test subjects are seated about 50–60 cm in front of the display
that shows a static pattern withM = 4 markers. The blue line indicates the camera z-axis,
with marks at each multiple of 20 cm. (b) A display reconstructed from 10 eye poses of a
single person, rendered from a similar view as shown in (a). The camera coordinate system
is indicated as a white origin with three colored axes. Each mark along the axes indicates
a multiple of 20 cm. The back-projected light rays (white) penetrate the rendered image
planes and reflect at the corneal spheres (brown) towards the four markers on the screen
(yellow, green, turquoise, pink). Corneal orientations (eye gaze) are indicated by orange
lines. (c),(d) A display reconstructed from 20 eye poses with a display-eye distance dDE of
65 cm (experiment 3). (e) An image of two eyes with pattern reflections and back-projected
light rays. Intensity scaling is applied for better visibility. The effect of display contrast
ratio (black level) can be noticed from the reflections. (f) The estimated corneal spheres
with light rays and reflections. Note that the radius of the corneal sphere rC is larger than
the radius of the limbus rL which marks the boundary of the visible part of the iris.

Table 4.3: Personal statistics of test subjects.

Gender m m m m m m m m m m f
Age 21 23 23 24 24 24 24 29 35 38 41

Height 166 168 183 161 167 171 174 176 166 179 154
Pupillary Distance 6.3 6.5 6.4 6.5 5.8 6.6 6.6 5.9 6.7 7.1 6.3

Myopia y y y y y y
Contact Lens y

Note: The datasets are ordered by age. There is no significant correlation between parame-
ters. Myopia (near-sightedness) occurs in six subjects. Five of them wear glasses that were
taken off for the experiments. A single subject wears contact lenses that were kept on.



Figure 4.16: Example images of moving subjects, acquired in the absence of environmental
light. Intensity scaling is applied for better visibility.
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Figure 4.17: Iris and mirror contour fitting. (a)–(d) Cropped facial images with iris ellipse
fitting results. Intensity scaling is applied for better visibility. (e)–(h) A pair of correspond-
ing shape and reflection images with fitting results for each spherical mirror.



Table 4.4: Experimental results for multiple subjects experiment (1), comparing results
before and after optimization.

(a) Statistical Error of Reconstructed Display (b) Residual Errors after Optimization
Top-Right 

[mm]
Top-Left 

[mm]
Bottom-

Left [mm]
Bottom-

Right [mm]
Center 
[mm]

Orientation
[deg]

Intersection 
[mm]

Size 
[mm]

Plane 
[mm]

Stddev Stddev Stddev Stddev Stddev Stddev Avg Stddev Avg Stddev Avg Stddev
Pre-Opt 93.04 82.25 81.53 93.85 81.60 16.37

Opt 10.22 10.37 16.76 14.63 10.28 3.90 4.53 2.03 2.27 1.71 0.07 0.10

(a) The statistical error for the reconstructed display is considerably lower after optimiza-
tion. The position error is indicated as the standard deviation of the estimated marker
positions and the calculated center points. The orientation error is calculated as the stan-
dard deviation of the angles between the plane normals.

(b) The residual errors after optimization. The intersection, screen-size, and plane error
terms e1, e2, and e3 are minimized well.
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Figure 4.18: Experimental results for multiple subjects experiment (1), showing the dis-
tribution of estimated marker positions and display center points. For the 3D scatterplot
(top, left), each black rectangle indicates the marker bounding box estimated from the set of
face images obtained for a particular individual. There is no significant deviation between
results from test subjects with normal eyes, near-sightedness uncorrected, and corrected
with contact lenses.



Table 4.5: Statistical significance of eye condition in multiple subjects experiment (1).

Top-Right Top-Left Bottom-Left Bottom-Right Center
x y z x y z x y z x y z x y z

P-value 0.144 0.905 0.356 0.273 0.850 0.056 0.053 0.010 0.006 0.590 0.119 0.358 0.196 0.387 0.052
Bonferroni 1.727 10.863 4.268 3.275 10.197 0.678 0.631 0.116 0.075 7.083 1.423 4.298 0.588 1.160 0.155

Holm 1.007 0.905 1.778 1.638 1.699 0.508 0.526 0.106 0.075 1.771 0.948 1.433 0.392 0.387 0.155

Note: This table shows the results of multiple analysis-of-variance tests (ANOVA) carried
out separately for each coordinate of the four estimated marker positions and the calculated
center point. Each test is a single-factor ANOVA regarding eye condition, divided into the
three levels: normal, uncorrected near-sighted, and corrected with contact lenses. The
first row shows corresponding p-values with p ∈ [0, 1]. Lower values imply that the result
has a higher statistical significance (less likely to be achieved randomly). However, in the
present case there are multiple {pi |i = 1, . . . , 15} from different comparisons that have to
be adjusted in order to draw valid conclusions. The second and third rows show Bonferroni-
and Holm-adjustment respectively, that take into account the result of all the coordinates
simultaneously. Measurements from the calculated center point are treated separately.
Truncation to [0, 1] is omitted. The smallest pi-value is marked bold. None of the adjusted
pi are statistically significant at α = 0.05.

(a) 

(b) 

(c) 

(d) 

(f) 

(e) 

0° 10° 20° 30° 40° 

Figure 4.19: Experimental results for display orientation experiment (2). (a) Experimental
setup with varying display pose. Each column corresponds to a particular display orienta-
tion (from left to right: 0◦, 10◦, 20◦, 30◦, and 40◦). (b) The displays are reconstructed from
eye reflections after optimization, rendered by looking down onto the xz-plane (red, blue) of
the camera frame. Each mark along the axes indicates a multiple of 20 cm. (c) Comparison
between the three displays reconstructed from eyes (white), large (green), and small spheri-
cal mirrors (red) after optimization. All three planes are estimated with a low position and
orientation error. (d) Same as (c), but before optimization. The screen planes from mirror
reflections are estimated slightly smaller and rotated, in front of the actual position, having
a screen size error e2 of about 25 mm. In contrast, the screen plane from eye reflections is
estimated incorrectly with an average of 319.4 mm in front of the one obtained as ground
truth using the large mirror, having an error e2 of about 200 mm. (e)–(f) Same as (c)–(d),
rendered similar to (a) by looking from the side onto the yz-plane (green, blue).
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Figure 4.20: Experimental results for display orientation experiment (2) at 0◦. The (a) po-
sition and (b) orientation error describe the deviation from the ground-truth estimate ob-
tained using the large mirror. An increasing number of face images in calibration leads to
a decreasing error and convergence towards the final result.

nGT denote the ground truth for the display center point and the normal
direction, and let Xeye and neye denote the estimates obtained using eyes,
then the error is defined as in

eP = ‖Xeye −XGT‖ , (4.14)
eO = cos−1 (neye · nGT) . (4.15)

Experimental results for the accuracy of reconstructed display poses are found
in Table 4.6 and Figure 4.21. After optimization, the result from the eyes cor-
rectly matches the actual display pose and is only slightly worse than the result
from the small mirror. It outperforms the results obtained from both spherical
mirrors before optimization, which coincides with the results for the method
in Francken et al. (2007), shown in Francken et al. (2009). Figure 4.19 offers
a detailed visual comparison. The strategy further achieves a decreasing error
and convergence with increasing number of face images used for calibration
(Fig. 4.20).

4.5.3.4 Experiment 3: Display-Eye Distance

In this experiment we evaluate an increasing distance between display-camera
setup and eye positions. Calibration is performed at six discrete display-eye
distances dDE of 35, 65, 95, 125, 155, and 185 cm. The interval and step
size are chosen with some considerations: A minimum distance of 35 cm
is necessary to capture both eyes within a single face image and to allow
some head movement. A distance of 65 cm is approximately the one used in
experiments 1 and 2 and, thus, enables for comparison. A maximum distance
of 185 cm is rather uncommon for a 19-in display, but is tested in order



Table 4.6: Experimental results for display orientation experiment (2), comparing the ac-
curacy obtained from eyes, small, and large spherical mirror (r = 7.93 and r = 25.4 mm)
before and after optimization.

(a) Error to GT (b) Error to Mirror L (c) Residual Errors after Optimization
Orientation [deg] Position [mm] Orientation [deg] Intersection [mm] Size [mm] Plane [mm]

Avg Stddev Avg Stddev Avg Stddev Avg Stddev Avg Stddev Avg Stddev
Pre-Opt Eye 17.33 10.02 319.44 27.11 11.87 8.32

Mirror S 1.90 1.21 21.70 7.41 1.83 1.53
Mirror L 1.34 1.28 0.00 0.00 0.00 0.00

Opt Eye 0.82 0.37 11.18 4.42 0.69 0.45 7.76 0.28 0.37 0.37 0.02 0.02
Mirror S 0.49 0.30 9.95 4.59 0.63 0.39 3.99 0.70 0.09 0.15 0.01 0.01
Mirror L 0.31 0.10 0.00 0.00 0.00 0.00 1.43 0.26 0.03 0.03 0.01 0.00

(a) Orientation error to the turntable ground truth. The orientation is computed as the
difference in the normal direction of the display obtained from the eyes to the one from
the large mirror at 0◦. After optimization, the error for the eye calibration becomes very
similar to the errors obtained for the mirrors.

(b) Position and orientation error to the estimate obtained from the large mirror at the
same turntable orientation.

(c) Residual errors after optimization. The intersection error e1 increases for small mirror
and eyes as deviation in model parameters has a higher impact. It further increases for the
eyes as the actual shape deviates from that of a sphere. The screen size and plane error e2
and e3 can be minimized well.
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Figure 4.21: Experimental results for display orientation experiment (2). Comparison of
orientation angles estimated from eyes and spherical mirrors, (a) before and (b) after opti-
mization, with the turntable ground truth.
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35 65 95 125 155 185
Display-Eye Distance [cm]

Figure 4.22: Image data for the display-eye distance experiment (3). The sequence shows
the test subject’s right eye at increasing distance from display-camera setup. Intensity
scaling is applied for better visibility. Due to low illumination and small display size, larger
distances result in difficult conditions and image data.

to evaluate the theoretical limitation. It also marks the upper bound for
obtaining usable data for this setup, since it results in very difficult conditions
and image data, as can be seen in Figure 4.22. Due to the inverse-square law
for light intensity, the marker radius needed to be increased to r = 0.5 in at 155
and 185 cm. At larger distances, it was not possible to extract independent
centroids for each marker since the distance between their reflection patches
becomes too small. Also, it was not possible to perform ellipse fitting to detect
the iris boundary due to the large amount of noise.

A particular calibration result was obtained from a data set of 10 face
images capturing both eyes of a single person. For statistical evaluation, we
took 10 independent trials at each distance (600 images in total). Calibration
was also performed for the large spherical mirror using data sets of 20 images.
The optimized mirror result at 35 cm has been found to be most accurate
and is used as ground truth. The camera is fixed above and approximately
10 cm behind the display, where camera parameters are calibrated separately
at each eye distance due to necessary focus adjustment.

Experimental results obtained before and after optimization are shown
in Table 4.7 and Figure 4.23. Along the whole range, optimization can ef-
fectively reduce the overall error that increases with distance. Results show
relatively good accuracy for the near range. At 95 cm, the average position
error amounts to 17.72 mm, and the average orientation error to 7.04◦. At
larger distances, we observe a sharp increase, especially for the position error.
Depending on the intended use, the accuracy should be sufficient for distances
up to 1 m. However, regarding the size of the display, real usage scenarios
will probably not involve distances larger than 65 cm.

4.5.3.5 Experiment 4: Gaze Angle

The following experiment studies the influence of eye orientation. For four test
subjects, calibration was performed at six discrete limbus tilt angles τ of 0◦,
6◦, 12◦, 18◦, 24◦, and 30◦. Each corresponding data set comprises eight face
images capturing both eyes, distributed evenly along the whole range of eye
rotation angles φ with steps at 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦.



Table 4.7: Experimental results for display-eye distance experiment (3), comparing the
accuracy obtained from eyes before and after optimization.

(a) Error to GT (b) Residual Errors after Optimization
Display-Eye Position [mm] Orientation [deg] Intersection [mm] Size [mm] Plane [mm]

Distance [mm] Avg Stddev Avg Stddev Avg Stddev Avg Stddev Avg Stddev
Pre-Opt 350 204.74 7.39 29.04 3.54

650 401.80 20.71 18.48 6.15
950 576.97 60.17 15.24 4.36

1250 759.58 76.25 11.92 4.95
1550 1156.03 77.58 27.82 12.93
1850 1361.72 94.43 34.26 16.02

Opt 350 1.39 0.54 0.38 0.25 4.33 0.33 0.09 0.15 0.00 0.00
650 6.79 2.38 2.16 1.19 9.27 1.30 0.25 0.30 0.01 0.01
950 17.72 4.23 7.04 3.11 12.35 1.71 0.98 0.89 0.02 0.01

1250 91.47 29.70 15.85 5.50 19.18 3.50 3.81 3.50 0.02 0.02
1550 227.59 79.19 30.33 7.30 24.45 4.82 4.75 5.33 0.02 0.02
1850 491.34 66.40 42.28 5.09 24.99 6.95 11.19 5.80 0.03 0.02

Note: Errors are computed using the estimate from the large mirror at display-eye distance
dDE of 35 cm as ground truth.

(a) Position error in the center position of the display.

(b) Orientation error in the normal direction of the display.
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Figure 4.23: Experimental results for display-eye distance experiment (3). Plot of the
(a) position and (b) orientation error in Table 4.7. Columns represent the average error,
black bars the standard deviation. The error increases with distance. Usable results are
achieved for display-eye distances up to 100 cm (camera-eye distance of 110 cm), from where
the error increases rapidly.
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(a) (b)

(c) (d)

Figure 4.24: Setup for the gaze-angle experiment (4). (a) Gaze markers are attached to
the wall. The radial direction represents increasing limbus tilt angles τ of 0◦, 6◦, 12◦, 18◦,
24◦, and 30◦. The polar steps are evenly distributed according to eye rotation angles φ of
0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦. The camera is fixed in front of the display
center with its optical axis perpendicular to display plane and wall. (b) The ground truth
is obtained from the large spherical mirror at display-eye distance. (c) A test subject in
front of the setup. (d) Gaze markers, occluded from the perspective of the test subjects,
are rendered on the display.

Figure 4.24 explains the experimental setup. Refer to Figure 2.8 for details
about the representation of eye orientation. Gaze markers are attached to the
wall according to the distribution of gaze directions for test subjects who are
located at a distance of 170 cm. The display is mounted on a tripod. The
camera is fixed with an adjustable arm at 10 cm in front of the display center
and 100 cm in front of the center marker for (φ, τ) = (0◦, 0◦) with its optical
axis perpendicular to display plane and wall. The ground-truth display pose
is obtained from 15 images of the large spherical mirror, distributed evenly
along the camera field of view at a distance of approximately 80 cm in front of
the display. Under the same conditions, data sets are acquired for moving test
subjects gazing at the respective markers. Gaze markers for angles τ of 0◦,
6◦, and 12◦, occluded from the perspective of the test subjects, are rendered
with dark blue color in order to not affect the measurements.
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The setup is designed with some considerations: The camera is placed at a
rather uncommon location in front of the display center. With that configura-
tion, there is no bias regarding angle φ since each gaze marker, corresponding
to the same angle τ , and each of the four display calibration markers have
equal distance to the camera. The display-camera setup is designed to mini-
mize occlusion of the gaze markers. The maximum tilt angle τ of 30◦ marks
the upper bound for the marker reflections to be located on the corneal surface.
The subject-wall distance is maximized in order to reduce the impact of slight
head movement on the gaze direction; where 170 cm is the largest distance
that allows attaching the center marker at a comfortable sitting height.

Figure 4.25 shows captured eye images for the whole set of gaze directions.
The iris detection produces applicable results. For an increasing tilt angle τ
the angular error in gaze direction amounts to 3.62◦, 3.96◦, 3.79◦, 3.36◦, 3.01◦,
and 4.94◦ (RMSE). The reflected marker pattern moves towards the corneal
boundary. For one subject, several markers at 30◦ were already out of the
corneal boundary and have not been used for calibration. Distortion increases
for the whole pattern as well as for each reflected marker patch. Both effects
vary according to individual differences in corneal shape.

Experimental results obtained before and after optimization are shown in
Table 4.8 and Figure 4.26. Optimization can effectively reduce the overall
error along the whole range of tilt angles τ . Estimation error is lowest for
6◦–18◦, slightly larger for 24◦, and large for 30◦, which is a result of pattern
distortions and deviations in corneal curvature and shape. Interestingly, the
error at 0◦ goes up slightly.

Consider the common case where the user is located at a distance of 60 cm
in front of the center of a 19-in display. The camera is placed either above or
below the display. For iris detection, the maximum gaze angle when looking at
the display amounts to approximately 17◦/27◦ (H/V). For display calibration,
the maximum angular deviation for the marker reflections from the corneal
apex amounts to approximately 17◦/14◦. The values are within the applicable
limits of eye and display pose estimation.

4.5.3.6 Discussion

Previous single-eye experiments employed a simple, unnatural setup together
with the basic algorithm, to verify the general feasibility of performing geo-
metric display calibration from corneal reflections. Results, however, show a
relatively large error. To gain detailed understanding, subsequent two-eyes
experiments applied synthetic data to simulate the impact of parameters that
are difficult to control and measure in practice. Results show a high impact
of individual eye geometry where common parameter variation leads to large
errors. This suggests that the basic algorithm in combination with a static
spherical eye model is not sufficient for accurate calibration.

To improve accuracy while relying on the simple geometric eye model, an
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Figure 4.25: Image data for the gaze-angle experiment (4). (a) Imaged irides of the left
eye of a single test subject for the set of eye orientation angles φ and limbus tilt angles
τ . Intensity scaling is applied for better visibility. The head was fixed, with the midpoint
of the eyes baseline centered in the camera image. To not only show iris deformation
but also translation of its imaged position, each image patch is centered at the invisible
back-projected center of the estimated corneal sphere C. With increasing angle τ , the
reflected marker pattern moves towards the corneal boundary. Distortion increases for the
whole pattern as well as for each reflected marker patch. This leads to a rapidly increasing
display pose estimation error for reflections near the corneal boundary. Above 30◦, some of
the markers move out of the corneal boundary and cannot be detected. (b) Imaged irides of
the left eye of another test subject at 30◦. Comparison shows larger distortion and missing
reflections, which relates to individual differences in corneal shape.



Table 4.8: Experimental results for gaze-angle experiment (4), comparing the accuracy
obtained from eyes before and after optimization.

(a) Error to GT (b) Residual Errors after Optimization
Gaze Angle τ Position [mm] Orientation [deg] Intersection [mm] Size [mm] Plane [mm]

[deg] Avg Stddev Avg Stddev Avg Stddev Avg Stddev Avg Stddev
Pre-Opt 0 517.49 129.31 5.11 4.90

6 628.25 51.17 8.15 2.64
12 641.89 36.79 5.96 4.78
18 646.57 4.18 5.48 2.74
24 644.88 23.15 12.24 3.06
30 705.37 50.02 24.02 11.08

Opt 0 24.91 16.56 3.78 2.32 11.13 1.73 0.22 0.22 0.01 0.01
6 4.95 4.84 2.86 1.28 10.57 1.41 0.18 0.26 0.01 0.00

12 7.57 4.55 1.88 0.63 10.44 0.54 0.06 0.08 0.00 0.00
18 15.58 9.45 2.11 1.36 11.99 1.04 0.08 0.07 0.01 0.01
24 30.61 10.93 3.71 2.69 15.76 4.11 0.03 0.03 0.02 0.02
30 108.28 38.65 12.11 8.78 21.96 6.72 1.90 0.91 0.03 0.02

Note: Errors are computed using the estimate from the large mirror as ground truth.

(a) Position error in the center position of the display.

(b) Orientation error in the normal direction of the display.
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Figure 4.26: Experimental results for gaze-angle experiment (4). Plot of the (a) position
and (b) orientation error shown in Table 4.8. The error is lowest for 6◦–18◦ and slightly
larger for 0◦ and 24◦. It rapidly increases with larger angles. For the common case, where
a user is looking at a 19-in display from a distance of 60 cm, the maximal gaze angle and
deviation of the reflection from the corneal apex are within the applicable limits of eye and
display pose estimation.
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optimization strategy is proposed that exploits knowledge of scene geometry
to adjust eye positions and scene structure. The described multiple-eyes ex-
periments applied more than two eye images per calibration to examine the
performance of this strategy. Different studies were designed to analyze the
impact of individual factors, display pose, eye position, and gaze direction,
representing common influences under conditions of practice. Let us now
summarize the findings.

In experiment 1, optimization largely decreases the standard deviation
of results among different subjects and eliminates the statistical significance
of eye condition (normal, uncorrected near-sighted, corrected with contact
lenses). This shows that the influence of individual factors can be successfully
reduced. For experiments 2–4, ground truth was acquired from two spher-
ical mirrors of different size to distinguish the impact of size from the one
of asphericity. In accordance with the results obtained from synthetic data,
asphericity is found to have a high impact, which can, however, be success-
fully compensated by optimization. The resulting error remains stable under
display orientation and low gaze angles, and increases with gaze angle and
display-eye distance. Nevertheless, the applicable range is found to exceed
common use cases.

An important observation is that using optimization, accuracy increases
with the number of images until finally achieving convergence. Furthermore,
the strategy also gains improvement in spherical mirror based methods. The
results and findings of this study are not only important for display-camera
calibration, but also for the understanding of eye-scene relation in general,
and the optimization potential of introducing geometry constraints.

4.6 Conclusion

4.6.1 Discussion

This chapter proposed and verified the idea for geometric calibration of display-
camera setups from corneal reflections in eye images. A four-step approach
was described that involves (1) detecting the eye pose from an image of the eye,
(2) computing the light source position from corneal reflections under different
eye poses, (3) estimating the pose of the display from multiple light sources
represented by markers on a screen pattern, and (4) optimizing the result by
refining eye poses and reflections rays. Compared to previous approaches, the
concepts and findings achieved with this work remove the requirement for spe-
cial hardware, explicit user interaction, and awareness, and allow for online
execution.

In experimental evaluation, a framework was described for the physically
correct rendering of synthetic eye images. The framework was applied to
analyze the impact of system parameters for which ground-truth measure-
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ments are difficult to obtain. Using real and synthetic data, a large number of
comprehensive experimental studies was performed, showing that a straight-
forward combination of eye pose estimation (Nishino and Nayar, 2006) and
screen-camera calibration (Francken et al., 2007) leads to a large error, which
relates to the unknown geometry and size of the individual eye. Findings are
as follows:

• The results show a significant influence of individual eye geometry.

• The impact of increasing corneal asphericity is about one magnitude
larger than an equal variation in the radius of a spherical cornea. The
error can be reduced by sampling a large spatial distribution of cornea
positions parallel to the image plane.

• No significant impact is observed from parameters related to the appear-
ance of specular highlights on the cornea, such as the size and intensity
of light sources and the diffuse reflectivity of the iris.

• Regarding camera specifications, low resolution has a disproportional
large effect. Accuracy is, however, rapidly increasing and converging
at standard resolutions of current video hardware, that is, therefore,
sufficient for common display-camera arrangements. A linear increase
in image noise results in a larger non-linear decrease in accuracy. The
effect is successfully compensated by applying standard noise reduction
techniques.

It has further been shown that results can be considerably improved by
introducing an optimization framework that jointly refines eye poses, reflection
rays, and display pose subject to known geometry constraints (ray intersection
distance, screen size, screen planarity). Particular achievements from this
strategy are:

• Compared to a simple geometric reconstruction, the error can be con-
siderably decreased.

• An increased tolerance to noise allows using commodity hardware in
conjunction with a simple geometric eye model that does not require
individual calibration.

• A former ambiguity in recovering the full range of eye orientations is
automatically resolved.

• The strategy also achieves improvements in previous spherical-mirror-
based methods.

Results from a large number of comprehensive experimental studies demon-
strate the effectiveness of the approach where stable results are obtained under
varying conditions. The findings could also be helpful to geometric reconstruc-
tion from eye reflections in general. Important conclusions are the following:
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• Despite individual differences in eye shape, the deviation in results from
different persons can be considerably decreased. Varying eye conditions
(normal, uncorrected near-sighted, corrected with contact lenses) do not
show any statistical significance.

• The absolute error to the ground truth can be considerably decreased.
Convergence is achieved with an increasing number of images.

• The error increases with distance from the display-camera setup. Nev-
ertheless, the applicable range for this method has been found to exceed
common use cases.

• The error remains stable with increasing display orientation and gaze
angle for the applicable range of this method which also covers common
use cases. Larger angles lead to distortions for reflections in the corneal
periphery and should therefore be avoided.

4.6.2 Implications

With the proposed method, we established and verified the integration of eye
reflection analysis with display-camera systems. Despite the difficult working
conditions, the results are good and should be sufficient for many applications.
We believe that this work has the potential to facilitate novel developments
in the community and helps to generally increase usability and acceptance
of applications “outside the laboratory”. The unique characteristics of the
method enable applications in novel scenarios and system configurations. An
overview of potential implications is given in the following.

Calibration-free Applications Since calibration is achieved implicitly with-
out requiring interaction and awareness, the method can be applied
where a dedicated calibration procedure is not possible. This could
be for any of several possible reasons: A lack of time, when attention
is required for other tasks such as re-arranging the display in driver-
assistance systems or at the workplace. Second, a lack of ability, when
working with non-experts, physically/mentally disabled people, or chil-
dren and infants (Guestrin and Eizenman, 2008; Franchak et al., 2010;
Gredebäck et al., 2010; Noris et al., 2010). Other reasons could include
hiding technical details of the system or seamlessly integrating with art
decors.

Dynamic Setups The calibration does not require interaction and may be
performed online. This allows applications where the relation between
display and camera is changing. Examples for changing camera pose in-
clude hand-held video cameras, and PTZ cameras in surveillance and
vision-based interfaces. Examples for changing display pose include
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hand-held/mobile devices, and projection displays, such as head-up dis-
plays in cars (HUD) or special displays in augmented reality (Bimber
et al., 2005).

The proposed method recovers the geometric relation between display,
camera, and eyes. This can be beneficial for applications in different fields.
An overview of potential implications is given in the following.

Human–Computer Interaction The method enables improved calibration-
free remote eye gaze tracking where the PoR is obtained by relating
gaze direction and display plane. Screen-based eye gaze tracking has
many applications in different fields (Duchowski, 2007; Hammoud, 2008;
Hansen and Ji, 2010). However, there is no restriction to planar screens:
A 3D PoR on an arbitrary surface is obtained when the estimated eye
pose is related with a model of the environment or an image-based envi-
ronment map, explained more in detail in Chapter 5. Eye gaze tracking
may be further combined with eye reflection analysis for scene recon-
struction or eye pose refinement.

Surveillance and Security It has been shown that display content can be
recovered from reflections in the eyes of a person in front of a PC, im-
aged from far-away locations (Backes et al., 2008, 2009). The quality of
the result may be improved by undistortion, which requires knowledge
about display pose, eye pose and shape. Furthermore, it is possible
to extend this to real-time monitoring of the interaction with mobile
devices. Knowledge of eye gaze and display reflections may also be ben-
eficial for technical improvement and to introduce context information
in iris-based biometric systems (Daugman, 2004; Bowyer et al., 2008).

Photometric Stereo There exist several works using display-camera sys-
tems for scene reconstruction by photometric stereo (Woodham, 1980).
Knowledge about the distribution of environmental light sources is im-
portant and can be recovered from an image of the eye (Nishino and
Nayar, 2006; Tsumura et al., 2003; Johnson and Farid, 2007). The pro-
posed method lays the foundation to exploit this information in the
context of display-camera setups, leading to performance improvement
in calibration and application.

Medicine Analyzing the relation between display content and eye poses can
help to diagnose patterns related to physical and mental degrading of
the visual and motor system. After having detected a particular con-
dition, corrective actions may be provided through adaption of the dis-
played content. Moreover, such information could also be used in order
to detect and support correct 3D perception with auto-stereoscopic dis-
plays (Hoffman et al., 2008; Lambooij et al., 2009).
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4.6.3 Limitations

The scope of the described implementation is to provide an in-depth analysis
of the applicability of eye reflections for display-camera calibration. There
are limitations when using the implementation in its current form within real
conditions. Details for a fully automatic calibration procedure largely depend
on the requirements of each particular setup. Necessary extensions include

• a strategy for calibrating camera parameters, e.g., directly from eye
images (Johnson and Farid, 2007),

• a technique for tracking a first guess for the eye region in a video (Hansen
and Ji, 2010),

• a scheme for discarding unusable frames that do not include an eye, have
too low quality, or relate to configurations known to result in decreased
accuracy,

• a pattern architecture that increases information throughput and allows
robust reflection extraction in the presence of environmental light and
varying iris colors (Wang et al., 2008), e.g., using coded markers,

• a more accurate geometric model for the surface of the cornea, using an
aspheric model based on anthropometric statistics or on parameterizing
an individual shape by exploiting display reflections of more complex
patterns,

• an extension to suppress complex light interaction at different layers
of the eye and to handle more complicated light paths (Kutulakos and
Steger, 2008), e.g., occurring when users wear glasses, and

• a strategy for calibrating display and camera photometric properties,
e.g., by analyzing eye reflections.

4.6.4 Future Work

Beside the described limitations that need to be tackled to turn the current
prototype into a practical system, there is requirement for future research. In
the following, a survey is given about possible display-camera correspondence
coding strategies.

4.6.4.1 Correspondence Coding Strategy

In order to obtain theM required pairs of pixels in 2D screen coordinates and
points in 3D camera coordinates, the display shows a pattern representing
the screen locations. The corresponding corneal reflections are identified from
eye images of a person facing the screen. There exist different strategies to
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represent the locations by display patterns; each one having advantages and
disadvantages. The choice is a trade-off depending on the requirements of the
particular application scenario.

Direct representation. This is the simplest strategy and the one chosen
for the current implementation. The display pattern contains white circular
markers centered at particular pixel locations on black background. Corre-
sponding specular reflections are detected from an eye image. The spatial
arrangement of the markers is not affected by projection and reflection since
the cornea has a convex shape. While this method is simple, it lacks ac-
curacy when marker regions become larger, and does not handle reflections
from other light sources. To account for this, screen locations can be repre-
sented with more detailed structures, e.g., intersections of lines or corners in
a checkerboard pattern. However, such an approach requires sufficient resolu-
tion. Direct methods suffer from an inherent ambiguity where the index k of
a reconstructed marker is unknown. This can be resolved when the reflected
display is approximately aligned with the camera image plane (by initially
adjusting camera orientation around its optical axis).

Coded representation. To automatically resolve the ambiguity, further
information needs to be added to the pattern. A straightforward way is to
use coded structured light techniques, which assign a unique codeword to
each pixel or region of pixels in a larger non-periodic area of the pattern. An
overview of different methods, comparing characteristics and technical details,
is found in Battle et al. (1998); Salvi et al. (2004); for more recent extensions
see Salvi et al. (2010). Coded structured light can also help to generally in-
crease robustness under challenging conditions such as high spatial resolution,
image noise, low image resolution, environmental light, and superimposed iris
features. According to Salvi et al. (2004), three main strategies can be distin-
guished: direct coding, space-multiplex coding, and time-multiplex coding.

Direct coding simply represents each location by its unique intensity or
color value. Care has to be taken that the whole intensity range can
be detected from an image and that the inter-value distance is sufficient
for discrimination, especially in the case of superimposed iris features.
Thus, color coding is best applied when environmental light and spacial
resolution in the display are low, and image quality is high.

Space-multiplex coding represents the codeword for each location by the
unique intensity or color variation in its neighborhood. An advantage to
direct coding is the lower number of required intensity values, allowing
for an increased inter-value distance. This, however, is obtained at the
cost of robustness since each codeword depends on information in the
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neighborhood and, thus, a single error affects multiple locations. Space-
multiplex coding can cope with several amount of diffuse environmental
light, but also limits spatial resolution and requires high quality images.

Time-multiplex coding distributes the codeword for each location into a
sequence of patterns along the temporal domain. The approach does
not suffer from most of the drawbacks of direct and space-multiplex
coding. It achieves the highest inter-value distance, and accounts for
environmental light, superimposed iris features, and low quality images
while allowing high spatial resolution. The major drawback is that the
method uses multiple frames, limiting its application to static scenes.
Since the eyes are moving, time-multiplex coding requires to capture at
high framerates and to compensate for eye movements.

Extensions. The presence of corneal reflections from environmental light
can make it difficult to distinguish these from screen reflections. In such a
case, reflection features from all sources can first be matched among multiple
images and reconstructed. Additional geometry constraints are then used to
remove the outliers. For example, a simple distance thresholding would be
effective for the common use case where the display is the nearest light source
to the eyes.

In order to increase robustness to ambient light, a bright uniformly col-
ored fullscreen pattern may be used (Francken et al., 2007). After detecting
the reflected screen patch (e.g., by using a tailored color thresholding ap-
proach (Wang et al., 2008)), the display plane can be reconstructed either
from its corners or edges (Schnieders et al., 2010).

Using screen patterns restricts the system to static scenarios where cali-
bration and application are separate steps. Directly identifying and matching
salient features (Sugano et al., 2010) between screen content and eye reflec-
tions could, however, allow online calibration of dynamic setups, for example,
with a PTZ camera tracking a close-up region of the eye at high resolution.



Chapter 5

Calibration-free Non-Intrusive
Eye Gaze Tracking in

Arbitrary Environments

This chapter applies the developed theory for eye pose estimation and light
transport at the corneal surface to introduce a novel system architecture and
method for geometric-calibration-free eye gaze tracking in arbitrary, geometric
and photometric complex, environments.

Section 5.1 provides an introduction to problems in state-of-the-art remote
eye gaze tracking and corneal reflection analysis, the principle and advantages
of the proposed method, and the contributions of this work.

Section 5.2 surveys and discusses related work in eye gaze tracking for
arbitrary environments, approaches without requiring geometric calibration,
and the use of controlled illumination to assign information to environment
locations that can be recovered from images.

Section 5.3 continues with describing the proposed system architecture
and method to track the PoR of an observer in an environment image. The
basic light transport theory from sections 3.3 and 3.4 is integrated with the
analysis of corneal reflections of projected invisible structured light to define
an image-based mapping between eye and environment images. This also
provides a solution to the general problem of accurate and robust feature
matching among multiple eye images.

A prototype implementation is explained in Section 5.4 and subsequently
applied in Section 5.5 to analyze the performance of coded structured light
recovery from corneal reflections, and light path estimation between PoR,
cornea, and camera.

Section 5.6 concludes this chapter, discussing results and findings, outlin-
ing potential implications on application scenarios and fields, stating limita-
tions of the prototype implementation, and providing ideas for future work.

5.1 Introduction
While recent developments in the field of remote eye gaze tracking are promis-
ing, state-of-the-art techniques are still far from being unobtrusive and usable
for practical applications. There are different characteristics that restrict their
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use to labor-intensive controlled laboratory conditions with experienced in-
structors and trained users. Moreover, techniques still have a high degree of
intrusiveness from setup requirements and operation restrictions due to their
technical approach in combination with hardware limitations.

Proposed Method. This work proposes a novel system architecture that
overcomes several limitations of existing eye gaze tracking techniques; specif-
ically it removes the need for geometric calibration and enables application
with arbitrary dynamic scenes. The system uses two cameras, an environment
camera capturing the gazed scene and a non-attached eye camera featuring
high-resolution or a PTZ tracking architecture to capture a close-up view of
the eye. The task is to identify the PoR in the image of the environment
camera. For current systems, this involves a geometric calibration where a 3D
model of the scene has to be obtained and aligned in the coordinate frame of
the eye. Since this is a complex task, eye tracking so far is restricted to planar
surfaces.

Geometric-Calibration-free Image-based Mapping. With this work,
a method is developed to estimate the corneal reflection of the PoR and map
it to the environment image, based on a large number of keypoint matches.
While keypoint matching among camera views from different perspectives is a
well studied problem (Tuytelaars and Mikolajczyk, 2008), the methods cannot
be directly applied to corneal reflections. Specific problems are described in
the following.

• Specular corneal reflections are superimposed with reflections from other
structures of the eye. The iris texture becomes especially disturbing
under high intensity illumination or bright textures. Although Wang
et al. (2005a, 2008) describe a method to separate corneal reflections
and iris texture, the general problem is ill-posed where results may not
be appropriate for feature matching.

• The cornea is not a perfect mirror. The low reflectivity of less than
1% (Kaufman and Alm, 2003) results in a strong compression for the
dynamic range of reflected illumination.

• The eye has a curved surface. While common feature matching methods
for perspective camera images can be applied to planar mirror reflec-
tions (Sturm and Bonfort, 2006), this is not possible with the distor-
tions caused by a curved mirror. Special catadioptric techniques have
to be used (Hansen et al., 2007; Scaramuzza et al., 2008). A strategy
may involve projecting corneal reflections image into perspective images,
perform feature matching and transform the result back. Nevertheless,
this can result in high errors due to errors in eye pose estimation and
an unknown shape for the individual cornea.
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In order to robustly obtain a large number of keypoint matches between en-
vironment and eye images under severe conditions in arbitrary environments,
we apply invisible/imperceptible coded structured light (CSL). A projector
projects structured light patterns onto the scene, assigning a unique visual
codewords to each surface location. Synchronized with pattern projection,
the environment camera captures the illuminated scene, and the eye camera
captures the corresponding corneal reflection. The codewords are then de-
coded in each camera view uniquely identifying corresponding surface points.
Using either imperceptible projection with a standard digital video projec-
tor at high framerates or a special invisible (infrared, IR) light projector, the
dynamic code is not perceived by the user, but recovered from the camera
images. With this procedure, a large number of informative reflections is ro-
bustly obtained over a wide area of the corneal surface. The pose of the eye
is estimated from an image and applied to locate the corneal reflection of
the PoR in the image. The detected correspondences in eye and environment
images then define a mapping for obtaining the location of the PoR in the en-
vironment image. In case of a known geometric relation between environment
camera and projector, a 3D model of scene and PoR can be recovered.

Advantages of the Proposed Method. The described strategy involves
the following advantages to state-of-the-art remote eye tracking systems:

Calibration-free Conventional systems need a geometric calibration to de-
termine the relation between camera and scene model. Because re-
constructing and aligning a 3D surface model is a complex task, sys-
tems are generally restricted to planar surfaces. The calibration is done
manually, or automatically by identifying corneal reflections from active
light sources (Ko et al., 2008) or scene features (Nitschke et al., 2009;
Schnieders et al., 2010). Nevertheless, manual calibration is time con-
suming, installing light sources is often not feasible, and scene features
are commonly sparse and cannot be detected robustly. The proposed
method also analyzes scene features, however, in the form of robust pro-
jected markers with a high spatial resolution and surface coverage. Since
a distinct calibration is not required the system can also be applied with
dynamic camera-projector setups, e.g., in tracking scenarios.

Attachment-free Conventional systems require geometric calibration and
can, therefore, not be applied to dynamic setups. To achieve eye gaze
tracking for a moving user, a head-attached setup using a combination of
eye and environment camera is commonly applied (Babcock and Pelz,
2004; Li et al., 2006). Compared to the proposed method, these sys-
tems require a gaze-mapping calibration on a planar surface: As the
user moves and looks at other surfaces, the calibrated mapping becomes
invalid and the error increases. Novel system designs aim in eliminating
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the environment camera using a special curved half-transparent mir-
ror to combine eye and mirror-reflected environment in a single camera
view (Mori et al., 2010). While this removes the need for calibration,
the architecture requires setup and becomes more intrusive since the
mirror is placed in front of the eye. The proposed method does not
require calibration or head attachments and can, therefore, be applied
with moving users in non-obtrusive scenarios.

Arbitrary environments Conventional systems generally assume a planar
surface restricting their application to locations such as computer mon-
itors, projection canvases, white- and blackboards, or planar objects on
tables and walls. The proposed approach naturally supports surfaces
with arbitrary geometry forming the majority of our environment. This
enables more realistic scenarios for diagnostic applications, for example
in human factor analysis and marketing research; and interactive appli-
cations with selective and gaze-contingent user interfaces for ubiquitous
and ambient environments.

Free head movement While conventional systems claim to support free
head movements, this is not completely true, due to several restrictions
for gaze-angle and viewing volume. The systems often rely on corneal
reflections and fail in cases when not all reflections are detected. This
easily happens at large gaze angles when reflections move outside the
corneal boundary and disappear. The same effect restricts the volume
of valid head poses. The proposed method generates a large number
of reflections covering a wide area of the environment and the corneal
surface. Missing parts of the reflection patch at large angles and view-
ing volumes do not cause fail or reduced accuracy since the effect only
happens for the periphery, but not the area where the user is gazing.

Challenging conditions Conventional systems place several assumptions
on the setup, limiting the applicability to controlled laboratory con-
ditions with experienced and trained users. It can be hard to set up
the tracking environment and obtain reliable data for a particular user.
Schnipke and Todd (2000) describe difficulties relating to illumination
conditions, camera placement, calibration process and eye conditions.
The proposed system increases these tolerances, and especially allows
environmental light, reduced image quality, and capturing at high fram-
erates.

Improved accuracy Conventional systems estimate the pose of the eye and
intersect the gaze direction with the surface to obtain the PoR. It is
easily seen that the estimation error scales with the distance between
eye and surface. The proposed method is not affected by this effect
since measurement is done image-based. After estimating the pose and
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gaze of the eye, the method calculates the reflection of the PoR in the
image. Since the location is obtained by projection, the value converges
with increasing distance compensating for the described effect. Note,
that distance has an effect when the method is applied with non-planar
surfaces due to decreasing spatial resolution in the image. However, the
effect is compensated by the use of coded structured light which allows
for high spatial resolution.

Contribution. The following contributions are achieved with this work
(Fig. 5.1):

• A novel eye gaze tracking architecture is proposed that integrates a range
of advantages not achieved with existing work.

– The method works naturally and automatically with arbitrary sur-
face geometries.

– The absence of geometric calibration allows easy setup and dy-
namic pose adjustment of system components during runtime, e.g.,
for tracking scenarios involving a PTZ camera, projector or other
mechanisms.

– The method achieves non-intrusive application without user aware-
ness by not requiring body-attachments and allowing larger toler-
ances for gaze angles, operation volume and motion.

• Up to our knowledge, the proposed approach is the first to apply struc-
tured light projection to eye gaze tracking.

– The projected coded feature points define a calibration-free relation
between eye and environment camera views. The information for
missing locations can be interpolated if located within the convex
hull of detected features or extrapolated otherwise.

– The use of projection causes reflections to span a wider area on the
corneal surface than achieved with point light sources in front of
the user.

– The use of coded structured light allows robust detection under
high spatial resolution. Experimental results verify robustness un-
der challenging conditions, such as short exposure times, image
noise and environmental light.

– The use of imperceptible or invisible structured light lets the dy-
namic code projection not be perceived by human observers. Ex-
perimental results show that double-frame codes, required for im-
perceptible projection, also allow for increased accuracy.
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Figure 5.1: Video-based eye gaze tracking pipeline. Contributions of this work are shown
in red. There exist different types of parameters sets determined by calibration. The task
is to detect and track the PoR from video images of an eye. Two main strategies can
be distinguished, explicit and implicit. Explicit tracking, also known as remote eye gaze
tracking, reconstructs the explicit eye geometry and obtains the PoR by intersecting the
gaze direction with the 3D scene. Implicit tracking obtains the PoR using a head-pose
dependent mapping from imaged eye appearance or features. This work introduces several
novelties for explicit tracking regarding detection of reflection features, optimization of eye
poses, and simplification of PoR calculation for arbitrary surfaces by eliminating geometric
calibration.

The proposed system architecture allows for increased applicability not
possible with existing techniques. Due to an easy setup, and tolerance to
environmental conditions with same time increased accuracy, it has the po-
tential to make eye tracking available to non-professional users in everyday
environments. Furthermore, due to absence of calibration, body-attachments
and tolerance to operation conditions it enables practical applications gener-
ally requiring unobtrusiveness. This enables natural and unbiased conditions
in diagnostic scenarios or interactive interfaces for ubiquitous and ambient
environments.

5.2 Related Work
Let us now discuss relations of the proposed approach to works in eye gaze
tracking and other fields aiming in partially solving similar problems.
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5.2.1 Eye Gaze Tracking in Arbitrary Environments

Stationary Eye Gaze Tracking. Traditional stationary systems perform
a gaze-mapping calibration that establishes an implicit mapping between eye
image data and PoR location on a destination surface (Merchant et al., 1974;
Stampe, 1993; Morimoto and Mimica, 2005). Since the mapping is head-
pose dependent, the head is either kept fixed (e.g., using a chin rest or bite
bar) or movement is compensated (Kolakowski and Pelz, 2006; Karmali and
Shelhamer, 2006; Zhu and Ji, 2007; Li et al., 2008). When applying systems
based on gaze-mapping calibration to arbitrary environments, a large amount
of sampling points is required to describe the local depth variation in the
destination surface. Since this is commonly not feasible, stationary systems
are, by design, limited to planar surfaces. Furthermore, the placement of cal-
ibration markers requires either physical modification or controlled surfaces,
such as computer monitors and projection screens on canvases, white- and
blackboards, tables, walls and other planar objects.

Remote Eye Gaze Tracking. Recently, remote systems are introduced
to achieve head-pose invariance by explicitly modeling the 3D geometry of
camera, eyes and scene. Systems, therefore, rely on different kinds of calibra-
tion, namely personal calibration of individual eye model parameters, camera
calibration, and geometric calibration of the relation between cameras, light
sources and scene. The eye is tracked by a remote stationary high-resolution
camera or a dynamic camera system (Kim et al., 2004; Oike et al., 2004;
Yoo and Chung, 2005; Reale et al., 2010). The gaze direction is obtained
either using a passive or an active-light method. Passive methods are com-
monly based on tracking the visible iris contour as the methods described in
this work (Sec. 2.2) (Wang and Sung, 2001, 2002; Wu et al., 2005b; Nishino
and Nayar, 2006; Wu et al., 2007; Chen and Ji, 2008; Yamazoe et al., 2008;
Schnieders et al., 2010; Reale et al., 2010). To increase accuracy and robust-
ness, the majority of remote methods applies active illumination in form of IR
LEDs, commonly based on the pupil center and corneal reflections (PCCR)
technique (Shih et al., 2000; Ohno et al., 2002; Guestrin and Eizenman, 2006;
Villanueva and Cabeza, 2007; Zhu and Ji, 2007; Villanueva et al., 2009). After
computing the gaze direction, the PoR is obtained through geometric mod-
eling involving a 3D model of known pose for the destination surface. Such
a model is, however, unavailable for arbitrary environments what commonly
restricts systems to planar surfaces. To support arbitrary environments, cam-
eras are added to capture the scene from multiple viewpoints. This allows to
estimate the 2D location of the PoR in the view of each single camera, and
to obtain its corresponding 3D location by triangulation using multiple cam-
eras (Smart Eye AB, 2011b; SR Research Ltd., 2011a; Seeing Machines Inc.,
2011). Such an approach, however, requires additional hardware, probably in
a rigid alignment with additional interactive geometric calibration.
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Wearable Eye Gaze Tracking. Also recently, wearable head-mounted sys-
tems are introduced to combine mobile tracking in arbitrary environments
with head-pose invariance between head and scene (Babcock and Pelz, 2004;
Li et al., 2006; Wagner et al., 2006). Similar to remote trackers the basic
approach combines an eye camera with an environment camera where the
2D location of the PoR is be estimated. The corresponding 3D location is
obtained by triangulation using either multiple cameras or tracking scene fea-
tures in a single moving camera (Munn and Pelz, 2008; Takemura et al., 2010).
The difference is that the cameras are rigidly attached to a head-mount that
itself is rigidly mounted on the head of the user. While wearable trackers
are especially developed for application in arbitrary environments the sys-
tems commonly rely on gaze-mapping calibration which, by design, limits
them to planar surfaces as in stationary systems: The mapping is calibrated
from gaze markers projected onto a planar surface in front of the user. As
soon as the user moves away from the surface, the mapping is invalidated
by the changing depth. This requires for compensation strategies such as
parallax correction (Tobii Technology AB, 2011b). As described with remote
trackers, arbitrary environments are supported when using explicit geometric
modeling which, however, requires camera, geometry and personal calibration.
There exist head-mounted systems naturally allowing for arbitrary environ-
ments by exploiting special optical constructions to align eye and scene in-
formation (Mackworth and Thomas, 1962; Mori et al., 2010). These systems,
however, introduce further issues such as high intrusiveness or reduced data
quality.

The proposed approach is an attachment-free remote tracker where a 2D
PoR is located in the view of an environment camera. While existing ap-
proaches require an offline interactive geometric calibration and are, thus,
limited to static camera placement or known parameters for a dynamic cam-
era system, the proposed approach applies structured light to automatically
determine the geometric relation between eye and environment cameras in an
online process, naturally enabling for arbitrary environments with dynamic
camera placement.

5.2.2 Geometric-Calibration-free Eye Gaze Tracking

Geometric Calibration. Compared to systems relying on implicit gaze-
mapping calibration, explicit geometric modeling involves several advantages
such as head-pose invariance, absence of error accumulation and support of ar-
bitrary environments. This, however, requires camera, personal and geometric
calibration. While camera calibration is required only when parameters are
modified and personal calibration is required once per subject and achieved
already with a single marker (Villanueva and Cabeza, 2008), geometric cali-
bration remains a challenge.
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Exploiting Corneal Reflections. There are different strategies to avoid
explicit geometric calibration. One particular exploits corneal reflections of
environmental light to directly relate eye and environment geometry. Exist-
ing approaches, however, involve different issues: Extraction of environmental
light is affected by superimposed iris texture, low corneal reflectivity, errors in
pose estimation and distortions from unknown corneal shape for a single eye,
and unreliable and sparse feature matching between multiple eyes (Nishino
and Nayar, 2006). Controlled illumination enables more robust and accu-
rate extraction, but commonly uses only a sparse set of features. Existing
systems are, therefore, restricted to planar surfaces, either determining ex-
plicit pose (Nitschke et al., 2009; Schnieders et al., 2010) or an implicit map-
ping (Yoo and Chung, 2005; Coutinho and Morimoto, 2006, 2010; Ko et al.,
2008; Kang et al., 2008). Eye gaze tracking in arbitrary environments has been
realized by attaching IR tags to scene objects (Smith et al., 2005). While such
an approach works without geometric calibration, it involves intrusive modi-
fication of the environment, tedious manual configuration, and is, by design,
restricted to a small number of pre-defined objects. As explained, there also
exist wearable head-mounted systems that use special optical constructions to
avoid geometric calibration, but these come with further issues (Mackworth
and Thomas, 1962; Mori et al., 2010).

Exploiting Assumptions. Explicit geometric modeling intuitively describes
the physical problem, supports for head-pose variance and can be used with
arbitrary surfaces. On the other hand, systems may be difficult to develop,
involve error accumulation from model approximation or loss of important in-
formation from early decisions. In contrast, appearance-based methods, also
known as image template or holistic methods, directly model and track eye
gaze, based on the photometric appearance of eye image patches characterized
by the distribution of intensity values or filter responses. Appearance-based
methods are often used to simplify system development. Nevertheless, this is
achieved at the expense of a gaze-mapping calibration to train a model that
maps eye image patches to gaze information. To avoid an interactive calibra-
tion in eye gaze tracking with planar computer screens, automatic methods are
proposed that evaluate other available information exploiting assumptions on
their relationship with eye gaze. Sugano et al. (2008) perform gaze-mapping
calibration by evaluating mouse-click locations on the screen under the as-
sumption that the user gazes the corresponding locations. To apply the same
strategy with passive scenarios where a user watches screen content without
interaction, Sugano et al. (2010) describe an approach based on visual saliency
which is the distinct subjective perceptual quality of visual information that
immediately attracts human attention (Koch and Ullman, 1985). They per-
form gaze-mapping calibration by treating saliency maps of display content
as probability distributions for the observers gaze.
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The proposed approach relates eye and environment geometry by exploiting
corneal reflections of controlled illumination. The novelty is that it applies
invisible coded structured light projected with high spatial resolution onto a
wide surface area. This enables for accurate, robust and dense extraction of
scene features from corneal reflections and environment cameras which is a
requirement for automatic geometric calibration of arbitrary surfaces.

5.2.3 Optical Encoding of Environment Locations

To avoid a dedicated geometric calibration and model reconstruction for ar-
bitrary surfaces, corneal reflections of environmental light are analyzed to
automatically relate eye gaze and environment locations with support for dy-
namic setups. Solely relying on the passive light distribution, however, causes
less robust and accurate extraction and low quality environment informa-
tion (Nishino and Nayar, 2006).

Intrusive LED- and Screen-based Techniques. Active illumination can
be used to compensate for this and has been applied to eye gaze tracking with
planar screens using screen illumination (Nitschke et al., 2009; Schnieders
et al., 2010) or attaching IR LEDs (Yoo and Chung, 2005; Coutinho and
Morimoto, 2006, 2010; Ko et al., 2008; Kang et al., 2008). Controlled illumi-
nation enables optical encoding and transmission of information, and allows
for dynamic parameter modification. Such coded structured light techniques
have been widely used for assigning information to environment locations. At-
taching controlled IR LEDs as tags to scene objects permits identification by
detecting unique temporary codes based on blinking patterns (Sakata et al.,
2002). There are attempts to program and control IR tags automatically using
attached sensors in conjunction with projected light where the information is
encoded by slight variation of the content from a digital video projector or
by using a specially designed high-frequency projector (Nii et al., 2005; Lee
et al., 2005). IR tags have been exploited in wearable head-mounted eye gaze
tracking to detect when the user gazes a tagged object without the need for
calibration (Smith et al., 2005). Beside representing scene locations, special
array configurations of IR LEDs have been applied as structured light in gaze
direction estimation to reject false corneal reflections and increase robustness
in case of lost reflections at large gaze angles (Hua et al., 2006; Li et al., 2007).
Note, that “structured light” in this context refers to the geometric alignment
of the LED array. There are several issues related with the described ap-
proaches for active illumination: Special illumination patterns on computer
screens are intrusive and interfere with content. Attaching LEDs to scene
locations is intrusive and limited to a small number of locations as system
complexity rapidly increases.
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Non-Intrusive Projection-based Techniques. To avoid the described
complications and enable further advantages, coded structured light is com-
monly projected using off-the-shelf or specially designed digital video projec-
tors (Battle et al., 1998; Salvi et al., 2004, 2010). Non-intrusiveness is accom-
plished by either exploiting invisible or imperceptible structured light (Fofi
et al., 2004). Invisible structured light operates in wavelengths outside the
visible spectrum. Infrared light is mainly applied as it can be detected with
common imaging sensors when IR-block filters are removed. Zhang et al.
(2008) use this approach to project IR tags in the form of temporary-coded
blinking dots projected onto selected scene locations. While being invisible,
the tags are detected in camera images enabling lookup of object-specific in-
formation stored in a database. A problem remains with projection of IR
light: Since the lamps of digital video projectors only emit a small amount of
IR light which is further reduced with improvements in lamp engineering, the
straightforward strategy of using an IR-pass filter results in low intensity and
a waste of energy. Lee et al. (2007) design and implement a high-resolution,
scalable and general-purpose solution to combine IR and visible light with
common projector designs. Therefore, they replace the light source of a DLP
projector with an array of IR and visible-light LEDs synchronized with the
DMD of the projector.

Another technique to realize non-intrusive illumination is imperceptible
structured light where a sequence of alternating light pattern and comple-
ment (inverse pattern) is projected using visible light. If the sequence exceeds
the critical flicker frequency (CFF) (Watson, 1986), the dynamic content is
visually integrated over time and appears as a static white homogeneous il-
lumination area with average projected intensity. While imperceptible for
human observers, the pattern is detected in images of a synchronized camera
enabling for information transmission (Raskar et al., 1998; Livingston, 1998;
Waschbüsch et al., 2005). Several research aims in combining impercepti-
ble structured light and content projection within a single projector (Cotting
et al., 2004; Grundhöfer et al., 2007; Bimber et al., 2008). Others use imper-
ceptible structured light projection to track light sensors (Lee et al., 2005). A
recent overview of high-speed synchronized vision systems, required for visual
information transmission is found in Kagami (2010).

The proposed approach uses either invisible or imperceptible structured
light projection to assign unique codes to environment locations. Detecting
and matching codes between environment and eye images, geometric informa-
tion is automatically obtained without the need for dedicated calibration. The
use of coded structured light projection, therefore, enables for several benefits
such as flexibility supporting arbitrary environments, attachment-free remote
tracking, dynamic scenarios, wide area coverage and high-spatial resolution;
robustness to practical conditions and eye appearance; and accuracy through
image-based matching.
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Figure 5.2: Setup for eye gaze tracking using coded structured light. A user is gazing an
unknown PoR (blue) on an arbitrary surface. An eye camera tracks a close-up image of the
user’s eye. An environment camera captures a view of the gazed surface. Coded structured
light is projected onto the surface (red) where it reflects towards environment camera and
eye, from where it again reflects into the eye camera. Correspondences are then obtained
by decoding the reflections.

5.3 Method
In the following we explain the building blocks of the proposed eye gaze track-
ing architecture. Figure 5.2 explains setup and method. A user gazes an
unknown location on an arbitrary surface. The task is to locate the PoR in
an image of the surface captured by an environment camera1: An eye camera
tracks a close-up image of the user’s eye from where the pose of the eye is
estimated and the corneal reflection of the PoR is calculated. Coded struc-
tured light is then used to obtain robust correspondence information between
surface points, their images, and the images of their corneal reflections. A
projector projects a pattern or time series of patterns onto the surface where
the light reflects towards environment camera and eye, from where it again
reflects into the eye camera. Capturing the illuminated scene with synchro-
nized cameras, the correspondences can be decoded from the images. Based
on that information, the known location of the reflected PoR in the eye image

1The approach directly allows for multiple environment cameras.
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is mapped into the environment image. When the external relation between
projector and environment camera is known, a surface model can be recovered
by active stereo where the PoR is located in 3D.

5.3.1 Projector-Camera Synchronization

The gaze tracking system is based on projector-camera synchronization mod-
eled in Figure 5.3. A concurrent implementation is favored in order to max-
imize framerate which is limited by the slowest component of the system. In
the following we discuss the different factors.

The projector refresh rate is determined by model and resolution, and
usually lies at around 85 Hz for common digital video projectors and
120 Hz for stereo projectors. Higher framerates are possible with pro-
fessional projectors and special projection devices.

The camera framerate depends on model, resolution and data bus. Syn-
chronization requires asynchronous frame grabbing triggered either us-
ing a hardware or software signal. Although, asynchronous mode has
an impact on framerate, current IEEE 1394b or USB 3.0 machine vi-
sion cameras generally achieve framerates exceeding the refresh rate of
digital video projectors.

The pattern generation time is the time required to render a pattern into
the graphics buffer. It is usually negligible since rendering on current
systems is fast. If coding is complex, patterns can be pre-calculated
and stored in memory since the sequence is usually static or follows a
dynamic combination of a finite number of patterns.

The frame processing time comprises triggering, image exposure and pro-
cessing for all cameras. While most of the image processing steps are
not complex, automatic eye detection and iris contour fitting may be-
come the bottleneck of the overall system. If required, image processing
performance can be largely improved using GPU acceleration.

5.3.2 Correspondence Representation

The task is to uniquely identify the image locations of particular scene points
in different camera views. This is usually achieved with a keypoint-matching
technique, such as the Scale-invariant Feature Transform (SIFT) (Lowe, 2004).
Using a purely image-based passive strategy has the advantage of not requiring
additional hardware and being non-intrusive to the environment. However,
this is achieved at the expense of robustness where accuracy largely depends on
the application scenario. To become more independent, the described system
takes an active strategy where each surface point is represented with a unique
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codeword using coded structured light. In the most general case the codewords
are visually encoded and projected by some light-emitting focusable device.
Capturing the illumination information in an image or a sequence of images,
each scene point is uniquely identified from its recovered codeword.

Coded Structured Light. There are different pattern codification strate-
gies, such as direct, spatial-multiplex and time-multiplex coding. An overview
comparing characteristics and technical details is found in Battle et al. (1998);
Salvi et al. (2004); for more recent extensions see Salvi et al. (2010). Sec-
tion 4.6.4.1 discusses the application to display-camera calibration. The gen-
eral choice is a time-multiplex approach, since it offers increased robustness
under challenging conditions, including environmental light, bright iris color,
high framerates and low image resolution. Motion blur from eye movements
along the time series can be handled by motion compensation based on eye
pose estimation. The effect of such motion blur is an integration of information
from different codewords at a particular image location, decreasing spatial res-
olution. An approach balancing between time- and spatial-multiplex coding
can be used when a higher effective framerate is required.

Invisible/Imperceptible Structured Light. A further requirement for
the system is that projection is not noticed by the user. This is achieved
by using invisible or imperceptible structured light. Invisible structured light
requires a special projection device operating outside the range of the visible
spectrum. In order to use it together with common camera hardware, IR
light is usually applied. Imperceptible structured light uses visible light, but
projects a sequence of alternating pattern and complement at high framer-
ates (Fofi et al., 2004). The user still perceives the homogeneous illumination,
but does not notice the patterns. The same effect is used to restore the surface
texture in the environment camera by integrating two complementary frames.
Non-intrusive illumination allows the projector to be combined with other
light sources for common room illumination. High refresh rates are available
with stereo projectors gradually turning into off-the-shelf devices with increas-
ing popularity of 3D visualization. Imperceptible pattern projection doubles
the number of required frames, but on the other hand enables more robust
decoding methods.

5.3.3 Image Acquisition

While the projector illuminates the surface with a particular pattern an image
is recorded with both, environment and eye camera. The environment camera
captures the primary reflection from the surface, the eye camera the secondary
reflection at the cornea. In case of time-multiplex coding, the system needs to
operate at high framerates because a single effective frame requires processing
a complete time series.
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5.3.4 Correspondence Detection

The projected correspondence information is recovered for eye and environ-
ment views. The result may be enhanced by reducing noise and filling holes
using an optimization strategy, probably applying knowledge about geometric
and photometric properties of the surface. Since decoding is applied to each
image location, it is further necessary to segment meaningful locations that
relating to illuminated surface areas.

5.3.5 Eye Pose Estimation and PoR Computation

Applying an eye pose estimation method from the ones described in Sec-
tion 2.2, two possible solutions are obtained. For each solution, the corneal
reflection of the PoR is computed using an appropriate method from Sec-
tion 3.3. The correct solution for the pose of the eye is selected as the one
resulting in minimum distance between the computed reflection of the PoR
and the center of the coded area in the eye image.

5.3.6 PoR Mapping

After computing the corneal reflection of the PoR in the eye image the code-
word corresponding to the PoR can be looked-up. The corresponding surface
location in the environment image is obtained by codeword matching. Miss-
ing information in the mapping can be calculated by interpolation, in case
the pixel is located in the convex hull of recovered correspondences, or by
extrapolation otherwise.

5.3.7 3D Scene Reconstruction

In case of a known geometric relation between projector and environment cam-
era, a 3D surface model of the scene including the PoR may be reconstructed
by means of active stereo (Salvi et al., 2010). The geometric relation can be
automatically calibrated up to a scale ambiguity using the following steps:
Assume the camera center is the origin, with camera and projector projection
matrices PC and PP given as

PC = KC [I |0 ] , PP = KP [R |t ] . (5.1)

1. Compute the fundamental matrix F from the decoded correspondence
pairs between camera and projector (Hartley and Zisserman, 2003, pp 279).

2. Compute the intrinsic matrices of camera and projector, KC and KP,
using some auto-calibration method, such as Drareni et al. (2009).

3. Compute the essential matrix E from the fundamental matrix as in
E = KT

PFKC (Hartley and Zisserman, 2003, p 257).
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4. Decompose the essential matrix E = [t]× R into rotation and translation
components (Hartley and Zisserman, 2003, pp 258).

5.4 Implementation
The last section introduced the general concepts behind the eye gaze tracking
algorithm. Let us now describe the actual implementation in terms of applied
methods and algorithms to execute different subtasks. The purpose of this
implementation is a prototype that can be used within two modes: The inter-
active mode provides an accurate assisted method for eye detection. It is used
as a research tool to support a first experimental analysis for recovering and
mapping the corneal reflection of a PoR among eye and environment images.
The automatic method provides a less accurate but non-assisted method for
eye detection. It is used as a demonstration system.

5.4.1 Projector-Camera Synchronization

The implementation of a real-time synchronized projector-camera system fol-
lows the model in Figure 5.3. Because pattern projection and image process-
ing are realized as concurrent processes, the camera is required to support
asynchronous access by either a hardware or a software trigger signal. Pro-
jection is accomplished with a common digital video projector operated via
graphics pipeline using OpenGL (OpenGL, 2011), and synchronizing image
acquisition with content update. Enabling VSync (vertical sync) ensures that
content update is synchronized with the vertical refresh-rate of the projector.
Double-buffering allows rendering of the following pattern while keeping the
currently displayed pattern consistent.

Since OpenGL commands are non-blocking where the actual execution
can be delayed, we need a means of synchronization ensuring that rendering
is accomplished and that the result is available in the back-buffer. A call to
glFinish() does that by waiting and returning when previous OpenGL func-
tions are completed. More fine-grained synchronization for command com-
pletion is offered with the extensions ARB_sync (OpenGL, 2009) introduced
in OpenGL version 3.2, or NV_fence (OpenGL, 2008) introduced for Nvidia
chipsets earlier in OpenGL version 1.2.1.

After completing image acquisition for the previous frame we issue the
SwapBuffer()-command of the GUI subsystem requesting the rendered pat-
tern in the back-buffer to be displayed. We need to wait until the display is
updated before performing image acquisition for the next frame. If the camera
supports only software triggering we are restricted to software synchroniza-
tion. Since OpenGL currently does not provide information about the display
update we assume a maximum value for the time duration and initialize a
system timer that fires a trigger event after a timeout DisplayUpdateTime.
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The required maximum time duration is measured in an automatic calibration
step in advance. If the camera supports hardware triggering we are able to
apply a more accurate method using hardware synchronization where we grab
the VSync pin of the graphics port signaling when the updated framebuffer
content is sent to the projector, and send a trigger signal to the camera. There
might be an additional projector-dependent latency that is also measured in
an automatic calibration step in advance. The delay Latency is either im-
plemented in the controller that transforms the VSync signal into a triggering
signal, or into the camera itself.

The described implementation uses a single PC. Increasing the number
of cameras or the complexity of the processing algorithm may require to dis-
tribute the system onto multiple PCs. In that case, additional communication
and synchronization strategies are required.

5.4.2 Correspondence Representation

To uniquely identify the location of a surface point in different camera views,
a common off-the-shelf digital video projector illuminates the surface with
patterns assigning a unique codeword to a pixel or a region of pixels. A
time-multiplex coding approach is chosen as it offers the best accuracy and
scalability. This is achieved at the expense of effective framerate since the
codewords are spread across a time series of pattern frames.

Binary Code. To realize the maximum SNR we use a binary encoding
where each frame contributes a single bit to the codewords in parallel (Pos-
damer and Altschuler, 1982). Each projector pixel is represented by its x- and
y-coordinate encoded into two binary codewords

x ∈ {1, . . . , Rx} → (x1, . . . , xNx)T , xi ∈ {0, 1} , Nx = dlog2Rxe,
y ∈ {1, . . . , Ry} →

(
y1, . . . , yNy

)T
, yj ∈ {0, 1} , Ny = dlog2Rye,

(5.2)

where Rx and Ry denote the resolution of the projector. Nx and Ny are the
required number of bits to represent the whole range of coordinate values.
Using less bits results in the effect that neighboring pixels obtain an equal
codeword decreasing spatial resolution. The number of frames in a time series
required to transmit both coordinate values is the sum Nx +Ny.

Reflected Binary Gray Code. Instead of directly projecting the binary
coded patterns we rearrange the bits of each codeword in a way that adjacent
numbers only differ in a single bit. This enables error detection and correction
under the assumption of continuos surfaces and comes at no additional cost.
The obtained representation is referred to as reflected binary Gray code, or
short Gray code (Gray, 1953; Weisstein, 2011c). Figure 5.2 shows the encoding
of pixel values into a series of Gray code patterns (Inokuchi et al., 1984).
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The binary values 0 and 1 are visually represented by the lowest and highest
projectable intensities. On the camera side, the codewords are recovered after
a complete sequence of patterns is projected and corresponding images are
captured.

Double-Frame Pattern. We use an alternating sequence of positive and
negative patterns, doubling the number of required frames to 2 (Nx +Ny).
This strategy allows for robust double-frame thresholding and makes the dy-
namic pattern imperceptible to a human observer when projected at high
framerates (Fofi et al., 2004).

5.4.3 Image Acquisition

While the projector illuminates the surface with a particular pattern we cap-
ture an image with both, environment and eye camera. We do not apply
tracking using a PTZ camera. The aperture of the lens is manually adjusted
for a particular setup to maximize the amount of captured light while still
keeping the depth-of-field large enough to eliminate focus blur. The use of
binary encoding increases robustness under environmental light what relaxes
conditions compared to the implementation of the display-camera calibration
in Section 4.4.

5.4.4 Correspondence Detection

Horizontal and vertical coordinates of the projector are encoded into two N -
bit codewords, requiring N frames under invisible projection and 2N frames
under imperceptible projection. The pattern for a single frame t contains
binary information where each surface point is either illuminated or not. This
information is decoded from the camera image using binarization where the
binary value bt at each pixel is decided by thresholding (Sezgin and Sankur,
2004). We will now explain different methods.

Zero Thresholding. For imperceptible pattern projection using an alter-
nating sequence of positive and negative patterns, double-frame thresholding
is simple and robust. The binary value is obtained as in

bt =

{
1 if

(
It − I−t

)
> 0,

0 otherwise,
(5.3)

where It and I−t denote the intensity values at the pixel in the pattern and
complement image respectively.
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With invisible pattern projection, single-frame thresholding can be applied.
A constant threshold for all pixels is usually not recommended since the im-
aged intensity does not only depend on projected intensity but also on surface
properties, eye appearance and the geometric relationship between projector,
surface, eye and cameras. To obtain a pixel-dependent threshold let us first
introduce several required per-pixel statistics, calculated over the intensity
values in a time series. These are, the minimal and maximal intensity Imin

and Imax as in

Imin =
N

min
t=1

It, Imax =
N

max
t=1

It, (5.4)

and the minimal and maximal absolute intensity difference ∆Imin and ∆Imax

between subsequent frames as in

∆Imin =
N−1

min
t=1

∆It, ∆Imax =
N−1
max
t=1

∆It, ∆It = |It − It+1| . (5.5)

Mid-Range Thresholding. This is the simplest thresholding method using
the mid-range of intensity values as threshold IT with

IT =
1

2
(Imax + Imin) , (5.6)

where the binary value is obtained by thresholding the corresponding intensity
value as in

bt =

{
1 if It > IT ,
0 otherwise.

(5.7)

Otsu Thresholding. For this thresholding method we compute the thresh-
old by applying Otsu’s image thresholding method (Otsu, 1979) to the series
of intensity values. It calculates the optimum threshold ITOtsu by finding
the binary classification that minimizes the combined spread (intra-class vari-
ance) for two classes of intensity values. The binary value is then obtained by
thresholding the corresponding intensity value as

bt =

{
1 if It > ITOtsu,
0 otherwise.

(5.8)

Mid-Range Difference Thresholding. This method is similar to the mid-
range thresholding method, but works on the absolute differences between
intensity values in subsequent frames instead of the raw intensity values. Thus,
we calculate the mid-range of difference values as threshold ∆IT with

∆IT =
1

2
(∆Imax + ∆Imin) . (5.9)
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The binary value is then obtained by thresholding the corresponding absolute
difference between subsequent intensity values as

bt,t=N =

{
1 if It > IT ,
0 otherwise,

bt,t<N =

{
bt+1 if ∆It > ∆IT ,
bt+1 otherwise.

(5.10)

After thresholding a time series corresponding to a particular surface lo-
cation we obtain N binary values bt which we integrate into a N -bit binary
number. Since a coded representation is used for transmission, the number
needs to be decoded from binary reflected Gray code by a simple rearrange-
ment of the bits. Finally, the decoded binary number is converted into a
decimal number representing the recovered projector coordinate. Figures 5.4
and 5.5 show an example series of projected patterns, captured images and
recovered results.

Identification of Coded Pixels corresponding to Direct Light Paths.
The current implementation recovers a codeword for every pixel in the image
without testing if the pixel is actually affected by projected light and cor-
responds to a direct light path. This leads to noisy pixels around the valid
areas in the recovered correspondence maps. If filtering is required, different
strategies have to be used for environment and eye image.

The environment image captures diffuse first-order reflections from the
surface. Illuminated pixels are recovered by capturing two additional images
with full projector illumination and without illumination. The mask of illu-
minated pixels is obtained by thresholding the difference image. Note that
this does not filter pixels corresponding to inter-reflections.

The eye image captures specular second-order reflections from the cornea.
To filter correct matches, we first apply the same method as used for the
environment image. However, there may still remain pixels from different
parts of the face illuminated by surface reflections. We notice that the cornea
has the highest specularity and remove other reflections that fall below a
particular level of specularity. To measure specularity, we use the fact that
reflections can be seen as a convolution of incoming light and BRDF kernel of
the material (Ramamoorthi and Hanrahan, 2001). Diffuse materials cause blur
for finer details where specular materials preserve them. Thus, the intensity
difference between pattern and complement across a time series will converge
faster to zero for diffuse reflectors than for specular reflectors.

5.4.5 Eye Detection and Iris Contour Fitting

Detecting the contour of the visible iris consists of two tasks, a rough iris
detection or tracking between subsequent frames and a detailed fitting of the
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Figure 5.4: Projector x-coordinate correspondences from coded structured light. (top) Pro-
jected pattern, environment camera image and cropped eye camera image for each positive
frame of a 10-bit Gray code. (bottom) Gray-coded and decoded result after integrating all
binarized frames.
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Figure 5.5: Projector y-coordinate correspondences from coded structured light. (top) Pro-
jected pattern, environment camera image and cropped eye camera image for each positive
frame of a 10-bit Gray code. (bottom) Gray-coded and decoded result after integrating all
binarized frames.
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iris contour. Obtaining accurate results is a difficult problem. We there-
fore provide two implementations for solving the first task, catering different
purposes.

Interactive Method. To create an accurate estimate for the iris contour
used for experimental evaluation, we apply the same strategy as described with
the implementation of the display-camera calibration in Section 4.4. We first
project a sequence of patterns and capture the corresponding camera images.
Processing is then done offline. For each eye image, we manually specify an
initial guess for the iris ellipse by selecting four points on its boundary. The
estimate is then automatically refined by iteratively minimizing the integral
of edge-distances along the arc of the ellipse.

Automatic Method. Opposed to performing accurate offline experiments,
the purpose of this method is to create an automatic demonstration sys-
tem for the eye tracking algorithm. Processing is done online. At the first
frame, we again manually specify an initial guess for the iris ellipse. At subse-
quent frames we apply an automatic model-based tracking strategy using the
Condensation algorithm (Conditional Density Propagation) (Isard and Blake,
1998) to track the initial guess of the iris ellipse. The result is automatically
refined using the same technique as with the interactive method.

5.4.6 Eye Pose Estimation and PoR Computation

The pose of the eye is estimated from the contour of the imaged iris. For
the implementation of the display-camera calibration in Section 4.4 we use
the weak-perspective method described in Section 2.2.2.3. For the current
implementation of the eye gaze tracking algorithm we do not use an automatic
zoom camera and, therefore, place the camera relatively near to the eye. Under
that configuration we cannot assume weak-perspective projection and instead
use the perspective projection method described in Section 2.2.2.2. We obtain
two possible solutions, and for each, compute the corresponding position on
the corneal surface where the gazed PoR reflects. The appropriate method
is selected from the ones described in Section 3.3 based on the knowledge
about the distance of the PoR. The correct solution for the pose of the eye
is automatically determined as the solution resulting in minimum distance
between computed PoR reflection and center of the reflected pattern in the
image. Knowing the position and orientation of the limbus plane we model
the corneal sphere with the center at a defined distance along the negative
optical axis. Figure 5.6(2) shows results using the less accurate automatic
method for eye tracking.
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Figure 5.6: Estimation result of eye gaze tracking. (1) An environment image showing a
particular frame of the time series code. (2) The cropped eye region in the corresponding
eye image with superimposed result from particle-filter based eye-model tracking showing
iris/limbus contour and center (green), corneal sphere contour and center (yellow), gaze
ray from corneal apex (yellow), and corneal reflection of PoR (red). On closer inspection,
the reflection of the illuminated surface shown in (1) can be discovered. (3) The recovered
correspondences for the eye region decoded from a complete time series including the cur-
rent frame. The corneal reflection of the PoR lies within the coded area, suggesting that
the user is gazing a point within the coded area on the wall. (4) The resulting PoR in
the environment image is obtained by code-based mapping from the eye image. Further
processing of these results may involve elimination of invalid decoded locations observed as
noise in the correspondence images (3) and (4), elimination of the binary code illumination
from the surface texture in (1), reconstruction of a depth map for the surface, and object
recognition using 2D or 3D data.

5.4.7 PoR Mapping

Let us assume the user is gazing an illuminated surface point P for which the
corresponding projector pixel is successfully decoded. peye = (peye

u , peye
v )T de-

notes the location of gazed surface point in the eye image. The corresponding
location in the projector image p = (px, py)

T is obtained by looking up the
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coordinates in both decoded eye correspondence images Ieye as

px = Ieye
x (peye) ,

py = Ieye
y (peye) .

(5.11)

Now we want to find the location penv = (penv
u , penv

v )T in the environment image
corresponding to that projector pixel. The location is obtained by searching
through all decoded projector correspondences in the environment image Ienv

and selecting the one with minimal absolute distance

d (penv) =

√
∆Ix (penv)2 + ∆Iy (penv)2, (5.12)

where

∆Ienv
x (penv) = Ienv

x (penv)− px,
∆Ienv

y (penv) = Ienv
y (penv)− py,

(5.13)

are the differences in decoded projector coordinates between the reflection of
the PoR in the eye camera image and a location in the environment image.
The resulting location of the PoR in the environment image is the result of the
eye gaze tracking algorithm. Figure 5.6 explains the mapping for an example
setup.

5.5 Experiments

5.5.1 Setup

The setup (Fig. 5.7) employs an Epson PowerLite 410W short-throw (wide
FOV) projector with 1280× 800 (16:10) resolution, 2000 lumens brightness,
and contrast ratio 500:1, located at a distance of approximately 3 m in front
of a planar surface where it creates an illumination area of approximately
3.2× 2 m. The projector continuously shows a time series of 10-bit binary
Gray code patterns at a maximum refresh rate of 85 FPS.

Image grabbing is accomplished using two Point Grey Dragonfly Express
cameras with 640× 480 resolution. Each one is connected to a separate IEEE
1394b interface to allow triggering up to 168 FPS2. The camera parameters are
calibrated using OpenCV functions. The environment camera is mounted on
a Cosmicar/Pentax H416 (C60402) lens (4.2 mm, F1.6, 60.27◦ × 47.87◦ FOV)
at a camera-surface distance of approximately 3 m in front of the center of
the illuminated area that is completely captured in the image.

A test subject is seated at a distance of 3 m in front of the surface.
The eye camera is mounted on a Spacecom JF7.5M-2 lens (7.5 mm, F1.4,
30.80◦ × 23.75◦ FOV) at a camera-eye distance dCE of approximately 8 cm

2This is the maximum framerate for this camera model in asynchronous (trigger) mode.
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Figure 5.7: Experimental setup for eye gaze tracking using coded structured light.

on a table, and located slightly below an eye of the subject to not occlude
the view of the surface. The camera captures close-up eye images under fixed
head-position and varying gaze directions.

5.5.2 Results

In the following we analyze the performance of correspondence detection from
corneal reflections using coded structured light under different thresholding
methods, high framerates and environmental light. A fourth experiment ana-
lyzes the performance of eye pose estimation and PoR reflection calculation.

5.5.2.1 Thresholding Method

Raw image thresholding is the algorithmic step deciding the value of each bit
in the time series and, with that, the error of the final result. Since there
is a large deviation in the performance of different methods, the choice is
important. We compare the four methods explained in Section 5.4.

We capture a series of eye images corresponding to a 10-bit Gray code with
alternating pattern and complement frames. A large exposure time of 33.33 ms
is applied to not contaminate the images with additional noise and introduce
a bias. Figure 5.8 compares the results for different thresholding methods.
Coded results are presented to allow a detailed visual inspection under an
increased intensity distance between decoded neighboring coordinate values.
The number of successfully decoded effective bits Neff is calculated as in

Neff =

⌈
log2

R

∆min

⌉
, (5.14)

where R denotes the resolution of the encoded coordinate and ∆min the min-
imum distance between decoded coordinate values. Note, that noise reduc-
tion and outlier removal should be performed before calculating this measure.
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Figure 5.8: Experimental results for coded structured light correspondence detection com-
paring different thresholding methods. Results for cropped eye image regions corresponding
to 10-bit Gray code captured with exposure time of 33.33 ms. (rows) Coded and decoded
result after integrating the thresholded frames. (columns) Different thresholding methods,
from left to right, (1) double-frame zero thresholding method (default), (2)–(4) single-frame
methods based on pixel intensity statistics calculated over time series, (2) mid-range thresh-
olding, (3) Otsu thresholding, and (4) mid-range difference thresholding.
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For the described scenario up to Neff = 6 bits are recovered for all methods,
however, with large deviation in noise and accuracy. The double-frame zero
thresholding method is most robust to noise and reduced contrast and, thus,
achieves the best performance. It is the natural choice in case of impercep-
tible projection where a sequence of alternating pattern and complement is
required. In case of invisible projection, the reconstruction framerate can be
doubled by projecting only the pattern frames. This reduces the duration of
a time series and, with that, motion blur for the result. Nevertheless, single-
frame methods are based on calculating statistics over the time series of inten-
sity values which introduces ambiguity and causes a larger error. Comparing
the single-frame methods, mid-range thresholding performs best, followed by
Otsu thresholding with slightly worse performance, and mid-range difference
thresholding achieving the worst result. In terms of computational complexity,
mid-range thresholding is also the most efficient of the three methods.

5.5.2.2 High Framerate

The user should not be aware of the pattern projection. With a visible-light
projector this is achieved by alternating pattern and complement at high
framerates. On the camera side this requirement results in short exposure
times with increased noise level. To maximize the amount of captured light
and increase the SNR, practical setups best apply a camera with a large
image sensor. However, fast machine vision cameras usually come with a
small sensor—1/3 in for the Point Grey Dragonfly Express. To handle this
condition, we completely open the aperture and carefully adjust the depth of
field to remove focus blur.

We want to analyze the impact of increasing framerates on the decoded re-
sult. Since software synchronization limits the system to 15 FPS, we simulate
the effect of increasing framerate by decreasing exposure time from 33.33 ms
(30 FPS) to 6.25 ms (160 FPS). Figure 5.9 compares both cases. At short
exposure, raw images and decoded result contain a lot of noise. Nevertheless,
the noise can be removed by applying a simple smoothing to the raw images.
We tested Gaussian and median filtering with blur kernel size of 3× 3, and
obtain the best results using Gaussian filtering. On the other hand, images
from long exposure contain less noise but motion blur. The quality of the
result is comparable to the one from short exposure with noise reduction. Ap-
plying noise reduction for long exposure images is not necessary and does not
lead to an improvement. Unlike expected we do not observe a performance
impact of short exposure times ≥6.25 ms.

Due to the long duration of a complete time series with software synchro-
nization the eye is not guaranteed to remain static. Eye movement leads to
inconsistent pixels that do not correspond to the same object point over a
complete time series, introducing motion blur into the decoded result which
causes decrease in spatial resolution. A possible solution lies in model-based
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Figure 5.9: Experimental results for coded structured light correspondence detection com-
paring different exposure times. Results for cropped eye image regions corresponding
to 10-bit Gray code captured with 6.25 ms (short) and 33.33 ms (long) exposure times.
(short) The noise in the result is removed by applying a 3× 3 Gaussian filter to the raw
images. (long) Images contain less noise but motion blur. The quality is comparable to the
one from short exposure with noise reduction.
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motion compensation using estimated eye poses to register light paths between
frames.

5.5.2.3 Environmental Light

Environmental light causes corneal reflections that interfere with reflections
from controlled light sources and, therefore, has a direct influence on algo-
rithms for eye feature detection and reflection analysis. Different effects can
be distinguished: Diffuse illumination creates corneal and iris reflections that
decrease contrast and SNR over the whole eye region, which leads to increased
estimation noise. The iris texture produces a spatially varying effect. Di-
rect illumination from distinct light sources create specular corneal reflection
glints that disturb techniques based on glint detection, such as active light eye
gaze tracking or the implementation of the display-camera calibration in Sec-
tion 4.4. Therefore, eye analysis usually assumes low or absent environmental
illumination.

The proposed strategy employs coded structured light to increase robust-
ness to environmental light. We analyze this behavior by varying the num-
ber of area light sources at the ceiling of the experimental room from com-
plete darkness to bright conditions. Figures 5.10 and 5.11 compare the re-
sults for encoded x- and y-coordinates respectively. To sample the whole
dynamic range without changing camera parameters, we use a short exposure
of 6.25 ms. With increasing light intensity, not only image noise decreases but
also contrast. This leads to an overall increase in estimation noise, largely re-
moved by applying a Gaussian filter to the raw images as suggested previously.
While the performance still decreases with increasing light we observe that
even at maximum light the correspondences are largely recovered. This result
is due to robust double-frame thresholding that works with low contrast, as
long as projector illumination produces a measurable camera response. Re-
maining noise and holes may be removed with an additional optimization
strategy, for example, using graph-cuts on a Markov random field (MRF)
representation.

We conclude that correspondence detection using coded structured light
is affected by an increasing amount of environmental light. However, it still
produces feasible results with potential for further optimization, in cases where
simple methods completely fail.

5.5.2.4 Eye Pose Estimation and PoR Calculation

After several experiments on the recovery of coded correspondences from
corneal reflections, we now want to analyze the performance of calculating
the corneal reflection of the PoR in the eye image. Both results are necessary
to determine the location of the PoR in the environment image.
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Figure 5.10: Experimental results for coded structured light correspondence detection un-
der increasing environmental light (x-coordinate). (left) Single frame of 10-bit Gray code
captured with short exposure time 6.25 ms. (middle) Estimation noise increases with light
intensity. (right) Noise is largely reduced when applying a 3× 3 Gaussian filter to the raw
images.
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Figure 5.11: Experimental results for coded structured light correspondence detection un-
der increasing environmental light (y-coordinate). (left) Single frame of 10-bit Gray code
captured with short exposure time 6.25 ms. (middle) Estimation noise increases with light
intensity. (right) Noise is largely reduced when applying a 3× 3 Gaussian filter to the raw
images.
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Figure 5.12: Experimental results for calculating corneal reflection of PoR. The figure shows
cropped eye regions corresponding to 8× 8 projected circular gaze markers on a planar wall
in front of a test subject. For each image, we estimate the pose of the eye and the reflection
of the PoR (red dot) that should match the ground-truth reflection of the gazed marker
(white moving blob).
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We project a sequence of a white circular gaze marker sweeping over 8× 8
locations on the illuminated surface area. For each location, we capture the
right eye of a test subject about 3 m in front of the surface and estimate the
pose of the eye. Figure 5.12 shows the results for the 64 cropped eye regions
centered at the projected contours of their estimated corneal spheres.

For each estimated eye pose we calculate the corresponding corneal reflec-
tion of the PoR. Section 3.3 describes five distinct methods depending on the
knowledge about the distance between eye and PoR. Because the camera-eye
distance dCE of approximately 5 cm is much smaller than the eye-surface dis-
tance, we apply method five. The result is rendered as a red dot that should
match the white moving reflection blob from the gaze marker. Due to noise in
eye pose estimation we observe a varying deviation of the calculated PoR from
the GT. However, the deviation never exceeds a threshold of 25 cm relating
to a visual angle of 5◦, with a mean of <3◦.

5.5.2.5 Discussion

Correspondence detection using coded structured light performs robustly un-
der practical requirements of high framerate and environmental light where
simple corneal reflection analysis usually fails or results in high noise levels.
Under severe conditions with noticeable reconstruction noise, a simple Gaus-
sian filter applied to the raw images can largely improve the result. In the
experimental scenario, where the major axis of the iris ellipse averages 150 px
and the pattern reflection spans an area of approximately 55× 35 px, up to
Neff = 6 bits are effectively recovered for all tested conditions and methods.

Double-frame thresholding achieves the best results. It is the method of
choice for imperceptible projection alternating pattern and complement. How-
ever, it doubles the duration of a time series, introducing motion blur as the
eye does not remain static. This decreases spatial resolution, corresponding to
a smaller number of effectively recovered bits. If that property is measured the
number of encoding bits may be adaptively adjusted to maximize the effective
framerate. Motion blur may also be removed with eye-model-based motion
compensation. Under invisible projection, single-frame methods can be used
to increase framerate and reduce motion blur. These methods, however, result
in a higher overall error. Simple mid-range thresholding is found to perform
best in terms of accuracy and computational complexity.

Computing the image location where the gazed PoR reflects at the cornea
depends on the accuracy of eye pose estimation and the assumed distance
between eye and PoR. Due to noise in eye pose estimation the accuracy of the
obtained location usually varies. In the experimental scenario the deviation
from the GT measures a maximum of <5◦ and a mean of <3◦ in visual angle.
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5.6 Conclusion

5.6.1 Discussion

We proposed a novel architecture and method enabling eye gaze tracking in
arbitrary dynamic environments without a dedicated geometric calibration.
It achieves non-intrusiveness without user awareness by not requiring body-
attachments and allowing larger tolerances for gaze angles, operation volume
and movement speeds. The system comprises a remote camera for tracking
a close-up view of an eye, and an environment camera capturing the scene
where gaze should be detected. The task is to identify the location of the
PoR in the environment camera image. The basic principle is described by
the following findings:

• The corneal reflection of the PoR in the eye image can be calculated
from the estimated pose of the eye.

• A mapping between eye and environment camera views can be obtained
from identifying keypoint matches in corneal reflection and environment
images corresponding to equal scene locations.

• The PoR in the environment camera image can be calculated based on
a mapping defined by the obtained keypoint matches.

We explained that keypoint matching between eye and environment im-
ages is difficult due to the overlay of iris texture, the low reflectivity and the
curved surface of the cornea. We further showed that a dense wide-area set
of matches can be robustly detected using coded structured light projection.
The pattern illumination is not noticed by the user and, therefore, does not
distract operation, either using imperceptible projection where a fast sequence
of alternating pattern and complement is projected with a standard digital
video projector, or invisible projection where patterns are projected with a
special device operating in IR light. The correspondences may be further ap-
plied to reconstruct a 3D surface model of the environment and obtain the 3D
location of the PoR.

A number of comprehensive experimental studies demonstrated the effec-
tiveness of the proposed approach analyzing its characteristics under varying
conditions. Important conclusions are:

• The use of coded structured light enables robust correspondence de-
tection under the practical requirements of environmental light, high
framerates, and image degradation, where simple active-light methods
would fail.

• Image thresholding to recover projected information from the image is
the most crucial step in correspondence decoding.
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– Double-frame thresholding provides inherent robustness. It is re-
quired for imperceptible visible-light projection. It is generally rec-
ommended under challenging conditions when half effective fram-
erate and reduced spacial resolution from eye movement are ac-
ceptable.

– Single-frame thresholding is a non-robust and ambiguous strategy,
and only recommended under low framerate and large eye move-
ment without motion compensation.

• The wide area, the high spatial resolution, and the robustness of the
detected correspondences allow for an accurate mapping between eye
and environment images.

• Eye pose estimation has the highest impact on the overall result. Passive
limbus-based eye pose estimation suffers from an increased noise and a
larger error compared to hardware-intense methods using active light
and multiple cameras. Nevertheless, the error for the current study
does not exceed 5◦ in visual angle.

5.6.2 Implications

We believe that this work has the potential to facilitate novel developments
in the community and helps to generally increase usability and acceptance of
applications “outside the laboratory”. The method provides a unique combi-
nation of characteristics, enhancing usability in conventional applications and
enabling eye gaze tracking for novel scenarios and tasks.

Arbitrary Environments The system is the first to automatically support
arbitrary scene geometry and robustly work under challenging illumi-
nation conditions. These characteristics enable a paradigm-shift in eye
gaze tracking, commonly limited to controlled planar surfaces such as
monitors or projection screens. Achieving robustness along with an easy
setup, eye gaze tracking becomes available to everyday environments
without the need of experienced supervision.

Calibration-free Applications Since an interactive geometric calibration
is not necessary, the system can be applied in situations that do not
allow for a dedicated calibration procedure. This could be for any of
several possible reasons: A lack of time, when attention is required for
the task where eye tracking should be applied to; a lack of ability, in
unsupervised conditions involving non-expert users, physically/mentally
disabled persons, and children; or a prevention of awareness, where ei-
ther seamless integration is required, or technical details and indicators
of operation cannot be exposed.



156 Chapter 5. Calib.-free Non-Intrusive EGT in Arbitrary Environments

Dynamic Setups The absence of a dedicated calibration procedure allows
applications with changing geometric relation between system compo-
nents. Examples include user tracking, mobile systems, and dynamic
objects in real environments.

The proposed method provides robust unobtrusive eye gaze tracking in
real environments, automatically determines scene structure, and links both
information. This may be beneficial for applications in different fields:

Human–Computer Interaction Requirements and characteristics of con-
ventional systems limit eye gaze tracking to laboratory environments
with experiences users. The proposed system has the potential to facili-
tate practical interfaces due to its easy setup and unobtrusive operation,
enabling many applications (Duchowski, 2002; Hammoud, 2008; Hansen
and Ji, 2010). In some situations, eye tracking can support or even be
superior to conventional interaction techniques, resulting in faster and
less fatiguing task completion. Advancements in computational sys-
tems, devices and architectures, demand for novel forms of interaction.
The proposed method supports ad-hoc usage in uncontrolled dynamic
scenarios with arbitrary surface geometry and illumination conditions,
enabling seamless gaze-based interaction in ubiquitous and ambient liv-
ing spaces. Practicable and robust eye gaze tracking can further help
elderly and disabled people to maintain their independence in various
areas, making it an essential tool for communication and mastering the
daily life (Donegan et al., 2005; Daunys et al., 2006).

Children and Infants Eye gaze tracking with children and infants is im-
portant for diagnostic applications, such as studies on visual exploration
related to provided stimuli or in natural interaction (Gredebäck et al.,
2010). Gaze information is important for understanding the process
of human development, and for detecting possible deficits, disorders or
disease patterns, such as Autism (Boraston and Blakemore, 2007). Con-
ventional systems, however, cannot be applied to children and infants
since tedious calibration or head fixation are not feasible, and head-
mounted trackers are too large and heavy. Specially developed solu-
tions still require setup efforts and experienced operators (Guestrin and
Eizenman, 2008; Franchak et al., 2010; Gredebäck et al., 2010; Noris
et al., 2010). The proposed architecture combines novel features to sup-
port application with children and infants, for example remote operation
without body-attachments and head fixation, absence of calibration, ap-
plicability in arbitrary environments, and reduced obtrusiveness through
relaxed operation conditions.

Diagnostic Studies In the past, eye tracking has been applied for diagnos-
tic studies in many disciplines including cognitive science, psychology,
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medicine, industrial engineering and marketing research (Duchowski,
2002). The requirement that measurement equipment and conditions
do not interfere with the task, or do not affect the subject, often leads
to problems with conventional techniques where experimental setups are
compromised or results become biased. The proposed technique enables
unobtrusive application for diagnostic studies in natural environments
where easy setup and operation allow researchers to focus on their target.
Linking gaze information with scene structure in arbitrary environments
allows visual and interactive data exploration, possibly leading to novel
insights and understanding.

Data Mining Diagnostic studies in eye tracking commonly observe reactions
to predefined stimuli. With the availability of eye gaze tracking in ar-
bitrary environments, the resulting data can be exploited with machine
learning and data mining techniques. Such an approach could be benefi-
cial for applications in several fields, such as the understanding of human
problem solving in algorithm design; the understanding of human be-
havior, cognitive and affective states in machine and robot interaction;
and the analysis of the correlation between gaze trajectory and scene
information in cognitive science, psychology, and medicine.

Practical Conditions The proposed technique can be applied to practical
problems in natural dynamic environments, such as industrial engineer-
ing and human factors analysis with real non-planar objects; market-
ing research and advertising analysis in physical shopping situations;
surveillance and security applications under remote and imperceptible
conditions; and driver assistance systems with seamless integration of
near and far gaze targets.

5.6.3 Limitations

The scope of the explained implementation is to provide a first proof-of-
concept and allow experimental verification of the key characteristics of the
proposed technique. There are several limitations that need to be considered
when applying the described prototype within real conditions. Implementa-
tion details for a comprehensive system also largely depend on the require-
ments of the particular application. Necessary extensions include

• a strategy for calibrating the internal parameters of the cameras (Hartley
and Zisserman, 2003; Zhang, 2000; Bouguet, 2010),

• a PTZ camera system to track a close-up region of an eye with corre-
sponding calibration strategy (Oike et al., 2004; Yoo and Chung, 2005;
Reale et al., 2010),
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• a parameterization for the Condensation algorithm (Isard and Blake,
1998) or a different algorithm for robust and accurate eye feature track-
ing in a video sequence,

• a more accurate eye pose estimation, probably using an active-light ap-
proach by integrating reconstructed scene geometry and a combination
of eye features, such as pupil and iris center/contour, and iris texture
under high resolution,

• a more accurate geometric model for the surface of the cornea, either
using an aspheric model based on anthropometric statistics, or parame-
terizing an individual shape by exploiting the projected correspondences,

• a choice of an appropriate pattern coding strategy, probably supporting
for spatio-temporal tradeoff (Battle et al., 1998; Salvi et al., 2004, 2010),

• a strategy for robust pattern decoding to reduce noise and holes, proba-
bly by integrating context information such as iris texture (Wang et al.,
2008) and geometric scene constraints,

• a strategy for eye motion compensation in temporal codes based on eye
pose and reflection modeling, and

• an extension to handle more complicated light paths, e.g., when users
wear glasses.

5.6.4 Future Work

Beside the described limitations that need to be tackled to turn the current
prototype into a practical system, there is requirement for future research.
Four concrete ideas are outlined in the following.

5.6.4.1 Correspondence Coding Strategy

The described implementation uses a binary time-multiplex coding strategy.
The major advantage is that this achieves the highest possible SNR and spatial
resolution. The disadvantage, however, is that the information for a single
effective frame is distributed along the temporal domain into a series of pattern
frames, requiring the geometric relation between cameras, eyes and scene to
remain static for the duration of a series. Regarding the proposed architecture
for uncalibrated eye gaze tracking in arbitrary environments, the geometry
can change at any time due to camera movement, eye movement, and scene
deformation. This produces motion blur among the series of images where
different light paths—carrying information from different codewords—mix at
a particular image pixel. The effect acts as a low-pass filter, leading to a



5.6. Conclusion 159

decrease of spatial resolution for the recovered coded area and, thus, a decrease
of spatial resolution in PoR estimation. However, the method will still work.

Possible solutions include motion compensation, increase of framerate, or
shift from time- towards space-multiplex coding. In case of a fixed relation
between camera and scene with the eye being the only moving object, a model-
based motion compensation strategy using eye pose information can be applied
to reconstruct the light path geometry and re-arrange the code information.
To generally compensate for motion, the simplest strategy is to increase the
framerate of the projector-camera system. This mainly depends on the ca-
pability of the hardware as decoding is found to work effective with short
exposure times. Another strategy, that can be combined with increased fram-
erate, is to dynamically balance between time- and space-multiplex coding
based on the degree of motion, for example by evaluating the error rate in de-
coding. A pure space-multiplex strategy encodes all information into a single
pattern and does not suffer from the described effects of motion blur. Never-
theless, this is commonly achieved at the cost of SNR and spatial resolution
what may be crucial when dealing with difficult geometric and photometric
characteristics in arbitrary environments and eye modeling. A possible so-
lution are novel one-shot methods dynamically adapting coding parameters
based on system requirements (Koninckx and Van Gool, 2006; Sagawa et al.,
2009; Salvi et al., 2010).

5.6.4.2 Invisible-Light Pattern Projector

For a practical system it is necessary that the user is not distracted by pat-
tern projection. Using imperceptible techniques with standard digital video
projectors we observe that the dynamic pattern is still evident at 120 Hz,
the maximum refresh rate of common stereoscopic projectors. To examine
this effect at higher speeds we assembled a row of white-light LEDs, each one
equipped with a manual-focus lens. The LEDs can be independently triggered
by a programmable controller with framerates up to 500 Hz. The projection
device is placed in front of a white planar surface. We asked test subjects to
identify noticeable artifacts while randomly switching between a time series of
alternating pattern and complement, and a permanent illumination with av-
erage pattern intensity. Gradually increasing framerate we found that flicker
becomes hardly noticeable above 200 Hz, however, was still perceived above
300 Hz by a few subjects. Beside the perceptibility of flicker, we generally
found projector illumination more distractive then common room illumina-
tion due to characteristics such as color temperature, sharp boundary, and
shadows.

While the observed effects require elaboration and careful adjustment to
set up imperceptible pattern projection, another strategy is to use invisible
light. Infrared light is appealing as it is contained in the spectrum of projector
illumination and can be recorded with cameras, while at the same time be-
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ing invisible to human observers. To evaluate the feasibility of this approach
we removed the IR cut-off filter of the camera and mounted an IR pass fil-
ter in front of a standard digital video projector with a brightness of 4000
lumens. We found the intensity of the remaining IR component highly insuf-
ficient for the intended usage. It is, therefore, necessary to develop a special
high-intensity IR projecting device. A promising architecture is the described
approach using a matrix of IR LEDs allowing for independent adjustment of
orientation and focus to provide a flexible tradeoff between projection area
and spatial resolution.

5.6.4.3 Eye Pose Estimation based on Coded Structured Light

The current implementation of eye pose estimation employs a passive limbus-
based strategy suffering from an increased error compared to conventional
active systems using at least two point light sources (Shih et al., 2000; Guestrin
and Eizenman, 2006). While providing better results, these methods need
additional hardware and involve a dedicated geometric calibration, or a fixed
arrangement of light sources in an apparatus where a small baseline can again
cause large errors. Nevertheless, there is a way to use the advantages of
additional light sources in combination with the proposed architecture, to
increase the accuracy in eye pose estimation:

Reconstructing 3D scene structure from correspondences as explained in
Section 5.3.7 creates a depth map in the view of the environment camera.
Aligning the surface model with respect to the corneal reflections in the eye
image (e.g., by minimizing the re-projection error), the point-based model
acts as a large set of constraints that can be exploited for eye pose estima-
tion or parameterization of an individual shape model of the corneal surface.
The advantages of coded structured light projection can achieve performance
improvement to conventional methods based on active light.

The gaze direction is recovered from the estimated center of the cornea
and an additional point on the optical axis, such as the centers of pupil and
iris. The pupil comes with the advantage of being tracked and segmented with
high accuracy and robustness due to its sharp edge, where the rough location
is identified from the detected correspondences within the boundary of the
iris region.

5.6.4.4 Tracking Additional Information

The task in eye gaze tracking is to track the PoR revealing the particular
location a person is looking at. Light from that location enters the eye and
projects onto the fovea, the part of the retina that achieves the maximum acu-
ity of vision due to the highest concentration of cone photoreceptors. Foveal
vision enables a person to gather detailed information directly related to ac-
complishing a particular mission or goal. Nevertheless, the fovea only subtends



5.6. Conclusion 161

the central 2◦ of the visual field, where the entire field spans approximately
180◦ in the horizontal and 130◦ in the vertical direction (Duchowski, 2007, pp
30).

The fovea is enclosed by the parafovea as the zone with high acuity, ex-
tending to about 4–5◦, followed by a sudden drop-off in acuity for areas be-
yond. These peripheral areas are important for certain functions in visual
perception, such as the recognition of known structures or the identification
of similar structures and movements. Peripheral vision further delivers con-
text information for visual perception and helps in planning eye movement to
control detailed vision. It is, therefore, necessary to not only track the PoR
but also provide the location of surrounding zones of vision to develop a com-
prehensive understanding of human visual perception. Using the proposed
eye gaze tracking architecture the entire human visual field may be extracted
within arbitrary environments.





Chapter 6

Conclusion

This work combines a range of contributions for corneal reflection and environ-
ment relation analysis from multiple eye images. Two methods were proposed
to solve a combination of problems for practical application in display-camera
calibration and eye gaze tracking. Integrated with these methods are the
solutions to two general problems in corneal reflection analysis and scene re-
construction that can be relevant to other work. It follows a short summary
of the contribution and findings made by this work.

Display-camera Calibration from Eye Reflections. A novel technique
was proposed for calibrating the geometric relation of display-camera setups
using corneal reflections. Since extensive experimental evaluation showed that
the straightforward geometric reconstruction results in a large error, an opti-
mization framework that exploits geometry constraints in the scene was de-
veloped. The technique makes display-camera calibration substantially more
practical and leads to several benefits compared to previous works:

• Since no additional hardware is necessary the method can be distributed
online and applied with existing off-the-shelf setups.

• The calibration is performed automatically without interaction and aware-
ness, enabling non-expert or disabled persons and children, or, situations
where it is not desired to disclose technical details.

• Accuracy increases with the number of images used. Nevertheless, the
minimum requirement is a single face image. This enables online calibra-
tion of dynamic setups and allows applications such as camera tracking.

• Beside reconstructing the pose of the display, the method also estimates
eye locations. This enables to realize display-based eye gaze tracking
systems without dedicated calibration.

The technique increases the number of potential application scenarios. More-
over, the developed optimization framework can be of general relevance to
other work when knowledge about the scene in form of geometry constraints
is available.
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Calibration-free Non-intrusive Eye Gaze Tracking in Arbitrary En-
vironments. A novel system architecture for eye gaze tracking was proposed
to overcome several limitations of existing techniques. It involves the following
advantages to state-of-the-art remote eye gaze tracking:

Calibration-free A geometric calibration to obtain and align a 3D surface
model with the camera-eye reference frame is not required. The infor-
mation is automatically obtained through coded structured light. More-
over, this approach supports scenarios with dynamic scene structure and
hardware poses.

Attachment-free Head attachments as applied in portable eye gaze tracking
systems are not necessary. Additionally, since gaze-mapping calibration
is not required, there is no error accumulation with changes in head-
camera relation and no performance impact when the user moves away
from an initial surface. The system is non-intrusive and does not require
awareness.

Arbitrary environment A planar surface, such as computer monitor, pro-
jection canvas, and wall is not required. Instead, surfaces with arbitrary
geometry forming the majority of our environment are naturally sup-
ported. This enables more realistic scenarios, and future ubiquitous and
ambient environments.

Free head movement Compared to stationary systems, relaxed operation
conditions in terms of gaze-angle and viewing volume allow for free head-
movement.

Challenging conditions A flexible use of coded structured light allows in-
creased tolerances for environmental light and image quality. The ben-
efits are more reliable data, an easy setup, and practical application
conditions. This enables eye gaze tracking under natural conditions, for
non-professional and untrained users.

Improved accuracy The PoR is calculated with an image-based method.
It is not affected by the distance to the scene resulting in an improved
accuracy. Moreover, the inherent negative effect of distance on image
resolution can be compensated with the high spatial resolution obtained
using coded structured light.

The proposed architecture and method have the potential to increase the
usability and acceptance of eye gaze tracking “outside the laboratory” under
conditions of practice. A range of application scenarios and implications was
discussed.
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Accuracy of Scene Reconstruction from Eye Images. Applying the
display-camera calibration framework, a large number of comprehensive ex-
perimental studies were conducted to understand the impact of individual
system parameters on the overall accuracy using real and synthetic data.

• Individual eye geometry:

– There is a significant impact of individual eye geometry.

– The impact of aspherical corneal size variation in one particular di-
mension is about one magnitude higher than the impact of spherical
size variation in all three dimensions. The error can be reduced by
increasing the spatial distribution of cornea positions parallel to
the image plane.

• Camera specifications and image quality:

– With increasing image resolution, accuracy increases non-linearly
and converges. Resolutions provided by current hardware achieve
sufficiently low impact for common setups.

– With increasing noise, accuracy decreases non-linearly. The effect
can be compensated by applying noise reduction techniques.

• Geometric relation between camera, eyes, and scene:

– With increasing distance between eyes and camera/scene, the error
proportionally increases.

– With increasing gaze angle, the error first increases gradually, and
then rapidly from approximately 25◦.

– Due to the large overall error, an increasing number of eye images
does not lead to a considerable increase in accuracy.

The findings provide a tool to assess the quality that can be expected for a
particular setup and provide an aid for the decision to where compensation
strategies are best applied.

The large overall error obtained with straightforward geometric modeling
lead to the development of an optimization framework performing joint refine-
ment of eye poses and scene structure using known geometry constraints in the
scene. Further evaluation was conducted to analyze the resulting performance
improvement:

• Optimization of results:

– The accuracy in scene reconstruction and eye pose estimation is
largely improved.

– The tolerance to system parameters is considerably increased.
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– The error decreases and converges with an increasing number of
eye images.

• An inherent two-way ambiguity in eye pose estimation is resolved.

The accuracy in corneal reflection analysis and geometric modeling highly
depends on the quality of image-based eye pose estimation. While allowing ap-
plication with off-the-shelf hardware in everyday environments, passive meth-
ods are sensitive because of unknown eye parameters and errors in pupil/iris
detection. They generally do not achieve the accuracy and automation pos-
sible with active-light methods that should be favored when compatible with
the application scenario.

More complex geometric eye models have to be tested in order to better
approximate the shape of the eye as the eyeball is slightly flattened in the
vertical plane (Snell and Lemp, 1997) and corneal topology is complex (Bo-
gan et al., 1990). According to anatomic studies and experimental evaluation
within this work, it can be beneficial to model the eye as two intersecting ellip-
soids and include its radii as shape parameters in the proposed optimization
framework. The aspect ratio of the eyeball can be calibrated from a single iris
image where the user looks directly into the camera. Strategies for calibration
of each individual’s eye geometry may lead to further improvements.

It is also interesting to consider a reorganization of the system: This work
estimates the pose of a pre-defined constant eye model and applies corneal re-
flection analysis to the reconstruction of an unknown scene structure. Related
to the idea in Section 5.6.4.3, robust corneal reflection analysis in conjunction
with a known scene structure may be beneficial to improve eye pose and pa-
rameter estimation itself.

Accurate and Robust Correspondence Matching among Multiple
Eye and Scene Images. An accurate and robust strategy for matching
correspondences among multiple eye images is important for accurate and
dense geometric modeling. This work proposed a solution based on coded
structured light projection. Particular advantages of this strategy are the
following:

• A higher inherent accuracy is achieved compared to methods relying on
passive feature extraction and stereo epipolar geometry. The method
is purely image-based and, thus, independent of intrinsic and extrinsic
calibration, scene geometry, and complexity of the underlying light path.

• A considerable increase in robustness is achieved compared to passive
feature matching in eye images, suffering from superimposed iris texture,
dynamic range compression, and geometric distortion.
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• A considerable increase in robustness is achieved under challenging prac-
tical conditions, such as environmental light, short exposure, and image
noise.

• A dense area of matches is achieved through increased spatial resolution
and interpolation/extrapolation techniques.

• A wide area on the corneal surface is covered. Compared to common
point light sources with small baseline, light is flexibly projected into a
wide environment with the ability for stacking multiple projectors.

• Using imperceptible techniques or invisible light, the dynamic projec-
tion is not perceived by human observers. Imperceptible codes can be
removed from the image data to restore the raw texture of the scene
without additional equipment.

Matching is accurately performed for more than two eye images, which is
the limitation of the previous approach Nishino and Nayar (2004b, 2006).
Moreover, it naturally supports eye and scene images allowing to integrate
information from eye image processing with high-quality images data.

This thesis proposed the idea to analyze corneal reflections of environmental
light to relate the individual (eye) with its environment. We discussed that this
creates a basis for lightweight non-intrusive techniques that require tracking of
camera, eye, and scene pose, and reconstruction of eye and scene properties.
Integrating all information into a comprehensive framework can lead to mutual
benefit for different tasks.

We showed implications to a wide range of areas including human–computer
interaction, scene/object reconstruction, surveillance/forensics, medicine, cog-
nitive science, psychology, industrial engineering, and marketing research. The
established link between eye and environment information can lead to novel
insights when analyzed with data mining techniques, and provide a capable
basis for future smart sensors in an ambient environment.

There still remains a large number of problems to be solved in order to
achieve the overall goal of accurately and robustly estimating geometry and
light field from multiple eye and scene images, with dynamic camera and scene
pose, and non-rigid eye and scene structure. However, with the novelties and
findings of this work we make a step into that direction.
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Ellipse

A.1 General Equation
A circle with radius r, centered at the origin of the coordinate system (0, 0),
can be described by the canonical implicit equation

x2 + y2

r2
= 1, (A.1)

where (x, y) denote the coordinates of a point lying on the circle. A circle is
a special form of an ellipse where the semi-major axis a and the semi-minor
axis b are equal to radius r. Thus, replacing r leads to the canonical implicit
equation of an ellipse where the major axis is aligned with the x-axis

x2

a2
+
y2

b2
= 1. (A.2)

General Implicit Equation. Any arbitrary ellipse can be obtained from
the canonical ellipse by a rotation and a translation, leading to the general
implicit equation

((x− x0) cosφ+ (y − y0) sinφ)2

a2
+

(− (x− x0) sinφ+ (y − y0) cosφ)2

b2
= 1,

(A.3)

where (x0, y0) denote the coordinates of the center and φ is the counterclock-
wise angle of rotation from the x-axis to the major axis of the ellipse.

General Parametric Form. The corresponding parametric form of an el-
lipse is expressed as in

x (t) = x0 + a cos t cosφ− b sin t sinφ,

y (t) = y0 + a cos t sinφ+ b sin t cosφ,
(A.4)

where t ∈ [0, 2π) parameterizes the counterclockwise path along its arc.
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A.2 Ellipse as a Conic Section
Ellipses are closed curves that represent the bounded case of the conic sections.
These are the curves that arise from the intersection of a circular cone and a
plane not passing through its apex. In Cartesian coordinates, a conic section
can be described by a quadratic equation in two variables

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0, (A.5)

where A, B, C are not all zero. The value of the discriminant B2 − AC
classifies the type of the conic section. If the conic is non-degenerate, and if
B2 − AC < 0, the equation represents an ellipse. If also A = C and B = 0,
the equation represents a circle. Expansion and re-organization of the general
implicit equation of the ellipse (eq. (A.3)) leads to the equation of the conic
section (eq. (A.5)), where the coefficients are given as in

A =
(cosφ)2

a2
+

(sinφ)2

b2
,

B =
sinφ cosφ

a2
− sinφ cosφ

b2
,

C =
(sinφ)2

a2
+

(cosφ)2

b2
,

D =
(−x0 cosφ− y0 sinφ) cosφ

a2
− (x0 sinφ− y0 cosφ) sinφ

b2
,

E =
(−x0 cosφ− y0 sinφ) sinφ

a2
+

(x0 sinφ− y0 cosφ) cosφ

b2
,

F =
(−x0 cosφ− y0 sinφ)2

a2
+

(x0 sinφ− y0 cosφ)2

b2
− 1.

(A.6)

Matrix Notation. Using homogeneous coordinates, the equation can be
described in matrix notation as

xTQx = 0, (A.7)

where

Q =

 A B D
B C E
D E F

 (A.8)

is a symmetric matrix representing a conic section, and x = (x, y, 1)T is a point
on its boundary. The discriminant to determine the type of conic section is
represented as in

B2 − AC = −
∣∣∣∣ A B
B C

∣∣∣∣ . (A.9)
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Ellipse Parameters. If a conic section is an ellipse, the five parameters a,
b, x0, y0, and φ can be recovered from equation (A.5) (Weisstein, 2011b). Let
us therefore define

∆ =

∣∣∣∣∣∣
A B D
B C F
D F G

∣∣∣∣∣∣ ,
J =

∣∣∣∣ A B
B C

∣∣∣∣ ,
I = A+ C.

(A.10)

Assuming the conic section is an ellipse, it holds ∆ 6= 0, J > 0, and ∆/I < 0.
Further assuming that the ellipse is non-degenerate (i.e., it is not a circle, so
A 6= C, and it is not a point, so J = AC −B2 6= 0), then the lengths of the
semi-axes a and b are

a =

√√√√√ 2 (AF 2 + CD2 +GB2 − 2BDF − ACG)

(B2 − AC)

[√
(A− C)2 + 4B2 − (A+ C)

] ,
b =

√√√√√ 2 (AF 2 + CD2 +GB2 − 2BDF − ACG)

(B2 − AC)

[
−
√

(A− C)2 + 4B2 − (A+ C)

] , (A.11)

the center of the ellipse (x0, y0) is given by

x0 =
CD −BF
B2 − AC

,

y0 =
AF −BD
B2 − AC

,

(A.12)

and the counterclockwise angle of rotation from the x-axis to the major axis
of the ellipse is

φ =



0 if B = 0 and A < C,

1

2
π if B = 0 and A > C,

1

2
cot−1

(
A− C

2B

)
if B 6= 0 and A < C,

1

2
π +

1

2
cot−1

(
A− C

2B

)
if B 6= 0 and A > C.

(A.13)

A.3 Degrees of Freedom
An arbitrary ellipse in the plane has five degrees of freedom, defining its
position, orientation, shape, and scale. These degrees are represented, for
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example, by the coefficients a, b, x0, y0, and φ. The symmetric matrix Q
representing a general conic section has six different elements. However, only
their five ratios are unique since adding a scale parameter s does not change
the equation sxTQx = 0. Therefore, the five degrees of a general conic section
can be represented by the coefficients A′, B′, C ′, D′, and E ′, which are the
coefficients in equation (A.5) normalized by 1/F .

A.4 Least Squares Estimation from a Set of Points
Since an arbitrary ellipse has five degrees of freedom and is represented by a
quadratic equation in two variables, five coplanar but non-collinear points on
its boundary are sufficient to uniquely determine the conic coefficients. It fol-
lows a simple algorithm to estimate a linear least-squares best-fit ellipse from
N ≥ 5 points, representing (probably noisy) measurements of its boundary.

Each point (xi, yi) places one constraint on the conic coefficients which can
be written by re-organizing equation (A.5) as[

x2
1 x1y1 y2

1 x1 y1 1
]
q = 0, (A.14)

where q = (A,B,C,D,E, F )T is a vector containing the unknown coefficients.
Stacking all N constraints leads to a homogeneous system of linear equations
(in the unknown coefficients)

Aq = 0, (A.15)

where matrix AN×6 is given as in

A =

 x2
1 x1y1 y2

1 x1 y1 1
...

x2
N xNyN y2

N xN yN 1

 . (A.16)

The conic vector q is the null space of matrix A. In the more general case that
allows the points to contain noise, q is the vector that minimizes ‖Aq‖. The
least squares solution q̂ of the equation system is the eigenvector correspond-
ing to the smallest eigenvalue of the square matrix ATA. It is obtained as the
last column of matrix V where A = UDVT is the Singular Value Decomposition
(SVD) of A (Hartley and Zisserman, 2003).

For more sophisticated approaches on closed-form solutions for least-squares
fitting of an ellipse to noisy data points refer to Halir and Flusser (1998);
Fitzgibbon et al. (1999).
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Real-Valued Solution of 4th-order
Polynomial Equation

Given a univariate polynomial equation of degree n in normal form as

Pn (x) = ATX = 0, (B.1)

where

A(n+1)×1 = (a0, a1, . . . , an−1, an)T (B.2)

is the vector of coefficients and

X(n+1)×1 =
(
1, x, . . . , xn−1, xn

)T (B.3)

the vector of powers of its variable x. The equality holds only for certain
values x1, x2, . . . , xn of x, that are called the solutions or the roots of the
equation. For degree at most four, there exists an algebraic method with a
formula or a finite sequence of formulas to obtain the solutions. For higher de-
gree, numerical methods are used to obtain approximate solutions. While the
methods for degree up to two are rather simple, the methods for degree three
and four are more elaborate and have different properties. Since necessary for
this work, we will explain a method to obtain the real roots for polynomials
of degree three and four, where the coefficients are also real-valued.

B.1 Quartic Equation
It follows an algebraic method (Weisstein, 2011d; Bronshtein et al., 2007)
for calculating the real roots of a quartic polynomial by solving the quartic
equation, given in normal form as in

a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0. (B.4)

Without loss of generality assume coefficient a4 = 1 by multiplying the entire
equation with 1/a4. If all coefficients are real, then there exist 0, 2, or 4
real solutions. There does not exist any analytic formula to directly solve the
quartic equation. It is, however, possible to solve for the roots in terms of the
roots of the resolvent cubic equation (Terr, 2010) defined as in

y3 + b2y
2 + b1y + b0 = 0, (B.5)
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with

b2 = −a2,

b1 = a1a3 − 4a0,

b0 = 4a0a2 − a2
1 − a0a

2
3,

(B.6)

that can be solved using the cubic formula explained in Appendix B.2. As
result, we obtain its first real root, which is either y11, y12, or y13, referred to
as y1 for what follows. The four roots of the original quartic equation then
coincide with the roots of the quadratic equation

z2 + c1z + c0 = 0, (B.7)

with the coefficients

c1 =
1

2

(
a3 ±

√
a2

3 − 4a2 + 4y1

)
,

c0 =
1

2

(
y1 ±

√
y2

1 − 4a0

)
,

(B.8)

given as

x1,2 = −1

4
a3 +

1

2
R± 1

2
D,

x3,4 = −1

4
a3 −

1

2
R± 1

2
E,

(B.9)

where

R =

√
1

4
a2

3 − a2 + y1,

D =


√

3

4
a2

3 −R2 − 2a2 +
1

4
(4a3a2 − 8a1 − a3

3)R−1 if R 6= 0,√
3

4
a2

3 − 2a2 + 2
√
y2

1 − 4a0 if R = 0,

E =


√

3

4
a2

3 −R2 − 2a2 −
1

4
(4a3a2 − 8a1 − a3

3)R−1 if R 6= 0,√
3

4
a2

3 − 2a2 − 2
√
y2

1 − 4a0 if R = 0.

(B.10)

B.2 Cubic Equation
It follows an algebraic method (Bronshtein et al., 2007; Weisstein, 2011a) for
calculating the real roots of a cubic polynomial by solving the cubic equation,
given in normal form as in

a3x
3 + a2x

2 + a1x+ a0 = 0. (B.11)
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Without loss of generality assume coefficient a3 = 1 by multiplying the entire
equation with 1/a3. The number of real solutions depend on the value of
discriminant

D = q2 + p3, (B.12)

where

q =
2a3

2 − 9a2a1 + 27a0

54
, p =

3a1 − a2
2

9
. (B.13)

Defining

r = sgn q
√
|p|, (B.14)

the following cases can be distinguished:

• For D ≤ 0, there exist the three real solutions

x11 = −2r cos

(
1

3
cos−1 q

r3

)
− 1

3
a2,

x12 = +2r cos

(
1

3

(
π − cos−1 q

r3

))
− 1

3
a2,

x13 = +2r cos

(
1

3

(
π + cos−1 q

r3

))
− 1

3
a2,

(B.15)

where

– for D < 0, all three solutions are different,

– for D = 0 and p3 = −q2 6= 0, two solutions are equal, and

– for D = 0 and p = q = 0, all three solutions are equal.

• For D > 0 and p < 0, there exists the single real solution

x2 = −2r cosh

(
1

3
cosh−1 q

r3

)
− 1

3
a2. (B.16)

• For D > 0 and p > 0, there exists the single real solution

x3 = −2r sinh

(
1

3
sinh−1 q

r3

)
− 1

3
a2. (B.17)
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