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Abstract

The intraatomic Coulomb interaction effects on the charge
state of a moving atom near a metal surface in the time-dependent
Newns-Anderson model are investigated in the Hartree-Fock
approximation, the electron-hole pair expansion method and the
brute force numerical method for a small system. In the
Hartree-Fock approximation, several cases of the time dependence
for parameters in the Hamiltonian are examined. The exponential
growth of spin polarization on the atom is found. The
polarization is described by a rate equation. The oscillatory
convergence in time to the equilibrium value appears in the
Hartree-Fock approximation. The approximate asymptotic solution
is obtained for the long time behavior of the spin polarization
and also the detailed analytic property of the solution is
discussed. When initial condition of the system is symmetic in
spin space, a symmetry breaking term 1s necessary to reach the
spin polarized solution in time-evolution. In the electron-hole
palr expansion ﬁethod, the manybody effects are investigated in a
special case. In paticular, the memory effects in the
interacting case are conjectured to be same as the noninteracting
case. In the numerical method for a small system, the manybody
effects are examined in comparison with the Hartreé—Fock
results. From the results, it is believed that the
Hartree-Fock approximation is rather good approximation, but
manybody treatment is necessary to examine the fraction of

negative ion.
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§1 Introduction

§1-1 Surface Physics

Any piece of solid or liquid matter is necessarily bounded
by a surface of contact with a vacuum or with an atmosphere, or
by an interface of contact with another piece of solid or liquid
matter. The mere existence of this surface or interface can
modify the properties of a material, and it is through this
surface or interface that the material interacts with the outside
world (Friedel 1978).

Because the surface is the end of the solid, the structure
of the surface region is modified or sometimes quite different
from that of bulk, and there frequently arise the surface
localized states or surface localized elementary excitations, for
instance, surface phonons, surface excitons, surface polaritons,
etc. It is more difficult to study such systems theoretically
than to study the bulk system, mainly because the Bloch theorem
does not hold in the direction normal to the surface. In other
point of view, solids face the external space, vacuum, so that
other atoms or molecules interact with solids through the
surface. For example, atoms or molecules are adsorbed on the
surface, or desorbed from the surface. Furthermore, atoms or
molecules moving in the vacuum are scattered by the surface. In
such solid and particle systems, there are various interesting

theoretical as well as experimental problems. In particular,



investigation of the systems consisting of a metal solid and a
moving atom or molecule are very interesting andlimportant,
because in such a system, localized and discrete electron states
are coupled with continuous metallic electron states, and the

Fermi statistics may be involved in the dynamical processes.

§1-2 Dynamical Process

Now we consider a system consisting of a semi-infinite metal
and a moving atom near the surface. In such a system, the moving
atom is regarded as a perturbation to the electron states in the
metal. The strength of the perturbation depends on the distance
Zz between the surface and the atom, so the Hamiltonian for
electrons has a parameter z. If the motion of the atom is
infinitely slow, the total electronic state stays in the ground
state of the Hamiltonian H(z) at every distance, that is the
adiabatic process. In such cases the charge state of the atom
observed after scattering does not depend on the perturbation or
the trajectory of the atom. That is simply the ground state of
the system where the atom is infinitely separated from the metal
surface. When the atom moves with a finite velocity, the
electronic state cannot respond immediately to the variation of
the pertubation. Therefore the electronic state can be neither
in the ground state nor in the eigenstate of H(z). The state is
described with the linear combination of the eigenstates of H(z).
Thus physical quantities observed after scattering are found to

be distributed, and the distribution depends on the history of



the system reflecting the motion of the atom, that is,
nonadiabatic or dynamical effects appear (Hagstrum 1954, 1961,
Blandin, Nourtier and Hone 1976, Bloss and Hone 1978, Brako and
Newns 1981). Since the metal has continuous one electron states,
theoretical studies on dynamical process of such a system are not
so simple and are difficult particularly for the interacting
electron system. In recent years more and more atom scattering
experiments have been done and the effects of the interaction
between electrons seem to be recognized. The necessity of the
theoretical studies for the interacting electron system seems
urgent (Makoshi, Kawai and Yoshimori 1984, Yoshimori, Kawai and
Makoshi 1984, Yoshimori, Makoshi and Kawail 1985, Kawai, Makoshi

and Yoshimori 1986).
§1-3 Charge Transfer

THe low energy atom or ion scattering is an important
technique to analyze the properties of a surface (Hagstrum 1954,
1961, Smith 1971, 1976, Erickson and Smith 1975, Sau and Merrill
1973, Wunnik, Brako, Makoshi and Newns 1983). This technique was
used earlier by Hagstrum. While an atom is near the surface,
electrons, which carry charge, transfer between the atom and the
surface. The electronic structure of the’surface as well as the
motion of the atom affects the distribution of the charge states
on the scattered atom. The mechanism of the charge transfer
processes are classified into two groups. One of them is the

Auger process, and the other is the direct resonance process.



When there is a deep lying unoccupied level in a moving atom, the
Auger neutralization process is most dominant; He™ scattering
experiments are a typcal case of this. Early theoretical
investigations of this Auger neutralization process were done by
Hagstrum (1954). When a valence level of the moving atom lies in
the metal conduction band, the direct resonancevprocess between
the valence state and the conduction band is dominant for charge
transfer. If a core state level of the metal is near the
ionigation level of the moving atom, the direct process is also
effective (Erickson and Smith 1975). The first theoretical
detailed analysis on the direct charge transfer process in
surface problem was done by Blandin, Nourtier and Hone (1976).
In this thesis, situations are considered that the valence level
of the atom lies in the conduction band, and the Auger process

will not be considered.
§1-4 Newns-Anderson Model

The time-dependent Newns-Anderson model has been used
intensively to analyze the direct charge transfer process on the
system consisting of a metal surface and an atom moving near the
surface. The Anderson model was invented to analyze the
magnetism of the dilute magnetic alloys by Anderson (1961).
Though the Anderson model is very simple, the model has the
wealth of physics. The model describes well the magnetic
properties of the system. The Kondo effect (Kondo 1969, Wilson

1975) has been one of the central topics on the model, the



valence fluctuation effect (Haldane 1978) has been also. Now the
rigorous solution of the model is obtained, which was discovered
about 20 years after the Kondo effect (Andrei 1980, Wiegman 1980,
Okiji and Kawakami 1984).

The Anderson model had been considered to serve as a good
model for chemisorption problem on metal surfaces, (Bennet and
Falicov 1966, Edwards and Newns 1967, Grimley 1967, Newns 1969).
In the surface problem, the chemisorbed atom on the surface
corresponds to the magnetic impurity in the metal, the surface
states and the conduction states in the semi-infinite metal to
the conduction states in the metal. In particular Newns has used
the model to the equilibrium problem extensively, and has
achieved great success in understanding the chemisorption on the
metal surface(Newns 1969, Muscat and Newns 1978). Thus, when the
Anderson model is employed to the surface problem, the model is
often called the Newns-Anderson model or Anderson-Newns model.

When we make an approximation that in surface scattering
problem the atom moves along a classical trajectory, the position
of the atom is determined with time. In this approximation, the
strength of the perturbation by the atom to the electronic state
of the metal surface depends on the time explicitly. This is
called the trajectéry approximation. The time-dependent
Newns—-Anderson model with time-dependent parameters was used
earlier by Toulouse to discuss the charge transfer problem
between an atom and a metal surface (Toulouse 1974); this is
probably the first use of the time-dependent Newns-Anderson

model. Many authors have used this model to discuss the charge



transfer problem. There also many studies of the energy
dissipation probability when an atom 1is scattered by a metal
surface (Brivio and Grimley 1979, Nerskov and Lundgvist 1979,
Schénhammer and Gunnarsson 1980, Brako and Newns 1980). In this
thesis the charge transfer problem is investigated, and the
energy dissipation probability problem is outside of the scope.
In the Anderson model for the dilute magnetic alloys, it is well
recognized that the intraatomic Coulomb interaction in the
impurity atom plays a central role. The effect of the
interaction in the time-dependent version, however, has not been
investigated so far except for two cases, that is, the rigorous
exponent of the X-ray absorption singularity (Yéﬁada and Yosida
1978) and the Hartree-Fock treatment also for the X-ray
absorption spectra (Schénhammer and Gunnarsson 1978). In the
surface charge transfer problem, it is also important to study
the effect of the interaction on the moving atom in the

time~dependent Newns-Anderson model.
§1-5 Purpose of Investigation in this Thesis

In this thesis, the effects of the intraatomic Coulomb
interaction 1s investigated in the time-dependent Newns-Anderson
model on the charge transfer between a moving atom and a metal
surface. In the section (2) the non-interacting case of this
model will be surveyed. In the section (3) the effects will be
treated in the Hartree-Fock approximation, and then they will be

treated in the manybody calculation methods (the sections (4) and

(5)).



§2 Time-Dependent Newns-Anderson Model

In this section, the known results on the time-dependent

Newns—Anderson model are briefly reviewed.
§2-1 Trajectory Approximation

We consider the system consisting of a semi-infinite metal
and an atom moving near the surface with kinetic energy less than
a few hundred eV, the valence level of which lies in the
conduction band. In such a system, the core electrons of the
metal and the atom do not participate in the charge transfer
between the metal and the atom. The total Hamiltonian of the

problem 1is

N

5 + V(R) + H_(R), (2-1)

2
R
where M and R‘are the mass of the moving atom and the coordinate
of the atom, respectively, V(R) is an adiabatic potential for the
atom and He(R) the Hamiltonian for the electronic system. Since
the first term in Eq.(2-1) does not commute with the third, it is
generally difficult to solve the problem. The trajectory
approximation has been employed for this difficulty to be
avoided. In the approximation, it is assumed that the atom moves
along a given classical trajectory; the position of the atom is
determined with time. When the kinetic energy of the atom is not

so small, the position uhcertainty of the atom due to the



uncertainty principle‘is not so large, and the energy diésipation
during the scattering is much less than the kinetic energy, so
that distribution of R for He(R) is not so wide. Thus the
trajectory approximation is justified in the situation of larger
kinetic energy of the atom; uncertainty of 0.1A corresponds to
kinetic energy of 8eV for the hydrogen atom. There are also
studies to improve the trajectory approximation (Newns 1985).
The Hamiltonian He(R) depends on time explicitly through the
motion of the atom in the‘approximation, so that the Hamiltonian
for the electronic system can be rewritten as He(t). In the
trajectory approximation, the problem left is to solve the
electronic motion. The time-dependent Newns-Anderson model is
employed for He(R)' Thus He(R), now simply denoted as H, is

written as

- t + +
H=) Ekockocka tl Ea(t)caocac ) (Vk(t)caocko t h.c.)
ko o ko
ru(s)ct ¢ chc (2-2)

at at a¥y av

where Cao and Cko are annihilation operators of electrons in the
orbital on the moving atom with spin o, and in the metallic
electron states, including the conduction band and surface
states, with quantum number "k", respectively. Since in the
surface region the Bloch theorem does not hold in the direction
normal to the surface, as mentioned already, the wave vectors
parallel to the surface are good quantum number, but not normal

to the surface. For this reason, the quantum number "k" in



Eq.(2-2) runs over in the wave vector parallel to the surface and
the quantum number for the motion normal to the surface.
Furthermore €y is one-electron nergy of the metallic electron
states, ea(t) time-dependent energy level of the electronic state
in the atom, Vk(t) the time-dependent admixture matrix element
between the metal states and the atom state, and U(t) the
time-depedent intraatomic Coulomb interaction. In the following
the Fermi energy is chosen as the origin of one electron energy
levels, and the unit of =1 is used.

The time dependence of the parameters is determined through
the position dependence of the parameters and R(t). The simple
assumption often made on the trajectories is of the constant
velocity and the parameters are assumed to depend simply on Z(t),
the z-component of R(t). When the parallel velocity is very
large, however, the Doppler effect must be considered (Wunnik,
Brako, Makoshi and Newns 1983). The time-and k-dependence of the
admixture Vk(t) is quite often separated as Vk(t)=Vku(t) for
simplicity, where u(t) expresses the time dependence, and vV, is a
value of Vk(t) when the atom is nearest to the surface. The time

dependence of u(t) so far used is given by, for example,

u(t) = expl-Z(t)/al = expl-v|t]],
u(t) = expl-(2(t)/a)?] = expl-(yt)?],
w(t) = 1/01+(2(t)/a)?] = 1/01+(yt)?], (2-3-a)



y = v/a, | : (2-3-b)
where o and v are the decay length of-the admixture, the

velocity of the atom normal to the surface, respectively, y is
proportional to v. The time dependence shown in Eq.(2-3),
especially the third, is somewhat artificial, which i1s assumed
in order to simplify the calculation. If we discuss the
sputtering or sticking case, u(t) should be constant 1 at t<0 or
t>0 respectively. Furthermore, the simplest assumption is
sometimes done (Makoshi, Kawai and Yoshimori 1984, Yoshimori,
Kawai and Makoshi 1984, Yoshimori, Makoshi and Kawai 1985, Kawai,
Makoshi and Yoshimori 1986); it is assumed that the atom arrives

at the surface region at time t and interacts during the period

0’
T, and scattered out to the vacuum. During the interacting
interval 1, the admixture is approximated to be some average over
a surface region, and at time t<to and t>tO+T, the admixture is
assumed to vanish. When the admixture does not exist, the
electron can not transfer between the atom and the metal, so that

charge state on the atom remains unchanged at t>t.+t. Thus, for

0
this simplest assumption, the time dependence of u(t) is to be

taken as

0 t<0
u(t) = . (2-4)
1 >0
In a simplified model, €, and U are taken constant during

the time when the admixture exists. The image charge correction

are considered in another model, that is,

- 10 -



2
e

Ea(t) T faw * LZ(t)

2
U(t) = U, - oo(gy (2-5)

where Z(t) is the distance from the surface to the atom. Other

forms are found in literature, for example (Tukada and Shima

1985, Lang 1985),
e (t) = A + B Z(1t). (2-7)

In this example, the level crossing with the Fermi level is

important.

§2-2 Time-Dependent Expectation Value of Electron Occupation

Number

In this subsection, the results on the charge exchange for

the case of U=0 in the time~dependent Newns Anderson model are

briefly summarized, that is a one-particle problem as will be
seen. In the one-particle prdblem, spin is decoupled in the
Hamiltonian, so that, the spin index ¢ will be suppressed in
following. The expectation value of the electron occupation
number on the atomn, n(t)=<th;Ca|t>, is the quantity to be
calculated for discussing the charge transfer problem, where
is the electronic state at time t in the Schrodinger

representation. The expression of n(t) was obtained firstly

- 11 =
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Blandin, Nourtier and Hone (1976) who used the Keldysh Green
function. In their paper, it is shown that there is no anomalous
behavior in n(t) due to the infrared catastrophe (Anderson 1967)
at least in the one-particle problem, which is not limited to the
time-dependent Newns-Anderson model. Bloss and Hone (Bloss and
Hone 1978) showed that the expression of n(t) is the same as that
by Blandin, et al. with a much simpler method. The method of
Bloss and Hone 1is shown in the following. The Heisenberg

equations of motion are obtalned as

3 C_(%)
5_¥2——_ = i[ H(t), C_(t) 1]
= - g (t)C (t) - ig v, (t)c, (t),
9 Cp (%)
g = il H(%), ck(t) ]
= - 1,0 () - 1V (£)0, (¢), (2-7)

where Ca(t), Ck(t) and H(t) are the Heisenberg operators
corresponding to the Schrodinger operators Ca’ Ck and H,
respectively. The coupled Eg.(2-7) is reduced to the

integro-differential equation for Ca(t), that is,

) Ca(t) _ } t ) %
g = - l€a<°)ca(t) - g Vk(t)Jt~dT exp[—lsk(t—T)]Vk(T)Ca(T)
0
- i% Vi (t)expl-ie, (t-t5)1 C (t,) . (2-8)

In the solution of Eq.(2-8), Ca(t) is to be expressed in terms of
Ca(to) and Ck(to), so that n(t)=<C;(t)Ca(t)> is expressed in

- 12 -



terms of <Cl(-=)C_(-=)> and <Gl (-=)C, (-=)> with the initial
condition to=—m and Vk(—w)=0. Thus, it is shown that the Fermi
statistics is only in the initial condition, and there is no
anomalous behavior due to the Anderson infrared catastrophe in
n(t).

With the assumption Vk(t)=Vku(t), the factor in the second

term in Eq.(2-8) is rewritten as

%[Vklzexp[-iek(t—T)] = % J de A(e)expl-ie(t-1)], (2-9)
with
a(e) =1 § |V, [%6(e-g)) . (2-10)
K

The integral (2-9) is rewritten as 2A8(t-t) with assumption that
A{e) takes a constant value A, and the band width is infinite,
that is the wide-band limit. In this limit, the expression of

n(t) is obtained as

- 13 -



oy
sinf [ ea(r) dr ]
t

t t
__A 2
n(®)= Bj_mdtWJ_mdtZu(tT)u(tZ) sinh[ Z(t,- t,) ]

t t2
uZ(T) dt + AJ uz(r) dt 1

t

1
x expl A[
t

;
5 (2-11)

%
+ [n(-») - % Jexpl —ZAJ uZ(T) dr] +

where B=1/kBT (T is temperature of the metal). The expression is
derived by Blandin, et al. (1976) for T=0 and discussed by Brako

and Newns for T=0 (Brako and Newns 1981).
§2-3 Memory Factor

There is the term including n(-«) in Eq.(2-11). This term
represents the memory of the initial condition of n(t). Thus, it
is usually called the memory term (Brako and Newns 1981). The

exponent of the memory term is

£
2 J w2 (1) dr. ' (2-12)

When the energy level ea(t) in the atom state is far from the
Fermi level of the metal g (=0), this is easily obtained at T=0

in the limit of [e, (t) [+

- 14 -



t
n(t) - 0( -e,) = [ n(==) - 8(-e,)] expl -2a[ wP(r) del. (2-13)

This means that the memory effect dominates, when lea|+m. The

solution (2-13) satisfies the rate equation

= - 200 (8)[ n(t) - 0(-c,) 1, (2-14)

which can be derived simply from the usual "golden ruleﬁ too.
When the level ea(t) lies near Ep» the first term in Eq.(2-11) is
important, where the Fermi statistics in the initial condition
plays an important role.

If the velocity of the atom is slow enough, the exponent
(2-12) is to be very large. In this situation, the memory term
becomes negligible, that is, the memory of the initial state is
erased. In the first term in Eq.(2-11), there is the factor with

the form

t
expl - AJ u
t!,

(1) dr 1, (2-15)
where t' is the integration variable. In the case of very slow
velocity, the time interval t-t!'>>1/A does not contribute to the
integration in Eq.(2-11), when the exponent of Eq.(2-15) is large
negative. Therefore, the incoming trajectory to the suface does
not affect the obserbed charge state of the atom with t-w, and
only the outgoing trajectory affects it. When u(t)=exp(-y|t])

with sufficiently small y, and ea=constant, n(«) turns out to be

- 15 -



n(=) = [ de £(e,T)/coshl mle=e,)/2y 1, (2-16-a)

-
<

which holds for A>>y. In the above f(g,T) is the Fermi
distribution function. For T=0, the integration with respect to
e can be carried out, that is, n(m)=0.5—tan—1[sinh(nga/Zy)]/ﬂ.

Under the additional condition Ieal>>y,
n(oo)=e(—ea)+28ign(ea)eXp[—w|aal /2v1/w, (2-16-b)

is obtained at T=0K. A more general but approximate form of n(w)
is obtained by Brako and Newns (Brako and Newns 1981), using a
saddle point method, again under the condition A>>y at T=0, that

is,

A(to)
A’(to)+i€é(to)

n(e)= - Im1t

%o
exp[iI . e(t)dr - 2Rej A(T) dt]

c
%o

0

to(-e,), (2-17)

where t, is the solution of A(t)+i€a(t)=0 in the complex plane
and the integration path C runs from to to ﬂhe real axis at .

In Eq.(2-16), it is assumed that ea(t) does not change sign along
the outgoing part of the trajectory. From Eq.(2-17) n(«) can be
written in the form n(w)=6(—€a)-Aexp(—B/v) (v is velocity of the
atom normal to the surface as before.) In the high temperature
limit kgT>>y, the integration (2-16-a) gives, n(w)=f(ea(t’),T),
where t' is defined by 2yt'=log(A/y) (Brako and Newns 1981).

There 1s sometimes the case that ea(t') is very different from

- 16 -



ga(m) which is the value at infinite distance from the surface,
for instance, Na/W(110) problem (Overbosch, Rasser, Tenner and
Los 1980). 1In order that the memory is erased, it 1s necessary
that the velocity is much less than Aq (u(t)=exp(-vt/aq) is
assumed). If the admixture decay length ¢ is taken 1A and A lev,
the normal velocity v is necassary to be much less than
v=1.5x105m/s, which correspond to the kinetic energy 120eV for H

and 2.8KeV for Na.
§2-4 PFinite Width Band

In the subsections (2-2) and (2-3), the cases of the
wide-band limit are discussed mainly. Another 1limit to the
wide-band limit is the surface molecule limit. In the surface
molecule limit, it is assumed that the admixture matrix element
is much larger than the width of the conduction band. In such

limit, the Hamiltonian (2-2) can be rewritten approximately as

+ 0 w(t)c*ca + h.c.] + ea(t)C;Ca, (2-18)

- T
H = go(t)CoC 0

0

where
eg(t) = Te 1V, (8)[2/W2 (1),
el = 5.0 v (e)/ut) 1 of,

2 ]1/2.

W(t) = [ 3, |V, ()] (2-19)

- 17 -



The Hamiltonian (2-18) corresponds to the two atom collision
process. The charge transfer in this process 1is discussed first
on the surface case by Tully (1977). In the simplest case

ea(t)=so(t)=constant, n(t) is obtained as

t t
n(t) = n(-w)cosztj dr W(t)] + n (—w)sinQ[J dr W(t)l. (2-20)

0
The integral in Eg.(2-20) is in proportion to 1/v (v is the
velocity of the atom normal to the surface) with the constant
velocity trajectory, so that observed charge state n(w) show an
oscillatory behavior with 1/v (Erickson and Smith 1975, Tolk,
Tully, Kraus, White and Neff 1976).

There are not so many studies of charge transfer in the
finite band case which are neither the wide-band limit nor the
surface molecule limit. There are a few numerical calculations
in a linear chain model of metal (Muda and Hanawa 1980,

Sebastian, Jyothi Bhasu and Grimley 1981).

- 18 -



§3 Hartree-Fock Approximation

§3~1 Electron Occupation Number

As mentioned in the section (1), the effect of the
intraatomic Coulomb interaction in the time-dependent
Newns—-Anderson model has not been investigated in the sﬁrface
charge transfer problem, though its importance is recognized. We
have started to analyze the effects of the interaction, using the
time-dependent Hartree-Fock approximation (Makoshi, Kawai and
Yoshimori 1984, Yoshimori, Kawai and Makoshi 1984, Yoshimori,
Makoshi and Kawai 1985, Kawai, Makoshi and Yoshimori 1986). The
time-dependent expectation value of electron occupation number

n (t) (=<C;O(t)Ca (t)>) appears in the Hamiltonian in the

o g

Hartree-Fock approximation, and must be determined in the
self-consistent way. Even if a physical quantity of interest is
other than the charge transfer, for ihstance, the energy
dissipation spectrum (Yoshimori, Makoshi and Kawai 1985), no(t)
must be known to determine the time-dependent Hartree-Fock
Hamiltonian, that is, nO(t) are the key quantities in the
time-dependent Hartree-Fock approximation. In the Hartree-Fock

approximation, the Hamiltonian (2-2) is approximated by

_ + + +
H = %GEKCkOCKO + g e, (t)C) G, o +I %ka(t)cao_ckO + h.c. ],(3-1)

where

- 19 -



o e, (t) - oe + Ult)n__(t). (3-2)
The energy level of the orbital in the moving atom is assumed
spin-dependent, that is oe where ¢ means + for spin 4, and - for
spin ¥. When U is large enough, n have a magnetic solution

in the equilibrium, which is obtained as

n zn
eq,0 €q,-0

=1/2-tan™ [ (e +Un_, __)/a]/n (Anderson 1961). When the

“eq,0 a,

initial condition is symmetric in spin space (no(—m)=n_0(—m)),and
em=O, everything is symmetric in spin space. In this situation,
the time-dependent solution nc(t) never goes to the magnetic
solution even for large U. Thus, the parameter € is introduced
here to break the symmetry in spin space. The parameter e, may
correspond to the magnetic field on the atom and the physical
meaning will be discussed later. The expression of ng(t) in the

Hartree-Fock approximation is obtained in the wide-band limit as

t

1
sin| [ EO(T) dt ]
(t) 1 g [ (t,)ult,) 2
n {t) = - —J dt J dt,ul(t,)u(t
o Bl Mo 2 V720 ginn[ T(t,- t,) ]
B 1 2
t1 ) t2 )
x expl ut (1) dt + u“ (1) dt 1]
t t
1 o2 1
¢ [n(-=) = 5 Jexpl -2[ w*(x) arl + %, (3-3)
where time is scaled in 1/A (h=1) and energy in A. These units
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are used throughout in the remaining part of the section (3).
Equation (3-3) is the same as Eq.(2-11) except that ga(T) in
Eq.(2-11) is replaced by go(r) in Eq.(3-3). In this thesis, only
the cases at the ébsolute zero temperature are.investigated.
Equation (3-3) is coupled nonlinear integral equations for nO(t)
and n_o(t), and it is impossible to solve it analytically. In
the following subsections, Eq.(3-3) will be solved numerically on
the assumed time dependence of the parameters. From solutions of
Eq.(3-3), fractions of charge state are determined within the
Hartree-Fock approximation as

%

I7(t)

ng () [1-n__(t)]

N(t) - 2I7(t),
17 (t) = n [1-n_(t)]
=1 - N(t) + I7(¢),

I7(t)

n, (t)n, (t),

N(t) = n,(t) + n,(t),

M(t) =0, (8) - n,(t), (3-4)

4

where 19(t), I'(t) and I~(t) are the fraction of the neutral

atom, positive ion and negative ion, respectively, N(t)



corresponds to the total charge on the atom and M(t) the spin

polarization on the atom.

§3-2 Sudden Switch-on Case

The simplest case of the time dependence of parameters is
assumed in this subsection; the admixture exists only in the
inside region of finite distance L from the surface, where U(t),
ea(t) and Vk(t) are assumed to have average constant values. In
this case, the admixture starts suddenly when the atom arrives at
the region and remains constant during the time interval 2L/v
(v is assumed to be constant). After the atom is scattered out
from the region to vacuum, the admixture stops and electrons can
not transfer between the surface and the atom. The charge states
of the atom at the distance L remain after. Thus, for this
simplest assumption, the time dependence of u(t) is to be taken
as Eq.(2-4), and U(t) and ea(t) are assumed to be constant U and
€, (Makoshi, Kawai and Yoshimori 1984, Yoshimori, Makoshi and
Kawai 1984, Yoshimori, Kawai and Makoshi 1985, Kawai, Makoshi and
Yoshimori 1986).

The results of numerical calculations in the symmetric case
of U=16 and £,=—8 are shown in Fig.(3-1) for €,=0.1, 0.01 and
0.001 with the initial condition n+(0)=n¢(0)=0 corresponding to
positive ion incoming. Since U>rm 1is the condition for the
magnetic solution in equilibrium in the symmetric case eaz—U/Z,
the case of U=16 and sa=—8 is under a strong magnetic condition.

The solid lines represent nc(t) and the dashed line N(t).
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Results of asymmetric case are shown in Fig.(3-2). 1In Fig.(3-1)
the total electron number N(t) saturates to its equilibrium value
(=1) much sooner than the spin polarization M(t). In Fig.(3-1)
and Fig.(3-2) there is overshooting of N(t). Initially the state
on the atom is empty and go(t) is negative, that is, below eq
(=0), then the both spin electrons transfer from metal to the
atom with the rate A. This determines the initial slope of
no(t), which is 1 (time is in unit of 1/A). As electrons
transfer to the state, eo(t) is pushed up because of the
Hartree-Fock field, and soon eg(t) becomes positive (above eF).
For positive ec(t), N(t) decreases with time. This overshooting
of N(t) is seen also in Fig.(3-3) for U=0 and £,>0, and in
Fig.(3-4) for U=0 and £,<0 which has a non-magnetic solution in
equilibrium. In Fig.(3-5), the numerical results in the

symmetric case under the initial condition n, (0)=1 and n+(O)=O,

4
where € is not needed. Under this condition the electron-hole
symmetry holds, so that N(t) takes the value 1 at any time.

There is the oscillatory convergence of nO(t) to the equilibrium
value in Fig.(3-1) and Fig.(3-2), and there is also in Fig.(3-5),
though it is small in amplitude. This oscillation will be
investigated in detail in the subsections (3-3) and (3-4) (Kawai,
Makoshi and Yoshimori 1986). We can see the exponential-like
growth of M(t) dependent on e, in early time region in Fig.(3-1).

This growth is discussed in the next subsection (3-3) (Makoshi,

Kawai and Yoshimori 1984).
§3-3 Exponential Growth of Spin Polarization
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As it is mentioned in the subsection (3-2), M(t) in
Fig.(3-1) shows exponential-like growth and its starting time
depends on € After M(t) growth, curve shapes for various
values of € fit to each other almost completely, where it is
necessary to shift the origin of time t. In this subsetion, this
exponential-~like growth is investigated under the symmetric
condition ea=—U/2. Under the condition where the results of

Fig.(3-1) are obtained, Eq.(2-3) is rewritten as

t b exp[-2t+t +t,] by .
dtJ dt, R sinl| dr{5(1-N(t))+o(zM(1)+e )} ]

0 1 2 t

Q)

2

+ L(1-exp[-2t]). (3-5)

Since € and M(t) are small when t is not so large, we neglect
the second order of M(t) and €t Furthermore the second order of
the integration for 1-N(1) is neglected also in Eq.(3-5),
bécause, for large t, N(t) goes soon to the equilibrium value
(=1) and for small t the integration interval is small. Thus the

equation for M(t) is obtained from Eq.(3-3) as

U 4 t t1+ t2
M(t) = Ejodt1[o dt, expl -2t + bt b, 1 M( 5 )
t e % (1—9XP[—t])2: (3-6)

where the integration for M(t) in Eq.(3-5) is approximated by
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(t1—t2)M((t1+t2)/2). From Eq.(3-6) the linear differential

equation for M(t) is obtained as

2
j fét) + 43Mét) - 4(%—1)M(t) = amé(Z—exp[—t]) - dexp[—t]M(%).

(3-7)

Neglecting the term of M(t/2), which can be shown to be small
from the obtained solution, we get the solution of Eq.(3-7)

easily. The exponential growth term of the solution is

M(t) « e expl 2(/T/7 -1)t 1. (3-8)

m

The growth occurs only for U>y that is the Hartree-Fock criterion
for magnetic solution in equilibrium. It is interesting that
/U/m appears in the exponent, because it is not regular as a
function of U at U=0. The solution of Eq.(3-7) fits well to ths
numerical results of M(t) (Makoshi, Kawai and Yoshimori 1984).
The Eq.(3-8) shows that the curve shapes of M(t) after growth of
M(t) occurs does not depend on € which is seen in Fig.(3-1).
Thus Eq.(3-8) is valid generally for the growth of M(t). It may
be considered that the artificial parameter €n is caused by the
spin fluctuation effects, and further consideration is necessary

to determine the value of €

§3-4 Oscillatory Convergence

In this subsection the oscillatory convergence of nc(t) seen

in Fig.(3-1) is investigated in detail (Kawai, Makoshi and
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Yoshimori 1986). Defining Xo(t) as difference no(t)—no(m)
between no(t) and its equilibrium value, we have the following
approximate equation linear in Xo(t), which is valid for

sufficiently long time

dX (%) o 41 ‘
G = 2 [av exp(=t!) sin(e_(=)t1)
t
_ 1 _+ 1 —

jodt K, (t,t-t")X_ (t1) = 2X_(t) , (3-9)

with
t

20 exp(—T) '

K (t,t-t1) = 20 thi'——?———— cos (e (=)1) . (3-10)

Since N(t) takes a constant value 1 where the oscillation is
appreciable as seen in Fig.(3-1), we consider the case of
XO:—X_O(t) under the symmetric condition ea=—U/2. Neglecting the
first term in the right hand side of Eq.(3-9), extending the
lower integration limit from O to -«, and approximating
KO(t,t—t') by Ko(w,t—t'), we get the homogeneous linear
integro-differential equation for M(t) from Eq.(3-9) in which

Xo(t) and —X_G(t) are replaced by m(t)

dm(t)
dt

t
= -2m(t) + J dt'K (e, t-t")m(t"), (3-11)

-0

where m(t)=M(t)-M(w). For the integro-differential equation, we
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assume the solution takes a form of m(t)=Aexp(At), where ) is an
undetermined complex quantity. From the equation for m(t), the
equation for A is given by

U

»=-2+ L Tog(1+x(2+1)cos?s) (3-12)

§ = tan_1(€w) )
€, = |€O(w)| ,

where tan—1(x) takes values between -m/2 and w/2. Equation
(3-12) is valid for Relz-1. We pick up the solution of m(t)
which decays most slowly because Eq.(3-11) is valid for very long
time.

The trajectory of the solution of Eq.(3-12) on the complex A
plane with varying U is shown in Fig.(3-6). There are singular
points in the asymptotic solution as a funtion of U in addition
to m which is the boundary between the magnetic and nonmagnetic
solutions in the symmetric case. One of the additional singular
points, U_, is determined by sindc=exp(—ﬂ/2UC); the value of U
is 3.843+++ which is larger than w. Fdr every U value larger
than UC the real part A1, of A takes a constant value -1 and the
imaginary part, A2, is finite, while for U less than Uc’ A
becomes real and larger than -1, leading to the absence of
oscillation of m(t). The results obtained by the asymptotic

solution are compared with those of the numerical selfconsistent
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calculation in Fig.(3-7) and Fig.(3-8) in three cases of the U
values. As U increases (U>>Uc), A2 approaches €+ The

asymptotic form of A2 for large U is given by

U WU)

5 =€, - _4— exp(2— Z— (3—13)

Another singular point is U=0. For small U (Un0O), X approaches

-1 with the asymptotic form

A= =1+ exp(- 5y) . (3-14)

This indicates that X has the essential singularity at U=0. For
U=0, however, Eq.(3-11) is solved as m(t)=m(0)exp(-2t). Thus we
have an apparent discrepancy between the exponent A for the
asymptotic U+0 solution and that of the U=0 solution. What
occurs for U+0 actually is that there are two regions for m(t),
m(t)vexp(-2t) and m(t)vexp(-t), and the transient boundary moves
toward « as U+0. This may be seen by the following examination
of the difference, between the right hand sides of Eq.(3-9) and

Fq.(3-11). It is expressed as P(t)+Q(t), where

P(t) = - —ﬁrt f:dt' E(%—Si'—l sin(e_t') , (3-15-2)
| " t
Q(t) = - %H Jth EE%L:Il cos[ng] [tgi'm(T') . (3—15—b)

The long time asymptote of P(t) is
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P(t) ~ - 4cos26(sinewt+gwcossmt)exp(—t)/wt

so that we can neglect P(t). Q(t) can be estimated by using the
solution m(t)=Aexp(At) of Eq.(3-11). The result of the

integration is

Q)= =~ = m(£){2EX((1+ie_)t)~E, ((1+a+ie_)t)-E, ((1+r-ie_)t)},
(3-15-c)
where
E.(z) = ER(Z)+iEI(z) = dt exp(-1)
1 1 1 ” T
The asymptotic form of Q(t) at t+= is found to be
2Um{ t
Q(t) ~ — ?i;)t exp(-(1+A)t) , for ULt (3-16-2a)
(
Q(t) ~ ZUE\t) (e _cosA,tsine t-A.,sin).tcose t
£ 2 [o<] 2 [e<] 2 2 <0
ﬂk(k2—ew)t

—igmsinkztsinemt—ixzcosAztcosgmt), for U>U, (3-16-b)

We see that Q(t) is usually negligible except for 1+A=0 when the
denominator in Eq.(3-16-a) vanishes. It is the case when U=0.
This tells us that the region of time where our approximation is
valid moves toward « as U approaches 0.

The asymptotic solution is useful, because it gives a
reasonably good numerical approximation, and it is simple.

However, those additional singularities of the asymptotic
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solution should not exist in the full solution, because only
singularities in the Hartree-Fock approximation are at U=m and
U=w. We discuss the full solution of Eq.(3-9) in the next
subsection, which is not so simple for the numerical calculation,
and the relation between the present results and that obtained in

the linear response theory.

§3-5 Analyticity of the Asymptotic Solution

Here, we analyze the full solution of Eg.(3-9) by the Laplace

transform method assuming X (O)=—X+(O) in the symmetric case.

/r
The solution for m(t) is given by,

o5 (T+p-ie ) (1+ig )

I 7 oLoeTTTp e _J(1-1e_y * Pm(0)
m(t) = >3 dp exp(tp) T 5 7(3"17)
") e p(p+2)- = log{1+p(p+2)cos”™§}

where the imaginary part of log(x) takes values between -7 and 7.
We see that the solutions of Eq.(3-12) correspond to poles of the
integrand in Eq.(3-17). In the complex p plane the path for the
integral can be changed as to give pole and cut contributions.
The pole contribution corresponds to the asymptotic solution
discussed above. We can show, however, that the pole
contribution cancels out with a part of the cut contribution.

The integral in Eq.(3-17) can be rewritten as
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i(é% +m(0))=(m(0)z+ %1ogz_€w

Eig;)]exp(—itz)

n(t)= %exp(-t)lmldz ~ 5
o (1+22)[ 14 % log{(1+2%)cos®§-1}-iq

T+z (3-18)

with path of the integration shown in Fig.(3-9), where the
imaginary part of log(x) in numerator and denominator takes
values between -7 and w, O and 27 respectively. With a
sufficient large radius R shown in Fig.(3-9), the coefficient of
U in the denominator of the integrand is smaller than 1/U, so
that the integrand can be expanded in powers of U as a uniformly
convergent series. A uniformly convergent series of analytic
functions may be integrated term by term in the region of uniform
convergence, and the obtained series converges uniformly in the
same region (Titchmarsh 1939). We see that m(t) is regular as
the function of U except for U=« and U=w; for U=m, the phase
shift § is singular as a function of U. It is clear that the
singularity in the asymptotic form at U=UC and U=0 is caused by
our approximation to obtain Eq.(3-11). Since the pole
contribution is shown in the subsection (3-4) to give a good
numerical fit, the integral in Eq.(3-18) should be approximated
well by the pole contribution except at its false singular
points. Period of the oscillation for UC>U>ﬂ is so long that it
can not be seen.

The spin polarization m(t) can be discussed also in terms of
the response function within the linear response theory, when

m(t) is sufficiently small. We show how the spin polarization at
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the adatom site decays after the switching-off of the applied
magnetic field giving the initial value m(0) in the RPA
corresponding to the time-dependent Hartree-Fock approximation
for the electron-electron inte:action. The linear response
function ¢(t) for this system is given by the Fourier transform

of the w-dependent RPA susceptibility:

o . . 2
6(t) = - l§ J dw o100t log(1-w(w+2i)cos™§) . (3-19)
T ©

- w(w+2i)+ % log(1-w(w+2i)coss)

where the imaginary part of log(x) takes values between -7 and 7.
Inserting i) into w, we find again Eq.(3-12) as giving the poles

of the integrand. The integral (3-19) can be rewritten as

_ 2exp(-t) exp(-itz)

o(t) = T aU Re sz 2 5 . 2 ’
¢ 1+U0{log((1+2%)cos™8-1)~inm}/n(1+2°)

(3-20)

with path of the integration shown in Fig.(3-9), where the
imaginary part of log(x) is taken beween 0 and 2m. From
FEq.(3-20), it is easily shown that the response function has no
singularity as a function of U even at U=0 and U:Uc’ except for
U= and U=m.

When U=0, Eq.(3-11) has a solution of Aexp(-2t). We note
here this decay form is given by the non-linear response to the
magnetic field. For U=0, we can derive exactly m(t) after the
switching-off of the magnetic field of arbitrary strength applied

to the adatom orbital of arbitrary strength, as
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_ 4 exp(iht) . h R L
2;8) = -2 [Im_i?IE—'—E1((1+lh)t)+ 4+h2exp(—2t){E1(—t—1O )

h2
L+h

1

% log(1+n%)}] +

= m(0)exp(-2t) , (3-21)

where the initial value m(0), is given by m(O)=(2/w)tan_1h. When
we approximate Eq.(3-21) linear in h, we find no exp(-2t) term at

long time.
§3-6 Various Cases of the Time Dependence

In this subsection smooth switch-on cases of the admixture
are discussed (Yoshimori, Kawai and Makoshi 1984). The time

dependence of the admixture is assumed to have the form
_ 2
u(t) = expl - (t/T )7 1, (3-22)

where Tu is a time constant related to the motion of the atom. A
large value of Tu corresponds to a slow motion of the atom. 1In
Fig.(3-10) the numerical results under the condition of constant
U and e, and n+(—m)=n+(-w)=0 are shown. The parameter values are
ea=—8, U=16, gm=0.01 and Tu=3. The behavior of the results shown
in Fig.(3-10) is qualitatively the same as in Fig.(3-1) after
t=~2, though Tu=3 (>1) is not so small. The numerical results of
nc(m) versus T in the same parameters as in Fig.(3-10) except

T, @re shown in Fig.(3-11). The time constant T, in Fig.(3-11)

corresponds t (=2L/v) in the sudden switch-on case shown in

Fig.(3-1). The whole shape in Fig.(3-11) is similar to those in
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Fig.(3-1), but the oscillation is suppressed out. In Fig.(3-12)
the numerical results with parameters ga=—1, U=10 and Tu=10 under
-»)=1 and n

the codition n (-=)=0 are shown. Growth of the spin

+( ¥
polarization is seen after t=10 in Fig.(3—12), though the
parameters ga=—1 and U=10 do not meet the magnetic condition at
equilibrium. In the smooth switch-on cases like Eq.(3-22), the
parameters U(t)/au®(t) and sa(t)/Auz(t) meet the magnetic
condition at the position of the atom beyond the certain distance
from the surface even if the parameters do not meet the condition
at the distance nearest to the surface, because as the position
of the atom is far from the surface, the strength of the
admixture become small and the Coulomb interaction effectively
large. Thus the growth of spin polarization seen in Fig.(3-12)
can occur. In Fig.(3-13), the numerical results are shown in the

case where ea(t) and U(t) are time-dependent. The time

dependence is assumed as,

Ea(t) = - U(t)/zy

2

U(t) = U - (U - UO)GXP[ _(t/TU) ]’ (3"23)

where U takes a value UO at distance nearest from the surface

and U_ at infinite distance from the surface. TU is a time
constant expressing the reduction of the Coulomb interaction near
the surface due to the screening or the image potential, where
the reduction is arbitrarily simplified. The parameter values

are UO=1, Uw=16, Tu=TU=3 and em=0.01, and the initial condition
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is n+(—w)=n+(—w)=0 in Fig.(3-13). The parameters U=1 and £,==0.5
at the distance nearest to the surface do not meet the magnetic
condition at equilibrium. The results shown in Fig.(3-13)
indicate that in spite of the reduction of U and S the magnetic
solution can occur. In Fig.(3-14) the numerical results for the
sputtering case are shown. The time dependence of parameters is

assumed as,

1 t<0
u(t) = 5
expl - (t/Tu) ] >0,
( UO <0
ut) = U, - U,
| U, - CTEIE >0,
ea(t) = - U(t)/2, (3-24)

where the image potential correction is considered; U(t) takes a

value UO at surface and Uoo at infinite distance from the surface.

In the results shown in Fig.(3-14) the parameters are U.=1,

0
Um=16, V/ZO=O.5, Tu=3 and €m=0.001. These results indicate that
inspite of the rather strong screening, the magnetic solution can

occur also.
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Fig.(3-1-a)

Fig.(3-1) Numerical results for various values of ¢ with
€a=—U/2=—8. The time dependence of u(t) is shown in Eq.(2-4).
Solid lines represent the electron number for each spin, and
dashed lines the total electron number. a) e, =01, b) e =0.01,
c) £,=0.001.
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Fig.(3-1-b)
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Fig.(3-1-c)
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Fig.(3-2)

L

Same as Fig.(3-1), €a=—5, U=15 and €m=0.01.
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Fig.(3-3)

Same as Fig.(3-1), £,=2 and U=0.

- 40 -



1

Fig.(3-4) Same as Fig.(3-1), &:a=—0.1 and U=10.
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Fig.(3-5) Same as Fig.(3-1), € =-5 and U=10.
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ImA

‘ ReA
P
U:UC UZ/

Fig.(3-6) Trajectory of the solution of Eq.(3~12) on the

complex A plane with varying U. For U>Uc, the real part of A, A1

takes a constant value -1 and the imaginary part A, is finite.

2
For U<Uc’ A2 vanishes, leading to the absence of the oscillation
of m(t). The value of UC is 3.843+++ defined by

sin60=exp(—ﬂ/2Uc).
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Mt)
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O 5 10 15

Fig.(3-7-a) - t

Fig.(3-7) Comparison of the numerical results of m(t) from
Eq.(3-3) with those of the asymptotic solution. Solid lines
represent the numerical results for U=5 (U>UC) with the initial
condition n+(O)=1, n+(O)=O, and dashed lines the asymptotic
ones, which take a form Aexp(—t)sin(k2t+¢). The frequency 1,
(=1.4525) is the imaginaly part of the solution of Eg.(3-12).
The amplitude A and the phase ¢ are determined at t=12.996 where

m(t) takes a local maximum. a) m(t) versus t, b) m(t)exp(t)

versus t.
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Mt)

O L
ml ON :
O S 10 15
Fig.(3-8-a) t
Fig.(3-8) Same as Fig.(3-7) for U<U_. The asymptotic

solusion is now given by Aexp(At), A being the solution of
Eq.(3-12). The amplitude A is determined at t=13.725. a) for
U=3.6 (UC>U>W and A=-0.3908++«) b) for U=2 (U<m and

A==0.3883¢+.,)
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€3

X ReZ

ng
€3 ®:U>U,
__i>r GO lJ < lJC

Fig.(3-9) Path for the integrations (3-18) and (3-20). The
integrations are to be made along the quarter cifcle with the
infinite radius. Heavy lines are the branch cuts of the
integrand in Eq.(3-20) or the cuts of denominator in Eq.(3-18).
The branch cut of the numerator in Eq.(3—18) is not shown.
Crosses are poles of the integrands. There are poles at z=*i for
all values of U. The other poles are on the real axis for U>UC,

and on the imaginary axis for U<UC.
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_ ":t
Fig.(3-10) Numerical results for no(t). €,=-8; U=16,
sm=0.01 and Tu=3. The time dependence of u(t) is shown in

Eq.(3-22). Solid lines represent the electron number for each

spin, and dashed lines the total electron number.
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Fig.(3-11)
U=16, €, =0.01.

Eq.(3-22).

Numerical results for na(w) versus Tu‘

The time dependence of u(t) is shown in
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Fig.(3-12)

-

—25 25

Same as Fig.(3-10), e =-~1, U=10 and T _=10.
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b

gt

Fig.(3-13) Same as Fig.(3-10), U.=1, U_=16, €,=0.07 and

0
Tu=TU=3. The time dependence of the parameters is shown in

Eq.(3-22) and Eq.(3-23).
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0 10

Fig.(3-14) Same as Fig.(3-10), Uy=1, U_=16, v/ZO=O°5,
em=0.001 and Tu=3. The time dependence of the parameters is

shown in Eq.(3-24).
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§4 Electron-Hole Pair Expansion

§4—1 Expansion with Respect to the Admixture

Effects of the intraatomic Coulomb interaction in the
time-dependent Newns-Anderson model are investigated in the
Hartree-Fock approximation in the section (3). Though the
approximation 1is very simple, various interesting effects of the
interaction are found within the approximation. The
approximation, however, may be oversimplified; in equilibrium
problem 1t is well recognized that the Hartree-Fock approximation
in Anderson model has some defects. There are few studies to
improve the approximation in the time-dependent Newns-Anderson
model for the charge exchange problem (0Okiji and Kawakami 1985).
Recently the 1/N expansion method has been applied to the charge
transfer problem in the N-fold orbital-degenerate time-dependent
Newns—Anderson model by Brako and Newns (1985). They employed
the electron-hole pair expansion. In the equilibrium problem
the electron-hole pair expansion method has achieved success
(Yosida and Yoshimori 1973, Gunnarson and Schonhammer 1983). 1In
the charge exchange problem, however, the 1/N expansion gives
rather strange results, which is mentioned in the subsection
(4-3). Here, we investigate the effects on the charge transfer
problem following Brako and Newns, but we do not employ the 1/N
expansion; we employ the expansion with respect to the admixture

constant between the electron states between the atom and
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metallic states, and examine each term for the total electron
occupation number on the atom up to the eighth order of the
admixture (Kawai and Yoshimori 1987).

The Hamiltonian of the N-fold degenerate time-dependent

Newns—-Anderson model is given by
~ t T
H=1 e 0pplupn * 1L 8a(t)camcam
km m

+ gm[ Vk(t)CZkam+ h.c. ] + £1zg;t)czcham1c;m2 camz, (4-1)
where C_ ~is the annihilation operator in the m-th (m=1,2, o+« N)
electron state of N-fold degenerate orbitals (including spin) on
the atom, Ckm the annihilation operator in the corresponding m-th
partial wave state of metallic electron of quantum number k in
the metal, the other notations are the same as in previous
sections. The expansion bases of the total wavefunction

necessary to examine the total electron occupation number up to

the eighth order are

IO>,
- 1 T _
Iak> = -1;_N— gl CakamlO>, €k< 0 (EF‘— 0 )
1 + g, > 0
Ik k,> = — ) C C |O> k
172 /N m k1m k2m ’ 1
g, < O
ky



1 T At €
l1:a k, ko k> = — z C' C C C |O> k
1 72 73 /N @ am k1m k2m k3m ’ 1

=)

Il
(@]
-
—+
O
A4
m
b

|2:a k, k, k>

1
5 k3 k4> ;ﬁ—

[1:k, k

k, k,> =

12:k, Xk _
172 73 74T NUNSTT noem., ST KpWp kgmytk,my

> 0

g, <0
L %3

(4-2)

where |0> denotes the ground state of the metal and empty atom
orbital. Throughout this section, the Us~ case is assumed, so
that the wavefunction for whole system does not contain the bases
of more than one electron on the atom. .Furthermore €a>0 is
assumed, so that |0> is the ground state of the whole system at
Vk=O.

The wavefunction of the whole system |y(t)> is expressed in
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the linear combination of the bases in the form

|0 (t)> = B(£)]0> + | B( & k,:t)|a k> + § Bk, kyit)|k, ky>

2

k, k>

+ 7 Bi(a kg ky kgit)[1:a ky ky kg

2

+ ] By(a k K, ko>

1T 72 73

1 ks kB:t)]Z:a k

+ ) B1(k1 k2 k t)]1:k1 k, k4, k,>

3 %° 2 K3 K,

k, k ko, k¥, + eee,

+ ¥ B,(k 2 kg &,

5 k4:t)|2:k1 k

1 72 73

(4-3)

Summations in Eq.(4-3) should be carried out over k. The
amplitudes b(t), etc. are determined from the time-dependent
Schrodinger equation. The coupled differential equation is

obtained as

i%¥B(t) = /RV(t)T B(a 1:t),
el<0

i%EB(a k:t) = /NV(t)B(t) + (e, - €,)B(a k:t) + V(t)] B(1 k:t),

€1>O
.d . _ . - :
1EfB(k1 kz.t) = V(t)B(a k2.t) + (ek1 akz)B(k1 kz.t)
+ V(t)) B1(a k1 k2 1:t) - V(b)) B1(a k1 1 kz:t)
€, V& e, <e,<0
k2 1 k2 1
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:t)

+ YN=TV(t)¥ B2(a k, k, 1:t),
€l<0
.d ] _ ] ' )
13¥B1(a k, k, kB.t) = V(t)B(k1 k2.t) - V(t)B(k1 k3.t)
+ (¢ + e, -, — ¢, )B,(a k, k, k
a "k k, k3 1 1 72 73
- V(t)¥ B1(k1 1k, kB:t)
€x >sl>O

1

+V(6)] Bi(1 k, k, ky:t),

1 72 73
€1>€k
1
.d . _ .
1H¥B2(a k1 k2)k3.t) = N—1V(t)B(k1 k2’t)
(e, >e
k2 k3
+ (e.+ €, — €, - €, )B,(a k, k, k.:1%)
\
a k1 k2 k3 2 1 72 73
+ VI N
V()] Bylky 1 kg kyit)
€ >€l>O
1
P V()] By(1 ky ky kyit),
81>O
od - — {4 .
1a€B2(a k1 kZ)kB't) = /N-1 V(‘G)B(k1 k2't)
(e, <eg
k2 k3
+(€a+ €~ € ~ & )B2(a k, k2 k3:t)
1 2 3
V(L)L By(ky 1 kg ky:t)
€l>O

- 58 -



+ V(t)] By(1 ky ky kjtt),
€4 VFE
1 k1
d . _
i3z 1(k k k3 k4.t) = V(t)B1(a k1 k3 4 t)
+ V(t)B1(a Ky k, t)
+ (g, + e, - €, — e, )B,(k, k, k, k,:t)
kU fkyT fkyT R TTTR T2 T3 N
+ eeo e ’
.d .
ldt (k k k3 L t) = (t)BZ(a k1 k4 k3.t)
+ V(t)BZ(a k2 k3 kA:t)
+ (¢, + e, — e, -, )B.(k, k, k, k,:t)
k" fkyT fkyT Sk, 7PN F2 F3 %y
t e (4-4)

where the admixture constant Vk(t) is written as V(t) which is
assumed to be real and independent of k, the energy of the whole
system is measured from the eigenenergy of |0>. We solve these
coupled equations by iteration, starting from b(t). The solution
is obtained in the expanded form with respect to V. In order to
obtain the solution up to V8, those bases written out in Eq. (4-2)
and Eq.(4-3) are enough.

The total charge on the atom at t+w is given from the
solution of Eq.(4-4), that is,

N(ew)=<y ()|} C lw(w)>.

mam am
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=I|B(a ki=)[?+ []By(a Xy k, kyim) %+ [|By(a ky X, kyie)| 2.

(4-5)

where the summation are again over k.
§4-2 Laplace Transformation

In this subsection, ea(t) is assumed to be constant in time

for simplicity. Furthermore the time dependence of V(t) is taken

to be
V(t) = Vu(t)
1 t <0
u(t) =
exp[ - vt ] t >0 (4-6)

where y expresses the motion of the atom; small y corresponds to
the slow velocity of the atom (y=v/a, see the subsection (2-1)).
The time dependence in Eq.(4-6) corresponds to the sputtering
case. In order to get the solution of Eq.(4-4), the Eq.(4-4) is
transformed by the Laplace transformation. The coupled equations

are obtained as

b(p) = %[iB(O)h/ﬁ V] bla l:p+y),

el<O
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1

b(a k:p) = i—p_E——;e—[iB(a k:0)+1/NVb(p+'y)+Vz b(1 k:p‘T"Y)],
a “k €1>O
. _ 1 . . .
b(k1 k2.p) = ip—sk ey [1B(k1 k2.0)+Vb(a k2.p+y)
1 2

+V] by (a k; k, l:p+y)-V] b, (a ki 1 k,:p+y)

>e e, <e-.<0
5 1 k2 1

€k
+/W=TV] b,y(a ky k, 1ip+y)],

€l<0

.
1p—€a—sk1+ek2+€k3

[iB1(a k., k, k,:0)

by(a kg ky kyip) = 1 %o K3

+Vb(k, ky:pty)-Vb(k, k,:p+y)

VI by(k, 1k, k3:p+y)+Vz b (1 k, k, k3:p+Y)],

€k1>81>o €l>€k1

[iBz(a k, k, k,:0

b2(a k,] k2 kB:p) = ip_ea_ak +€k +€k 1 2 3 )
(ek >ey ) 1 2 3
2 3

€k1>€1>o
V] by(1 kg ky kyipty)l,
€l>O
_ 1 . .
by(a kg ky kj:p) Tpc me, ¥e, ¥e, [1B,(a ki k, ky:0)
(sk <ek ) 1 2 3
2 3



b1(k1 k, k3 k4:p) =

b2(k1 k2 k3 k4:p)

where b(p), etc. are

are defined as

+/N=TVb(k, kytp+y)+V] by(ky 1 kg ky:pty)
gl>O

+V] by (1 kg ky kgipty)],
SIS

1
1p—ek1—€k2+ek3+ek4

o k3 K,

[iB1(k1 k :0)

Vb (a k, ky k4:p+y)+Vb1(a k, kg k4:p+y)]

1

[iB,l(k1 k2 k3 kA:O)

~Vb,(a k, ks k4:p+y)+Vb2(a k, kg k4:p+y)],
(4=7)

the Laplace coefficients of B(t), etc. which

b(p) = J:exp<—pt)B(t) dt. (4-8)

Since the system is in equilibrium at t=0 from the time

dependence of Eq.(4-

of the equilibrium s

6), B(0), B(a k:0), etc. are the amplitudes

tate. The amplitudes can be found by putting

idB/dt=EB into the Eq.(4-4), where E is the energy eigenvalue of

the whole system in equilibrium measured from the ground state

energy of the Fermi
Eq.(4-7), B(t), etc.

transformation,

state |[0>. From the solution of the

are obtained by the inverse Laplace
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jeot+0"

B(t) = 5%; { eXp(Et)b(p) dp. (4-9)
—iw+0 _

In order to obtain N(»), contributions of residue by the poles
only on the imaginary axis are needed in the integration (4-9)
(Brako and Newns 1985). We obtain B(w), etc. by iteration of
Eq.(4~7) up to the eighth order of V using partially the symbolic
manipulation system, REDUCE (Hearn 1985). In the following
subsection, We rearrange these terms in N(x) again in the
expanded form with respect to V and carry out the k-summation in

the 1limit of sa/y+w in the wide-band limit.
§4-3 Manybody Effects

In order to rearrange the terms in N(«) appropriately and to
compare the results, we derive the expression of N(wx) for the N=1
case, that is, the noninteracting case. The expression for N=1

is obtained in the wide-band limit from Eqg.(2-8),

_ 5 © ) ) . X
% =7 kV [Odt1jodt2 expl {1(sk1—ea)—y}t1 + {—1(€k1—ea)—y}u2 ]
2

A t
xexpl[ - §§{ exp(-2vt,) +’exp(—2yt2) } ]<Ck1ck2>

<

+ 2Im expl - gé ] E VJOdt1 expl - {i(ek—sa)+y}t1 ]
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xexpl[ - §$exp(—2yt1) ]<C;Ck>
+ expl - % ]<C;Ca>, (4-10)

where <ee<> expresses the expectation value in equilibrium at
t<0. The expanded form of N(x) for N=1 with respect to V is

obtained from Eq.(4-10) as

_ + + +
) = A<C_C.> + ] Ay(k)<C_C.> + ] A3(k1,k2)<Ck Cy >, (4-11)
1) k k, kg 1 %2

1 AV[ 1

ViT TRy T 2yt 1T v e ey )
1ley-g, )+y Yo ilep-e )ty iley-e_)-3v

A, = ZIm[

A2V[ . 2 1

(e, e )y & (e e )73y & Ileg-¢,)%57

]-I- *e e 5

[ V2 1
{i(€k1_Ea)—Y}{_i(ekz_Ea)—Y}

Ne [ 1
2Y {i(ek1—ea)-Y}{—i(ekz—ea)—BY}

MR 3T 74T !
1 €k1_€a -JY -1 €k2—€a -Y

ATV 1
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8Y2 {1(€k1'€a7;5Y}{‘l(€k2‘€a)‘Y}
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i EICECRE I CACWEDOR 1)

1
+ {i(€k1—€a)—Y}{—i(gkz_ga)_5,y} ] + ese (4_12)

T ¢

On the other hand, for arbitrary N, Zm<Cam am

>, etc. are obtained

from Eq.(4-2) as

+ _ : . 2 . 2
g <! ¢ > =7 |B(a 1:0)] -+ By (a 1, 1, 1,:0)]
+ 7 |B (a1, 1, 1.:0)]% + ««-
2 1T 72 73° ’
+ _ . . .
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y <CI G, > =
T k1m k2m
(ek >0, €

>0)
1 k

2

. <0)

= v/NB(k

I Byla 1, 1, 13:0)B,(1; k 1,4 1,30) + eee,
I B(k, 1,:0)B(k, 1,:0)
+ 1 By(a k; 1; 1,:0)B (a k, 1, 1,:0)

+ ) B2(a k1 1 12:O)B2(a k

1

5 14 12:0) + oeee,
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1 1T 72 1

-7 Bw(a k, l1 kQ:O)B(a 11:0)
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+ ) B,](k1 l1 12 k2:O)B(l1 12:0)
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+ VF-T] By(1y ky ky 15:0)B(1, 1,:0) + ee-,

171 "2
- t +
) <ck2mck1m> 17,
2
§ N|B(0)]
k k,

2
+ 6k1k2Nz |B(a 1,:0)|% - B(a k,:0)B(a k,:0)
. R . .

+ 5k1k2Nz |B(1; 1,:0)[° - ] B(1, ky:0)B(1, k,:0)
+6, . NJ |B,(a 1, 1, 1,:0)|?

K,k 1 1 72 ~3°
-3 B1(a 1, k, 12:O)B1(a 11 k1 :0)
- ! By(a 1, 1, k,:0)B,(a 1, 1, k,:0)
+ 3 B1(a 1, ky 12:0)B1(a 1, 1, :0)
+ 3 B1(a 11 k1 12:O)B1(a l1 12 :0)
+ 8 . NY |B,(a 1, 1, 1.:0)]%

ko k, 2 1 72 ~3°
-7 B2(a 1, ky 12:O)B2(a 1, ky :0)
- I By(a 1, 1, ky:0)By(a 1, 1, ky:0) + <v0,(4=13)
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where summations for 11, 12, etc. are performed over the same
region as for the bases in Eq.{(4-2). 1In the following, we derive
N(w) for arbitrary N in the form like Eq.(4-11), using Eq.(4-13)
in the limiting case of ga/y+w.

It is very difficult to carry out the k-summations for N(e)
for arbitrary N and €y In the following the wide-band limit and
the limit of ea/y+m are assumed in order to perform the
k-summations. In the expression of N(w), there are many
denominators of a form like (ek-ga+imy). In the above limits the

factors can be rewritten as

E VZEE:ElIIE?F(Ek) = %Jde [P{Eig —iwé(e—sa)sign(m)]F(g)
a a
1 . .
(e=c_¥iny) (e=¢_+imy) _ i(nim)Y[SIgn(n)—81gn(m)]G(E-ea).
(m=n) (4=14)

Thus, using the Eq.(4-13), we can show the expression of N(«) for

arbitrary N in those limits, that is

N ()

7 o<ule)|Cl c Ju(e)>
m

am am

t +
AL <Clplap> * [ AU 1 <Opp0pp

.l.
+ % A3(k1,k2)z <ck1mck2m>. (4-15)
1%2 m

We note that, in order to show that Eq.(4-15) holds, we have to
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use the expanded terms with respect to V for zm<C;mCam> etc. as
well as A1, A2 and A3 and perform the k-summation partially for
the second and third terms in Eq.(4-15). The expression (4-15)
is verified in the expanded form up to V8, and we believe that it
is valid up to infinite order of V in the 1limit of ga/y+w and the
wide-band limit. Equation (4-15) has the same form as that for
N=1 except the initial conditions. The manybody effects in Nz2
are only in the initial condition B(0), etc. In the
noninteracting case of N=1, the limit of ]gal/y+m corresponds to
the case where the memory effects dominates. Equation (4-15)
expresses that the memory effect dominates also for arbitrary N
in those limits. On the basis of the present result, we
conjecture that the statement "In the limit of ea/Y+m, the memory
effect dominates™ holds for arbiirary value of U, as far as the
total charge, N(w)=2m<w(w)]Clmcamlw(m)> of the atom is concerned.
A comment is made here on the 1/N expansion for the charge
transfer problem (Brako and Newns 1985) that the N+x limit may
lead to a rather strange situation. Because in the 1/N
expression NA is kept equal to the constant I'; A goes to 0 in the
limit of N»w~. On the other hand, the memory factor for arbitrary
N is A1=exp(—A/y) not exp(-T'/y), so that the memory term stays at

the initial value in the condition of constant T'=NA and N+,
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§5 Exact Calculation in Small System

§5~1 Manybody Bases for Small System

In the section (4), the total electron number on the atom is
examined by the electron-hole pair expansion method, where the
k-summations are made in the limit of sa/y+w. In this 1limit the
Kondo effect and the valence fluctuation effect are ineffective.
It is very interesting how these effects appear in the
non-adiabatic charge exchange problem, though the Kondo effect
would not play a significant role in the charge exchange problem
(see the Hartree-Fock results for charge and spin variations).
These effects come into the problem on €a<0 and e,>0 for very
large U. The case of aa+0 may correspond to the most difficult
case to be analyzed with the electron-hole pair expansion. As
another way to approach, we attempt to carry out the exact
calculation of the time-dependent Newns—-Anderson model in a small
system with finite U, €, and Yy, whose Hamiltonian is given by
Eq.(2-2). Since the metallic states have the infinite degrees of
freedom, infinite number of manybody bases are nescessary for the
manybody calculation. Because of this difficulty, we begin to
study the exact manybody problem in small system, having an idea
to apply the numerical renormalization group method (Wilson 1975)
to this problem in the future step of this investigation.

The éase is considered that there are M one-electron

eigenestates at V=0, and its energy eigenevalues €, are
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distributed at constant intervals in the range of "the bandwith"
D. These one-electron eigenstates in the small system correspond
to the metallic states, and there is the admixture V(t) between
the M states and a single one-electron state on the atom with the
energy level €, where the k dependence of the admixture is
neglected. The wavefunction of the whole system is described by

the linear combination of such manybody states, that is,

.l..

d?[{li’gi}] = H Cl.O.|O>’ (5—1)
i ivi
where Cl+O is the creation operator for the li-th one—-electron
ivi
state for spin o, (including the sate on the atom), |[0> is the

vacuum state. The total spin S of electrons in the whole system
is asgsumed to be S=0, and the total electron number is assumed to
be one half of the total number of the one-electron states, that
is, to be equal to M+1. This may be called the total system

neutral. Under this condition, numerous manybody bases are

necessary to calculate the wavefunction, that is,

M+1 the number of necessary bases
2 3
4 20
6 175
8 1764
10 - 19404
12 226512 (5-2)

Because of the memory space limit of our computer system at hangd,
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it is impossible to carry out the numerical calculation for the
system with M+1 more than 8. Thus numerical calculations for

M+1=8 are carried out.

§5-2 Numerical Results and Comparison with the Hartree-Fock

Results

The étructure of one-electron energy level is shown in
Fig.(5-1) assumed D=12, ga=—2 and M+1=8. The time dependence of
V(t) is assumed as Eq.(4~6) which corresponds to the sputtering
case. FExcitations of the electronic state in the metal may occur
in energy of the order of y (fhi=1), which is a méasure, in energy,
of the disturbance by the moving atom, during the motion of the
atom leaving from the metal surface. In the small systemn,
however, the exitations with energy much less than the energy
interval (=2 in Fig.(5-1)) do not occur. For this reason, the
small system calculation discussed here is not valid for y much
less than 2, as an approximation to the large system. 1In a
similar argument, for large y (y>>D), the finite band effects
come into the results. 1In Fig.(5-2) - Fig.(5-5) the numerical
results for U=6, €a=—2 with varing y are compared with the
results calculated in the Hartree-Fock approximation with the
wide-band limit and there are also the Hartree-Fock results
calculated in the small system. In the small system with the

finite degrees of freedom, A in large system corresponds to
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s =g VO (5-3)

The results for the total charge, the fraction of positive ion,
neutral atom and negative ion are shown in Fig.(5-2)-Fig.(5-5),
respectively. In order to discuss the dynamical effects, the
results shown in Fig.(5-2)-Fig.(5-5) are shifted to coincide with
each other at y=2. The shifted results are shown in
Fig.(5-6)-Fig.(5-9). Since the excitations occur in the energy
range of order of y as mentioned above, the finite-band effects
are to be appreciable, when y is much larger than D. Those are
seen in 1/y<1/3 in Fig.(5-6)-Fig.(5-8), where the results of the
wide~-band 1imit deviate from those of the small system. In
1/y>1/3, however, the results except for the fraction of the
negative ion show rather good fit, where the finite-band effects
and the manybody effects are supposed to be small. On the other
hand, the results for the fraction of the negative ion in
Fig.(5-9) show that the dynamical effects in manybody calculation
are remarkable compared with those in the two Hartree-Fock
calculation, although the absolute values of the fraction is very
small. From these results, we believe that the Hartree-Fock
approximation is rather good approximation except for the

fraction of the negative ion.
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Fig.(5-2) The total electron number at t=o versus 1/vy. Ia

represents the value at y-0, that is, the adiabatic Iimit.

(~++): exact results in the small system for the parameters D=12,
M+1=8, £, -2 and V=O.5.v (0 ): the Hartree-chk approximation
results in the small system. (X): the Hartree~Fock

approximation results in the wide-band limit for ea=—2, U=6 and

A=1(M/D)V2=0.458«-.
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Fig.(5-3) The fraction of the positive ion, same as
Fig.(5-2).
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Fig.(5-4) The fraction of the neutral atom, same as

Fig.(5-2).
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Fig.(5-5) The fraction of the negative ion, same as

Fig.(5-2).
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Fig.(5-6) The results for the total charge shifted to

coincide with each other at y=2, from Fig.(5-2).
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Fig.(5=7) The results for the fraction of the positive ion

shifted to coincide with each other at y=2, from Fig.(5-3).
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Fig.(5-8) The results for the fraction of the neutral afom
shifted to coincide to each other at y=2, from Fig.(5-4).
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Fig.(5-9) The results for the fraction of the negative ion

shifted to coincide to each other at y=2, from Fig.(5-5).
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§6 Discussion

In the section (3), the intraatomic Coulomb interaction has
been treated in the Hartree-Fock approximation. In spite of the
simplified assumptions, the various interesting effécts of the
interaction are found. However, when the initial conditions are
same for both spin, the artificial parameter € is necessary to
be introduced, even 1if there 1s no external magnetic field. This
parameter e, may be regarded as representing an effect due to the
spin fluctuation on the atom. A problem remains to determine the
value of €, though, as it is seen in the subsection (3-2), the
behavior after the growth of spin polarization started does not
depend on the magnitude of €+ A manybody calculation, which
keeps rotational invariance in spin space, does not need € of
course. We have tried in such a sence the two attempts the
electron-hole pair expansion method and the calculations for the
small system. The manybody effects, for instance the Kondo
effect, or the valence fluctuation effect, come into the charge
exchange problem in the case of em<0 and |€al+0, respectively,
for large U, though, as it is pointed out in the section (2) and
section (3), the Kondo effect may not be appreciable in the
charge exchange. The analysis in the section (3) shows that the
charge exchange is normal, but spin exchange indicates some
anormaly related to the Kondo effect (see ImA for large U). The
condition of €a+0 corresponds to the most difficult case to be

analyzed by the electron-hole pair expansion (the section (4)).
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The calculation in the small system (the section (5)) is not so
valid under the condition where Iaal is léss than the energy
interval, because, in this case, there are no one-electron states
of metal between €y and the Fermi level. In the case of vy less
than the interval, the discrete energy system does not represent
the true metal state. For these reasons, the numerical manybody
calculation in the system with narrower energy interval is
necessary to examine the many-body effects. On the other hand,
the higher energy states of the metallic electron would not
contribute significantly to the nonadiabatic charge exchange in
the atom motion of smaller y. From this observation, the
numerical renormalization group method of Wilson (1975) is

believed to be applied to this problem.
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§7 Summary

The intraatomic Coulomb interaction effects for the charge
transfer problem in the time-dependent Newns-Anderson model have
been investigated by the Hartree-Fock approximation, the
electron-hole pair expansion method and the.brute force numerical
method for small system.

In the Hartree-Fock approximation, it is found that 1) the
spin polarization M(t) on the atom is described by the rate
equation, when M(t) is small. 2) there is oscillatory
convergence of no(t) to the equilibrium value when U is large.
Furthermore the behavior of the oscillation is investigated in
detail. 3) When the initial condition of no(t) are the same for
both spin, the artificial parameter € 1s necessary in order to
break the symmetry in spin space.

In the limit of ea/y+w, it is obtained that the total charge
N(o) on the atom has the same expression for arbitrary orbital
degeneracy N on the atom as that of the noninteracting case. 1In
particular the memory effects dominate even for the arbitrary
value of N. |

By the numerical calculation for the small system, we
believe that the Hartree-Fock approximation is rather good
approximation except for the fraction of the negative ion, and
the manybody effect is remarkable in the fraction of the negative

ion.
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