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Abstract

     [Dhe intraatomic Coulomb interaction effects on the charge

state of a moving atom near a metal surface in the time-dependent

Newns-Anderson model are investigated in the Hartree-Fock

approximation, the electron-hole pair expansion method and the

brute force numerical method for a small system. !n the

Hartree-Fock approximation, several cases of the time dependence

for parameters in the Hamiltonian are examined. The exponential

growth of spin polarization on the atom is found. The

polarization is described by a rate equation. The oscillatory

convergence in time to the equilibrium value appears in the

Hartree-Fock approximation. The approximate asymptotic solution

is obtained for the long time behavior of the spin polarization

and also the detailed analytic property of the solution is

diseussed. When initial condition of the system is symmetic in

spin space, a symmetry breaking term is necessary to reaeh the

spin polarized solution in time-evolution. In the electron-hole
                'pair expansion method, the manybody effects are investigated in a

speeial ease. In paticular, the memory effects in the

interacting case are conjectured to be same as the noninteracting

case. In the numerical method for a small system, the manybody
                                                    'effects are examined in comparison with the Hartree-IPock

results. Frorn the results, it is believed that the
                                              'Hartree-Foek approximation is rather good approximation, but

manybody treatment is necessary to examine the fraction of

negative ion.
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Sl Introduction

 51-1 Surface Physies

     Any piece of solid or liquid matter is necessarily bounded

by a surface of eontact with a vaeuum or with an atmosphere, or

by an interface of contact with another piece of solid or liquid

matter. The mere existence of this surface or interface can

modify the properties of a material, and it is through this

surface or interfaee that the material interaets with the outside

world (Friedel 1978).

     Because the surface. is the end of the solid, the structure
  '
of the surface region is modified or sometimes quite different

from that of bulk, ct"nd there frequently arise the surface

localized states or surfaee localized elementary excitations, for

instance, surface phon.,ons, surface excÅ}tons, surface polariLon$,
                                          'etc. It is more difficult to study such systems theoretically

than to study the bulk system, mainly because the Bloch theorem

does not hold in the direction normal to the surface. In other

point of view, solids face the external space, vacuum, so that

other atoms or molecules iniueract with solids -ihrough the

surface. For example, atoms or molecules are adsorbed on the

surface, or desorbed from the surface. Furthermore, atoms or

molecules moving in the vacuum are scattered by the surface. In

such solid and particle systems, there are various interesting

theoretical as well as experimental problems. In particular,

                             -- 1 --



investigation of the systems consisting of a metal solid and a

moving atom or molecule are very interesting and important,

because in such a system, localized and discrete electron states

are coupled with continuous metaUie e!ectron states, and the

Fermi statistics may be involved in the dynamical proeesses.

 51-2 Dynamical Process

     Now we consider a s'ystem eonsisting of a semi-infinite metal

and a moving atom near the surface. In such a system, the moving

atom is regarded as a perturbation to the electron states in the

metal. The strength of the perturbation depends on the distance

z between the surface and the atom, so the Hamiltonian for

elect,rons has a parameter z. If the motion of the atom is

in:?initely slow, the total electronie state stays in the ground

state oiA ihe Hamiltonian H(z) at every di$tance, that is the

adiabaÅ}uic process. In such cases the charge state of the atom

observed after scattering does not depend on the perturbation or

the trajectory of the atom. That is simply the ground state of

the system where the atom i:s infinitely separated from the metal

surface. When the atom moves with a finite velocity, the

electronic state cannot respond immediately to the variation of

the pertubation. Therefore the electronic state can be neither

in the ground state nor in the eigenstate of H(z). The state is

described with the linear combination of the eigenstates of H(z).

Thus physical quantities observed after scattering are found to

be distributed, and the distribution depends on the history of
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the system reflecting the motion of the atom, that is,

nonadiabatic or dynamical effecLs appear (Hagstrum 1954, 1961,

Blandin, Nourtier and Hone 1976, Bloss and Hone 1978, Brako and

Newns 1981). Since the metal has continuous one 'electron states,

theoretical studies on dynamical process of sueh a system are not

so simple and are difficult particularly for the interacting

electron system. In recent years more and more atom scattering

experiments have been done and the effects of the interaction

between electrons seem to be recognized. The necessity of the

theoretical studies for the interacting electron system seems

urgent (Makoshi, Kawai and Yoshimori 1984, Yoshimori, Kawai and

Makoshi 1984, Yoshimori, Makoshi and Kawai 1985, Kawai, Makoshi

and Yoshimori 1986).

 51-3 Charge Transfer

     THe low energy atom or ion scattering is an important

technique to analyze the properties of a surfaee (Hagstrum 1954,

1961, Smith 1971, 1976, Erickson and Smith 1975, Sau and Merrill

1973, Wunnik, Brako, Makoshi and Newns 1983). This technique was

used earlier by Hagstrum. While an atom is near the surface,

e!ectrons, which carry charge, transfer between the atom and the
                                         'surÅíace. The electronic structure of the surface as well as the

motion of the atom affects the distribution of the eharge states

on the scattered atom. The mechanism of th,e charge transfer

processes are classified into two groups. One of them is the

Auger process, and the other is the direct resonance process.
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When there is a deep lying unoccupied level in a moving atom, the
Auger neutralization process is most dominant; He+ scattering

experiments are a typcal case of this. Early theoretical
                            'investigations of this Auger neutralization process were done by

Hagstrum (1954). When a valence level of the moving atom lies in
                                              'the metal conduction band, the direct resonance process between

the valence state and the conduction band is dominant for charge

transfer. If a core state level of the metal is near the

ionization level of the moving atom, the direct process is also

effeetive (Erickson and Smith 1975). The first theoretical

detailed analysis on the direct charge transfer process in

surface problem was done by Blandin, Nourtier and Hone (1976).

In this thesis, situations are considered that the valence level

of the atom lies in the conduction band, and the Auger process

will not be considered.

 ss1-4 Newns-Anderson Model

                 '

     The time-dependent Newns-Anderson model has been used

intensÅ}vely to analyze the dÅ}rect charge transfer process on the

system consisting of a metal surface and an atom moving near the

surface. The Anderson model was invented to analyze the

magnetism of the dilute magnetie alloys by Anderson (1961).

Though the Anderson model is very simple, the model has the

wealth of physics. The model describes well the magnetic

properties of the system. The Kondo effect (Kondo 1969, Wilson

1975) has been one of the central topics on the model, the
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valence fluctuation effect (Haldane 1978) has been also. Now the

rigorous solution of the model is obtained, which was discovered

about 20 years after the Kondo effect (Andrei 1980, Wiegman 1980,

Okiji' and Kawakami 1984).

     The Anderson model had been considered to serve as a good

model for ehemisorption problem on metal surfaces, (Bennet and

Falieov 1966, Edwards and Newns 1967, Grimley 1967, Newns 1969).

In the su]rface problem, the chemisorbed atom on the surface

corresponds to the magnetic impurity in the metal, the surface

states and the conduction states in the semi-infinite metal to

the conduction states in the metal. In particular Newns has used

the model to the equilibrium problem extensively, and has

achieved great success in understanding the ehemisorption on the

metal surface(Newns 1969, Muscat and Newns 1978). Thus, when the

Anderson model is empZoyed to the surface prob!em, the model is

often called the Newns-A•nderson model or Anderson-Newns model.

     When we make an app, r• oximation that in surface scattering

problem the atom moves along a classieal trajectory, the position

of the atom is determined with time. In this approximation, the

strength of the perturbation by the atom to the e]eetronic state

of the metal surface depends on the time explicitly. This is

called the trajectory approximation. The time-dependent

Newns-Anderson model with time-dependent parameters was used

earlier by Toulouse to discuss the charge transfer problem

between an atom and a metal surface (ToulLouse 1974); this is

probgbly the first use of the time-dependent Newns-Anderson

model. Many authors have used this model to discuss the eharge
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transfer problem. There also many studies of the energy

dissipation probability when an atom is scatte]red by a metal

surface (Brivio and Grimley 1979, Nldrskov and Lundqvist 1979,

Sch6'nhammer and Gunnarsson 1980, Brako and Newns 1980). In this

thesis the charge transfer problem is investigated, and the

energy dissipation probability problem is outside of the scope.

In the Anderson model for the dilute magnetic alloys, it is well

recognized that the intraatomic Coulomb interaction in the

impurity atom plays a eentral role. The effeet of the

interaction in the time-dependent version, however, has not been

investigated so far except for two cases, that is, the rigorous
                                               ;hexponent of the X-ray absorption singularity (Yamada and Yosida

1978) and the Hartree-Fock treatment also for the X-ray

absorption spectra (Schb'nhammer and Gunnarsson 1978). In the

surface charge transfer problem, it is also important to sLudy

the effect of the interaction on the moving atom in the

time-dependent Newns-Anderson model.

 Sl-5 Purpose of Investigation in this Thesis

     ]n this thesis, the eifects of the intraatomic Coulomb

interaction is investiga`ued in the time-dependent Newns-Anderson

model on the charge transfer between a moving atom and a metal

surface. In the section (2) the non--interacting case of this

model will be surveyed. In the seetion (3) the effects will be
                                                       'treated in the Hartree-Fock approximation, and then they wUl be

treated in the manybody calculation methods (the sections (4) and

(5)).

                              - 6-



 S2 Time-Dependent Newns-Anderson !vfodel

     In this section, the known results on the time-dependent

Newns-Anderson model are briefly reviewed.

              '

 52-1 Trajectory Approximation

     We consider the systern eonsisting of a semi-infinite metal

and an atom moving ltear the surface with kinetic energy !ess than

a few hundred eV, the valence level of which lies in the

conduction band. In such a system, the core electrons of the

metal and the atom do not participate in the charge transfer

between the metal and "uhe atom. Ihe total Hamiltonian of the

problem is

     H=- IIii?II vft+v(R)+H.(R), (2-i)

where M and R are the mass of the moving atom and the coordinate

of the atom, respectively, V(R) is an adiabatic potential Åíor the

atom and He(R) the Hamiltonian for the eleetronie system. Since

the first term in Eq.(2-1) does not commute with the third, it is

generally difficult to solve the problem. The trajeetory

approximation has been employed for this difficulty to be

avoided. In the approximation, it is assumed that the atom moves

along a given classical trajectory; the position of the atom is

determined with time. When the kinetic energy of the atom is noL

so small, the position uncertainty of the atom due to the
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uncertainty prineiple is not so large, and the energy diSsipation

during the seattering is much less than the kinetie energy, so

that distribution of R for He(R) is not so wide. Thus the

trajectory approximation is justified in the situation of larger

kinetic energy of the atom; uncertainty of O.IA ' corresponds to

kinetic energy of 8eV for the hydrogen atom. There are also

studies to improve the trajectory approximaLion (Newns 1985).

The Hamiltonian He(R) depends on time explicitly through the

motion of the atom in the approximation, so that the Hamiltonian

for the electronic system can be rewritten as He(t). In the

trajectory approximation, the problem left is to solve the

electronic moLion. The time-dependent Newns-Anderson model is

employed for He(R). Thus He(R), now simply denoted as H, is

written as

  H = lu ekoCioCko + g e.(t)CtauCau + {o(Vk(t)CtaoCko + h.c•)

      +u(t)cg+c.+cggc.+, (2-2)
where Cao and Cko are annihilation operators of electrons in the

orbital on the moving atom with spin o, and in the metallic

electron states, including the conduction band and surface

states, with quantum number !fk't, respectively. Since in the

surface region the Bloch theorem does not hold in the direction

normal to the surfacee as mentioned already, the wave vectors

parallel to the surface are good quantum number, but not normal

to the surface. For this reason, the quantum number itkn in

-8-



Eq.(2-2) runs over in the wave vector parallel to the surfaee and

the quantum number for the motion normal to the surface.

Furthermore ek is one-electron nergy of the metallic electron

states, Ea(t) time-dependent energy level of the electronic state

in the atom, Vk(t) the time-dependent admixture matrix elemene

between the metal states and the atom state, and U(t) the

time-depedent intraatomic Coulomb interaction. In the following

the Fermi energy is chosen as the origin of one glectron energy

levels, and the unit of ti=1 is used.

     The time dependence of the parameters is determined through

the position dependence of the parameters and R(t). The simple

assumption often made on the trajectories is of the constant

velocity and the parameters are assumed to depend simply on Z(t),

the z-component of R(t). When the parallel velocity is very

large, however, the Doppler effect must be considered (Wunnik,

Brako, Makoshi and Newns 1983). The time-and k-dependence of the

admixture Vk(t) is quite often separated as Vk(t)=Vku(t) for .

simplicity, where u(t) expresses the time dependence, and Vk is a

value of Vk(t) when the atom is nearest to the surface. The time

dependence of u(t) so far used is given by, for example,

  u(t) = exp[-z(t)/or] = exp[--yltl],

  u(t) = exp[--(z(t)/or)2] = exp[--(yt)2],

  u(t) = 1/[1+(z(t)/or)2] = i/[1+(yt)2], (2-3-a)

-9-



   where a and v are the decay length of the admixture, the

velocity of the atom normal to the surÅíace, respectively, y is

proportional to v. The time dependence shown in Eq.(2-3),

especially the third, is somewhat artificial, which is assumed

in order to simplify the calculation. If we discuss the

sputeering or sticking case, u(t) should be constant 1 at t<O or
             '
t>O respeetively. Furthermore, the simplest assumption is

sometimes done (rvfakoshi, Kawai and Yoshimori 1984, Yoshimori,

Kawai and Makoshi 1984, Yoshimori, Makoshi and Kawai 1985, Kawai,

Ivlakoshi and Yoshimori 1986); it is assumed that the atom arrives

at the surface region at time to, and interacts during the period

T, and scattered out Lo the vacuum. During the interacting

interval T, the admixture is approximated to be some average over

a surface region, and at time t<to and t>to+T, the admixture is

assumed to vanish. When the admixture does not exist, the

eZeetron can not transfer between the atom and the metal, so that
  'charge state on the atom remains unchanged at t>to+T. Thus, for.

this simplest assumption, the time dependence of u(t) is to be

taken as

   u(t) - [ ? tt><oO . (2-4)

     ln a simplified model, ea and U are taken constant during

the time when the admixture exists. The image charge correction

are considered in another model, that is,

-10-



                      2     ea(t)=Eaoo+th4 '

                    2     U(t) = U. - th ,

where Z(t) is the distance from the surface to the

forms are found in literature, for example (Tukada

1985, Lang 1985),

    e (t) =A+B Z(t).
     a

In this example, the level crossing with the Fermi

important.

 52-2 Time-Dependent Expectation Value of Electron

      Number

    (2-5)

atom. Other

and Shima

     (2--7)

level is

Occupation

     In this subsection, the results on the charge exchange for

the case of U=O in the time-dependent Newns Anderson model are

briefly summarized, that is a one-particle problem as will be

seen. In the one-particle problem, spin is decoupled in the

Hamiltonian, so that, the spin index u wUl be suppressed in the

following. The expectation value of the electron occupation
                           'number on the atom, n(t)=<tlCatCalt>, is the quantity to be

calculated for discussing the charge transfer problem, where lt>

is the electronic state at time t in the Schrb'dinger

representation. The expression of n(t) was obtained firsUy by
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Blandin, Nourtier and Hone (1976) who used the Keldysh Green

function. In their paper, it is shown that there is no anomalous

behavior in n(t) due to the infrared catastrophe (Anderson 1967)

at least in the one-particle problem, which is not limited to the

time-dependent Newns-Anderson model. Bloss and Hone (Bloss and

Hone 1978) showed that the expression of n(t) is the same as that

by Blandin, et al. with a much simpler method. The method of

Bloss and Hone is shown in the following. The Hei$enberg

equations of motion are obtained as

    ac (t)
    a ta = i[ H(t), C.(t) ]

            = b iE.('t)C.(t) - ijll Vk(-t)Ck('t),

    a ck(t)
    at " i[ H(t), Ck(t) ]
                             --AJ-            =-iEkCk(t) •- iVk("iJ)C.('t), (2--7)

where Ca(t), Ck(t) and H(t) are the Heisenberg operators

corresponding to the Schr6dinger operators Ca, Ck and H,

respectively. The eoupled Eq.(2-7) is reduced to the

integro-difÅíerentia! equation for Ca(t), that is,

                                                 '  l llia(t) = - ie.('t)c.(t) -- illl Vk(t)lil'odT exp[-iek(t-T)]Vjl(T)Ca('t)

                                '                                                    '                        ttt t
            - il Vk(t)exp[-iek(t--to)] Ck(to) • (2-s)

rn the solution of Eq.(2-8), Ca(t) is to be expressed in terms of
C.(to) and Ck(Lo), so that n(t)=<C.t(t)C.(t)> is expressed in
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terms of <Cg(-oo)C.(--co)> and <CR(-co)Ck(-co)> with the initial

condition to=-co and Vk(-co)=O. Thus, it iS shown that the Fermi

statistics is only in the initial condition, and there is no

anomalous behavior due to the Anderson infrared catastrophe in
                   '                              'n(t).

     With Lhe assumption Vk(t)=Vku(t), the faetor in the second

term in Eq.(2-8) is rewritten as

  liVkl2exp[-igk(t-T)] = " J de A(e)exp[--ie(t-T)], (2-g)

with

  A(e)= Tr ill iVkl26(e-Ek)• ' (2-io)

The integral (2-9) is rew]ritten as 2A6(t-T) with a$sumption that

A(E) takes a constant value A, and the band width is infinite,

that is the wide-band limit. In this limit, the expression of

n(t) is obtained as

- 13 --



                               ' sin[ ('t16.(T) dT ]

 .(t)=.. all.dtiJ-t..dt2u(ti)U(t2) ,i.h['#?ti- t2) ]

            '
       Å~ exp[ AIIIiu2(T) dT + AII2u2(T) dT ]

       + [n(-•co) -- -liL ]exp[ -2AJII.u2(T) dT] + {i ,
                                                           (2-11)

where B=1/kBT (T is temperature of the metal). [rhe expression is

derived by Blandin, et al. (1976) for T=O and diseussed by Brako

and Newns for T-O (Brako and Newns 1981).

 52-3 Memory Factor

     There is the term including n(-co) in Eq.(2-11). This term

represents the memory of the initial condition of n(t). Thus, it

is usually caUed the memory term (Brako and Newns 1981). The

exponent of the memory term is '

       t   2A i.-.u2(T) dT. ' (2--12)
When the energy level ea(t) in the atom state is far from the

Fermi level oÅí the metal E]? (=O), this is easily obtained at T=O

in the limiL of le.(t)l"co

. 14 -



 n('t) - e( -e.) = [ n(-co) - e(-e.)] exp[ -2AJIIi.u2(T).dT].• (2-i3)

This means that the memory effect dominates, when lealÅÄco- The

solution (2-13) satisfies the rate equation

  gnit) =- 2Au2(t)[ n(t) -e(-e.) ], (2-i4)

                                                             '                                                       'whieh can be derived simply from the usual 'tgolden rule" too.

When the level ea(t) lies near eF, the first term in Eq.(2-M) is

important, where the Fermi statistics in the initial condition

plays an important role.

     If the velocity of the atom is slow enoutgh, the exponent

(2-12) is to be very large. In this situation, the memory term

beeomes negligible, that is, the memory of the initial state is

erased. In the first term in Eq.(2-11), there is the faetor with

the form

             t    exp[-Alt,u2(T) dT ], (2-ls)
               '
where tr is the integration variable. In the case of very slo-wr

velocity, the time interval t-V>>1/A does not contribute to the

integration in Eq.(2-11), when the exponent of Eq.(2-15) is large

negative. Therefore, the incoming trajectory to the suface does

not affect the obserbed charge state of the atom with tÅÄco, and

only the outgoing trajectory affects it. When u(t)=exp(-yltl)

with sufficiently smaU y, and sa=constant, n(oo) turns out to be

-15-



 n(oo) = lyf de f(e,T)/eosh[ TT(s--e.)/2y ], (2--16-a)

which holds for A>>y. In the above f(e,T) is the Fermi

di$tribution function. For T=O, the integration with respect to
e can be carried out, that is, n(oo)=O•5-tan'-1[sinh(Tea/2y)]/T.

under the additional condition leal>>y,

n(oo)=e(--e.)+2sign(E.)exp[-Tle.l/2y]/Tr, (2-16--b)
      '

                  'is obtained at T=OK. A more general but approximate form of n(oo)

is obtained by Brako and Newns (Brako and Newns 1981), using a

saddZe point method, again under the condition A>>y at T=O, that

is,

 n(oo)= -- i.ito At tg(:2•l,: to exp[iltto:,i,- e(T)dT - 2RelcA(T) dT]

       +e(-E.), (2---17)
where to is the solution of A(t)+iea(t)=O in the complex plane
                                           'and the integration path C runs from to to the real axis at co.

In Eq.(2-16), it is assumed that ea(t) does not change sign along

the outgoing part• of the trajectory. From Eq.(2-17) n(co) can be

written in the form n(oo)=e(-ea)--Aexp(-B/v) (v is velocity of the

atom normal to the surface as before.) In the high temperature

limit kBT>>y, the integration (2-16-a) gives, n(oo)=f•(ea(V),T),

where t' is defined by 2yt'=log(A/y) (Brako and Newns 1981).

There is sometimes the ease that Ea(t!) is very different from

                             -16-



ea(co) which i$ the value at infinite distance from the surface,
    'for instance, Na/W(110) problem (Overbosch, Rasser, Tenner and

Los 1980). In order that the memory is erased, it is necessary

that the veloeity is much less than Act (u(t)--exp(-vt/ct) is

assumed). If the admixture decay length or is Laken IA and A lev,

the normal velocity v is necassary to be much less than
v=1.5Å~105m/s, which correspond to the kinetic energy 120eV for H

and 2.8KeV for Na.

 g2-4 Finite Width Band

     In the subsections (2-2) and (2-3), the cases of the

wide-band limit are discussed mainly. Another limit to the

wide-band limit is the surface molecule limit. In the surfaee

moleeule limit, it is assumed that the admixture matrix element

is much larger than the 'larrdth of the conduction band. In suc]

limit, the Hamiltonian (2-2) can be rewritten approximately as

       '
 H = eo(t)c8co + [ w(t)c8c. + h•c•] + e.(t)cgc., (2-ls)

where

               ' So(t) =.2keklVk(t)12/w2(t),

 COt = Zk[ Vk(t)/W(t) ] Cf,

                               ' w(t) -[ 2klvk(t)l2 ]1/2. . (2-lg)
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The Hamiltonian (2-18) corresponds to the two atom collision

process. The charge transfer'in this p]rocess is discussed Åíirst

on the surface ca$e by Tully (1977). In the simplest case

ea(t)=eo(t)=constant, n(t) is obtained as

                '                       ..                   t                                            t n(t) = n(-co)cos2[I.-.dT w(T)] + no(-•eo)sin2[J--.dT w'(T)]. (2--2o)

                                              '    '                                                '
The integral in Eq.(2-20) is in proportion to 1/v (v is the

veloeity of the atom normal to the surface) with the eonstant

veloeity trajectory, so that observed charge $tate n(co) show an

oscillatory behavior with 1/v (Erickson and Smith 1975, Tolk,

Tully, Kraus, White and Neff 1976).

     There are not so many studies of chairge transfer in the

finite band case which are neither the wide-band limit nor the

surface molecule limit. There are a few numerical calculattions

in a linear chain model of metal (Muda and Hanawa 1980,

Sebastian, Jyothi Bhasu and Grimley 1981).
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S3 Hartree-Fock Approximation

 ss3--1 Eleetron Occupation Number

     As mentioned in the section (1), the effect of the

intraatQmic Coulomb interaction in the tirne-dependent
                                                        'Newns-Anderson model has not been investigated in the surface

eharge transfer problem, though its importance is recognized. We

have started to analyze the effects of the inLeraction, using the

'time-dependent Hartree-Fock approximation (Makoshi, Kawai and

Yoshimori 1984, Yoshimori, Kawai and Makoshi 1984, Yoshimori,

Makoshi and Kawai 1985, Kawai, Makoshi and Yoshimori 1986). The

time-dependent expectation value of electron oceupation nurnber
          t (t)c                   (t)>) appears in the Hamiltonian in then (t) (-<C
          au                au o
Hartree-Fock approximation, and must be determined in the

self-consistent way. Even if a physical quantity of interest is
                                      'other than the charge transfer, for insLance, the energy .

dissipation spectrum (Yoshimori, Makoshi and Kawai 1985), n                                                              (t)
                                                            o
must be known to determine the time-dependent E[artree-Fock

Hamiltonian, that is, nu(t) are the key quantities in the

time-dependent Hartree-Fock approximation. In the Hartree-Fock

approximation, the Hamiltonian (2"2) iS ..-.aPPrOXiMated bY ....

  H = luSkCktoCko + g eo(t)CatoCao +[ loVk(t)C.tuCko + h'Ce ],,(3-1)

                                                   '

where
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  e (t) =e (t) - ue                               (t). (3-2)                      + U(t)n
           am                             -o   o
                                               '
                                         '
The energy level of the orbital in the moving atom is assumed

spin-dependent, that is uem where u means + for spin ", and - for

spin ". When U is large enough, no have a magnetic solution

neq,oineq,-o in the equilibrium, which is obtained as
ne(},u=1/2-tan-1[(ea+Uneq,-o)/A]/vr (Anderson 1961). When the

initial eondition is symmetric in spin space (no(-oo)=nnyo(--co)),and

em==O, everything is symmetrie in spin space. In this situation,

the time-dependent solution nu(t) never goes to the magnetic

solution even for large U. Thus, the pararneter em is introduced

here to break the symmetry in spin space. The parameter e                                                            may                                                          m
corr• espond to the magnetic field on the atom and the physical

meaning will be discussed later. The expression of nu(t) in the

Har, tree-F•ock approximation is obtained in the wide-band limit as
    '         '                                                '

                ' sin[ (tieu(T) dT]

 ..(t) = - gll.dtllt-.dt2U(tl)"(t2) sinh['i'?tl'- t2) ]

         . ..I,[ (tl.2(.) d, + (t2u2(.) dT ]

                lt tt
         + [n(--oo) -- {i- ]exp[ -2I[!i.u2(T) dT] + {i- , (3--•3)

                                 '
                                                  '                                              'whe]re time is sealed in 1/A (h=1) and energy in A. These units
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are used throughout in the remaining part of the seetion (3).

Equation (3-3) is the same as Eq•(2-11) except that sa(T) in

Eq.(2--11) is ]replaced by eo(T) in Eq.(3-3)• In this thesis, only

the cases at the absolute zero temperature are investigated.

                                                               (L)Equation (3-3) is coupled nonlinear integral equations for n
                                                              o
and n-u(t), and it is impossible to solve it analytieaUy. In

the following subsections, Eq.(3-3) will be solved numerically on

the assumed time dependence of the parameters. From solutions of

Eq.(3-3), fractions of charge state are determined within the

Hartree-Fock approximation as

IO(t) = Z.n.(t)[1-n-.(t)]

= N(t) - 2I-"(t),

I' (t) = g               (t)]          [1-n
         UU

=1 - N(t) + I-(t),

I' (t) = n+(t)n"(t),

N(t) = n"(t) + n+(t),

M(t)

where

atom,

 = n+

IO(t)

posit

(t) - n+(t), (3--4)

, I+ (t) and I-(t) are the fraction of the neutral

ive ion and negative ion, respectively, N(t)
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corresponds to the total charge on the atom and M(t) the spin

                                         'polarization on the atom. '

 S3-2 Sudden Switch-on Case

     The simplest case of the time dependence of parameters is

assumed in this subsection; the admixture exists only in the

inside region of finite distance L from the surfaee, where U(t),

ea(t) and Vk(t) are assumed to have average constant values. In

this case, the admixture starts suddenly when the atom arrives at

the region and remains constant during the time interval 2L/v

(v i$ assumed to be constant). After the atom is scattered out

from the region to vaeuum, the admixture stops and electrons can

not transfer between the surÅíace and the atom. The charge states

of the atom aL the distanee L remain after. Thus, for this

simplest assumption, the time dependenee of u(t) is to be taken

as Eq.(2-4), and U(t) and ea(t) are assumed to be constant U and

Ea (Makoshi, Kawai and Yoshimori 1984, Yoshimori, Makoshi and

Kawai 1984, Yoshimori, Kawai and Makoshi 1985, Kawai, Makoshi and

Yoshimori 1986)•

     The results of numerical calculations in the symmetric case

of U=16 and ea=-8 are shown in Fig.(3-1) Åíor em=O.1, O.Ol and

O.OOI with the initial condition n"(O)=n+(O)=O corresponding to

positive ion incoming. Since U>T is the condition for the

magnetic solution in equilibrium in the symmetric case ea=-U/2,

the case of U=16 and ea=-8 is under a strong magnetic condition.

The solid lines represent no(t) and the dashed line N(t).
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Results of asymmetric case are $hown in Fig.(3-2). In Fig.(3-1)

the total electron number N(t) $aturates to its equilibrium value

(=1) much sooner than the spin polarization M(t). In Fig.(3-1)

and Fig.(3-2) there is overshooting of N(t). XnitiaUy the state

on the atom is empty and eo(t) is negative, that is, below eF

(==O), then the bQth spin electrons transfer from metal to the

atom with the rate A. This determines the initial slope of

n (t), which is 1 (time is in unit of 1/A). As electrons
 o
transfer to the state, eu(t) is pushed up because of the

Ha]rtree-Fock field, and soon su(t) becomes positive (above EF).

For positive eo(t), N(t) decr'eases with time. This overshooting

of N(t) is seen also in Fig.(3-3) for U=O and ea>O, and in

Fig.(3-4) for U-O and Ea<O which has a non-magnetic solution in

equilibrium. In Fig.(3-5), the numerical resulÅ}us in the

symmetric case under the initial condition nit(O)=1 and n+(O)=O,

where e is not needed. Under this condi-vicn the electron-hole
       m
symmetry holds, so that N(t) takes the va"lue 1 at any time.

There is the oscillatory convergence of no(t) to the equilibrium

value in Fig.(3-1) and Fig.(3-2), and there is aZso in Fig.(3-5),

though it is small in amplitude. This oscillatibn will be

investigated in detail in the subsections (3-3) and (3-4) (Kawai,

Makoshi and Yoshimori 1986). We can see the exponential-like

growth of M(t) dependent on em in early time region in Fig.(3-1).

This growth is discussed in the next subsection (3-3) (Makoshi,
Kawai ' and Yoshimori 1984).

                  '
 S3-3 Exponential Growth of Spin Polarization
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     As it is mentioned in the subsection (3-2), M(t) in

Fig.(3-1) shows exponential-like growth and its starting time

depends on em. After M(t) growth, eurve shapes for various

values of Em fit to each other almost completely, where it is

necessary to shift the origin of time L. In this subsetion, this

exponential-like growth is investigated under the symmetric

condition e =--U/2. Under the condition where the results of
           a
Fig.(3-1) are obtained, Eq.(2-3) is rewriLten as

                   '
  .(t)=g,f8dt,l8dt,eXP[iit;ttil`2] ,inCl:.{g(i-N(T))+u(gM(T)+e.)}]

                                 '

       +g(1-exp[-2t]). (3-5)
Since em and M(t) are small wlen t is not so large, we negleet

the second order of M(t) and em. Furthermore the second order of

the integration for 1-N(T) is neglected also in Eq.(3-5),

because, for large t, N(t) goes soon to the equilibrium value

(=1) and for small t the integration interval is smaU. Thus the

equation for M(t) is obtained from Eq.(3-3) as

                               '
                                        ' M(t) = \l8dtilt, dt2 exp[ -2t + ti+ t, ] M( ti; t2 )

        +e.;(1-exp[-t])2, (3-6)
                                                     '
                 'where the integration for M(T) in Eq•(3-5) is approximated by
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(tl't2)M((tl+t2)/2)• From Eq•(3-6) the linear differential

equation for M(t) is obtained as

  g21ilSt) + 4gMÅít) - 4(,Uif-i)M(t) = e.2(2-exp[-t]) - 2;Uifexp[--t]M(g)e

                                                          (3-7)

Neglecting the term of M(t/2), which can be shown to be small

from the obtained solution, we get the solution of Eq.(3-7)

easily. The exponential growth term of the solution is

 M(t) ct e           exp[ 2(an -1)t ]. (3-8)
                '
The growth occurs only for U>T that is the Hartree-Fock criterion

for magnetic solution in equilibrium. It is interesting that

/(i-f appears in the exponent, because it is not regular as a

function of U at U=O. The solution of Eq.(3-7) fits well to 'u"he

numerical results of )vl(t) (Makoshi, Kawai and Yoshimori 1984).

The Eq.(3-8) shows that the curve shapes of M(t) after growth o:,"

lv{(t) occurs does not depend on em, which is seen in Fig.(3-1).

Thus Eq.(3-8) is valid generally for the growth of M(t). It may

be eonsidered that the artificial parameter Em is caused by the

spin fluctuation effects, and further consideration is necessary

to determine the value of e .
                          m

 S3--4 Oscillatory Convergence

     In this subsection the oscillatory convergence of nu(t) seen

in Fig.(3-1) is investigated in detail (Kawai, Makoshi and
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Yoshimori 1986). Defining Xo(t) as difference no(t)--no(oo)

between nu(t) and its equilibrium value, we have the following

approximate equation linear in Xu(t), which is valid for

sufficiently long time

 dXgit) .# fÅédt, exeS-t') sin(e6(ep)t')

             t          " fodt'Ko(t,t-t')X-o(t') - 2Xo(t) , (3N9)

with

 K.(t,t--t') = ;IUL flEIE,eXl:('T) cos(e,,(co)T) • (3-io)

Since N(t) takes a constant value 1 where the oscillation is

appreciable as seen in Fig.(3-1), we consider the case of

Xo=-X-o(t) under the symmetric condition ea=-U/2. Neglecting the

first term in the right hand side of Eq.(3-9), extending the

lower integration limit from O to -co, and approximating

Ku(t,t-t') by Ku(co,t-t'), we get the homogeneous linear

integro-differential equation for M(t) from Eq.(3-9) in which

Xu(t) and -X.-o(t) are replaced by m(t)

                    t d.:Åít) = -2m(t) + l-g]trK.(oo,t-tt)m(tr), (3--ii)

                 '
where m(t)=M(t)-M(co). For the integro-differential equation, we
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assume the solution takes a form of m(t)=Aexp(Xt), where x is an

undetermined complex quantity. ]Trom the equation for m(t), the

equation for X is given by

 A= -2+ -II;.T log(1+ )t (2+x)cos26) , (3 -p1 2)

with

        -1 6= tan (e.) ,

 e. :' IEo(co)l ,

where tan-1(x) takes values between -T/2 and T/2. Equation

(3-12) is valid for Rek-1. We pick up the solution of m(t)

which decays most slowly beeause Eq.(3-11) is valid for very long

Lime.

     The trajectory of the solution of Eq.(3-12) on the compLiex ).

plane with varying U is shown in Fig.(3-6). There are singular

points in the asymptotic solution as a funtion of U in addition

to T whieh is the boundary between the magnetic and nonmagnetie

solutions in the symmetric case. One of the additional singular

points, Uc, is determined by sin6c=exp(-n/2Uc); the value of Uc
                                      'is 3.843... which is larger than T. For every U value larger

than Uc the real part Xv of X takes a constant value -1 and the

imaginary part, X2, is finite, while for U less than Uc, X

becomes real and larger than -1, leading to the absence of

oscUlation of m(t). The results obtained by the asymptotie

solution are compared with those of the numerical selfconsistent
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calcutlation in Fig.(3-7) and Fig.(3-8) in three ca$es of the U

values. As U increases (U>>Uc), X2 approaches e.. The

asymptotic Åíorm of X2 Åíor large U is given by

   A2=e. -{ exp(2- I2LU)• (3-13)
Another singular point is U=O. For small U (UnuO), X approaches

-1 with the asymptotic form -

   X = -1 + exp(- {ITt) • (3-14)
This indicate$ that X has the essential singularity at U=O. For

U=O, however, Eq.(3-11) is solved as m(t)=m(O)exp(-2t). Thus we

have an apparent discrepancy between the exponent X for the

asymptotic U.hO solution and that o:,n the U==O solution. What

occurs for U+O aetually is that there are two regions for m(t),

m(t)rvexp(-2t) and m(t)rvexp(-t), and th•e Uransient boundary moves

toward co as UÅÄO. This may be seen by the :?ollowing examination

of the difference, between the right hand sides of Eq.(3-9) and

Eq.(3-11). It is expressed as P(t)+Q(t), where

   p(t) = -- -2i l:dtr exeS-t') sin(e.tt) ,
                                                       (3-1 5 --a)

   Q(t) = - III!UL I[lldT eXl? ( "- T) cos[e.T ] j' ll Ell Tm( '[ r ) •
                                                       (3-15-b)

The long time asymptote of P(t) is
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   p(t) 'v - 4cos26(sine.t+e.cose.t)exp(-t)/Tt
     '

so that we ean neglect P(t). Q(t) can be estimated by using the

solution m(t)=Aexp(Xt) of Eq.(3-11). The result of the

integration is

  Q(t)= - IIIx m(t){2E9((1+ie.)t)--El((1+x+iE.)t)-El((1+x--ie.)t)},

                                                       (3-15-c)

where

   Ei (z) :- EII (z) +iEI (z) = llidT eX ll ( --T) .

    '

The asymptotic form of Q(t) at tÅÄco is found to be

           2Um('v)   Q('t) "V ,,), 1+.>. t eXP(-(1+J'L)t) , for U<Tr (3--16-•a)

   Q(t) 'v Trxill:i'Et.&)t (e..eosx2tsing.t-x2sinx2tcosE.t

                               '
          -ie.sinX2tsine.t-iX2cosX2tcose.t), for U>Uc (3-16-b)

We see that Q(t) is usually negligible except for 1+X=O when the

denominator in Eq.(3-16-a) vanishes. It is the case when U=O.

This tells us that the region of time where our approximation is

valid moves toward oo as U approaches O.

     The asymptotie solution is useful, because it gives a

reasonably good numerical approximation, and it is simple.

However, those additional singularities of the asymptotie
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solution should not exist in the full solution, because only

singularities in the Hartree-Fock approximation are at U=T and

U=co. We discuss the full solution of Eq.(3-9) in the next

subsection, which is not so simple for the numerical calculation,

and the relation between the present results and that obtained in

the linear response theory.

 g3--5 Analyticity oÅí the Asymptotic Solution

   Here, we analyze the full solution of Eq.(3-9) by the Laplace

transform method assuming X"(O)=-X+(O) in the symmetric case.
                  'The solution for m(t) is given by,

             . 2i (1 +p-ie.) (1 +iE.)
  m(t) - ,k.ill.il: exp(tp) l'llli(iilg,)l'l,}+ig2;{S-,-2,el:,).i.::iO) ,(3--i7)

where the imaginary part of log(x) takes values between -T and vr.
                            'We $ee that the solutions of Eq.(3-12) eorrespond to poles of the

integrand in Eq.(3-17). In the complex p plane the path for the

inLegral can be ehanged as to give pole and cut contributions.

The pole con'l ribution corresponds to the asymptotic solution

discussed above. We can show, however, that the pole

contribution eancels out with a par`v oin the cut contribution.

The integral in Eq.(3-17) ean be rewriLten as

- 30 -



.(t)iexp(--t)imigz(i i-ll,:iOl'i`l•(llliililillii2liiilllliii{3(liiZllol]illi-Ili,',

with path of the integration shown in Fig.(3-9), where the

imaginary part of log(x) in numerator and denominator takes

values between -T and T, O and 2T respectively. With a

sufficient large radius R shown in Fig.(3-9), the coeffieient of

U in the denominator of the integrand is smaller than 1/U, so

that Lhe integrand can be expanded in powers of U as a uniformly

convergent series. A uniformly convergent series of analytic

functions may be integrated term by term in the region of uniform

convergence, and the obtained series converges uniformZy in the

same region (Titchmarsh 1939). We see that m(t) is regular as

the function of U except for U=oo and U=T; for U=T, the phase

shift 6 is singular as a function of U. It Å}s elear that the

singularity in the asymptotic form at U=Uc and U=O is caused by

our approximation to obtain Eq.(3-11). Since the pole

contribution is shown in the subsection (3-4) to give a good

numerical fit, the integral in Eq.(3-18) should be approximated

well by the pole contribution except at its false singular

points. Period of the oscillation for Uc>U>T is so long that it

ean not be seen.

     The spin polarization m(t) can be discussed also in terms of

the response funetion within the linear re$ponse theory, when

m(t) is sufficiently small. We show how the spin polarization at
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the adatom site decays after the switching-off of the applied

magnetic field giving the initial value m(O) in the RPA

corresponding to the time-dependent Hartree-Fock approximation

for the electron-electron inte?raction. The linear response

function Åë(t) for this system is given by the Fourier transform

                                              'of the co-dependent RPA $useeptibility:

                                              '
   Åë(t) = - ;T, I1ge e-itot,,,,,,.,l.?i(#Tfi:illkZli.9...2,, •(3-ig)

where the imaginary part of log(x) takes values between -7 and T.

Inserting iA into to, we find again Eq.(3-12) as giving the poles

of the integrand. The integral (3-19) can be rewritten as

   ,b(t) - 2el;I{i(ny`) Re Igz i.,{,.,((,..:ligill.il'6L2,)-i,,,}/,,(i+z2) '

                                                         (3-20)

with path of the integration shown in Fig.(3-9), where the

imaginary part of log(x) is taken beween O and 2T. Frorn

Eq.(3-20), it is easUy shown that the response function has no

singularity as a function of U even at U==O and U=U., except for
                                                  Lt
U=co and U=T.

     When U=O, Eq.(3-11) has a solution of Aexp(-2t). We note

here this deeay form is given by the non-linear response to the

magnetic field. For U=O, we can derive exacUy m(t) after the

switching-off of the magnetic field of arbitrary strength applied

to the adatom orbital of arbitrary strength, as
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   e{s) - - # [imeliil5•kht)Et ((i+ih)t)+ 41i,2exp(-2t){E!i(-t--io')

                                                        '
         - {i iog(i+h2)}] +.411i2 m(O)exp(-2t) , (3--2i)

                                'where the initial value m(O), is given by m(O)=(2h)tan-lh. when

we approximate Eq.(3-21) linear in h, we find no exp(-2t) term at

long time.

 53-6 Various Cases of the Time Dependence

     In this subsection smooth switeh-on cases of the admixture

are discussed (Yoshimori, Kawai and Makoshi 1984). The time

dependence of the admixture is assumed to have the form

                     2 u(t) = exp[ - (t/T.)                       ]' (3-22)

where T is a time constant r-cl--e.ted to the motion of the atom. A
       u
large value of Tu eorresponds to a slow motion of the atom. In

Fig.(3-10) the numerical results under Lhe condition of constant

U and ea and n+(-co)=n+(-co)=O are shown. The parameter va[Lues are

ea=-8, U=16, 6m=O.Ol and Tu=3. The behavior of the results shown

in Fig.(3-10) is qualitatively the same a$ in Fig.(3-1) after

tcr-2, though Tu=3 (>1) is not so sma]-1. [Dhe numerical results of

nu(oo) versus Tu in the same parameters as in Fig.(3-10) except

Tu are shown in Fig.(3--11). The time constant Tu in Fig.(3-11)

eorresponds t (=2L/v) in the sudden switch-on case shown in

Fig.(3-1). The whole shape in ]lig.(3-11) is similar to those in
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Fig.(3-1), but the osciUation is suppressed out. In Fig.(3-12)

the numerical results with parameters ea=-1, U=10 and Tu=10 under

the codition n"(-oo)=1 and n"(--oo)=O are shown. Growth of the spin

polarization is seen after klO in Fig.(3-12), though the
                               'parameters ea=-1 and U==10 do not meet the magneLic conditÅ}on at

equilibrium. In the smooth switch-on cases like Eq.(3-22), the
parameters u(t)/Au2(t) and ea(t)/Au2(t) meet the magnetic

condition at the position of the atom beyond the certain distance

from the surface even if the parameters do not meet the condition

at the distance nearest to the surface, because as the position

of the atom is far from the surface, the strength of the

admixture become small and the Coulomb interaction effectively

large. Thus the growth of spin polarization seen in Fig.(3-12)

can occur. In Fig.(3-13), the numerical results are shown in the

case where ea(t) and U(t) are time-dependent. The time

dependence is assumed as,

 e.(t) = '- U(t)/2,

                                 ' u(t) = u. - (u. - uo)exp[ --(t/Tu)2 ], ' (3-23)

where U takes a value U                         at distance nearest from the surface                       o
and U. at infinite distanee from the surface. Tu is a time

constant expressing the reduction of the Coulomb interaction near

the surface due to the screening or the image potential, where

the reduetion is arbitrarily simpZified. The parameter values

are Uo=1, U.=16, Tu=Tu=3 and Em=O•Ol, and the initial condition
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is nt(-co)--n+(-co)=O in Fig.(3-13)• The parameters U=1 and ea=-O.5

at the distance nearest to the surface do not meet the magnetic

condition at equilibrium. The results shown in Fig.(3-13)

indicate that in spite of the reduction of U and Ea, the magnetic

solution can occur. In Fig.(3-14) the numerical results for the

sputtering case are shown. The time dependence of parameters is

assumed as)

 .(t) == ( l.p[ - (t/T.)2 ] Iig,

           Uo t<o
 U(t) -                  u. ny Uo
           Uco -i+ vz t t>O,
                       o

 E.(t) =- U(t)/2, (3-24)
where

value

In the

U.=16,

inspit

occur

the image potential correction is eonsidered; U(t) takes a

Uo at surface and U. at infinite distance from the surface.

 results shown in Fig.(3-14) the parameters are Uo=1,

 v/zo=O•5, Tu=3 and em=O•OOI• These results indicate that

e of the rather strong screening, iuhe magnetic solution ea.nj

also.
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 Fig.(3-6) Trajectory of the solution of Eq.(3-12) on the

complex X plane with varying U. For U>Ue, the real part of X, Xl

takes a constant value -1 and the imaginary part X2 is finite.

For U<Uc, X2 vanishes, Leading to the absenee of the oscillation

of m(t). The value of Uc is 3.843... defined by

sin6c=exp(-T/2Uc).
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 Fig.(3--7) Comparison of the numerical results of m(t) from

Eq.(3-3) with those of the asymptotic solution. Solid lines

represent the numerical resuZts for U=5 (V>IJc) with the initial

eondition n"(O)=1, n+(O)=O, and dashed lines the asymptotic

ones, which take a form Aexp(-t)sin(A2t+Åë)• The freclueney X2

(=1.4525) is the imaginaly part of Lhe solution of Eq.(3-12).

The amplitude A and the phase Åë are determined at t=12.996 where

m(t) takes a local maximum. a) M(t) versus t, b) m(t)exp(t)

versus t.
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solusion is

Eq.(3-12).

U=3.6 (U >U>T
        c
)L =--Oe3883'''•)
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5
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   Same as Fig.(3-7) for U<Uce

now given by Aexp(At), X being

The amplitude A is determined

  and X=-O.3908...) b) for U=2

15

  The asymptotic

 the solution of

at t=13.725• a)

 (U<T and

for
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 Fig.(3-9) Path for the integrations (3-18) and (3-20). The
                                                t.integrations are to be made along the quarter eircle with the

infinite radius. Heavy lines are the branch cuts of the

integrand in Eq.(3-20) or the cuts of denominator in Eq.(3-18)e

The branch cut of the numerator in Eq.(3-18) is not shown.

Crosses are poles of the integrands. There are poles at z=Å}i for
                                       'aLl values of U. The other poLes are on the real axis for U>Uc,

and on the imaginary axis for II<Uc.
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 Fig.(3-10) Numerical result$ for no(t)o Ea=-8, U=16,

em=O.Ol and Tu=3. The time dependence of u(t) is shown in

Eq.(3-22). Solid lines represent the electron number' Åíor
 'spin, and dashed lines the total electron number.
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54 Electron-Hole Pair Expansion

 54-1 Expansion with Respect to the Admixture

     Effects of the intraatomic Coulomb interaction in the

time-dependent Newns-An'derson model are investigated in the

Hartree-Fock approximation in the section (3). Though the

approximation is very simple, various interesting effeets of the

interaction are found within the approximation. The

approximation, however, may be oversimplified; in equilibrium

problem it is well recognized that the Hartree-Fock approximation

in Anderson model has some defects. There are few studies to

improve ehe approximation in `uhe time-dependent Newns-Anderson

model for the charge exchange problem (Okiji' and Kawakami 1985).

Recently the 1/N expansion met' hod has been applied to the charge

transfer problem in the N-fold or• bital-degenerate time-dependent

Newns-Anderson model by Brako and Newns (1985). They employed

the electron-hole pair expansion. In the equilibrium problem

the electron-hole pair expansion method has achieved success

(Yosida and Yoshimori 1973, Gunnarson and Sch6nhammer 1983). In

the charge exchange problem, however, the 1/N expansion gives

rather strange results, which is mentioned in the subsection

(4-3). Here, we investigate the effects on the ch'arge tran$fer

problem following Brako and Newns, but we do not employ the 1/N

expansion; we employ the expansion with respect to the admixture

constant between the electron states between the atom and
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metallic state$, and examine each term for the total electron

occupation number on the atom up to the eighth order of the

admixture (Kawai and Yoshimori 1987).

     The Hamiltonian of the N-fold degenerate time-dependent

Newns-Anderson model is given by

 H = llmekCi?mCkm + rz Ea(t)CEmCam

   + ll.[ Vk(t)Cg.Ck.+ h•c• ] + il.IIÅít)CIt.1C..1Cg.2 Cam2, (4-1)

where Cam is the ankihilation operator in the m-th (m=1,2, ..e N)

electron state of N-fold degenerate orbitals (including spin) on

the atom, Ckm the annihilation operator in the corresponding m-th

partial wave state of metallic electron of quantum number k in

the metal, the other notations are the same as in previous

sections. The expansion bases of the total wavefunction

necessary to examine the total electron occupation number up to

the eighth order are

 lo>,

 lak> = 7ili i cg.ck.lo>, ek< o (eF= o)
      '
 Ikl k2>=7Il ji cktl.ck2.lo>, ekl>O
                                                   ek2< o
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 Ii:a ki k2 k3> = rti lli Ct..Cilli.Ck2.Ck3.iO>, eki> O

                                                   ek3< ek2<O

 l2:a kl k2 k3> = fu il..gr.lcg.2cam2Cam"O>, [l[li g

                                                  t-                                    '                                                   Sk <O
                                                     3

 ll:kl k2 k3 k4> = 7il i Cgl.CR2.Ck3.Ck4.IO>, ekl> ek2> O

                                                   ek4< ek3< O

 l2:k.i k2 k3 k4> = rk lli..2Ci2imiCi22m2Ck3M2Ck4Mi!iiil .k2> o

                                                   ek <o
                                                     3
                                                   ek <o
                                                     4
                                                     or
                                                   ekl> o

                                                   ek2> o

                                                   ek4< ek3< O

                                                         (4-2)

where IO> denotes the ground state of the metal and empty atom

orbital. Throughout this seetion, the UÅÄoo case is assumed, so

that the wavefunction for whole system does not eontain the bases

of more than one electron on the atom. Furthermore e >O is
                                                    a
assumed, so that IO> is the ground state of the whole system at

Vk=O• .
     The wavefunetion of the whole system liP(t)> is expressed in
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the linear combination of the bases in the Åíorm
                           '                                              '

 lth(t)> = B(t)Io> + Z B( a kl:t)ia kl> + 2 B(kl k2:t)ikl k2>

           '

         +2 Bi(a ki k2 k3:t)li:a ki k2 k3>

                 '

                  '         +2 B2(a ki k2 k3:t)l2:a ki k2 k3>

                                      '
         +Z BI(kl k2 k3 k4:t)l1:kl k2 k3 k4>

         +2 B2(kl k2 k3 k4:t)l2:kl k2 k3 k4> + ••••

                                                         (4-3)

Summations in Eq.(4-3) should be carried out over k. The

amplitudes b(L), etc. are determined from the Lime-dependent

Sehio'dinger equation. The cottpled differential 'equation is
                                               'obtained as

 igT,B(t) = ,/NV(-t)3,?8a i:t),

 i[l,tTB(a k:t) " /NV(t)B(t) + (E.-- Ek)B(a k:t) + V('b)Ei?8Z k:t),

 igitrB(kl k2:t) = V(t)B(a k2:t) + (ekl- sk2)B(kl k2:t)

                                                            '
                 + V(t)2 Bl(a kl k2 1:t) - V(t)Z BI(a kl 1 k2:

                       ek2>el ek2<el<O
t)
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+ /N='[v(t)2 B2(a kl k2

       el<O
l:t),

di dLBl(a kl k2 k3:t) = v(t)B(kl k2:t) - V(t)B(kl k  :t)
3

di dt B2(a

 (ek
kl

 >e
2

k2 k3:t) =
k)

3

+ (ea+ Ekl- ek2- ek3)Bl(a kl k2 k

- V(t)Z BI(kl 1 k2 k3:t)
    ekl >el>o

+ v(t)2 Bl(l kl k2 k3:t),

    El>ek
        1

twV(t)B(k        1 k2:t)

+ (Sa+ ekl- ek2- e k3)B2(a kl k2 k
3

3
:t)

:t)

di dt B2(a

 (ek
kl

 <e
2

k2 k3:t)
k3)

 + v(t)2 B2(kl 1 k3 k2:t)
     ekl >el>o

+ v(t)2 B2(l kl k2 k3:t),

     El>O

. M V(t)B(kl k2:t)

+(ea+ e

+ v(t)2

    e

kl-  ek2- ek3)B2(a kl k2 k3

B2(kl l k3 k2:t)
l>O

:t)
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                      + v(t)2 B2(l kl k2 k3:t),
                            el>ek
                                 1

 ig,tTBI(kl k2 k3 k4:t) = - V(t)Bl(a kl k3 kzL:t)

                       + V(t)Bl(a k2 k3 k4:t)
                                           '
                       + (ekl+ ek2- ek3- ek4)Bl(kl k2 k3 k4:t)

                                                           '
                       + -ee                              '

 igi7tB2(kl k2 k3 k4:t) = V(t)B2(a kl k4 k3:t)

                       + v(t)B2(a k2 k3 k4:t)

                        + (Ekl+ eki ek3- ek4)B2(kl k2 k3 k4:"tt)

                        + e.• , (4-4)

where the admixLure constant Vk(t) is w]ritten as V(t) which is

assumed to be real and independent of k, the energy of the whole

system is measured from the eigenenergy of IO>. We solve these

coupled equations by iteration, starting from b(t). The solution

is obtained in the expanded form with respect to V. In order to
                          8                            , those bases written out in Eq.(4-2)obtain the solution up to V

and Eq.(4-3) are enough.

     The total charge on the atom at tÅÄco is given from the

solution of Eq.(44), that is,

 N( co) =<V( co) l 2mCatmCam l Åë( OO)>
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==2lB(a k,.)l2, 2lBi(a kl k2 k3:co)l2. 2lB2(a             2kl k2 k3:co)l "

         (4-5)

where the summation are agaln over k.

ss 4-2 Laplaee Transformation

for

to

  In thi$ subsection, ea(t) is

 simplieity. Furthermore the

be

 assumed to be

time dependence

constant in

 of V(t) is

time

taken

v(t) = vu(t)

 u(t) =(1 t<o
        Lexp[-yt] t>O (4--6)
where y,expresses the motion of the atom; small y corresponds to

the slow velocity of the atom (y=v/or, see the subsection (2-1)).

The time dependence in Eq.(4-6) corresponds to the sputtering

ease. In order to get the solution of Eq.(4-4), the Eq.(4-4) is

transformed by the Laplace transformation. The coupled equations

are obtained as

b(p) 1

IP
[iB(o)+/N v2

 el
b(a
<o

1:p+Y),
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b(a

b(kl

k:p)

k2:P)

     1= ip-E.+ek[iB(a

        1
    .    zp--ek"Ek2

    +vE bl(a ki k2
      ek2>el

    +Ai:=rVZ 1
          e1<O

bl (a kl k2 k3 :p)

b2(a
  (ek

k

2

k2
k3)

k3:P) =

 iP-Ea-eki+ek2+ek3[iBi(a ki k2 k3

+Vb(kl k2:p+y)-Vb(kl k2:p+y)

-V2 bl(kl 1 k2 k3:p+y)+VZ bl(1 kl

   ekl >el>O EI>e kl
         1          +ekiek3[iB2(a kl k2 k3

                       b2(kl l k3

    k:o)+/NVb(p+y)+V2 b(1 k:p+y)],
                    el>O

  [iB(kl k2:O)+Vb(a k2:p+y)

       1:p+y)-V2 bl(a kl l k2:p+y)
               ek2Sel<O

b2(a k k2 i:p+y)],

     i                               :o)

k2

:o)

k3:p+y)],

b2(a
  (Ek

k

2

1

>E

k2
k3)

k3:P) =

lp-Ea-ek
        1

+ /N:=rVb ( k
         1

          '+VZ b2(l kl
  El>O

        1

k2:p+y)+VZ
         ekl >el>o

 k2 k3:p+y)],

[iB2(a kl k2 k3

k2:P+Y)

1

<E
.Ip-ea-ek

1
+e    +e  k2 k3

:o)
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                    +/iT:=rvb(kl k2:p+y)+V2 b2(kl l k3 k2:p+y)

                       - •El>O .
                    +V2 b2(1 kl. k2 k3:P+y)],

                      Sl>ekl

 bi(ki k2 k3 k4:P) = ip-ekl-eliek3+ek4[iBl(ki k2 k3 k4:O)

                     -Vbl(a kl k3 k4:p+y)+Vbl(a k2 k3 k4:p+y)]
           '

                             1 b2(kl k2 k3 k4:P) = ip-ekl-ekiek3+ek4[iBl(kl k2 k3 k4:O)

                               '
                     -Vb2(a ki k3 k4:p+y)+Vb2(a k2 k3 k4:p+y)],

                      ' (4-7)
where b(p), e-i e. are the Laplace coefficients of B(t), etc. which

are defined as

 b(p) == I[iexp(-pt)B(t) dt. (4-8)

Since the system is in equilibrium at `u=O from the time

dependence of Eq.(4-6), B(O), B(a k:O), ete. a]re the amplitudes

of the equilibrium s`uate. The amplitudes can be found by putting

idB/dt=EB into the Eq.(4-4), where E is the energy eigenvalue of

the whole system in equilibrium measured from the ground state

energy of the Fermi state 10>. From the solution of the

Eq.(4-7), B(t), etc. are obtaÅ}ned by the inverse Laplace

transformation,
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                 +•             ico +o B(t) - ,l, I.i.xp,82t)b(p) dp• . (4-g)

In order to obtain N(oo), contributions of re$idue by the poles

only on the irnaginary axis are needed in the integration (4-9)

(Brako and Newns 1985). We obtain B(oo), etc. by iteration of

Eq.(4-7) up to the eighth order of V using partially the symbolic

manipulation system, REDUCE (Hearn 1985). In the following

subsection, We rearrange these terms in N(oo) again in the

expanded form with respect to V and carry out the k-summation in

the limit of ea/yÅÄco in the wide-band limit.

 g4-3 Manybody Effects

     In order to rearrange the terms in N(co) appropriately and to

compare the results, we derive the expression of N(oo) for the N==1

case, that is, the noninteracting case. The expression for N=1

is obtained in the wide-band limit from Eq.(2-8),

                        '
 Vfige1))== {lkg2I:dtlf:dt2 exP[ {i(ekl-e.)-y}tl + {'i(ekl-e,)-y}t2 ]

        xexp[ - :E<){ exp(-2ytl) +. eXP(-2Yt2) } ]<CfhCk2>

        + 2Im exp[ -- 2<> ] l Vllldtl eXP[ -- {i(Ek-8.)+Y}tl ]
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               '       xexp[ - Åíexp(-2ytl) ]<cgck>

                             '
        + exp[ - S ]<cgc.>,

where <..e> expresses the expectation value

tsO. The expanded form of N(co) for N=1 with

obtained from Eq.(4-10) as

in equilibrium

 respect to V

(4-1O)

 at

is

 N(oo)
 (N=1)

where

= Al<cgc.> + E A2(k)<Cgck> + 2
k

1 k23(kl,k2)<CtlCk2>, (4-11)

A, -[i -- <) +A
  2\

2
2+ ''' ]'

A2 = k ÅíSV[ i ek-ga

     + gl [ i e -ea ÅÄy + i ek-2a +3y + i Ek-ea

A3(kl,k2) = V {i -e. -y}1{-i ek2-e. -y}

2Im ( vi el-ea +y -

v
2

   c

  1

k

2

     ekl

+y+i-
(-E[k;:=EIJ=]a y]

         1
+5y

]+ ". ],

    2  AV- 2y [ {i E --E
1

+  {i e -E

k 1

1

a
-Y}{-"i ek2-e

a

        ]-e -Y}

.- 3Y}

  A2v2

+2  8y

k 1
. -3Y}{-i ek
           2

[ {i e -e
1

a

k 1 a
-5.y}{-i Ek2he   -Y}

a
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          +            {i ekl '-ea

          +

  '
On the other

from Eq.(4-2)

 z <cg.c..> =
 m

2

   {i ekl-ea '-Y}{'i Ek2--e. -5Y} ] + "' ]'

                    '  hand, for arbitrary N, 2m<CgmCam>, etc.

   as

   Z IB(a l:o) l2 + 2 IBI (a 11 12 l3 :O) l2

               ,

                       2   + 2 IB2(a ii i2 i3:O)i " ''',

> = /ifiiB(a k:O)B(O) --- E BI(a ]Ll k 12:O)B(ILI

    + 2 Bi(a ii i2 k:O)B(ii i2:O)

    + twB2(a ll 12 k:O)B(11 l2:O) + ...,

> = 2 B(a ll :O)B(k 11 :O)

   + E Bi(a i2 i3 i4:O)Bi(k !2 i3 i4:O)

   - 2 Bi(a ii i3 i4:O)Bi(ii k i3 i4:O)

   + 2 B2(a i2 i3 i4:O)B2(k i2 i3 i4:O)

   + 2 B2(a i2 i3 i4:O)B2(k i2 i3 i4:O)

   + 2 B2(a ii i4 i3:O)B2(ii k i3 i4:O)
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-3y}{-i ek2-e. -3y}

  1

2
m

2
m

<cgmCkm

(ek<o)

<cgmCkm

(ek>O)

     (4-12)

are obtained

12:O)



2 <c
m
(ek
  1

Z <c
m
(ek
  1

tckl m

>o,

tckl m

>o,

k

E

k

e

2

k

2

k

m

2

m

2

 +

>=
>o)

>=
<o)

Z B2(a ii i4 i3:O)B2(ii k i3 i4:O) + ''',

2 B(kl 11:O)B(k2 11:O)

+2 Bi(a ki ii i2:O)Bi(a k2 ii i2:O)

+Z B2(a ki ii i2:O)B2(a k2 ii i2:O) + '.e,

/NB(kl k2:O)B(O) + Z BI(a kl k2 ll:O)B(a 11:O)

--  2 Bl(a kl 11 k2:O)B(a 11:O)

+ /N:=r2 B2(a kl k2 l:O)B(a l:o)

+ 2 Bl(kl 11 l2 k2:O)B(ll l2:O)

- 2 Bl(kl 11 k2 12:O)B(11 l2:O)

- 2 Bl(ll kl 12 k2:O)B(11 l2:O)

+ Z BI(11 kl k2 12:O)B(ll l2:O)

+ ,/N'=T2 B2(kl 11 12 k2:O)B(11 12:O)
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Z `C'k

(e kl >O

   t2 <Ck

(6kl<O

m

'

m

'

c

c

k2

.Sk

k2

ek

m

2

m

2

>

<o)

>=
<o)

 + twE B2(ll kl k2 12:O)B(11 12:O) + `"',

= [ Z <Ctk2mCklm> ]t,

 6klk2NlB(o)i2

 " 6klk2N2 IB(a 11:O)l2 - B(a k2:o)B(a kl:o)

 + 6klk2N2 IB(ll 12:O)l2 - 2 B(ll k2:o)B(ll kl:o)

 ' 6kik2N2 IBi(a ii i2 i3:o)l2

  2 Bi(a ii k2 i2:O)Bi(a ii ki i2:O)

  Z/ Bi(a ii i2 k2:O)Bi(a ii i2 ki:O)

 + 2 Bi(a ii k2 i2:O)Bi(a ii i2 ki:O)

 + 2 Bi (a ii ki i2:O) Bi (a ii i2 k2:O)

 ' 6kik2N2 IB2(a ii i2 i3:o)l2

  2 B2(a ii k2 i2:O)B2(a ii ki i2:O)

  2 B2(a ii i2 k2:O)B2(a ii i2 ki:O) + "•,(4-i3)
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where summations for 11e l2, ete. are performed over the same

region as for the bases in Eq•(4-2). In the foUowing, we derive

N(oo) for arbitrary N in the form like Eq.(4-11), using Eq.(4-B)

in the limiting case of sa/yÅÄoo.

     rt is very difficult to carry out the k-summations for N(co)

for arbitrary N and sa. In the following the wide-band limit and

the limit of ea/y.Foo are assumed in order to perform the

k-summations. In the expression of N(oo), there are many

denominato]s of a form like (ek-Ea+imy). In the above limits the

factors can be rewritten as

     '
 jll V2ek-eg+imyF(ek) = Åítlde [P(EIIea]-iTr6(s-e.)sign(m)]F(E)

  e-ea+iny ie-ea+imy = r(-fi[liff>'Ty[sign(n)-sign(m)]6(e-e.).

Thus, using the Eq.(4-13), we caB show the expression of N(oo) for

arbitrary N in those !imits, that is

 N(oo) - 2 <th(oo)lcg.c..lÅë(co)>

        m

      = Ali <cgmc..> + jl A2(k)i <cil.cam>

        " jlllk23(kl,k2)i <Cktl.Ck2.>• (4-1s)

IATe note that, in order to show that Eq.(4-15) holds, we have to
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use the expanded terms with respect to V for Em<CgmCam> etc. as

well as Al, A2 and A3 and perform the k-summation partially for

the second and third terms in Eq.(4-15). The expression (4-15)
                                         8is verified in the expanded form up to V , and we believe that it

is valLid up to infinite orde]7 of V in the limit of Ea/yÅÄco and the

wide-band limit. Equation (4-15) has the same form as that for

N=1 except the initial conditions. The manybody effects in Nl2

are only in the initial eondition B(O), etc. In the

noninteracting case of N=1, the limit of leal/y+oo corresponds to

the case where the memory effects dominates. Equation (4-15)

expresses that the memory effeet dominates also for arbitrary N

in those limits. On the basis of the present result, we

conjeeture that the statement "In the limit of ea/y+oo, the memory

effect dominates" holds for arbitrary valuv'" of U, as far as the
total charge, N(co)=2m<th(oo)ICgmCamlÅë(co)> oi `u'he atom is concerned.

     A comment is made here on the 1/N ex+pan-si•on for the charge

transfer problem (Brako and Newns 1985) tha-ui the N+co limit may

lead to a rather strange situation. Because in the 1/N

expression NA is kept equal to the constant r; A goes to O in the

limit of N.-co. On the other hand, the memory factor for arbitrary

N is Al=exp(-A/y) not exp(-r/y), so that the memory term stays at

the initial value in the condition of constant. r=NA and N+co.
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55 Exact Calculation in Small System

  55-1 Manybody Bases for Small System

                                                   '     In the section (4), the total electron number on the atom is

examined by the electron-hole pair expansion method, where the

k-summations are made in the limit of Ea/y+co. In this limit the

Kondo effect and the valence fluctuation effect are ineffective.

It is very interesting how these effects appear in the

non-adiabatic charge exchange problem, though the Kondo effect

would not play a significant role in the charge exehange problern

(see the Hartree-Fock resu!ts for charge and spin variations).

These effects come into the problern on Ea<O and ea+O for very

large U. The case of EaÅÄO may correspond to the most difficult

case to be analyzed with Lbhe eleetron-hole pair expansion. As

another way to approach, we attempt to earry out the exact

calculation of the time-dependent Newns-Anderson model in a small

system with finite U, ea and y, whose Hamiltonian is given by

Eq.(2-2). Since the metallie states have the infinite degrees of

freedom, infinite number of manybody bases are neeessary for Lhe

manybody calculation. Because of this difftculty, we begin Lo

study the exact manybody problem in small system, having an idea

to apply the numerical renormalization group method (Wilson 1975)

to this problem in the future step of this investigation.

     The case is considered that there are M one-eleetron

eigenesLates at V=O, and its energy eigenevalues Ek are

                             -- 70 -



distributed at constant intervals in the range of r'the bandwithit

D. These one-electron eigenstates in the small system correspond

to the metallic states, and there is the admixture V(t) between

the M states and a single one-electron state on the atom with the

energy level ea, where'  the k dependence of the admixture is

neglected. The wavefunetion of the whole system is described by

the linear combination of such manybody states, that is,

                                     '

 Åë[{li,oi}] =4 cl...lo>, (s-1)
              l 1Å}

        twhere Cl.u. is the creation operator for the li-th one-electron
        11state for spin oi (including the sate on the atom), IO> is the

vacuum state. The total spin S of electrons in the whole system

Å}s assumed to be S=O, and the total electron number is assumed to

be one half of the total number of the one-electron states, that

Å},s, to be equal to M+1. This may be ealled the total system

neu'u"ral. Under this eondition, numerous manybody bases are

necessary to calculate the wavefunction, that is,

         M+1 the numbe-T of necessary bases

          2 3•
          4 20
          6 175
          8 1764
          10 19404
          12 226512 (5-2)
Because of the memory space limit of our computer system at hand,
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it is irnpossible to carry out the numerical calculation for the

system with M+1 more than 8. Thus numerica! caleulations for

M+1=8 are carried out.

 g5-2 Numerical Results and Comparison with the HarLree-Fock

     The structure of one-electron energy level is shown in

Fig.(5-1) assumed D=12, ea----2 and M+1--8. The Lime dependenee of

V(t) is assumed as Eq.(4-6) which correspond$ to the sputtering

case. Excitation$ of the electronic state in the metal may occur

in energy of the order of y (tl=1), which is a measure, in energy,

of the disturbance by the moving atom, during the motion of the

atom leaving from the metal surface. In the small system,

however, the exitations with energy much less than the energy

interval (=2 in Fig.(5-1)) do not occur. For this reason, the

small system calculation discussed here is not valid for y much

less than 2, as an approximation to the [Large system. In a

simUar argument, for large y (y>>D), the finite band effects

come into the results. In Fig.(5-2) - Fig.(5-5) the numerical

resulLs for U=6, ea=-2 with varing y are eompared with the

results calculated in the Hartree-Fock approximation with Lhe

wide-band limit and there are also the Hartree-Fock results

calculated in the small system. In the small system with the

finite degrees of freedom, A in large $ystem corresponds to
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The results for the total charge, the fraetion of positive ion,

neutral atom and negative ion are shown in Fig.(5-2)-Fig.(5-5),

respectively. In order to discuss the dynamical effects, the

results shown in Fig.(5-2)-Fig.(5-5) are $hifted to coineide with

each other at y=2. The shifted results are shown in

Fig.(5-6)-Fig.(5-9). Since the excitations occur in the energy

range of order of y as mentioned above, the finite-band effects

are to be appreciable, when y is much larger than D. Those are

seen in 1/y<1/3 in Fig.(5-6)-Fig.(5-8), where Lhe results of the
    'wide-band limit deviate from those of the small system. In

1/y>1/3, however, the results except for the fraction of the

negative ion show rather good fit, where the finite-band effects

and the manybody effects are supposed to be small. On the other

hand, the results for the fraction of the negative ion in

Fig.(5-9) show that the dynamical effeets in manybody caleulation

are remarkable compared with those in the two Hartree-Fock

calculation, although the absolute values of the fraction is very

small. From these results, we believe that the Hartree-Fock

approximation is rather good approximation except for the

fraction of the negative ion.
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 g6 Discussion

     In the section (3), the intraatomic Coulomb interaction has

been treated in the Hartree-Fock approximation. In spite of the
                                                  'simplified assumptions, the variouts interesting effects of the

interaction are found. However, xArhen the initia! condition$ are

sarae for both spin, the artificial parameter em is necessary to

be introduced, even if there is no external magnetic field. This

parameter sm may be regarded as representing an effect due to Lhe

spin fluctuation on the atom. A problem remains to determine the

value odf em, though, a$ it is seen in the subsection (3-2), the

behavior after the growth of spin polarization started does not

depend on the magnitude of em. A manybody caleulation, which

keeps rotational invariance in spin space, does not need em of

course. We have tried in such a senee the two attempts the

electron-hole pair expansion method and the calculations for the

small system. The manybody effects, for instance the Kondo

effect, or the valenee fluctuation effect, come into the charge

exchange problem in the case of em<O and leal-,-O, respectively,

for large U, though, a$ it is pointed out in the section (2) and

section (3), the Kondo effect may not be appreciable in the

charge exchange. The analysis in the section (3) shows that the

charge exchange is normal, but spin exehange indicates some

anormaly related to the Kondo effeet (see ImX for large U). The

condition of eaÅÄO corresponds to the most diffieult case to be

analyzed by the electron-hole pair expansion (the section (4)).
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The ealculation in the small system (the section (5)) i$ not so

valid under the condition where Ieal is less than the energy

interva!, because, in this ease, there are no one-eleetron states
of metal between ea and the Fermi level' . In the case of y less

than the interval, the discrete energy system does not represent

the true metal state. For these reasons, the numerical manybody

calculation in the system with narrower energy interval is

necessary to examine the many-body effects. On the other hand,

the higher energy states of the rnetallic eleetron would not

contribute significantly to the nonadiabatic charge exchange in

the atom motion of smaller y. From this observation, the

numerical renormalization group method of Wilson (1975) is

believed to be applied to this problem.
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  57 Summary

     The intraatomic Coulomb interaction effects for the charge

transfer problem in the time-dependent Newns-Anderson model have

been investigated by the Hartree-Fock approximation, the

electron-hole pair expansion method and the brute force numerieal

method for small system.

     Xn the Hartree-Fock approximation, it is found that 1) the

spin polarization M(t) on the atom is described by the rate

equation, when M(t) is small. 2) there is oscillatory

convergence of no(t) to the equUibrium value when U is large.

Furthermore the behavior of the oscillation is investigated in

detail. 3) When the initial condition of n                                            (t) ar•e the same for
                                          Cf
both spin, the artificial parameter Em is neces.q.ary in order to

                                                  'break the symmetry jn spin space.

     In the limit of ea/y+co, it is obtained `uhat the to'ial charge

N(oo) on the atom has the same expression for arbitrary orbital

degeneracy N on the atom as that of the noninteraeting case. In

particular the memory effects dominate even for the arbitrary
                         'value of N.

     By the numerical calculation for the small system, we
                                                    'believe that the Hartree-Fock approximation is rather good
                                                       'approximation except for the fraction of the negative ion, and

the manybody effect is remarkable in the fraction of the negative

1on.
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