
Title PARSER GENERATION SYSTEM : ITS OPTIMIZATION AND
ERROR PROCESSING

Author(s) 海尻, 賢二

Citation 大阪大学, 1977, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2801

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

PARSER GENERATION

- ITS OPTIMIZATION AND ERROR

 SYSTEM

PROCESSING -

KENJI KAIJIRI

DECEMBER1976

 ABSTRACT

 A compiler is a program systern which translates a source

program written by higher level languages to an object program,
 'and a parser is a syntax analysis part of a compiler.

 This paper consists of two parts: PART I is concerned with
 'the space reduction of parsers and PART II is concerned with

the error processing. Both are the major problems in automatic

generation of parsers.

 Precedence functions have sorne meri'ts such that significan-

tly smaller parsers can be constructed, but they have no error

detecting capability and their corresponding grammatical class

is small. PART I describes the new precedence functions meth-

ods in two ways. Chapter 1 describes an overview of precedence

functions. Chapter 2 gives the fundamental concept,s about pre-

cedence functions, and the equivalence relations about the

error detecting capability of simple precedence parsers and of

weak precedence parsers are introdticed. Chapter 3 defines the

ED(i,j) equivalence which is a generalization of the above

equivalences. In this chapter we also show the necessary and

sufficient conditions of weak precedence parsers and give the

procedures to implement weak precedence functio.ns under the

condition of this equivalence relation. Chapter 4 defines the

Extended Precedence Functions and gives the procedures for im-

plementing this method efficiently in two parsers; simple pre-

cedence parsers and weak precedence parsers. Chapter 5 descri-

bes the remaining problems in the future researches.

-i-

 The error processing is one of the major functions in par-

sers. We propose practical error correcting and recovering

methods for SLR(k) parsers in PART II. Chapter 1 describes an
 ' 'overview of former error processing methods. Chapter 2 gives

the fundamental concepts of SLR(k) parsers and error process-

ing; The i-order valid pairs for ,terminal strings are intro•L

duced and the error correcting methods using these pairs are

given in chapter 3. Chapter 4 gives the error recovering method

in the same way. Chapter S shows some results of simulations

and we evaluate these methods. Chapter 6 is the conclusions.

 Overall results and significances of this paper are given

in CONCLUSIONS, remarks and future problems are also given.

-ii-

 ACKNOWLEDGEI`fi]NTS

 The author would like to acknowledge the continuing guidance

and encouragement of professor Yoshikazu Tezuka throughoutthis

lnvestlgat'l on .
 ' '

 The author also would .like to express his appreciation to

professor Kioyasu Itakura, professor Toshihiko Namekawa, pro-

fessor Nobuaki Kumagaya, and professor Yoshiro Nakanishi.

 The author wishes to thank Dr. Seiichi Uchinami and Dr.Yoneo

Yamamoto for their helpful suggestions and discussions.

 The author is indebted to assistant professor Hidehiko Sanada

and Dr. Hikaru Nakanishi for their helpful advices.

 The author is pleased to acknowledge the helpful discussiOnS

of Mr. Masayoshi Tezuka and Mr. Takeshi Shinohara. Thanks are

also due to my colleagues, among them Mr. Takanori Seno for his

contribution in the development of some of the algorithms, Mr.

Jiro Ohkura and Mr. Michio Naito for their discussions and as-

 .sistances, Mr. Itsuo Matsuda, Mr. Tsuyoshi Nakatani, Mr. .

Yasutaka Ochi, Mr. Kenji Kawamura, and Mr. Hiroaki Nishioka

for their discussions.

'iii'

 TABLE OF CONTENTS

ABSTRACT ..,

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

PREFACE•...•.••••••••••••••••••••••••••••••

PART I. PARSER OPTIMIZATION BY PRECEDENCE FUNCTIONS ..

 Chapter 1. Introduction

 Chapter 2. Fundamental Concepts

 2-1. Precedence Relations

 2-2. Equivalence Relations

 2-2-1. Equivalence Relations in Simple Precedence

 Parsers

 2-2-2. Equivalence Relations in Weak Precedence

 Parsersi......

 2-2-3. Conditions for Strong Equivalence

 Relations

 2-2-4. Conditions for Semi-strong Equivalence

 Relations

 Chapter 3. Construction of Weak Precedence Functions

 by Postponement of Error Detection

 3-1, Introduction ..,.............................

 3-2. ED(i,j) Equivalence Relation•

 3-3. Procedures,................•...

 3-4. Example,................................

 3-5. Conclusions,..

 Chapter 4. Extended Precedence Functions••...••

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

'

.

.

.

.

.

i

 iii

 iv

1

5

5

8

8

11

11

12

14

15

18

18

19

23

28

30

31

 .-1 V-

 4-1. Introduction

 4-2. Extended Precedence Functions
 ' ' 4-3. Simple Precedence Parsers

 4-4. Weak Precedence Parsers,

 4-4-1. Implementation in a Semi-strongly

 Equivalent Level,

 4-4-2. Some Modifications

 4-5. Some Examples•.......•.

 4-6. Conclusions,.•...•.........

 Chapter 5. Conclusions

PART II. ERROR CORRECTION AND RECOVERY FOR
 ' SLR(K) PARSERS,...............

 Chapter 1. Introduction ...,...............

 Chapter 2. Fundamental Concepts
 ' 2-1. SLR(k) Parsers ,....,...............

 2-2. Error Correction and Error Recovery

 Chapter 3. Error Correction by Valid Pairs

 Chapter 4. Error Recovery by Valid Pairs ..

 Chapter 5. Some Results ...,...............

 Chapter 6. Conclusions,...............

CONCLUSIONS

APPENDIx EWPF for JIS ALGOL 3000

REFERENCES,...............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

.

.

.

t

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-v-

31

32

37

39

39

41

45

48

so

51

51

54

54

S5

57

69

75

81

83

87

93

SPECIAL THANKSGO TO MYPARENTS

-V1-

PREFACE

 As the development of the computerization of the society,
software becomes more popular, and its demahd increases and

 'becomes far-reaching. Simultaneously the ratio of software in
 'the total systems grows .larger. The investigations to make the

software production more efficient and reliable, that is, to

make software systematically or algorithmically, are being

made in various ways (Structured programming, System descrip-

tion languages, Mathematical theory of computation).

 System description languages (SDL) are the languages to

describe and implement software systems. According to the ob-

ject software, there are three kinds of SDLs;

1) Operating system description languages

2) Translator description languages

3) Application program description languages

A translator is a program which transforms a source program

to an object program. Furthermore there are three kinds of

translator description languages;

1). Assembler description languages

2). Compiler description languages

3). Interpreter description languages

We concentrate here on the cornpiler description languages

system (Fig.I-1). [1] [2]

 SYntal . SYNTAX LOADER
 ggii:iil:-tcslO" c > sEMANTIc LoADER c > compiler

 Descrlptlon

 Fig.I-1 Compiler Description Languages System

 -1-

 Compilers are devided into two parts, syntax analysis part

(parser) and semantics analysis andlor synthesis part (code

 'generator).

 Parsers can be modeled on the deterministic pushdown auto-

maton and its input languages can be modeled on the context

free grammars. Many researches have been made in both practical

and,theoretical aspects based on these theories (LR(k) parsers

[52], LL(k) parsers [3], Precedence parsers [5], and syntax

 ttdirected translator). '
 Parser generation system (PGS)[1] is a subsystem of a com-

piler description languages system and it has two components;

1). Metalanguages for description or definition of its input

2). Processor for parser generation

 We must answer the following questions in order to imple-

 '
(1). With what kinds of languages should we describe or define

 parsers? .
(2). What kinds of parsing algorithms should we use, how

 should be their speed and space?

(3). How should be the error processing (error detection, error

 correction, and error recovery)?

The first problem is out of our concern. We describe the second

problem in PART I and the third problem in PART II.

 There are two major criteria for evaluating various kinds
 t. ' 'of parsers;

(1) Its speed, (2) Its size, and (3) A class of the corres-

ponding grammar.

 '

 -2-

 In PART I we consider about precedence parsers with pre-

cedence functions which are the most compact of all the deter-

ministic parsers, but they have no error detecting capability
and their corresponding grammatical class is' very small. We

improve these points in two ways in chapter 3,4. It becomes

possible to implement the precedence parsers of ordinary pro-

gramming languages (Fortran, ALGOL, etc.) using these methods.

 Former researches in 1960's almost neglect error processing

in parsers, so their actions after error detection are not

given in these researches. Recently some papers are concerned

with these problerns in both practical and theoretical aspects,

but they do not give us good results in practical aspects.

 In PART I! we consider the error correction and recovery

for SLR(k) parsers from a practical point of view.

-- 3-

PARSER

 PART

OPTIIVIIZATION BY

I

PRECEDENCEFUNCTIONS

Chapter 1. Introduction

 Parsers can be modeled on the deterministic pushdown auto-

maton, and there are three kinds of deterministic parsers;

1). LR(k) parsers (LR(k) grammars)

Z). LL(k) parsers (LL(k) gramrnars)

3). Precedence parsers (Precedence grammars)

These three parsers can parse an input w with length n for O(n)

times and require only O(n) spaces, but such evaluations are

theoretical and are not adequate for practical use. Main con-

cerns in practical use are (1) parsers' size for corresponding

grammars' size, and (2) a class of corresponding grammars.

 LR(k) parsers are good in (2), but their size is very large.

Precedence parsers with precedence functions are good in (1),

but the class of corresponding grammars is smaller than that

of precedence parsers, and precedence functions themselves

have no error detecting capability. In PART I we describe the

methods to implement the precedence parsers with error detect-

ing precedence functions for a larger c!ass of grammars.

 Precedence parsers are first proposed by Floyd [5] (Opera-

tor Precedence Parsers) and second by Wirth and Weber [6] (

Simple Precedence Parsers). They use a precedence matrix

which requires N2 spaces, where N is a number of grarnmatical

symbols of a corresponding grammar. The researches to trans-

form any context free grammars to precedence grammars are

made by Fisher [8], Learner [11], and Presser [22], and they

-5-

have proved that every context free languages can be generated

by a precedence grammar.

 The extensions of precedence relations are made by Colme-

rauer [10] (Total Precedence), Inoue I12], [15] (Right Prece-

dence), Graham I16] CExtended Precedence), Sekimoto [18] (

Extended Right Precedence), Aho I20] (Weak and Mixed Strategy

Precedence), Gray [25] (Canonical Precedence), and Ochimizu

[26] (Quasi-Sequential Grammar).

 On the other hand, Precedence functions are also first pro-

posed by Floyd [5] (Operator Precedence Functions). Precedence

functions are functional representation of a precedence mat-

rix and require only 2*N spaces instead of N2 for a precedence

matrix. Bell [9], Martin I21], and Asai [17] [19] [24] showed

several computational methods of precedence functions and

Martin [21] showed that each context free language can be ge-

nerated by a precedence grammar for which precedence functions

exlst.

 These precedence functions ignore error relations, so pre-

cedence functions themselves can not detect errors. Error de-

tection in precedence parsers is described in Aho [23]. He

defined two equivalences about an error detecting capability

and used two pairs of functions, each of which are used for

shift and reduce action. There is a gap between two equiva-

lences and each pair Qf functions is intended to represent

three relations, so he has not yet get good results.

 We intend to iTnprove these points in Aho [23]. In chapter

2 we give the fundamental concepts about precedence parsers

 -6-

and precedence grammars. Furtherinore, we define the following

four equivalences for weak precedence parsers and simple pre-

cedence parsers (The first and the third are redefinition of Aho
[23]. Aho's definitions are only for simple ' precedence parsers.

The fourth is the most common type in language theories).

1). Strong Equivalence

2). Semi-strong Equivalence

3). Equivalence

4). Weak Equivalence

 We give the necessary and sufficient conditions for some of

thern. In chapter 3 we define ED(i,j) equivalence which is a

generalization of above equivalences for weak precedence par-

sers, and give the implementation rnethod of weak precedence

parsers in this condition ([30], [33], [35]). In chapter 4 we

improve the functionizing method. We define the Extended Pre-

cedence Functions, in which only two relations are represented

by a pair of functions. The implementation methods in both

weak precedence parsers and simple precedence parsers are

given ([31], [32], [34], [36], [37]).

 Precedence functions with alrnost necessary error entries

can be made for ordinary programming languages using these

methods. An example is shown for JIS ALGOL 3000 in APPENDIX.

-- 7-

Chapter 2. Fundamental Concepts

 The following definitions and notations are essential to the

developments of the paper. In 2-1 we give the basic concepts of

precedence parsers and in 2-2 we give the equivalence relations

about the error detecting capability. The necessary and sufficient

conditions for them are also given.

2-1. Precedence Relations

[Definition 1] Context Free Grammar

 A context free grarmnar CCFG) is a 4-tuple G=<N,Z,P,S> where

(1) N is a finite set of nonterminal symbols.

(2) Z is a finite set of terminal symbols, disjoint from N.

(3) P is a finite subset of NxCNVX)". An element (A,B) in P will

 be written A.B and called a production.

(4) S is a distinguished symbol in N called the sentence symbol.

[Definition 2] Proper Grammar

 A CFG is said to be proper if it is cycle free, e--free, and

has no useless symbols.

Precedence relations are defined for proper CFG.

[Pe.finition 3] Precedence Relations

 Let G=<N,Z,P,S> be a proper CFG. We define three precedence

relations {<•,ÅÄ,)} on N"ZV{$} as follow, where $ is a special

syrnbol not in NUz.

(1) XÅÄY if and only if IB+aXYB] in P.

(2) X<•Y if and only if a) [BÅÄctXCB] in P and

 c3yy, or b)x=$ and sSyy.t

-8--

(3) X•>a if and only if a) [B+ctCYB] in P and CSyX, Y4aw, or b) a=

 $ and sayx.

 We say that G is a precedence grammar if '{<•,=' ,'>} are mutually

disjoint. G is uniquely invertible (UI) if [BÅÄct] and [CÅÄct] in P

implies B=C. If G is UI and a precedence grammar, we call G a

simple precedence grammar (SPG).

[Definition 4] Canonical Precedence Matrix Mc

 We say that Mc is the canonical precedence matrix for G if

(1) Mc has a row and a column for each symbol in NVZU{$}.

(2) Mc[XY]=1 if and only if XÅÄY.

 Mc[XY]=3 if and only if X<•Y.

 Mc[XY]=5 if and only if X)Y.

 Mc[XY]=O otherwise.

We call (X,Y) an error relation when Mc[XY]=O.

[Definition 5] Precedence Matrix M

 A precedence matrix (PM) for G is defined as follow;

if Mc[XY]fO then M[XY]=Mc[XY] else M[XY]=any.

We represent a simple precedence parser (SPP) for G as (M,P),

where M iS a PM for G and P is a set of production rules of G.

(Mc,P) is called the canonical SPP.

t If ctAB in (NUZ)+ and IA+y] in P, then we write ctABgctyB. c'? is

a transitive closure of 4 , and S is a reflexive and transitive

closure of mp .

-9-

A configuration of a SPP is 3-tupple Q=[ct,B,y] where
(1) or is a content of the shift stack and in $(N"Z)".

(2) B is a content of the reduce stack and in (NVZ)".

(3) y is an input string which has not yet read and in Er$.

According to the above notation, a SPP has the following five

actions for each precedence relations;

If XÅ}Y (1) [ctX,,YB] l-Ict])(Y,,B]

 (2) [ctX,YB,`y] t-Ia,XYB,y]

If X<•Y (3) IctX,,Y3]FIctXY,,3]

 (4) IaX,YB,y] hlctXA,,y] where IA-"YB] in P

If X>Y (5) IctX,,YB] t-Ict,X,YB]

 Frc represents the transition by a parser T.

IDefinition 6] Weak Precedence Grammar

 Let G=<N,Z,P,S> be a proper CFG. We say that G is a weak pre-

cedence grammar (WPG) if the following conditions hold;

(1) The relation •> js disjoint from the union of <• and i.

(2) If A+aXB and BÅÄB are in P, then neither of the relations

 X<•B and XÅÄB are valid.

IDefinition 7] Canonical Weak Precedence Matrix Mc

 We say that Mc is the canonicalweak precedence matrix

Cl) Mc has a colurnn for Z"{$} and a row for NVzV{$}.

(2) MclXYI=4 if and only if X<•Y or XÅÄY.

 Mc[XY]=5 if and only if X>Y.

 MclXY]=O otherwise.

We define a weak precedence matrix (WPM) in the same way

A weak precedence parser (WPP) and the canonical WPP

represented as (M,P) and (Mc,P).

 -1 O-

for G if

as a PM.

are also

A configuration of a WPP is a 2-tuple Q=[ct,B] where
(1) ct is a content of the shift stack and in $(NVE)" .

(2) B is an input string which has not yet read and is in Åí"$.

According to the above notation, a WPP has the following actions;

If xgY [ctX,YB]F[ctXY,B]

If X>Y [ctBX,Yy]F[ctA,Yy] where [A•BX] is in P and has the longest

matched right side with ctBX.

2-2. Equivalence Relations

 In this section we define the equivalence relations for SPP

and WPP.

2-2-1. Equivalence Relations in Sim le Precedence Parsers

 There are two kinds of errors in SPP. In the configuration

Q=[ct,B,y], if M[Xmace]=O, then Q}-shift error (B=e)

 if M[XmYn]=O, then QFshift error (Bfe)

 if M[XmYn]=3 and [A+B] not in P, then QFreduce error

 (Bfe),
where RMS(ct)=Xm, LMS(B)=Yn, LMS(y)=art.

[Definition 8] Strong Equivalence

 Let ni and ll2 be two parsers for a SPG G. We say that lli and

ll2 are strongly equivalent if the following two conditions hold;

(1) [$,,w$]H.,QiFT"••}-rT,Qn }'T-,accept if and OnlY if I$,,W$]FT.Qlt=TF.••• HT.

 Qn I-r..accept .

(2) [$,,W$]PT,QibTr,•••PT,Qn Fl,shift error Creduce error) if and only

 if I$,,W$] }'r..Qi1-r.i••}-.7.Qnl-1?ihift error (reduce error).

t RMSCct) is the rightmost syrnbol of ct.

 LMSCB) is the left-•most symbol of B.

-l1-

In the following definitions lli, H2, and condition (1) are the

same as in definition 8, so we omit these descriptions.

[Definition 9] Semi-strong Equivalence
(2) [$,,w$] he;,[cti,Bl,yi]=Qk, I$,,w$] l-"t.Ict2,B2,Y2]=Qz ,

then Qkt-rr,error if and only if Qzl-rT.error and the following

conditions hold ;

a) if Z>Z, then B2=e, y2=yl, ct2=ctIBI

b) if k<l, then Bl=E, yl=y2, ct1=ct2B2

c) if k=Z, then ori=ct2, Bi=B2, yi=Y2.

[Definition 10] Equivalence

C2)[$,,w$]l-ITI+,[ct1,Bi,yi]=Qk, [$,,w$]lt:,[a2,B2,y2]=Qz ,

then Qkt-7T,error if and only if Qz}-rT,error and yl=y2•

[Definition 11] Weak Equivalence

 only condition (1).

 These four equivalence relations have a hierachical structure.

In [23] "Strong Equivalence " is defined as "Exact Equivalence"

and "Equivalence" as "Equivalence", but the above definitions are

a little general. The semi-strong equivalence is the newly defined

equivalence.

2-2-2. Equivalence Relations in Weak Precedence Parsers

 Two kinds of errors in WPP are defined in the same way as in

SPP.

[Definition 12] Strong Equivalence

 Let lli=(Mi,P) and ll2=(M2,P) be two WPPs for some WPG G. We say

that lii and n2 are strongly equivalent if the following two

 -1 2-

conditions hold;

(1) [$,w$]t-7.,Qipt.,Q.l-7.,accept if and onlY if [$,W$] h.Tge t-"..Q.F:.r.aCCePt

(2) [$,w$] h.7,Qige.,Q.h.r,error if and oniy if I$,w$] l=..Qi H.4.Q.F..error

 ' and either of the following two conditions hold;

 a) MiIX.a]=M2IX.a]=O

 b) MilXma]=M2IXma]=5 and for any i, lsisrn, there is no produc-
 ' tion rule whose righthand side is Xi.•.Xm,

 where Qn=IXi••.X.,av]•

In the following definitions, Ki, n2, and condition (1) are the

same as in definition 12, so we onit these descriptions.

[Definition 13] Semi-stron E uivalence

(2) [$,w$]1-rzQiP.,Q.FT,error if and only if [$,w$] h.r.QiptT.QnFrT.error•

IDefinition 14] Equivalence

(2) I$,w$] l:.7,Qi P.,Q. I:.7,error if and only if I$,w$] }-r..Pi pt..P.I-...error,

 and either of the following two conditions hold;

 a) if n>m, for every h, lshsm, Qh=Ph and Qn=IB,x] for the case

 Of P.=Ict,X]

 b) if nsm, for every h, IShsn, Qh=Ph and pm=IB,x] for the case

 of Q."Ict,x]•

[Definition 15] Weak Equivalence

 only condition (1).

These four equivalence relations have also a hierachical structure.

-1 3-

2-2-3 . Con<litions for Stron 1 E uivalent Relations

[Theorem 1]

 Let G=<N,Z,P,S> be a SPG, Mc be the canonical precedence matrix

for G, and M be some precedence matrix for G. (M,P) is strongly

equivalent to CMc,P) if and only if the follewing four conditions

are satisfied.

(1) If MclXY]fO for any X and Y, then MIXY]=MclXY].

(2) If Mclba]--O for any b,a in 2Y{$}, then MIba]=O.

(3) If Mc[Ba]=O for any B in N, any a in Etl{$}, then a) MIBa]=O,

 or b) for all X such that IBÅÄctX] in P, Mc[Xa]f5, or c) B=S

 and a=$.

(4) If MclXB]=O for any B in N, th.en a) MIXB]=O, b) for all Y such

 that [B+YB] in P, Mc[XY]f3, or c) X=$ and B=S.

[Theorem 2]

 Let G=<N,Z,P,S> be a WPG, Mc be the canonical Sveak precedence

matrix for G, and M be some weak precedence rnatrix for G. (M,P)

is strongly equivalent to (Mc,P) if and only if the following

three conditions are satisfied.

(1) If Mc[Xa]fO for any X and a, then MIXa]=MclXa].

(2) If Mclba]=O for any b,a in ZV{$}, then M!ba]=O.

(3) If MclXa]=O for any X in N, any a in Z"{$}, then a) MIXa]=O,

 or b) for every Y such that IX+ctY] is in P, MclYa]f5.

The proofs of these theorems are obvious from the proof in Aho

I23]. The entries satisfying the condition (3) or (4)-b) in theo-

rem 1 or the condition (3)-b) in theorem 2 can be assigned any

value {1,3,5,O} or {4,5,O}, and they are called "don't care" and

are assigned the value 7 for both matrices.

 --1 4-

2-2-4. Conditions for Semi-stron 1 E uivalent Relations

[Theorem 3]

 G, Mc, and M are the same as in theorem 1. (M,P) is semi-stro-

ngly equivalent to (Mc,P) if and only if the'following four con-

ditions are satisfied.

(1) If Mc[XY]fO for any X and Y, then M[XY]=Mc[XY].

(2) If Mc[ba]=O for any b,a in ZV{$}, then a) M[ba]=O, or b) there

 is no production rule like A+ctb and M[ba]=5.

(3) If Mc[Ba]=O for any B in N, any a in ZV{$}, then a) M[Ba]=O,

 or b) for all X such that [BÅÄctX] in P, Mc[Xa]f5, or c) there

 is no production rule like A"BB and MIBa]=5, or d) B=S and

 a=$.

(4) If Mc[XB]=O for any B in N, then a) M[XB]=O, or b) for all Y

 such that [B.Yct] in P, Mc[XY]I3, or c) there is no production

 rule like A+BB and M[XB]=3, or d) X=$ and B=S.

Proof

It is straightforward to show that if these conditions are satis-

fied, the parsers are serni-strongly equivalent. We therefore only

show the "Only If" portion of the proof.

Only If:

It is clear that if condition (1) is violated, the parsers are not

semi-strongly equivalent. We therefore only show that if condition

(3) is violated, the parsers are not semi-strongly equivalent.

The cases of condition (2) and (4) are obvious from this proof.

 In this case, Mc[Ba]=O, IAÅÄBB] in P, and there is a rule B-bctX

such that Mc[Xa]=5, but MIBa]=S. Here we consider the following

derivation,
 S :i.5 xAy : xBBy F. xBaXy ili.?wy +,

and the analysis for the input ttway".

 -1 5-

Then Q =[$,,way$]Ht,[$xBctX,,ay$]=Qi. In parser I4,Mc[Xa]=5 and

Mc[Ba]=O, so QiF-;,[$xBB,,ay$]= Q2ltT,error. On the other hand in

parser n,M[Ba]=5, so Q2"T[$xA,,ay$]. This is contrary to property

(2). (IIc is (Mc,P) and n is (M,P))

 This theorem shows that under the semi-strongly equivalent level,

the entry of M, which satisfies condition (2)-b) or (3)-c) can be

assigned (O or 5), and which satisfies condition (4)-c) can be

assigned (O or 3), adding to don't care in the strong equivalence.

We represent the former with 8 and the latter with 9.

[Theorem 4]

 G, Mc, and M are the same as in theorem 2. (M,P) is serni-stro-

ngly equivalent to (Mc,P) if and only if the following three con-

ditions are satisfied.

(1) If Mc[XY]IO for any X and Y, then M[XY]=MclXY].

C2) If Mc[ba]=O for any b,a in z"{$}, then a) MIba]=O, or b) there

is no production rule like AÅÄctb and MIba]=5.

(3) If Mc[Ba]=O for anyB in N,any a in ZV{$}, then a) M[Ba]=O,

 or b) for all X such that [B+ctX] in P, M[Xa]f5, or c) there

is no production rule like A+BB and M[Ba]=5, or d) B=S and a=$.

(The proof is almost the same as that of theorem 3)

 The entry of M, which satisfies (2)-b) or (3)-c), can be as3i-

gned (O or 5). We represent this entry with 8. We call the matrix

represented using {7,s,g} or {7,s} the semi-strongly equivalent

simple precedence matrix or the semi-strongly equivalent weak

precedence matrix and write as MssE,

t In the derivation ctAB c=? cty3,if B in ZX, then we call this the

 rightmost derivation and write ctAB2ctyB•

 -1 6-

Example 1

 We consider the following grammar, Gi=<{S,T},{a,b,c},P,S>

 P: 1)SÅÄT 2)S---Sc 3)T•aTb 4)T+ab
 ' 'This grarnmar is the simple precedence grammar. The precedence

relations, the canonical precedence matrix, and the semi-strongly

equivalent precedence matrix are shown in Fig.I-2, I-3, I-4.

Let w=aabbc be an input to the sirnple precedence parser for Gi.

[$,,aabbc$] F- [$a,,abbc$] H [$aa,,bbc$] F C$aab,,bc$] F

[aa,b,bc] F [a,ab,bc] l- [$aT,,bc$] F [$aTb,,c$] }- [aT,b,c]

 F- [a,Tb,c] }- [$,aTb,c$] +- [$T,,c$] F [$,T,c$] F- [$S,,c$] F

[$Sc,,$] F [$S,c,$] F [$,Sc,$] l- [$S,,$] }- Accept.

 STabc$ STabc$
 S ? ? ? ?ÅÄ ? S OO OO IO
 T???ÅÄ•>•> TOOO15S
 a?ÅÄ <41?? aO13100
 b???•>i>> bOO05S5
 c ? ? ??> J> c OO O0 5 5
 $ <.<.<.??? $333000
 Fig.I-2 Fig.I-3
 Precedence Relations CanOnical Precedence
 of Gi. Matrix for Gi.
 STabc$
 S 7 7 7 7 1 7
 T777155
 a713188
 b7705S5
 c770055
 $ 333888

 Fig.I-4
 Semi-strongly
 equivalent precede-
 nce matrix for Gi.

 -1 7--

Chapter 3. Construction of Weak Precedence Functions b

 Postponement of Error Detection

3-1..Introduction

 As mentioned in chapter 1, precedence functions have no

errQr detecting capability. If we apply this method to the WPP,

we can represent the error relation (?) by the functions, because

the WPP needs three precedence relations (g,>,?) only. We call

thesefunctionstLltlg=tgj!ts-EugÅígSLg!!Ee Lweak recedenefuntios(WPF).Butinpra-

ctical grammars there are so many error relations in the canoni-

cal weak precedence matrix that we can not represent the matrix

by WPF. For that reason we must reduce the number of error en-

tries in the canonical weak precedence matrix in order to imple-

ment WPF.

 We have already defined four equivalences. In each equivalent

levels we can change many of the error entries to others. In

this section we define the fifth equivalence'relation, ED(i,j)

equivalence, which is a generalization of former four,

and give the necessary and sufficient condition for some WPP to

be ED(i,j) equivalent to the canonical WPP. We also give the

procedure to compute the ED(i,j) equivalent WPF from a WPG for

some i and j.

-- 1 8-

3-2. ED(i,j) Equivalence

[Definition 16] Weak Precedence Functions

 Let M be a weak precedence matrix for a WPG G=<N,Z,P,S>. We

say that a pair of functions <f,g> is the weak precedence func-

tions (WPF) for M if

(1) f rnaps NVEV{$} to an integer and g maps ZV{$} to an integer.

C2) MIXa]=4 implies fCX)<gCa)

 M[Xa]=5 implies fCX)>gCa)

 MIXa]=O implies fCX)=gCa)

Next we define EDCi,j) equivalence.

[Definition17]!t2!l!SEL.i.21L!lgY2Y919AS9.DC)E 1

 Let IIi and R2 be WPPs for a WPG G. We say that Ri and n2 are

ED(i,j) equivalent if the following two conditions hold.

(i) [$,w$] };tiilQi }:tl:Qn tiT,accept if and oniy if [$,W$] l;tiiPi IEtSln Iif.

 accept.

(2) We assume two kinds of sequences of moves for some input w,

 [$,w$] li.7S2i trp. ., and [$,w$] li7ei l:,P.,

 then Qn li,error if and only if Prn tiff)rror, and the following

 conditions hold.

 a) If nsm, then Ph=Qh for lshsn and Qn=[ct,cix2], Pm=[B,x2],
 zsi, and m-nsz+j wherelxi1=z t.

 b) If n>m, then Ph=Qh for lshKm and Pm"[ct,xix2], Qn=[B,` 2],

 zsi, and n-msl+j where lxil=Z.

t lctl is a le4gth of a string a.

-1 9-

 In the ED(i,j) equivalent parserst , if one detects an error,

then the other detects an error within i times shift and j times

reduce, and the two parsers do the same actions until one detects

an error. The following theorem describes the necessary and suff-

icient condition for ED(i,j) equivalence.

[Theorern 5]

 Let G=<N,Z,P,S> be a WPG,llc=(Mc,P) be the canonical WPP for

G, and n=(M,P) be some WPP for G. n is ED(i,j) equivalent to

llc if and only if the following three conditions hold.

(1) If Mc[Xa]IO, then M[Xa]=Mc[Xa].

(2) If Mc[Xai]=O and M[Xai]=4, then one of the following condi-

 tions hold.

 a) If [X+ctY] in P, then M[Yai]I5.

 b) There is no derivation Bi...BrsSai...a!t(where M[Bra]f4

 for any a in Z"{$} and aq in EV{$} for lsa,sZ) such that

 ' l>1 Or k>J.

(3) If Mc[Xai]=O and M[Xai]=S, then one of the following condi-

 tions hold.

 a) If M[XÅÄctY] in P, then M[Yai]f5.

 b) There is no derivation AReqXi?, •...rp.cthXh=ctX,-such that

 M[Xpai]=5 for lspSh, h>j, and if M[Aai]=4 then the condi-

 tion (2)-b) holds, where j-h is assigned to j.

t We call the parser rr is the ED(i,j) equivalent parser if ll is

 ED(i,j) equivalent to the canonical weak precedence parser llc.

W cg? means q times derivation.

-2O-

Proof

If:

 We suppose that n and llc satisfy the conditions in theorem

5, but are not ED(i,j) equivalent.

case 1. Property (1) is violated. That is, Qo mpt 11tlFli E.aCCePt

and Qo lrcT LT:Q2 and QifQ2 for some input weL(G) and Qo=[$,w$].

Let Ql be [ctX,av$], then Mc[Xa]fO and M[Xa]fMc[Xa], so this is

contrary to the condition (1).

case 2. property (2) is violated• That is, Qe =[$,W$] ea}e<l. Fr,

error and Qo mpT n moT m1i7error and either Z>i or m-n>z+j, where

Q. =[ctX,a`n$], Q.=[BY,by$], ax=yby, and lyl=Z• If Q. Iir,reduce

error, then Qn=QmliFreduce error, so Qn liiishift error. There are

two cases.

 Case 2-1. Z>i. If M[Xa]=5, then ctiXi8ctX, M[Xia]"4, ctiXin=BY,
 VM and nt,?k y. This is contrary to condition (3). If M[Xa]=4, then

 ctXn=BY and n ciki2y. This is contrary to condition (2).

 Case 2-2. m-n>•l+j. This is further divided into two cases.
 a) M[Xa]=4. In this case, ctXn=BY and n gEl y . Then q+Z=m-n>
 vm
 Z+j, so q>j. This is contrary to the condition (2). b) M[Xa]=5.
 That is, ctiXi8..ctX and q=m-n, aiXi=BY, or ctiXie.9ctX , M[Xia]=4,

 ctiXin=BY, n =k y , and q+k+Z=m-n. In the former case q>j, and

 in the latter case q+k>j. Both of them are contrary to the

 condition (3).

Only if:

 It is straightforward to show that if the condition (1) is

violated, the parsers are not ED(i,j) equivalent. We therefore

omit this portion of the proof and proceed to the another

portlon.

Case 1. Condition (2) is violated.

 -21-

We consider the derivation,

 S es BXw 2 ==> BctYzu , c2I > olw2 .

 hh VM '"1
Then [$,wiai•.•atw2$] g:l.[$BX, a]••.azzD2$]=Q, where X and ai•••az

are symbols in the condition (2). Here Mc[Xai]=O, so Q ti,errOr•

On the other hand, in parser ll , there exists a derivation

Bi•••B. S7 ai•••az and M[Xai]=4, so Q vlt[$BXB, ...B,,w2$]. This

means over i times shift or over j times reduce.

Case 2. Condition (3) is violated. For some X,a (Mc[Xa]=O),

there exists a derivation,

 S Cfl.i,? ct1XiW1 Si:,.? cthXhbji P. W2Wi,

where Xh=X and M[Xpa]=5 (lspSh)• In parser Hc, [$,W2aWi$] ijl7,

[$cthXh,awi$]=Q tierror• But in parser ll , Q l#.[$ctiXi,awr$]. If

h>j, then parser n did over j times reduce. If hsj and M[Xia]'--4,

then it is clear that this violates the property in the defini-

tion from the proof in Case 1.

 From the above definition, the followings are clear,

(1) ED(O,O) equivalence is semi-strong equivalence.

(2) ED(O,co) equivalence is equivalence.

(3) ED(co,co) equivalence is weak equivalence.

In the same way, the conditions in theorem 5 become the condi-

tions in each equivalences when each values are assigned to (i,j).

We say that (X,Y) has an EDO,j) equivalence relation if

(1) Mc[XY]=O

(2) M[XY] can be assigned another value with keeping ED(i,j)

 equivalence.

-22-

3-3. Procedures

 In this section we give the procedure which computes WPF

using ED(i,j) equivalence relations. First we give tlte general

flow in Fig.I-5. In this procedure we cornpute WPF by changing

the error relations in a cycle of a linearization graph to ano-

ther relations with ED(i,j) equivalence, so if there is a cy-
 'cle which contains no error relation, then WPF do not exist.

PROCEDURE Computation of WPF in EDCi,g') equivaZenee

 BEGIN

 compute the canonical weak precedence matrix Mc;I

 transform Mc to the strongly equivalent weak

 precedence matrix M;,...,.......................II

 LI:construct the linearization graph Hm ;.................III

 IF Hm has a cycle,.......................IV

 THEN IF this cycle has error relations

 THEN change these error relations to

 another using ED(i,j) relationVI

 and GO TO LI

 ELSE there is no WPF;

 ELSE compute WPF <f,g> ; ..,.......................V

 END

 Fig.I-5 Computation of WPF in ED(i,j) equivalence

-23--

This procedure consists of si)c procedures. Procedure I, II,and

IV are clear, then we describe only procedure III, V, and VI.

Procedure III. ConstTuction of a Mnea"iaation G?aph

(Input) A weak precedence matrix M

(Output) The linearization graph Hrn of M

(Method) (1) Make node sets F and G. FiEF corresponds to the

i-th row and Gg•EG corresponds to the j-th colurnn.

(2) Make an edge set as follow;
 If Mig'=4t, then make an edge from Gg' to Fi, and if Mg'--S,

 then make an edge from Fi to GJ', and if Mio'=O, then connect

 Fi and Gg' with a bi-directed edge.

 Next theorem is clear from the theorem in Martin [21].

 '[Theorem 6]

 Let M be some weak precedence matrix for some WPG G. The WPF

for M exist if and only if the linearization graph Hm is cycle-

free.

Procedure V. Computation of NPF

(Input) The cycle-free linearization graph Hm of M

(Output) WPF <f,g> for M

(Method) (1) Let fi, g3. be each function value for f and g, and

be O. ft(gg.) corresponds to the i'th row (the j-th column) of

Hm.

(2) Repeat step (3) - (5) for every fi and gg• until every fi

 and gj js not changed in this sequence.

t Mig' js a (i,j) element of M.

 -24-

(3)

(4)

(5)

Let Xi be an edge corresponding to hi(fi or

the following two sets,

S={xlthere is a directed edge from Xi to x}

T={ylthere is a bi-directed edge between'Xi

mvx=MAX{vxlvx is a function value of x in S}

mvy=MAX{vylvy is a function value of y in T}
 'hi=MAX{ht,mvx+1, mvy}.

gi)• Compute

and y}.

Procedure VI. Changing based on ED".g') equivaZence
(Input) A weak precedence matrix M and an error relation M[Xa]=O

(Output) Changed weak precedence matrix M, or "No"

(Method) This procedure consists of two parts, TESTI(X,a) and

TEST2(X.a?. TESTI(X,a) examines whether M[Xa]=O can be changed

to 5, and TEST2(x,a) examines whether M[Xa]=O can be changed to

4. The detail is represented in Fig,I-6.

 Procedure VI changes an error relation to another relation

using ED(i,j) equivalence if it has an ED(i,j) equivalence re-

lation. We emphasize here that it is necessary to change ano-

ther error relations in order to.change one error relation

using ED(i,j) equivalence relation. This fact makes this pro-

cedure complicated.

-25-

 Procedure TESTICX,a) comment test of condition (3);
 Begin
 If IA.6X]EP for any A and 6 Then
 Begin
 If kSj Then "No"; k=k+1; M{Xa)=5;
 If M[Aa]=4 Then TEST2(A,a)s
 If M[Aa]=S Then TESTIrA.a)s
 If M[Aa]=7 Then M[Aa]=O;
 L[Aa]=SUP(L[Aa],(h,k))
 End
 Else M[Xa]=5
 End;
 Procedure TEST2rX.a) comment test of condition (2);
 Begin
 If h2i Then "No"; h=h+1; M[Xa]=4; y=a; DERI'VATfoAlrl)
 End;
 Procedure DERrVATJOAI(Z) comment test for the following
 derivation Bi•••BrceÅÄX ai•.•ah;

 Begin •
 A=y; C=Terminal(Z); If M[AC]=4 Then SHIFT;
 If M[AC]=5 Then REDUCE; If M[AC]=7 Then M[AC]=O;
 L[AC]=SUP(L[AC],(h,k)),• BACKTRACK
 End;
 Procedure sHJFT comment test for shift operation;
 If h>i Then "No" Else Begin
 y=C; ct=Z; h=h+1;DERfVATION(1)
 End;
 Procedure REDuCE comment test for reduce operation;
 Begin
 If k>j Then "No";
 If [B+6A]reP for any B and 6 Then BACKTRACKs
 If rissuffix(6A,y) Then BACKTRACKs
 y=y with replaced 6A by B;
 B=q where P is [B.6A]; k=k+1; DERIVATfOIVrZ)
 q
 End;

 Fig.I-6 Changing based on ED(i,j) equivalence

 -26-

Procedure BACKTRACK comment test for a new terminal;
 If ZflZI Then Begin Z=NEXT(Z); DERIvATIONrZ) End
 E1se BACKTRACK2s
Procedure BACKVRACK2
 If TOP(y)eZ
 Then Begin
 a=y; Z=ct; h=h-1;
 If Z-1Zi The.n
 Begin If lcti=Z Then "STOP"; BACKTRACK2 End
 Else
 Begin Z=NEXT(Z);DERIVATION(Z) End
 Else Begin
 i=B; y=y with replaced TOP(y) with o where Pi
 is (TOP(y)-+o);
 End;
(h,k)=L[Xa]; y=e;
TESTIrX.a) or TEST2rX,a).•
comment SUP((x,y),(z,w))=(x,w) if x>z and w>y.
 NEXT(Z)=next terminal number, in usual case z+1.
 TOP(y)=the top symbol in the stack y.
 issuffix(ct,y)=if ct is a prefix of the content of y
 then TRUE else FALSE.
 TERMINAL(Z)=lth terminal symbol.
 M is a weak precedence matrix and L is an error delay
 matnx. ;
End

Fig.I-6 Changing based on ED(i'j) equivalence (Continued)

-27-

3-4. Example

 We rnake the WPF for the following grammar.

 G2=<{E,T,A,F},{a,(,),+,k},P,E>

 P: EÅÄE+TIT T+TAFIF A+" F+(E)la

We show the reduced strongly equivalent weak precedence matrix

for G2 in fig.I-7, where fi and gg' represent the nodes of the

linearization graph in fig.I-8.

 a)
 (+s$
 E7470
 T 7 5 4 5
 A 4 5 0 5
 F7555
 a) O555
 (+$ 4 5 O 5
 *5555
 Fig.I-9 Cycle-free Fig.I-7 Reduced strongly equivalent
 precedence matrix for G2 ED(O,1)matrix

@ (i}). (El> (Eil> @ <ii)

glg2g3g4
a)
(+*$

fl E 7470
f2 T 7S4S
f3 A 4777
f- F 7555
f5 a) 0555
f5 (+$ 4000
f7 * 5000

gl g2
([[li}]j

g4

Fig.I-8 Linearization graph

 --28-

There are cycles including error relations in this graph, but

we can delete these cycles by the procedure VI as follow;

(fi' g4- f6- g2' fl)••••[g4" f6CO,O)] • (fi- g-- f7' gl- f5' g2

+ fl)••••[g4+ f7(O,1)] ÅÄ (f2+ g2' f6- g3+ f2)••••[g2+ f6(O,O)]

 ÅÄ Cg2- f7" gl' f5ÅÄ g2)••••[g2ÅÄ f7(O,1)] " (fl' g"' f3' g2+ fl)

••••[g4" f3(O,O)] ' (glÅÄ f6- g3' f7-. gl)•.••[g3ÅÄ f7(O,1)] ÅÄ

(f2' g2' f3' g3ÅÄ f2)••••[g2+ f3(O,O)] all cycles are deleted.

 The resulting rnatrix is ED(O,1) equivalent to Mc and is

shown in fig.I-9. From this matrix we can compute the WPF for

G2 by the procedure V.

 ETAFa()+"$
 f=(O234434353)

Table I-1 Hierachy of Equivalences

de1ay byreduction de1ay byshift error

strongeq. o o coincide

.seml-strong eq. o o notcoincide

equivalence any .tlmes o notcoincide

weakeq. any .tlmes any .tlmes notcoincide

ED(i,j)eq. j i notcoincide

--- 2 9-

3-5. Conclusions

 In this chapter we defined EDCi,j) equivalence for weak pre-

cedence parsers and gave the construction method of weak prece-

dence functions using ED(i,j) equivalence relation. The proce-

dure VI deletes cycles in the strongly equivalent precedence

matrix one by one using ED(i,j) equivalence relation. There is

another method which at first computes the ED(i,j) equivalent

weak precedence matrix for some i and j, and examines whether

it is represented by weak precedence functions.

 ED(i,j) equivalence includes almost equivalence relations

but does notinclude the strong equivalence (these relations are

represented in Table I-1), so the procedure starts from the

strongly equivalent weak precedence matrix.

 Thi$ method clarifies the error detecting capability quantita-

tively.

-3O-

Chapter 4. Extended Precedence Functions

4-1. Introduction
 ' ' Former precedence functions have a defect that they repre-

sent three precedence relations C<,),D by three functional

relations (<,>,=), so the.equality relation (=) decreases the

functionizing capability. In this chapter we introduce the new

precedence functions methods-- the Extended Precedence Functions

methods -- which use two pairs of functions, and four functio-

nal relations represent four precedence relations (<,i,>,error)

in simple precedence parsers or three precedence relations (g,

•>,error) in weak precedence parsers.

 Aho also uses two pair of functions, but each pair of func-

tions still represents three relations (si,>,error) or (<,>,

error) .

 In section 4-2, we define the Extended Precedence Functions

and give the fundamental concepts for developing the following

sections. These concepts are given both for SPP and for WPP.

 In section 4-3, we give the algorithm to compute the Extended

Simple Precedence Functions (ESPF) in semi-strongly equivalent

level, and in section 4-4, we give the algorithm to compute the

Extended Weak Precedence Functions (EWPF) in the same level.

Section 4-S gives examples both of SPP and WPP.

-31-

4-2 . Extended Precedence Functions

 In the following sections the term Matrix means the matrix

which has 3 kinds of value, CO,1,2), where O means "don't care",

that is, 1 or 2. It should be distinguished from a precedence

matrix. Precedence functions are also defined a little differ-

ently.

[Definition 18] Precedence Functions

 We say that <f,g> are the precedence functions (PF) for a

matrix M if,

M[XY]-1 ... f(X)>g(Y)

M[XY]-2 ... f(x)<g(Y)

M[XY]=O ... any relation

The following algorithm 1 computes PF for a matrix M and is

similar to Martin's algorithm [21], but is much simpler.

[Algorithm 1] computation of PF

(Input) matrix M

(Output) the PF <f,g> for M, or "No"

(Method) (1) Construct the linearization graph Hm=<V,r> as

 fo11ow;

(1)-1. V=Vi"V2 and veVi corresponds to each column and weV2

 corresponds to each row.

(!)-2. If M[XY]=1, then there exists an edge ei=(X+Y). If M[XY]

 =2, then there exists an edge e2=(X"Y).

(2) If Hm has cycles, then "No".

(3) If Hm is cycle-free, then compute <f,g> as follow;

 f(X)=lu(vx)l g(Y)=lu(vy)l
 where v`n(vy) corresponds to the row X (the column Y) and

 -32-

 lo(x)lis a number of successors of the vertex x.

 Next theorern is clear from theorem 6.

 '[Theorem 7]

tio:hegrreapehXii:rP: l:rc#c:gFfri:e\ if and oniy if the iineariza-

This graph is a little different from that of theorem 6. Fur-

:hfeipg? define two matrices which are used for the computation

[Definition 19] Core Matrix

 We say that N is the core matrix of a matrix M if N is com-

puted by the following algorithm.

(1) For every row and columm of M, do step (2).

(2) If the elements of a row (column) are all (1,O) or all (2,

 O), then change the nonzero elements to O.

(3) Repeat step (1) and (2) until no row (column) is changed.

(4) The resulting matrix is N.

 We say that a core matrix N is empty if all the elements of

N are O. Using a core matrix we can rewrite theorem 7 as follow.

[Theorem 8]

 There exist PF for a matrix M if and only if the core

matrix of M is empty.

 The Reverse Matrix N of a matrix M is defined as follow;

If M[XY]=1, then N[XY]=2

 '
 '
 -33-

If M[XY]=2, then N[XY]=1

If MIXY]=O, then NIXY]=O

[Corollary]

 There exist PF for a matrix M if and only if there exist PF

for the reverse matrix of M.

 We compute EPF as follow;

(1) Make the Extended Precedence Matrices A and R from a pre-

 cedence matrix M.

(2) Compute two PF <f,g> and <h,Z>for each A and R.

(3) (<f,g>,<h,Z>) is the EPF for M.

 These procedures are described below in detail. In this sec-

tion we describe the conditions for the existence of EPF for

a precedence matrix andlor a weak precedence matrix. In the

next sections we give the conditions for the semi-.strongly

equivalent (weak) precedence matrix.

[Definition21]lt2sSsuslgS!nyg2!u}2.lg-!lzgsgslgggtddSrnlePrecdnMatrcsAR

 Let two sets Si and S2 be {1,3,5,O} and {(1,2)Å~(1

morphism Si+ S2 be Åë. We say that a pair of matrices

the Extended Simple Precedence Matrices (ESPM) for a

matrix M if,

 Åë(M[XY])-(A[XY],RIXY])

[Definition 22] Extended Simple Precedence Functions

,2)}, a

 (A,R) is

precedence

 Let

palrs

dence

and <h

 (A,R) be ESPM for a precedence

of functions (<f,g>,<h,Z>) are

Functions (ESPF) for M if <f,g>

,Z>is PF for the matrix R.

 -34--

 matrix M. We say that two

the Extended Simple Prece-

 is PF for the matrix A

 Former precedence functions are deterinined according to the
 '

unique mapping between {<•,ÅÄ,)} and {<,=,>}, but in our method

the mapping M + (A,R) is not unique and there are 2" kinds of

mappings. Next theorem is the necessary and sufficient condi-

tion for existence of ESPF.

[Theorem 9]

 There exist ESPF for a precedence matrix M if and only if

at least two out of three matrices (Mi,M2,M3) in table I-2 have

empty core matrlces.
 Table I-2 Fundamental Matrices of M

M 3 1 5 o

Ml

M2

M3

111 122 221 212

Proof

(We call the matrices constructed by the mappings in table I-2

 the fundamental matrices of M)

 ESPM for M are thr following three kinds.

 (Mi,Mg') (Mi,Mg') (Mi,Mj') (lsifg's3)
, where Mi is the fundamental matrix and MJ' js the reverse

matrix of M .

 We suppose that Mi and M2 have non empty core matrices. Then

Mi and M- 2 have also non empty core matrices. Although M3 has an

empty core matrix, (M3,M3) can not be ESPM for M, so M has no

ESPF.

 tt
 In the case of WPP, the difinitions and the conditions are

a little different. We call (Ai,Ri) (1<is3) in table I-3 the

 -35-

Table I-3 Extended Weak Precedence Matrices

M 4 5 o

Al

Rl

1o 21 22

A2

R2

21 1o 22

A3

R3

11 22 1o

Extended WeakPrecedence Matrices

matrix M.

weak

nition 22.

theorem 9.

[Theorem

 There

if at

core

 In this

conditions

kinds of

equivalent

Mc has n

kinds of

to Mc,In

possible

several

which

valent

The Extended WeakPrecedence

(EWPM) for a weak precedence

 Functions (EWPF) for a

precedence matrix are defined in the same way as in defi-

 Theorem 10 is obvious from above definition and

 10]

 exist EWPF for a weak precedence matrix M if and only

 least one out of three pairs in table I-3 have both empty

matrlces.

 section we described the necessary and sufficient

 for existence of ESPF and EWPF. There are many

 (weak) precedence matrices which are semi-strongly

 to Mc (the canonical (weak) precedence matrix). If
 "8" entries and m "9" entries, then there exist 2n+M

 precedence matrices which are semi-strongly equivalent

 the case of ordinary programming languages it is im-

 to examine all precedence matrices because n+m become

 hundreds. In the following sections, we give the methods

 directly compute ESPF or EWPF from the semi-strongly equi-

 (weak) precedence matrix.

 --36-

4-3 . Simple Precedence Parsers

 A

kinds

of M

semi-strongly equivalent

 of entries {3,1,5,O,7,8

are as in table I-4.

 Table I-4 Fundamental

 precedence

,9}, so the

Matrices in

matrix M has

fundamental

 '

SSE level

 seven

matrices

M 3 1 5 o 7 8 9

Ml

M2

M3

111 122 221 212 ooo 2oo o1o

 Theorem 9 is not correct for these matrices because a real

M3 is a little different from M3 in table I-4. That is, let

(Mi,M3) be ESPM. Then M3 must satisfy the following conditions;

(1) If M[XY]=9 and f(X)>g(Y), then M3[XY]=1 '
(Z) If M[XY]=9 and f(X)<g(Y), then M3[XY]=Z, where <f,g> is

 some PF for Mi.

For the entry of a precedence matrix M such that M[XY]=O, the

relation between f(X) and g(Y) can not be determined uniquely

even if PF <f,g> for Mi exist. We show the algorithm which

computes ESPF for a semi-strongly equivalent precedence matrix,

but even if this algorithm failed, there may exist ESPF for

the above reason.

[Algorithm 2] Computation of ESPF for a semi-strongZy

 equivaZent pTeeedence matric

(Input) a serni-strongly equivalent precedence matrix M

(Output) ESPF (<f,g>,<h,Z>) for M or "No"

(Method) (Fig. I-10)

-37-

Procedure Computation of ESPF for s semi-strongZy eguivaZent
 preeedence matrix
 Begin
 Construct Mi,M2,M3 in table I-4;
 If the core matrix of Mi is empty
 Then If the core matrix of M2 is empty

 Then Compute ESPF from (Mi,M2) and STOP
 EIse Begin Compute <f,g> from Mi;

 For all X,Y Do
 Begin
 If M[XY]=9 and f(X) Lg(Y) Then M3[XY]=1;
 If M[XY]=9 and f(X)<g(Y) Then M3[XYI=2;
 Goto Ll
 End
 End
 Else If the core matrix of M2 is errtpty
 Then
 Begin
 Compute <f,g> from M2;
 For all X,Y Do
 Begin
 If M[XY]=8 and f(X)>g(Y) Then M3.[XY]=2;
 If M[XY]=8 and f(X)<g(Y) Then M3{XY]=1;
 Goto Ll
 End
 End
 Else there exist no ESPF for M;
 Ll: If the core matrix of M3 is empty
 Then Compute <h,Z> from M3
 Else there exist no ESPF for M
 End

Fig. l-10 Computation of ESPF

-38-

 In this case we give only the necessary condition.

[Theorem 11]

 There exist ESPF for a semi-strongly equivalent precedence

matrix M only if either Mi or M2 has an empty core matrix.
 '

4-'4. Weak Precedence Parsers
 '
4-4-1. Implementation in a serni-strongly Equivalent Level

 A semi-strongly equivalent weak precedence matrix

five kinds of entries {4,5,O,7,8}, so EWPF for M are

table I-5.

 Table I-5 EWPM for a seini-strongly equivalent
 weak precedence matrix

M

as

has

 in

M 4 5 o 7 8

Al
Rl

1o 21 22 oo 2o

A2
R2

21 1o 22 oo o2k

A3
R3

21 22 1o oo o2*

 In table I-5, 2t means as follow;

In a semi-strongly equivalent weak precedence matrix M, 8 rneans

5 or O, so the entries of corresponding K are O or 2, but this

is not free from A2. That is, if f(X)2g(Y) for X, Y such that

M[XY]=8, then R2[XY] may be O and if f(X)<g(Y), then 2, where

<f,g> is some PF for Ai. These changes also are not unique for

M, so next algorithm is not sufficient, but efficient.

-39-

[Algorithm 3] Computation of ENPF for a semi-strongZy
 equivaZent weak precedence matria

(Input) a semi-strongly equivalent weak precedence matrix

(Output) EWPF C<f,g>,<h,Z>) for M or "No"

(Method) CFig.I-11)

 Procedure Computation of EWPF for a semi-strongly
 equivaZent weak precedence matrix
 Begin i=1;
 Ll: Construct Ai from M in table I-5;
 If the core matrix of Ai is empty
 Then Begin
 Compute <f,g> from Ai;
 Case i of
 1: ;
 2: For all X,Y such that M[XY]=8 Do
 If f(X)>g(Y) Then Ri[XY]=O
 EIse Ra[XY]=2; .
 3: For all X,Y such that M[XY]=8 Do
 If f(X)>g(Y) Then Ri[XY]=Z
 EIse Ri[XY]=O;
 If the core matrix of Ri is empty
 Then compute <h,Z> for Ri and $TOP
 End; j=i+1;
 If i>4 Then there exist no EWPF for M
 EIse Gotb Ll
 End

 Fig. I-11 Computation of EWPF

-4O-

4-4-2. Some Modofications
 '
 Algorithm 3 does not necessarily succeed in computation of

EWPF, especially for the case of iarge programming languages.

There are two cases of this reason,

(1) EWPF of a weak precedence matrix in which all the error

 entries (O and 8) are. changed to 7 (we call this weak pre-

 cedence matrix the weakly equivalent weak precedence matrix

 --- WEWPM) do not exist.

(2) EWPF of WEWPM of M exist, but EWPF of M do not exist,

 that is, the entries O or 8 make computation impossible.

 We give the improving methods for both cases. In the first

case we rewrite the grammar, and in the second case we change

some error- entries O or 8 to "don't care" (7).

[Algorithm 4] Rewrite the grammar so that the corresponding

 WENPM has ENPF

(Input) a grammar and its WEWPM

(Output) the equivalent grammar whose WEWPM has EWPF

(Method) We describe only the case of (Ai,Ri) in table I-5,

other cases are almost the sarne as this.

(1) Compute the core matrix of Ai.

(2) Decide the pair (X,Y) to be changed its precedence relation

 from 4 (s) to 5 (>).

(3) Change the relation Xs•Y to X•>Y with introducing one new

 nonterminal symbol Z. C the detail of this step is similar

 to the procedure described in Presser [22] and Asai [19])

(4) Repeat step (1) to (3) until the core matrix of Ai becomes

 empty.

 -41--

 The haltness and validness of this algorithrn are shown

similar to the proof in Presser [22], but this is easier be-

cause changing is only from 4 to 5.

 There exists an equivalent weak precedence grammar which has

EWPF for any WPG, but which may neglect error relations.

 Next algorithm is useful for construction of EWPF of ordi-

nary programming languages. This is also applicable to const-

ruction of ESPF.

[Algorithm 5] Construction of EWPF by ehanging the quasi-Zeast

 e?ror reZations (O and 8) to "don't care" (2?

(Input) a semi-strongly equivalent weak precedence matrix M

(Output) EWPM for M, which have EWPF, but in which some error

entries are changed .
(Method) We may select any EWPM in table I-5 at first. The

method is a little different for each (Ai,Ra) and we give only

the algorithm for the case of (Ai,Ri) in fig. I-12.

 This algorithm halts for the semi-strongly equivalent weak

precedence matrix whose WEWPM have EWPF and is locally optimum

because it changes the least number of error relations in one

loop, but not globaly optimum.

 Using the above algorithms we can make the EWPF which pre-

serve many of the error entries from an unambiguous context

free grammar (Fig. I-13). These algorithrns can be also app-

lied to ESPF.

 -42-

Procedure Construction of EWPF by ehanging the quasi-least
 error reZations (O and 8) to "don't eare" (7)
 Begin
 While the core matrix Ai is not empty Do'
 Begin
 Compute the core matrix CAi of Ai;
 k=MIN{(ROWi(i)}; Z=MIN{COLi(j)};
 If k<Z
 Then For every error entries such that CAi[k,i]=2 Do
 M[k,i]-7t

 Else For every error entries such that CAi[j,Z]=2 Do
 .M [j ,Z]-7

 End;
 While the core matrix of Ri is not empty Do
 Begin
 Compute the core matrix CRi of Ri;
 k=MIN{ROW2(i)}; Z=MIN{COL2(j)};
 If k<Z
 Then For every error entries such that CRi[k,i]=2 Do

 M[k,i]=7 '
 Else For every error entries such that CRi[j,l]=2 Do
 M[j ,Z]-7
 End;
 comment
 ROWi(i)=If there exist k such that M[i,k]=5 and CAi[i,k]
 =2 Then MAX EIse the number of columns such that
 CAi[i,k]=2
 COL2(j)=If there exist k such that M[k,j]=5 and CRi[k,j]
 =2 Then MAX EIse the number of rows such that
 CR2[k,j]=2;
 End

 Fig. I-12 Changing the quasi-least error relations
 to "don't care"

-...----t---..----..-.-.- •.---.-.----..-----..-----..--.-...-..

t M[k,i] is equal to M[XkYil

 -3-

UnambiguousCFG

Computation of
WPM

A> No

Yes

Transform the
grammar (I)

Transformation
to semi-strongly
eq. WPM

Reduction of
WPM .,. M

the

Computation of
the EWPF for M
(Algorithm 3)

<(S)> Yes (<f,g>,<h,L>)

No

Computation of
the EWPF for
WEWPM of M

c7 No

Yes

Transform the
grammar (II)
(Algorithm 4)

Rewrite the
entrles
(Algorithm

 error

5)

Fig. I-13 Computation

 A: Is G a weak precedence

 grammar?
 B: Are EWPF exist?

 C: Are EWPF for WEWPM exist?

of EWPF from an unambiguous CFG

-44-

4-5 . Some Examp1es

Exarnple 1. ESPF in serni-strongly

 Consider the simple precedence

 G3=<{S,T,B,F,E},{+,*,(,),a},P,

P: 1) SÅÄ S+T

 2) SÅÄT ST

equivalent level

3) T -ÅÄ•

4) B -+

5) BÅÄ

6) F -.

7) F+
8) EÅÄ

B

BXF

F

(E)

a

s

 grammar

s>

BF 'E + k () a$
s

T

B

F

E

+

t

(

)

a
$

7

7

7

7.

7

7

7

3

7

7

3

7
7

7

7

7

1

7•

3

7

7

3

7

7

7

7

7

3

7

3

7

7

3

7

7

7

7

7

3

1

3

7

7

3

7

7

7

7

7

7

7

1

7

7

9

1

5

5

5

7

8

8

8

5

5

8

7

7

1

5

7

8

8

8.

5

5

8

7

7

7

7

7

3

3

3

o

o

3

s

5

5

5

1

8

8

8

5

5

8

7

7

7

7

7

3

3

3

o

o

3

7

5

5

5

7

8

8

8

5

5

8

 We show

Fig. I-14.

have empty

equivalent

 s
f

g

h
L

 Fig. I-14 Semi-strongly equivalent
 precedence matrix for G3
 '

the semi-strongly equivalent precedence matrix in

The fundamental matrices Mi and M2 in table I-4

core matrices, so there exist ESPF in semi-strongly

level, which are shown below.

 TBFE+* () a$5

1

1

1

1

1

1

4

4

1

1

1

1

1

1

3

6

3

1

5

2

5

3

2

2

4

2

2

3

2

4

1

1

6

1

2

1

2

1

1

2

5

5

2

45-

Example 2. EWPF in semi-strongly equivalent level

 Consider the vieak precedence grarnmar

 G4=<{S,T,F,R},{+,*,+,(,),a}.p,S>

 P: 1) S -+ S+T
 +*+() a$
 2) S ->- T S4777477
 3) TÅÄ T*F T5477575
 F 5 5 4 7 5 7 5 4) TÅÄF
 R5557575
 5) F . F+R +9994949
 6) F+R *9994949 t9994949 7) R+ (S)
 (9994949
 8) R+a)5550505
 a5550505
 $9994949
 Fig. I-15 Semi-strongly equivalent weak

 precedence matrix for Gg

 We show the serni-strongly equivalent weak precedence

 matrix forG- in Fig. I-15. The WPF in this level do not exist

 but the EWPM (Ai,Ri) for this matrix have empty core matrices

 so the EWPF exist, which are shown below.

'

'

f

g

h
z

s T F R + * + () a $

10

 2

7

2

5

2

1

2

3

9

2

1

3

6

2

1

3

4

2

1

3

2

2

3

1

9

2

1

1

2

2

3

3

8

2

1

-46-

 ESPF are computed for the following two grammars, Gs (Fig.

I-16) and G6 (Fig. I-17).

NlÅÄN2;N3 N2ÅÄBegin N41N2;N4
N3 ÅÄ N6 EndlN6;N3 N4 ÅÄ Real N171Integer N17
N5 ÅÄ N161N5 ,N16 N6 ÅÄN71Nll
N7ÅÄN81N9 N8ÅÄRead N20
N9 -+ Write N20 NIO+N16iNIO,N16
Nll + N16:=N18 '
N12 -, N13l+N131-N13lN12+N13lN12-N13

N13.N19 N14+N21N15 + (N18)IN161uNlul N16 ÅÄ ID

N17.N5 N18ÅÄN12N19 + N141N19*N141N191N14 N20 + NIO
N21 .• N151N2MN15

 Fig. I-16 Grammar Gs iNl=21 IZI=19 IPI=38

 The grammar G, is a mini-ALGOL and the grammar Gr is the

subset of G`. The error preservation ratios are shown in table

I-6.

 Table I-6 Error Preservation Ratios

Gs otal G6 total
error.
entrles
preserved

2S6111S
205196

372

301

error.
entnes
preserved

52343170
30139133

736

600

ratio(%) 80.110083.5 80.9 .ratlo 81.890.778.2 81.5

g7-

Nl .
N3 •
N5 .
N7 "
N8 .
N9 .
Nll
N13
N15
N17
N18
N20
N22
N24
N26

+
+
ÅÄ

•
ÅÄ

+
ÅÄ

+
+

N2lN3
Begin N5
N26 EndlN26;N5
N8IN9lNIOlNll:N7
If N16 Then N91If N16 Then
N141N151N31N2 •
 NIDI3

 Goto Nll

 N17>N251N17>N251N17=N25
 N27
 Read N24
 N13lN13,N24
 N21IN21+N27

 Fig. I-17 Grammar G6

N191+Nl91-•N19iNl7+N191Nl7-N19

N2 -+ N4;N5
N4 ÅÄ Begin N61N4;N6
N6 ÅÄ Real N121Integer N12

N9 Else N7
NIO••+ N221N23
N12 . N131N13,N12
N14 + N13:=N25
N16 ÅÄ N18

N19 . N201N20*N191N201N19
N21 + N13l(N25)IUNlUl
N23 . Write N24
N25 -+- N17

 INI-27 lzl-27 ipl-s3

4-6. Conclusions

 In this chapter we introduced the extended precedence func-

tions which use two pairs of functions to represent four pre-

cedence relations (<,i,•>,error) in simple precedence matrices,

or three precedence relations (si,>,error) in weak precedence

matrices. They have the following advantages;

(l) Error relations are considered (SPP).

(2) Quasi-optimum rnodification of error relation is possible.

 Using these methods it becomes possible to inake EPF for or-

dinary programming languages, which preserve about 80$ of error

relations. As an example we showed the EWPF for JIS ALGOL 3000

in Appendix. This does not necessarily mean that 80X of syntax

errors are detected by EWPF in parsing time, that is, this

 -48-

ratio is not dynamic but static one. If we take error probabi-

lity of. each symbol pair into consideration in algorithm 5,

then the dynamic ratio will be improved.
 '
 Theorem 11 is only the necessary conditiOn, so if either Mi

or M2 has an empty core matrix, there may be the case that ESPF

do not exist. The necessary and sufficient condition is the
 '
future problem.

-4 9-

Chapter 5. Conclusions

 Precedence functions are very useful tool for parsers gene-

ration, but they have sorne disadvantages for practical imple-

mentation. We made precedence functions utore useful by impro-

ving these disadvantages in two ways. ED(i,j) equivalence in

chapter 3 is a generalization of some equivalences and made

clear the degree of the postponement of error detection in

weak precedence parsers with weak precedence functions. Ex-

tended precedence functions in chapter 4 are an irnprovement of

functionizing methods and made possible to construct the pre-

cedence functions which preserve almost all the error relations.

 ED(i,j) equivalence can be used in the algorithm of fig.I-

13 in the computation of EWPF, but this is more difficult,

because the changing with ED(i,j) equivalence relations af-

fects other error relations or "don't care".

 These functionizing inethods can be appliea to other prece-

dence parsers, but are a little different. These applications

are hoped for future researches.

 PART I concerned mainly space reduction of parsers using

precedence functions. Precedence parsers are a little slower

than LR(k) parsers because they must do table look up for re-

duction. As the gramrnars become large, the corresponding par-

sers' reduction speed becomes slow. This disadvantage is impro-

ved by the method described in [34].

-50-

ERRORCORRECTIONAND

PART II

RECOVE RYFORSLR(K) PARSERS

Chapter 1. Introduction

 One of the important functions of parsers is Error Proces-

sing. Practical parsers not only analyze input strings but de-

tect syntax errors as many as possible and provide diagnostic

informations. When they detect an error, they change the state

of parsers and the input string to proceed the parsing of the

rest of the string. We call these task Error Recovery. The old-

est and simplest error recovery technique that is essentially

language independent is so called Panic Mode. In this scheme,

when an error is detected, the input is advanced until one of

a class of special symbols such as a ";" or an END is found.

The applications of this method to LR(k) parsers are described

in Peterson [40] and James [41]. Graham's method [48] is inde-

pendent of particular parsing algorithms and he gives some ex-

perirnental results.

 The transformation from an invalid string w to a valid st-

ring v is called Error Correction. If parsers can correct tri-

vial errors such as misspelling like BEGIM or missing an obvi-

ous symbol like a=4*(a-3 , then user's debugging burden will

be reduced and throughput will be improved. This was consi-

dered by Iron [38] first.

 Error correction in regular languages is described in

Thompson [47], Wagner [44], [46]. These are the string to st-

ring correction problems and correspond to the correction in

lexical analysis phase.

 Error correction in context free languages is described

in several ways. The effects of certain class of errors from

 -51--

a point of view of preservation of languages are described in

Smith [39]. Minimum distance error correcting algorithms are

described in Peterson [40], Aho [42], Iwamoto [43], and Lyon

[45]. They use Earley's algorithm, so their algorithms require

O(n3) times. Considering from the users' side, the minimum

corrected program is not necessarily the program that users

intended to make, so these methods are inadequate for practi-

cal parsers. Levy [49] also proposed a formal model for auto-

matic error correction. This model is independent of parsers

and uses a local backtrack.

 Practical error correction is described in Peterson [40]

and James [41], and these are closest to our own. Peterson

uses LR(1) parsers and James uses LALR(k) parsers. They also

made experimental evaluations•

 ThoTnason [SO] and Thompson [Sl] introduced errQr probabi-

lities for grammatical symbol$ and described probabilistic

error correctlon.

 We consider error processing from a practical point of view,

so that we suppose the task of error processing is the foll-

ow1ngs;

(1). To correct the parser defined errors and reduce the bur-

 den of debugging.

(2). To make the eliminated portion by recovery short and

 detect errors as many as possible.

 In PART II we consider error processing for parser defined

errors without backtracking, and propose the error correcting

and recovering algorithms for SLR(k) parsers. They have the

 -52-

following characteristics;

1). Error correction and recovery are invoked by procedure

 call when an error is detected, so the parsing of legal

 ' programs is not affected.

2). They correct and recover within O(n) tirnes.

3). Elimination of program by error recovery is srnaller than

 that of ordinarily used methods.

 In chapter 2 we give the fundamental concepts of SLR(k)

parsers [53] and error processing. In chapter 3 and 4, we give

the error correcting and recovering algorithms using i-order

valid pairs. In chapter 5 we evaluate these algorithms by si-

mulation, and show that they correct 70-80e!o of erroneous pro-

grarns and recover about 1000-o.

-53-

Chapter 2. Fundamental Concepts

 In this chapter, we give the basic concepts of SLR(k) parsers

and define "Error Correction" and "Error Recovery". The notation

of parsers are the sarne as in [4].

 '
2-1, SLR(k) Parsers

[Definition 1]

 Let G=<N,Z,P,S> be a context free grammar (CFG). We call

[AÅÄct.B] a LR O item, where [A-+orB]eP. LR(O) item [A+ct.B] is

valid for some prefix yi of some sentential form yiy2 if there

exists y3 such that h=y3ct. A set of LR(O) items which is valid

for y is called a LR O table, and is represented by T. A set

of T is represented by T={To,Ti,•••,Tn}.

 The numbers of T and T are finite.

 Let G=<N,E,P,S>. We call G'=<N"{S'},Z,PU{S'+S},S'> the aug-

mented grammar derived from G. In the following sections we use

this augmented grammar G' instead of G, and write only G.

[Definition2]SLIL:tS.!,SSL2.ELZi9.!iR 2(k)

 We define SLR(k) parser for a CFG G as follow;

 ll=<Zl,Z,O,To,$,f,g>

where Ei=ZV{$} is a set of input symbols,

 Z=T is a set of stack symbols,

 O={shift, reduce i, error, accept} is a set of actions,

 To is an initial stack symbol,

 -54-

 $ is a final input symbol,

 f and g are the following functions

 f: action function ZxE:+O

 g: goto function ZxCZ"N)•Z

f and g are determined for each LRCO) item T as follow;

(1) action function

 f(T,u)=shift -,b [A-+a.B]eT and ueEFFk(BFOLLOWk(A))

 f(T,u)=reduce i + [A+ct.]eT and A+ct is the i-th production

 and ueFOLLOWk(A)

 f(T,$K)=accept + [S'.S.]eT

 f(T,u)=error + else

(2) goto function

 g(T,X)=T' + [AÅÄct.XB]eT and iA+ctX.B]eT' where

FOLLOWk(B)={wIS e!5 ctBy and wEFIRSTk(y)}

EFFk(ct)={wlweFIRSTk(ct) and there is a derivation ctc.!I? B:wx,

 where BfAwx for any A6N}

FIRSTk(ct)={wleither lw1<k and ct c!5w, or lwl=k and ct =!lj,wx for

 some x}

Each of functions is called the follow function, the e-free

first function, and the first function. We represent a parser's

configuration by [ct,w], where cteT' is a table sequence and

weZ"$ is an input string.

2-2. Error Correction and Recovery

 In this chapter

and recovery in a

provide an exarnple

 we

way

 of

consider the

that parsers

correctlon to

 -55-

problem of error

detect alrnost all

 help debugging,

correctlon

 errors ,

and report

few nonexistent errors. For the sake of this object, we consider

an correction algorithn as a procedure and it is called only

when an error is detected. We concern only parser defined errors

and the algorithms do not make backtrack.

[Definition3]VLeAt,lsLZg!2.teS99}!9!199dTblS

 We say that the sequence of LR(O) tables, ToTi...Tn, is a

valid table sequence if there exist a terminal string wi such
that [To, wiw2$k] }='-IToTi...Tn,w2$k], where To is an initial

LR(O) table.

[Definition 4] Valid Sequence

 We say that the sequence of LR(O) tables followed by a ter-

minal string, ToTi...Tnaz...am, is a valid sequence if the fo-

11owing two conditions hold;

(1) ToTi.••Tn is a valid table sequence.

(2) [To•••T.,az•..a.w$k] lt[ToTI...Tp,a.w$k] F-Cnot error)

 In the following we define a valid error correction and a

valid error recovery using valid table sequences and valid se-

quences.

fDefinition 5] Valid Error Correction

 The transforrnation from an error configuration [To...Tn,

az...am] to a nonerror configuration [To...Tn,aaR...am] is a

valid error correction if,

 t(1) Zsksm and cteE

(2) To•.•Tnor ak is a valid sequence.

-56--

This correction is a local error correction and an error con-

figuration is corrected by exchapging az...ak-1 for ct, and

ai...az-1 which has been already read is not changed, so it is

 --not an optlmum correctlon. '
[Definition6][t3IRs!-!iu9j!IS999)l9!X-idERVr

 The transformation from an error configuration [To...Tn,

az...a.] to a nonerror configuration [To.••TqT4+1•••TP,ctak•.•

am] is a valid error recovery if,

(1) Zsksm, cteEt , and Osqsn.

(2) ToTi•••TqT4+1•••TPctak is a valid sequence.

 In the following chapter we consider only the case of SLR(1)

parsers, but the methods are the same in the case of k>2.

Chapter 3. Error Correction by Valid Pairs

 In this chapter we define a valid pair and a strictly valid

pair for terminal symbols and describe the error correcting

algorithms using above two valid pairs.

[Definition 7] i-order valid pair

 We say that (T,a) is an i-order valid pair for a parser ll

if there exist ct and y holding the following condition;

for any 6eZt , [Te,ctya6] E:t[To.••Tn,ya6] E:IToT"•••TP,a6] 1r

(not error), where Tn=T, aeZV{$}, ct,yeZf and I'yl=i.

 ' If (T,a) is an i-order valid pair for some yEZt, then there

exists a valid table sequence To...Tn (Tn=T) such that Te...Tnya

is a valid sequence, that is, i-order validness guarantees that

y can be inserted between T and a. The following algorithm

 -57-

uses•this fact.

[Algorithm 1] An error correcting aZgorithm by i-o?der
 vaZid pairs

(Input) an error configuration [To...Tn,az...am]

(output) a locally corrected configuration [To••.Tn,yap•••am]

 or "No", where p=z or z+lt

(Method) (Fig. II-1)

t

Procedure Error Correetion
 Begin comment input [To•••Tn,az.••am], output [To•••Tn,
 Yap..•am];
 For k=z to Z+1 Do
 For i=O to in Do
 If (Tn,ak) is an i-order valid pairI
 Then If there exists y such that To•"TnYak
 is a valid sequence...............,..,..II
 Then Goto SUCCEED;
 error correction fails and "No";
 SUCCEED: Correct to [To...Tn,Yak.••am]
 End comment procedure I is TVP(T,a,i)
 Procedure II is TVS(TS,a,i,Y) and TS is
 To...TA;

 Fig.II-1 Error Correetion using i-order valid pairs

 We restrict p to Z or Z+1 in order to make the discarded

 symbols as few as possible, but it is possible to make p

 larger.

-58-

 If CTn,a) is an i-order valid pair for y, then To...Tnya
 '
is a valid sequence only for particular valid table sequence

To...Tna, so it is necessary to check whether y is valid for

the current table sequence TQ...Tn. Stepll (TVS(TS,a,i,y)) does

this check and is the most time consuming process. Step I (TVP

(T,a,i)) decreases this time. The tirne required by this algo-

rithm becomes larger exponentially proportion to i. We describe

in detail step I and II for the case of i=O or 1 (in=1). For

the case of in>1, Algorithms are almost the same as these.

[Algorithm 1-1] Test whether CT.a) is an i-order vaZid pair

(Input) a table T, a terminal symbol a, and an integer i

(Output) if (T,a) is an i-order valid pair then TRUE else

 FALSE

(Method) TVP(T,a,i) in Fig.II-2

 Generally speaking there exist some terminal strings for

which (T,a) is valid. In algorithrn 1, step I judges the valid-

ness of (T,a) and step II looks for the terminal atrings and

tests whether the connected sequence To...Tn is valid. Step II

is dependent on the context To...Tn.1, but step I is indepen-

dent, so the validness of all pairs (T,a) can be computed in

advance. This inforrnation can be stored in a parsing table.

-- 59-

Procedure TVP(T.a.i) comment if CT,a) is an i-order valid pair
 then TRUE e!se FALSE;
 Begin Set S;
 Case i of
 O: Begin comment O-order valid pair;
 If f(T,a)ferror Then TVP=TRUE EIse TVP=FALSE
 End;
 1: Begin comment 1-order valid pair;
 Ll=FALSE;
 For all b in Z Do
 Begin
 S=NEXT*(T,b);
 If Sfempty Then
 Begin
 L2=FALSE;
 For all Tl in S Do
 Begin
 T2=g(Tl,b);
 If f(T2,a)ferror
 Then L2--TRUE.
 End;
 If L2 Then Ll=TRUE
 End
 End;
 If Ll Then Tvp=TRUE EIse TVP=FALSE
 End
 End comrnent this procedure is a test whether (T,a) is an
 i-order valid pair for some b. f is an action
 function and g is a goto function.

 Fig.II-2 TVP(T,a,i)

-60-

Procedure NE.XTtrT.b) comment computation of NEXTk function for
 a table T and a terminal syrhbol b;

 Begin Set S; S=ernpty;
 Case f(T,b) of
 shift : S={T};
 error : S=S;
 reduce: Begin U=NEXT(T,b);
 For all Tl in U except T Do
 Case f(Tl,b) of
 error : S=S;
 shift : S=SV{Tl};
 reduce: S=SVNEXptCTI,b);
 End
 ptEXTt=S
 End comment NEXT(T,b)={Tllthere exists T2 such that f(T,b)=
 reduce i, Pi:A+ct, g(T2,ct)=T, and
 g(T2,A)=Tl}; .

 Fig.II-2 TVP(T,a,i) (continued)

-61-

[Algorithrn 1-2] Test for vaZid seguence

(lnput) table sequence TS=Te...Tn, a terminal symbol a, and

 an mteger 1

(Output) if there exist y such that To...Tnya is a valid

 sequence and lyl=i then TRUE else FALSE

(Method) TVS(TS,a,i,y) in table II-3

Procedure TVSCTS,a,i.y) comment if there exists y such that
 To•••Tnya (To•••Tn=TS) is a valid pair
 lyl=i, then TRUE else FALSE;
 Begin
 T=tpp of TS;
 S={beZl (T,b) is O-order valid pair};
 IIi VS -- FALSE ;

 If Slempty Then
 Begin For all b in S Do
 Begin y=b;
 SMT(TS,b,Tl);
 If f(Tl,b)ferror
 Then Begin
 T2=g(Tl,b);
 If f(T2,a)ferror Then TVS=TRUE
 End
 End
 End
 End comment SMT(TS,b,Tl) computes the following TP,
 [To•••Tn,bct] P[ToTl...Tb,bct] Fshift or error;

 Fig.II-3 TVS(TS,a,i,y)

-- 62-

 1-order valid pairs are not necessarily valid for all the

possible valid table sequences, so algorithm 1 needs step II

which is time consuming . We define more strictly restricted

valid pairs, i-order strictly valid pairs, to give a more effi-

cient algorithm.

[Definition 8] iL:.g!st!g!-21ius!i.l2.-ytr tl v1d

 We say that (T,a) is an i-order strictly valid pair for a

parser ll if there exists at least one terminal string ct of

length i which satisfies the following' conditions.

(1) (T,a) is an i-order valid pair for ct.

(2) For any To...Tn-1 such that To..,Tn is a valid table sequ-
 + ence (T=T.), [To•••Tn-IT,ctaB] tiF[ToT{•••Tl5,aB] lir (not error)•

 If (T,a) is an i-order strictl>r valid pair for ct, then

To...Tncta (Tn=T) is a valid sequence whenever To...Tn is a

valid table sequence. If we use this pair, we may look only

the top most table (Tn).

[Algorithm 2] An eT?or cor"eeting aZgo"ithm by a-order

 stTictZy vaZid pairs

(Input) an error configuratiOn [To...Tn,az•..am]

(Output) a locally corrected confj.guration [To...Tn,yap.••am]

 where p=Z or Z+1

(Method) (Fjg,II-4)

-63-

 Procedure Error Correction
 Begin comment input is [To...Tn,az...am] and output is
 [Te•..Tn,aap...am] or "No"
 For k=Z to Z+1 Do
 For i=O to i. Do
 If (Tn,ak) is an i-order strictly valid
 pair for some ct,.......III
 Then Goto SUCCEED;
 error correction fails and "No";
 SuCCEED: Correct to [To,..Tn,ctak.•.am]
 End comment procedure III is TSVP(T,a,i,ct)

 Fig.II-4 Error Correction using i-order strictly valid pairs

 Whether (T,a) is an i-order strictly valid pair is deter-

mined in advance only by (T,a,i), so the test in III is done by

table look up. For this reason algorithm 2 is faster than algo-

rithm 1, but an i-order valid pair is not necessarily an i-

order strictly valid pair, so the ability of algorithm 2 is

inferior to that of algorithrn 1.

[Algorithrn 3] Test whethe? (T.a) is an i-oyder strictZy vaZid
 Pair Jfo? some ctEZi.

(Input) a table T, a terminal symbol a, and an integer i

(Output) TRUE and ct or FALSE

(Method) TSVP(T,a,i,ct) in fig.II-5

TSVP is different from TVP only in the dotted square in fig.

II-5.

-64-

Procedure TSVprT.a.i,ct) cQmment if CT,a) is an i-order strict-
 ly yalid pair for sorne ct then TRUE
 else FALSE;
 Begin Set S;
 Case i of
 O: Begin comrnent O-order valid pair;
 If f(T,a)lerror Then Tsvp=TRUE EIse Tsvrp=FALSE
 End
 1: Begin comment 1-order strictly valid pair;
 L1=FALSE;
 For all b in Åí Do
 Begin
 S=NEXT*(T,b);
 If Sfempty Then
 -- -- -- -- -"---- ----- l-Begin l
 i L2=TRUE; l
 t .1 t For all Tl inSDo t
 IBegin l
 t T2=g(Tl,b); i
 l If f(T2,a)=error l

 , Then L2=FALSE i
 IEnd; l
 I If L2 Then Begin I
 , • Ll=TRUE;I
 l ct-b l
 i End i tt iEnd e 1e End; ----' ny' -'-'-"-'--'-"--
 If Ll Then TSVP=TRUE EIse TSVP=FALSE
 End
 End

 Fig.II-5 Test for i-order strictly valid pairs

-65-

 Next theorems will be clear.

ITheorem 1]

 Error correction using i-order valid pairs (a!gorithm 1) is

correct.

[Theorem 2]

 Error correction using i-order strictly valid pairs (algo-

rithm 2) is correct,

 The information about i-order strictly valid pairs can be

stored in f-function. If f(T,a)ferror, then (T,a) is a O-order

valid pair, and if f(T,a)=error and (T,a) is an i-order strict-

ly valid pair for a, then ct can be stored in f-function in-

stead of "error".

Example 1. Error Correction in a SLR(1) parser

 Consider the SLR(1) grarnmar Gi as follow;

 G i- < { E ,T , F } , { a , + , t , (,) } , P , E >

 P: 1) E .- E+T 2) E -- T
 3) T+ T*F 4) T .- F
 5) F+ (E) 6) F+a
We show the SLR(1) parsing table M (f and g function) in fig.

II-6. In fig.II-6,

 M[i,B]=j means f(Ti,B)=shift and g(Ti,B)=Tj

 M[i,B]=Rk means f(Ti,B)=reduce k

 M[i,B]=A means f(Ti,B)=accept

 M[i,B]=ct means (Ti,B) is an i-order strictly valid pair

 for or.

 --66-

E T F a + ft () $

o

1

2

3

4

5

6

7

8

9

10

11

1

8

2

2

9

3

3

3

10

4

+

k

+

+

4

4

4

+

k

+

+

aa
6

R2 7
R4 R4

R6 R6

aa
aa
aa
6)
Rl 7
R3 R3

R5 R5

s

+

t

ft

k

5

5

5

+

k

*

k

a

R2

R4

R6

a

a

a

11

 Rl

 R3

 R5

a

A

R2

R4

R6

a

a

a

)

Rl

R3

R5

 Fig.II-6 SLR(1) parsing table M

 I-order valid pairs are i-order strictly valid pair in Gi

I-order strictly valid pairs are cornputed as follow;

For example (Ts,k),

 NEXTt(Ts,a)={T4}, f(Tg,t)=reduce 6

 NEXTt(Ts,O={Ts}, f(Ts,*)=error
so (Ts,*) is an 1-order strictly valid pair for "a", but not

for "(". (Ti,ft) and (Ti,)) is neither O-order valid pair nor

1--order valid pair, but 2-order strictly valid pair.

-67-

 Let w= a*(+a+a))+a+ be an input to

ting parser for Gi.

 To a"C+a+a))+a+$
 ToT" h(+a+a))+a+$

 - e i i t - - - - - - - - - - -

 In this

algorithm

instead of

case, w ls

 ToT2T7Ts +a+a))+a+$

 ToT2T7Ts a+a+a))+a+$
ToT2T7TsT4 +a+a))+a+$

e-----e--- ----------
 ToTi)+a+$

 ToTi +a+$
 ToTiT6 a+$

 ------ e--
 ToTl '$
 ToTiT6 $

 ToTiT6 a$

 ------ t-
 ToTi $

 example, w is

is not deterministic.

 inserting "a" in the

 corrected to a* a+a

the SLR(1) error correc-

error detected, M[5,+]=a
and MIs,a]=4. We choose M
I5,+]=a, so insert "an.

error detected, Mll,a]=6,
so delete ")".

corrected

 For

 first

 +a+a

error detected, M[6,$]=a,
so insert "a".

accept

to ax a+a+a)+a+a, This

 example we can delete "+"

 error point. In this

 .

-68-

Chapter 4. Error Recovery by Valid Pairs

 In this chapter we define more general valid pairs and

error recovery method using these valid pairs.

[Definition 9] i-order valid pair

 We say that CT,a) is an i-order valid pair for a parser ll if
 '

there exists y holding the following condition;

 [ToTi•••Tn,ya6] Prr[ToTS•••TP,a6] tf(no error),
where aeZ"{$}, ye(ZVN)i, and To..•Tn (Tn=T) is a valid

sequence.

 y may include non-terrninal symbols, so error processing us-

ing these pairs are not error correction, but error recovery.

The most useful case is yeN. In this case, a valid pair coin-

cides with a strictly valid pair.

[Algorithm 4] Test whethey (T.a) is a 1-order (strietlyJ

 valid pair for some BeM

(Input) a LR(O) table T and a terminal symbol a

(Output) TRUE and a nonterminal symbol B, or FALSE

(Method) TVPN(T,a,B) in fig.II-7

 Next algorithm is a modification of the algorithm in exer-

size 7-4-28 of [4], but more general.

[Algorithm 5] an erTor reeovery algoTithm by 1-order valid

 . pat?s

(Input) an error configuration [To•••Tn,az•.•a7n]

(Output) a locally recovered configuration [To..•TpT,ak•••am]

 Ospsn , Z<k<m

(Method) (Fig.II-8)

 -69-

Procedure TVPIV(T.a.B) comment test for 1-order valid pairs;
 Begin
 If there exists some BeN such that gCT,A)ferror
 Then Begin
 Tl=gCT,B);
 If f(Tl,a)ferror
 Then Goto SUCCEED
 End
 TVpN=FALSE and Stop comment (T,a) is not a 1-order
 valid pair;
 SUCCEED: TVPN=TRUE
 End

Fig.II-7 Test whether CT,a) is a 1-order valid pair
 for some BeN

Procedure Error Reeovery
 Begin comrnent input ITo••.Tn,az.•.am] and ITo.••Tg'T,
 ai.••am];
 For i=z to m Step 1 Do
 For j=n to e Step -1 Do
 If (Tg',ai) is a 1-order valid pair for some AeN
 Then Begin T=g(Tg',A); Go to SUCCEED End;
 error recovery fails and "No";
 SUCCEED: Recover to [To•..Tg'T,ai...am]
 End

Fig.II-8 Error Recovery using 1-order valid pairs

-7 O--

 Next theorem will be clear.

[Theorem 3]
 '
 Error recovery usipg 1-order valid pairs galgorithn 5)

.Is correct.

 Algorithm 5 using 1-order valid pairs in algorithm 4 does

not necessarily stop. For exarnple, we suppose ITo...Tn,az...am]

 }-- error and recovery with (Tn.1,az). If we choose the nonter-

minal symbol A such that g(Tn-1,A)=T, f(T,a)=reduce i, g(Tn-1,

B)=Tn, and Pi: B+A, then algorithn 5 repeats any times. We

improve algorithm 4 for this reason.

[Algorithm 6] Test whether CT,a) is a 1-order vaZid pair

 for some BeN. improved version

Input and output are the same as in algorithm 4.

(Method) (Fig.II-9)

 In the case of lctil=1, there are several nonterminal symbols

which are computed by algorithrn 4. They have a hierachical

relation and their forrnsare like Ai-.Ai-1. In this case we must

choose the top most symbol. Algorithn 6 selects the symbol.

-71-

Procedure TVPNCgsa.B] comment test for 1-order va!id pairs
 improved version;
 Begin
 If there exists some BGN such that g(T,A)lerror
 Then Begin
 Tl=g(T,B);
 If f(Tl,a)ferror
 Then If TVPIVRrTl,a) Then Goto SUCCEED
 End
 TVPN=FALSE and Stop comment (T,a) is not a 1-order valid
 palr;
 SUCCEED: T7PN=TRUE
 End;

Procedure TVPNRCTI.a)
 Begin
 If f(Tl,a)=shift
 Then TVPNR=TRUE
 EIse If length(cti)=1
 Then Begin
 S=NEXT(Tl,a);
 TVPILTR=TRUE ;

 For all T in S Do
 If - TVPIVR CT, a) Then
 End
 Else TVPNR=TRUE
 End comrnent f(Tl,a)=reduce i and Pi: A "

Fig.II-9 Improved TVPN(T,a,B)

TVPNR=FALSE

cti ;

-72-

Example 2. Error Recovery in a SLR(1) parser

 We consider the sarne grammar as in example 1. 1-order

pairs for nonterminal symbols are computed as follow;

For example (To,+)

 g(To,E)=Ti and f(Ti,+)=shift

 g(To,T)=T2 and f(T2,+)=reduce 2

 g(To,F)=T3 and f(T3,+)=reduce 4

so (Te,+) is a 1-order valid pair for E. Next we consider

(Ts,$),

 g(Ts,E)=Ts and f(TB,$)=error

 g(Ts,T)=T2 and f(T2,$)=reduce 2

 g(Ts,F)=T3 and f(T3,$)=reduce 4

NEXT*(T2,$)={Ti,Ts} and f(Ti,$)=accept but f(Ts,$)=error.

is the same for F, so (Ts,$) is not a 1-order valid pair

any nonterTrtinal symbols. We show the 1-order valid pairs

nonterminal symbols in fig.II-10.

 a+k()$
 ET E o
 1
 2
 3
 4
 ET E 5
 TT 6
 FF 7 Fig.1I--1O
 8
 1-order valid pairs for
 9
 nonterninal syrnbols of Gi 10
 11

valid

 This

 for

for

-73-

ing

Let w= ak(+a+a))+a+

 parser of G'i.

 To

 ToTg

 -te-
 ToT2T7Ts

 ToT2T7TsTe

 ToT 2T 7T sT eT6

 - i - - - - - - - - - - -

 ToTi

 ToTi

 ToTiT6

 ------ e
 ToTiT6

 ToTi

In this case errors

a k (+ a +)

be an input to

 a*(+a+a))+a+$

 *(+a+a))+a+$

---"-----i---
+a+a))+a+$

+a+a))+a+$

a+a))+a+$

)+a+$

+a+$

a+$

--t

$

$

are detected

) + a +

the

error
valid
=TB

error
valid
=T1

SLR (1)

 error
 va1id
 =T1

 accept

at the

error

detected,
for "E",

detected,
for ttE,tp

detected,
for "E" '

following

recover-

 (Ts,+) is
and g(Ts,E)

 (To,+) is
and g(Te,E)

 (To,$) is
and g(To,E)

posltlons,

' ' '

-- 74-

Chrrap.te' r 5. Some Rgsult.s

 In this chapter we describe about the simulatieh of error

correction and evaluate the algorithn. We need many erroneous

programs in order to evaluate error correcting algorithns, so

we produce them using random numbers as in fig.II-11. In fig.

II-11, the kind of errors (IK), the position of errors (IP),

the number of errors (KE), and the errer terrninal symbols (b)

are determined using randem numbers. In practical case, errors

depend on the context, but in this simulation we ignore the

context. We made the simulation under the following various

conditions for the grarnmar G2 in fig.II-12.

(1) The input legal programs are four kinds in fig.II-13.

(2) There are three kinds of error probabilities for each

 terminal symbol (Table Il-1).

<Program>
<Block>
<Blockhead>
<Decl.>
<Blockbody>
<Statement>
<Simplestate
<IfState`>
<IfState.>
<Exp.>
<Teftu>

 +<Block>
 -+<Blockhead><Blockbody>END
 ÅÄBEGINl<Blockhead><Deel.>;
 -,-TYPE idl<Decl.>,id
 +<Statement>1<Blockbody>;<Statement>
 ÅÄ<Simplestate.>l<Ifstate.>
.>.•id=<Exp.>l<Block>

 ÅÄIF<Exp.>THEN<SithPlestate.>ELSE<Statement>
 +IF<Exp.>THEN<Statement>
 ÅÄ<Term>1<Term>+<Exp.>
 ÅÄidlC<Exp.>)

Fig.II-12 Test Gtamiriat G2

"7 g=

Procedure SimuZation of Error CorTeetion
 Begin
 Read legal prpgram CIN) with length (N);
 For each MKE=N!5, NllO, N!20 Do
 Begin
 dete?mine tke numbeT of erToTs CKE);
 For I=1,KE Do
 Begin
 dete?mine the e?ror CIK)
 comment IK=1....deletion error
 IK=2....insertion error
 IK=3...,rnutation error;
 determine the error po$iteon (IP);
 Case IK of
 1: Delete IN(IP);
 2: Begin
 determine the error woyd (b);
 Insert b in IN(IP)
 End;
 ' 3: Belii?ermine tke epm?or wo?d (b);

 Mutate b with IN(IP)
 End;
 End
 comment erroneous program is generated;
 E.gYNTAX ANALYSIS AND ERROR coRREcTIoN;

 End comment MKE is the error bound, IK,IP,KE, and an error
 word "b" are determined using random numbers;

 Fig.II-11 Simulation program of error correction

 -7 6-

PROGRAM 1.
 Begin
 Type a,a;
 a=a; ,
 If a+a
 Then Begin
 a=a+a;
 a=a
 End
 Else a=a+a
 End

PROGRAM 3.
 Begin
 Type a,a;
 Type a;
 a=(a+a);
 Begin
 Type a;
 a=a+a+a
 End;
 If a
 Then a=a
 Else a=a+a;
 a=a
 End

 Fig.II-13
 Four kinds of
 legal programs

Input

PROGRAM 2.

 Begin
 Type asa;
 a=a+a;
 ' If a
 Then Begin
 Type a;
 a=a+a;
 a=a+(a+a)
 End
 Else Begin
 a=a+a+(a+a);
 a=a
 End;
 a=a
 End

PROGRAM 4.

 Begin
 Type a,a;
 a=a+(a+a);
 If a+a
 Then Begin
 a=a;
 a=(a+a)
 End
 Else Begin
 a=(a+a);
 a=a
 End;
 Begin
 Type a,a;
 lf a
 Then a=a
 Else a=a+a;
 a=a+a
 End
 End

-- 7 7-

(3) There ate three kinds of ertor bounds (1/5, lllO, 1!20).

 (!f an input program consists of 100 tokens and an error
 '
 bound is 112e, then an average number of errors is Z.S)

 We only consider the one terminal error, that is, deletion,

insertion, Or mutation of one terminal symbol. These error

transformations are as follow;

DELETIoN (al..•az-lazaz+1•••am) + (ai•••az-laz+1•••am)

INsERTIoN (al...az-laz•••am) + (ai•••az.laal•••am)

MuTATIoN (ai...az-lazaz+1.••am) + (al•••az-laaz+1•••am)

In' the above error transformations', the terminal symbol "a"

is determined according to the three kinds of error probabi-

lities in table II-1,

 The SLR(1) parsing table for the grammar Gi has the foll-

owing three kinds of error entries;

(1) O-order valid pair

(2) 1-order valid pair

(3) 1-order valid pair for nonterminal symbols

The third entries are used for error recovery. The size of the

parsing table is 36Å~15, and the number of error entries except

for above three kinds is 295.

 Table II-1 Error Probabilities for each terminal symbol

 END BEGIN ;TYPE a , = IF THEN ELSE + ()
1.

2,

3.

12
Ol
11

2 52 6S521 52 6552
1 10 1 10 10 10 1

z

2

1

2 5662 5S6
1 10 10.10

-78-

 The followipg three kinds of error correction are possible

for the error configuration [To,.,Tn,az•••am]

 1) correction by deletion [TQ•••Tn,az"1•••am]

 2) correction by mutation [To•••Tn•aaz+1•••a,vJ
 ' 3) Correction by insertion ITo..•Tn,aaz••.am]

 The results for 100 eTroneous programs in each conditions

are shown in table II-2, The correction ratios decrease as the

progran length becomes long and as the error bound increases.

One of the reasons is the method the erroneous prograrns are

generated. The erroneous programs are generated at random and

without regard to the context. This means that the possibility

of generating the errors which can not be corrected by algo-

rithrn 2becomes large.For example, in the following program,

 Begin S; Begin S;S End; S;S End
if the second "Begin" is deleted, an error is detected between

the first "End" and ";". This error can not be corrected by

algorithm 2.

 Table II-2 Simulation results of Error Correction

I II III
1 1 1 1 1 1 1 1 1

- - - - - - - - -C 5 10 20 5 10 20 5 10 20
1 56 82 86 65 77 90 67 79 89
2 59 80 85 53 75 83 56 77 83
3 57 69 82 53 77 80 S5 75 85

4 41 65 80 52 65 78 46 62 81

A...Error Probabilities
B...Error Bounds
C...Input Programs

-79-

 In practical case, the number of errors is about 10 per 50

stateTrtents, sQ the nuinber of errQrs per token is about 1150.

Hence tlre error bound 1!2Q is the most adequate in practical

case. In this bound, the correction ratios are about 80-90-Oo.

 These results are obtained for 100 programs, but in the case

of 1000 programs the results are almost the same.

 The errors which can not be corrected by algorithm 2 can be

recovered by algorithm 5. The number of eliminated program

elements by the error recovery (algorithm S) is 2.7 on the

average.

-80-

Chapter 6. Conclusions

 In PART II we defined the i-order valid pairs and gave the

practical error correcting and recovering algorithms for SLR

(k) parsers. SLR(k) parsers are the most practical method in

the LR(k) family and these algorithms have the following ad-

vantages;

(1). The information of error correction and recovery can be

 stored in the parsing table, so no extra rnemories are

 ' needed.

(2). These algorithms can parse erroneous programs with len-

 gth n within O(n) times.

 In this thesis we only showed the case of 1-order valid

pairs. If we use the i-order valid pairs for i>1, then the

correction ratio will be improved, but in this case extra me-

mories will be needed, too.

 These methods are deterministic and non-backtracking, so

the string which has already read can not be corrected. For ex-

ample, in the case of the following input,

 Begin S ; S ; Begin S End ; End ; S ;S End
there is an extra "End", or one "Begin" is missing. The parser

detects an error between the second "End" and ";", but this

error can not be corrected by our algorithms, because the se-

cond "End" means the end of an input. The following symbol

must be "$", so the remaining string ";S;S End" will be dele-

ted. But if we can make backtrack one symbol and ignore "End",

then we can correct this kind of error easily. This modifica-

tion of our algorithms is hoped for future developrnent.

 '
 ' -81-

 CONCLUSIONS

 We considered two problems to implement parser generation
 ' 'systems;

(1). Irnplementation of precedence parsers using the precedence

 functions with error detecting capability was investigated

 in PART I.

(2). Practical error processing algorithms for SLR(k) parsers

 were investigated in PART II.

 Precedence parsers using precedence functions are very corn-

pact but have the following disadvantages;

1). Simple precedence functions have no error detecting capa-

 bi1ity.

2). The corresponding grammatical class is very small.

These two disadvantages were improved, and the procedures to

implement simple precedence parsers andlor weak precedence

parsers using precedence functions were described in PART I.

We introduced the new equivalence relations (ED(i,j) equivale-

nce and semi-strong equivalence) and the extended precedence

functions. Using these methods we can make algorithmically the

extended precedence functions from an unambiguous context free

grammar. These extended precedence functions preserve about

80% of the error entries. The error originated in the remain-

ing 200-e of the error entries are detected either as reduction

errors or as errors in the other point, that is, there exist

error detection delay originated in the unpreserved error en-

tnes.

-83-

 For the cornpilers which need precise error detection (po-

int and state), these methods are not adequate for this reason,

but in the case in which the compactness is the most important

and a little error detection delay is permitted, these methods

are very useful.

 Error processing in parsing algorithms was little considered

in 1960's, but recently there are sorne researches about this

problem. This fact means that automatic generation of parsers

becomes more practical. PART II described the practical error

correcting and recovering algorithms for SLR(k) parsers and

evaluated the algorithms by simulations.

 Error correction must be considered rather as the kind of

error recovery and error diagnosis than as the artificial in-

telligent tools, so our algorithms are rnore practical than the

ninimum distant error correcting algorithms. If we consider

the heuristic compilers, we must consider the following factors;

(1)error distance, (2)backtracking, and (3)error probability.

Third factor was a little investigated in [56].

 We can not connect the above results of PART I and PART II

immediately, because the object parsing algorithms are diffe-

rent, but it is possible to apply the idea in PART II to the

precedence parsers using the extended precedence functions.

The extended precedence functions have little redundancy, so

they themselves can not represent the error correcting infor-

mation, and the extra memories are needed.

-84-

 We must consider further semantic processing and metalan-

guages to implement compiler description languages systems. We

have proposed the Multi level Compiler Generating System in
M.S.Thesis. This system is the skelton of c6mpiler description

languages systeins. The formalization of semantic processing

and metalanguages are more difficult than that of syntax. These

will be left for future researches.

-8 5--

 APPENDIX

 EWPF for JIS ALGOL 3000

 ' ' We made the EWPF for JIS ALGOL 300e [29]. The briginal grammar is

not a weak precedence grammar, so we modified it a little. The

modified grammar is shown in Fig.A-1. Precisely saying this gra-

mmar is not a WPG. Some rules in Fig.A-1 violate the condition

(2) in definition 6. These violations are resolved using con-

textual informations. The semi-strongly equivalent weak prece-

dence matrix for this grammar can not be functionized, so we apply

algorithm 5 in 4-4-2. The resulting EWPF for JIS ALGOL 3000 are

shown in Table A-2. In this case we use (A3,R3) as the EWPM, so

the weak precedence relations are decided as follow;

 {F(X)<G(Y)} and {H(X)>L(Y)} ... XgY

 {F(X)<G(Y)}' and {H(X)<L(Y)} ... X>Y

 {F(X)>G(Y)} X?Y (error)

Table A-1 represents the error preservation ratio by these EWPF.

1227 error entries (O or 8) out of 1570 are preserved in this

case.

 Table A-1 Error Preservation Ratio

PrecedenceRelation 4 5 o 8 ErrorRelation

Total 147 441 981 589 1570

Reserved 147 441 682 545 1227

error preservation ratio = 780i,
grammar size INI=73 IZI"38 1P1-126

-87-

1

2

3

4

s

6

7

8

9

10'

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

<Program> #<Block>l<Compound state.>
<Block> #<unlabelled Block>l<label>:<Block>
<unlabelled Block>#<Blockhead><Statement deli.><Compoundtail>
<Compound state,>#<unlabelled compound state.>l
 <labe1>:<Compound state.>
<unlabelled compound state.>#BEGIN<Compoundtail>
<Blockhead> #BEGIN<Declaration>l<Blockhead><Statement deli.>
 <Compoundtail>
<Compoundtail>#<Statementl>END1<Statementl><Statement deli.>
 <Compoundtail>
<Statementl>#<Statement>
<Statement deli.># ;
<Statement> #<unconditional state.>l<conditional state.>l
 <repeat state.>
<unconditional state.>#<fundamental state.>l<Compound state.>
 1<Block>
<fundamental state.>#<unlabelled fundamental state.>l
 <label>:<fundamental state.>
<unlabelled fundamental state.>#<Assignment s.tate.>l
 <Goto state.>l<Procedure state.>
<Assignment state.>#<left hand> <Arith. exp.>
<lefthand> #<Variable>:'-'•l<Procedure name>:=

<Goto state.>#GOTO<designatinal exp.>
<con(litional state.>#<if statement>1<if statement>ELSE
 <Statement>l<label>;<conditional state.>
 l<conditional clause><repeat state.>
<if statement>#<conditional clause><unconditional state.>
<conditional clause>#IF<Relation>THEN
<repeat state.>#<repeat clause><Statement>
 I<label>;<repeat state.>
<repeat clause>#FOR<variable item><repeat element>DO
<variable item>#<simple variablel>:=
<repeat element>#<Arith. exp.>STEP 1 UNTIL<Arith. exp.>
<Procedure state,>#<Procedure name><actual parameter part>
<actual parameter part># (<actual parameter list>)

 Fig.A-1 Modified JIS ALGOL 3000 Grammar

-- 88-

26 <actual parameter list>#<actual parameter>l<actual parameter
 list><Parameter deli.><actual parameter>
27 <Parameter deli.># ,
28 <actual parameter>#SYMBOLI<Expression>l<Array name>
29 <Declaration>#<Type decl.>l.<Array decl.>I<Procedure decl.>
30 <Type decl.>#<Type><Type list>
31 <Type> #REALIINTEGER
32 <Type list> #<simple variable>
 l<Type list><Pararneter deli.><simple variable>
33 <Array decl.>#<Type><Array><Array list>
34 <Array list>#<Array segment>
 lsArray list><Parameter del.><Array segment>
35 <Array segment>#<Array identi.>[<bound pair list>]
 1<Array identi.1><Parameter deli.>
 <Array segment>
36 <Array identi.1>#<Array identi.>
37 <Array> #ARRAY
38 <bound pair list>#<bound pair>
 i<bound pair list><Parameter deli.><bound pair>
39 <bound pair>#<lower bound>:<upper bound>
40 <upper bound>#Ur
41 <lower bound>#Ul
42 <Procedure decl.>#PROCEDURE<Procedure head><Procedure body>
 I<Type>PROCEDURE<Procedure head><Procedure body>
43 <Procedure body>#<Statement>
44 <Procedure head>#<Procedure name><formal parameter part>;
 <value part><specification part>
45 <specification part>#<Specifier><namelist>;
 l<specification part><Type><namelist>;
46 <Specifier> #STRINGI<Type>ARRAY
47 <value part>#VALUE<namelist>;
48 <namelist> #IDI<namelist><Parameter deli.>rD
49 <formal parameter part>#(<formal parameter list>)
50 <formal parameter list>#<forrna! parameter>
 1<formal parameter list><Parameter deli.><formal pararneter>
51 <forrnal parameter>#fD

 Fig.A-1 Modified JIS ALGOL 3000 Grammar (Continued)

-- 89-

52

53

54

55

S6

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
74

75

76

77

78

79

80

81

<Arith. exp.> #<Term>l<adding operator><Term>
 1<Arith. exp.><adding operator><Term>
<Term> #<Factor>l<Term><multiplying operator><Factor>
<Factor> #<Prirnary>1<Factor>"vt
<Primary> #uNl<variable>l<function designator>
 I(<Arith. exp.1>)

<Arith. exp.1>#<Arith. exp.>
<multiplying operator># *1/
<adding operator># +i-

<Relation> #<Arith. exp.><relational operator><Arith. exp.>
<relational operator>#<lsl=l>l>V
<designational exp.>#<label>

<label> #tD
<variable> #<simple variable>l<subscripted variable>
<subscripted variable>#<Array identi.>[<subscript list>]
<Array identi.>#ID
<subscript list>#<subscript exp.>
 I<subscript list><Parameter deli.><subscript exp.>
<subscript exp.>#UII<simple variable>l<simple yariablel>+Uf
 l<simple variablel>-Ul
<sirnple variable>#<variable identifier>
<variable identifier>#ID
<function designator>#<Procedure identi.><actual parameter
 part>
<Procedure identi.>#fD
<simple variablel>#<sirnple variable>
<Expression> #<Arith. exp.>1<Relation>1<designational exp.>

:.

;

BEGIN
END

:=

GOTO
ELSE
IF

82 THEN
83 FOR
84 DO
85 STEP
86 (
87)

88 ,
89 REAL

 90 INTEGER
 91 ARRAY
 92 [
1 UNTIL 93]
 94 PROCEDURE
 95 STRING
 96 VALUE
 97 t

 98 *
 99 1
100 +
101 -
102 <
103 s
104 =
105 z

 106 >
 107 f
 108 SYMBOL
 109 Ul
 110 ID
 111 UN
{112 $}

Fig.A--1 Modified JIS ALGOL 3000 Grammar (Continued)

-9O-

Tab1e A-2 EWPF for JIS ALGOL 3000
F H F H F H F H

1 1 1 29 1 1 57 1 4 85 10 s

2 1 1 30 1 1 58 12 4 86 9 5

3 1 1 31 1 3 59 1 87 3 1

4 1 1 32 5 g -60 1 5 88 9 1

5 1 1 33 1 1 61 1 1 89 7 1

6 1 9 34 1 8 62 1 2 90 7 1

7 1 1 35 1 1 63 1 2 91 14 1

8 1 10 36 1 8 64 1 1 92 10 3

9 8 6 37 1 3 65 4 2 93 2 1

10 1 1 38 1 8 66 1 8 94 14 3

11 1 1 39 1 1 67 4 1 9S 14 1

12 1 1 40 4 1 68 1 1 96 14 3

13 1 1 41 1 2 69 1 1 97 10 z

14 1 1 42 1 1 70 1 1 98 12 1

15 1 5 43 1 1 71 2 4 99 12 1

16 1 1 44 1 6 72 2 5 100 10 2

17 1 1 4S 1 2 73 6 1 101 10 2

18 1 7 46 1 3 74 10 6 102 1 1

19 1 6 47 8 2 75 8 1 103 1 1

20 1 1 48 5 9 76 8 6 104 1 1

21 1 6 49 5 9 77 5 1 105 1 1

2Z 1 5 50 1 10 78 10 1 106 1 1

23 3 6 51 5 1 79 16 1 107 1 1

24 1 1 52 1 5 80 11 6 108 6 1

25 1 1 53 1 4 81 10 5 109 1 1

26 1 10 54 1 3 82 13 1 110 1 1

27 1 5 55 1 1 83 14 3 111 3 1

28 1 1 56 6 10 84 11 1 112 13 6

-91-

Tab1e A-2 EWPFfor JIS ALGOL3000 (Continued)

G L G L G L G L

74 2 2 84 4 6 94 9 3 104 4 5

75 6 9 85 4 5 95 9 2 105 4 5

76 14 6 86 13 4 96 9 1 106 4 5

77 6 10 87 7 io 97 4 3 107 4 5

78 3 2 88 7 8 98 4 9 108 10 2

79 14 6 89 9 2 99 4 4 109 11 2

80 6 7 90 9 2 100 11 5 110 15 3

81 12 6 91 8 2 101 11 5 111 13 4

82 4 7 92 5 2 102 4 5 112 6 2

83 14 6 g3 5 6 103 4 5

-92-

 REFERENCES
 '
General or Miscellaneous

[1] J.Feldman, D.Gries: Translator Writing Systems, C.ACM,

 Vol.11, No.2 (Nov, 1968) pp.77 '
[2] William M.Mckeeman, Jarnes J,Horning, David B.Wortman:

 ' A Compiler Generator, Prentice-Hall, 1970

[3] D.J.Rosenkrantz, R.E.Sterns: Properties of Deterministic

 Topdown Grammars, Information and Control, Vol.17, No.3,

 (1970) pp.226

[4] Alfred V.Aho, Jeffrey D.Ullman: The Theory of Parsing,

 Translation, and Compiling, Vol.I: Parsing C1972),

 Vol.II: Compiling C1973), Prentice-Hall

[S] R.W.Floyd: Syntax Analysis and Operator Precedence, J.ACM,

 Vol.10, No.3 (1963) pp.316 -
[6] N.Wirth, H.Weber: Euler:A Generalization of ALGOL, and its

 Formal Definition:Part I,II, C.ACM, Vol.9,No.1.2 C1966)

 pp.13, pp.89

[7] David F.Martin: Boolean Matrix Methods for the Detection

 of Simple Precedence Grammars, C.ACM, Vol.11, No.10

 (Oct. 1968) pp.685

[8] J.Fischer: Some properties of Precedence Languages, Proc.

 of ACM Symp. on theory of computing (May 1969) pp.181

[9] James R.Bell: A New Method for Determining Linear Precedence

 Functions for Precedence Grammars, C.ACM, Vol.12, No.10

 (Oct. 1969) pp.567

[10] A.Colmerauer: Total Precedence Relations, J.ACM, Vol.17,

 No.1 (1970) pp.14

 --93--

[11]

[12]

[13]

[14]

[IS]

{16]

[17]

[18]

[l9]

[20]

A.Learner, A.L.Lim: A note on transforming context free

grammars to Wirth-Weber precedence form, Computer Journa!,

Vol.13, No.2 (1970) pp.142

K.Inoue: A Syntax Analysis Technique based on Right

Precedence of Precedence Languages, IPS, Japan, Vol.11,

No.4 (April 1970) pp.231 (in japanese)

J.B.Morris: A result on the relationship between Simple

Precedence Languages and reducing transition Languages,

Proc.of 2nd Annual ACM Symp. on Theory of Computing

(May 1970) pp.73

J.D.Ichbiah, S.P.Morse: A Technique for generating almost

optimal Floyd-Evans productions for precedence grammars,

C.ACM, Vol.13, No.8 (Oct. 1970) pp.501

K.Inoue: Right Precedence Grammars, IPS, Japan, Vol.11,

No.8 (Aug. 1970) pp.449 (in japanese)
S.L.Graham: Extended Precedence Languages, Bounded Right

Context Languag,es, and Deterninistic Languages, Proc. of

IEEE 11th Annual Symp. on Switching and Automata Theory,

COct. 1970) pp,175

K.Asai: Precedence Grammars with Precedence Functions,

IPS, Japan, Vol.12, No.S CMay 1971) pp.264 (in japanese)

S.Sekimoto: Extended Right Precedence Grammars and an

Analyzing Technique for them, IPS, Japan, Vol.12, No.9

CSept. 1971) pp.543 (in japanese)

K.Asai: On Existence of Precedence Functions of PTecedence

Grammars, IPS, Japan, Vol.13, No.4 (April 1972) pp.218

(in japanese)

A.V.Aho, P.J.Denning, J.D.Ullman: Weak and Mixed Strategy

Precedence Parsing, J.ACM, Vol.19, No.2 (1972) pp.225

 -94-

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

D.F.Martin: A Boolean Matrix Method for the computation of

Linear Precedence Functions, C.ACM, Vol.15, No.6 (June 1972)

pp.448

J.McAfee, L.Presser: An Algorithm for the Design of Simple

Precedence Grammars, J.ACM, Vol.19, No.3 (1972) pp.385

A.V.Aho, J.D.Ullman: Error Detection in Precedence Parsers,

MST, Vol.7, No.2 (1972) pp.97

K.Asai, M.Tomiyama: 'Compiler Construction by Precedence

grammars, IPS, Japan, Vol.14, No.7 (July 1973) pp.495

(in japanese)

J.N.Gray, M.A.Harrison: Canonical Precedence Schemes,

J.ACM, Vol.20, No.2 (1973) pp.214

K.Ochimizu, M.Mizumoto, J.Toyoda, K.Tanaka: Quasi-sequential

Grammars and their Parsing Algorithms, IPS, Japan, Vol.14,

No.12 (Dec. 1973) pp.925 (in japanese)

N.A.Khabbaz: Multipass Precedence Analysis, Acta Inf.,

Vol.4, No.1 (1974) pp.77

R.Haskell: Symmetrical precedence relations on general

phrase structure grammars, Computer Journal, Vol.17, No.3

(1975) pp.234

Programming Language for Computer ALGOL (level 3000),

JIS C6214-1967 (in japanese)

T.Seno, K.Kaijiri, S.Uchinami, Y.Tezuka: The Construction

Methods of Weak Precedence Functions by Postponement of

Error Detection, IPS, Japan, Proc. of 15th Convention,

(Dec. 1974) (in japanese)

K.Kaijiri, T.SenO, S.Uchinami, Y.Tezuka: On the New Prece-

dence Functions methods, IECE, Japan, Technical Group on

Automaton and Languages, AL74-57, (Feb. 1975) (in japanese)

 --9 5-

[32] K.Kaijiri, S.Uchinami, Y.Tezuka: On the Extended Weak

 Precedence Functions, IECE, Japan, Proc. of the Annual

 Convention, (March 1975) (in japanese)

[33] K.Kaijiri, T.Seno, S.Uchinami, Y.Tezuka: The Construction

 Methods of the Weak Precedence Functions by Postponernent of

 Error Detection, IECE, Japan, Technical Group on Automaton

 and Languages, AL75-47 (Oct. 1975) (in japanese)

[34] K.Kaijiri, S.Uchinami, Y.Tezuka: Extended Precedence Parsing

 Method and its Error Detection, Technology reports of the

 Osaka Univ., Vol.26, No.1277 (March 1976)

[35] K.Kaijiri, T.Seno, S.Uchinani, Y.Tezuka: The Construction

 Methods of Weak Precedence Functions by Postponement of error

 Detection, Trans, IECE, Vol.J59-D, No.11 (Nov. !976)

[36] K.Kaijiri, S.Uchinami, Y.Tezuka: On the Realization Methods

 of the Precedence Functions, IECE, Japan, Vol.J59-D, No.11
 ' (Nov. 1976) (in japanese)

[37] K.Kaijiri, S.Uchinami, Y.Tezuka: Extended Weak Precedence

 Functions, Tran. IPS, Japan (to be appeared) (in japanese)

PART II

[38] E.T.Irons: An Error-Correcting Parse Algorithm, C.ACM,

 Vol.6, No.11 (Nov. 1963) pp.669

[39] William B.Smith: Error Detection in Formal Languages,

 JCSS, Vol.4, No,5 (Sept. 1970) pp.385

[40] T.G.Peterson: Syntax Error Detection, Correction and Reco-

 very in Parsers, Doctoral thesis, Stevens Institute of

 Technology, Hoboken, N.J., (1972)

[41] Lewis R.James: A Syntax Directed Error Recovery Method,

 Technical Report CSRG-13, University of Tronto (May 1972)

 -96-

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A.V.Aho, T.G.Peterson: A minimum distance error correcting

parser for context-free languages, SIAM J. of Comp., Vol.1,

No.4 (Dec. 1972) pp.305

K.Iwamoto, A.Sawano: Error CorrectiOn for Regular Languages

and Context free Languages, IECE,Japan,Vol.56-D, No,12

(Dec. 1973) pp.675 (in japanese)

R.A.Wagner, M.J.Fischer: The String to String Correction

Problem, J.ACM, Vol.21, No.1 (Jan. 1974) pp.168

G.Lyon: Syntax Directed Least Errors Analysis for Context-

free Languages:A Practical Approach, C.ACM, Vol.17, No.1

(Jan. 1974) pp.3

R.A.Wagner: Order-n Correction for Regular Languages,

C.ACM, Vol.17, No.5 (May 1974) pp.265

M.G.Thomason: Errors in Regular Languages, IEEE Trans. on

EC.,Vol.C-23, No.6 (June 1974) pp.597

S.L.Graham, S.P.Rhodes: Practical Syntactic Error Recovery,

C.ACM, Vol.18, No.1 (Nov. 1975) pp.639

J.P.Levy: Automatic Correction of Syntax-Errors in Progra-

mming Languages, Acta Informatica, Vol.4, No.4 (Dec. 1975)

pp.Z71

M.G.Thomason: Stochastic Syntax-Directed Translation Schemata

for Correction of Errors in Context-free Languages, IEEE

Trans. on EC., Vol.C-24, No.12 (Dec. 1975) pp.1211

R.A.Thompson: Language Correction Using Probabilistic

Grammars, IEEE Trans. on EC., Vol.C-25, No.3 (March 1976)

pp.27S

Donald E. Knuth: On the Translation of Languages from Left

to Right, Information and Control, Vol.8, No.6 (1965) pp.607

 -97-

[53]

[54]

[55]

[56]

Franklin L.Deremer: Simple LR(k) Grammars, C.ACM, Vol.14,

No.9 CJuly 197!) pp.453

K.Kaijiri, S.Uchinami, Y.Tezuka: On the error recovery of

LR(k) parsers, IPS, Japan, Proc. of the 15th Convention,

(Dec. 1974) (in japanese)

K.Kaijiri, S.Uchinami, Y.Tezuka: A Study of Error Correction

and Recovery for SLR(k) parsers, IPS, Japan (in japanese

to be appeared)

K.Kawamura, K.Kaijiri, S.Uchinami, Y.Tezuka: A Stochastic

Optimum error correction for CFG, IECE, Japan, Proc. of the

Annual Convention (March 1977) (in japanese)

-98-

