|

) <

The University of Osaka
Institutional Knowledge Archive

Tale PARSER GENERATION SYSTEM : ITS OPTIMIZATION AND
ERROR PROCESSING

Author(s) |[BR, B

Citation |KFRKZ, 1977, HIXHmX

Version Type|VoR

URL https://hdl. handle.net/11094/2801

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

PARSER GENERATION SYSTEM

— ITS OPTIMIZATION AND ERROR PROCESSING —

KENJI KAIJIRI

DECEMBER 1976

ABSTRACT

A compiler is a program system which translates a source
program written by higher level languages to an object program,
and a parser is a syntax analysis.part of a compiler.

This paper consists of two parts: PART I is concerned with
the space reduction of pérsers and PART II is concerned with
the error processing. Both are the major problems in automatic
generation of parsers.

Precedence functions have some merits such that significan-
tly smaller parsers can be constructed, but they have no error
detecting capability and their corresponding grammatical class
is small. PART I describes the new precedence functions meth-
ods in two ways. Chapter 1 describes an overview of precedence
functions. Chapter 2 gives the fundamental concepts about pre-
cedence functions, and the equivalence relations about the
error detecting capability of simple precedence parsers and of
weak precedence parsers are introduced. Chapter 3 defines the
ED{(i,j) equivalence which is a generalization of the above
equivalences. In this chapter we also show the necessary and
sufficient conditions of weak precedence parsers and give the
procedures to implement weak precedence functions under the
condition of this equivalence relation. Chapter 4 defines the
Extended Precedence Functions and gives the procedures for im-
plementing this method efficiently in two parsers; simple pre-
cedence parsers and weak precedence parsers. Chapter 5 descri-

bes the remaining problems in the future researches.

—j—

The error processing is one Qf the major functions in par-
sers. We propose practical error correcting and recovering
methods for SLR(k) parsers in PART II. Chapter 1 describes an
overview of former error processing methods. Chapter 2 gives
the fundamental concepts of SLR(k) parsers and error process-
ing’. The i-order valid pairs for terminal strings are intro-
duced and the error correcting methods using these pairs are
given in chapter 3. Chapter 4 gives the error recovering method
in the same way. Chapter 5 shows some results of simulations
and we evaluate these methods. Chapter 6 is the conclusions.

Overall results and significances of this paper are given

in CONCLUSIONS, remarks and future problems are also given.

—ji—

ACKNOWLEDGEMENTS

The author would like to acknowledge the continuing guidance
and encouragement of professor Yoshikazu Tezﬁka.throughoutthis
investigation.

The author also would 1ike to express his appreciation to
professor Kioyasu Itakura, professor Toshihiko Namekawa, pro-
fessor Nobuaki Kumagaya, and professor Yoshiro Nakanishi,

The author wishes to thank Dr. Seiichi Uchinami and Dr.Yoneo
Yamamoto for their helpful suggestions and discussions.

The author is indebted to assistant professor Hidehiko Sanada
and Dr. Hikaru Nakanishi for their helpful advices.

The author is pleased to acknowledge the helpful discussions
of Mr. Masayoshi Tezuka and Mr. Takeshi Shinohara. Thanks are
also due to my colleagues, among them Mr. Takanori Seno for his
contribution in the development of some of the algorithms, Mr,

Jiro Ohkura and Mr. Michio Naito for their discussions and as-
sistances, Mr. Itsuo Matsuda, Mr. Tsuyoshi Nakatani, Mr.

Yasutaka Ochi, Mr. Kenji Kawamura, and Mr. Hiroaki Nishioka

for their discussions.

~-iii—

TABLE OF CONTENTS

ABSTRACT ..evvnvnvnrennasn ettt e e i
ACKNOWLEDGEMENTS eesen ettt iii
TABLE OF CONTENTS ..ttt iiiiirietneneneerasonnnens iv
PRE?ACE Che s ed et e e 1
PART I. PARSER OPTIMIZATION BY PRECEDENCE FUNCTIONS .5
Chapter 1. Introductioniieinimenenencnnannnanns 5
Chapter 2. Fundamental Conceptscievieeesnnsasans 8
2-1. Precedence Relations0c0unn. et 8
2-2. Equivalence Relationsivesttercecnssnnnecs 11
2-2-1. Equivalence Relations in Simple Precedence
Parsers e sttt e 11
2-2-2. Equivalence Relations in Weak Precedence
Parsers et et e e 12
2-2-3. Conditions for Strong Equivalence
Relations ... iiiiieininnsnecnnnasnsnans .. 14
2-2-4. Conditions for Semi-strong Equivalence
Relations Cec ettt cereeas e ensann 15
Chapter 3. Construction of Weak Precedence Functions
by Postponement of Error Detection 18
3-1. Introduction ...ttt it enesiar it esans 18
3-2. ED(1,j) Equivalence Relationcecveesuus 19
3-3. Procedures ...ttt erestiecansansnseas 23
3-4, Exampleciicvttaacannnns ettt 28
3-5. ConcluSioNS ui.ivitiii ittt et e tten e 30
Chapter 4. Extended Precedence Functions 31

4-1. Introductioncveee.s St s eraeecenerrsenasnne 31

4-2. Extended Precedence FUNCLIiONS .uvvevrnenvnnnens 32
4-3, Simple Precedence Parsers; e eeean . 37
4-4, Weak Precedence Parsersceeecerencacaasons 39

4-4-1, Implementation in a Semi-strongly

Equivalent Level i i e e 39

4-4-2. Some Modificationscieiiiinernaanons 41
4-5. Some Examples ...cieveecrinrann. Chtesetesn s 45
4-6. CONClUSIONS .+ttt eerocnoosnnrosansaosnons 48
Chapter 5. CONClUSIONS .. vuvettenrosnnanonrasancasosas 50

PART II. ERROR CORRECTION AND RECOVERY FOR

SLR(K) PARSERS v tttuivvnennenenenenenenenananns 51

Chapter 1. Introductionccecieneersnoanncncanns 51
Chapter 2. Fundamental Conceptsccieivieronncns 54
2-1. SLR(K) ParsSersS .ieeeieesstonsscnansnsasssonsnces 54
2-2. Error Correction and Error Recoveryc... 55
Chapter 3. Error Correction by Valid Pairs ceees 57
Chapter 4. Error Recovery by Valid Pairs 69
Chapter 5. Some ReSULLS ..iiivtieiertnnnsnnsesonassonns 75
Chapter 6. Conclusions ettt 81
CONCLUSIONS ... iivierenrvnnosens et ceeeeee ... 83
APPENDIX EWPF for JIS ALGOL 3000ccieivinnnnn . 87
REFERENCES seceseanns ceee s aeouns ce e 93

-—v—

SPECIAL THANKS GO TO MY PARENTS

.__vi__.

PREFACE

As the development of the computerization of the society,
software becomes more popular, and its demahd increases and
becomes far-reaching. Simultaneously the ratio of software in
the total systems grows larger. The investigations to make the
software production more efficient and reliable, that is, to
make software systematically or algorithmically, are being
made in various ways (Structured programming, System descrip-

tion languages, Mathematical theory of computation).

System description languages (SDL) are the languages to
describe and implement software systems. According to the ob-
ject software, there are three kinds of SDLS;

1) Operating system description languages

2) Translator description languages

3) Application program description languages

A translator is a program which transforms a source program
to an object program. Furthermore there are three kinds of
translator description languages;

1). Assembler description languages

2). Compiler description languages

3). Interpreter description languages

We concentrate here on the compiler description languages

system (Fig.I-1). [1] [2]

Syntax SYNTAX LOADER

Description
|:> E___:> Compiler

Semantics SEMANTIC LOADER
Description

Fig.I-1 Compiler Description Languages System

-] -

Compilers are devided into two parts, syntax analysis part
(parser) and semantics analysis and/or synthesis part (éode
generator).

Parsers can be modeled on the deterministic pushdown auto-
maton and its input languages can be modeled on the context
free grammars. Many researches have been made in both practical
and theoretical aspects based on these theories (LR(k) parsers
{521, LL(k) parsers [3], Precedence parsers [5], and syntax
directed translator).

Parser generation system (PGS)[1] is a subsystem of a com-

piler description languages system and it has two components;
1). Metalanguages for description or definition of its input
2). Processor for parser generation
We must answer the following questions in order to imple-
ment PGS;
(1). With what kinds of languages should we describe or define
parsers?
(2). What kinds of parsing algorithms should we use, how
should be their speed and space?
(3). How should be the error processing (error detection, error
correction, and error recovery)?
The first problem is out of our concern. We describe the second

problem in PART I and the third problem in PART II.

There are two major criteria for evaluating various kinds
of parsers;
(1) Its speed, (2) Its size, and (3) A class of the corres-

ponding grammar.

In PART I we consider about precedence parsers with pre-
cedence functions which are the most compact of all the deter-
ministic parsers, but they have no error detecting capability
and their corresponding grammatical class is very small. We
improve these points in two ways in chapter 3,4. It becomes
possible to implement the precedence parsers of ordinary pro-

gramming languages (Fortran, ALGOL, etc.) using these methods.

Former researches in 1960’s almost neglect error processing
in parsers, so their actions after error detection are not
given in these researches. Recently some papers are concerned
with these problems in both practical and theoretical aspects,
but they do not give us good results in practical aspects.

In PART II we consider the error correction and recovery

for SLR(k) parsers from a practical point of view.

PART I

PARSER OPTIMIZATION BY PRECEDENCE FUNCTIONS

Chapter 1. Introduction

Parsers can be modeled on the deterministic pushdown auto-
maton, and there are three kinds of determiﬁistic parsers;
1). LR(k) parsers (LR(k) grammars)
2). LL(k) parsers (LL(k) grammars)
3). Precedence parsers (Precedence grammars)
These three parsers can parse an input w with length n for O(n)
times and require only O(n) spaces, but such evaluations are
theoretical and are not adequate for practical use. Main con-
cerns in practical use are (1) parsers’ size for corresponding

grammars’ size, and (2) a class of corresponding grammars.

LR(k) parsers are good in (2), but their size is very large.
Precedence parsers with precedence functions are good in (1),
but the class of corresponding grammars is smaller than that
of precedence parsers, and precedence functions themselves
have no error detecting capability. In PART I we describe the
methods to implement the precedence parsers with error detect-

ing precedence functions for a larger class of grammars.

Precedence parsers are first proposed by Floyd [5] (Opera-
tor Precedence Parsers) and second by Wirth and Weber [6] (
Simple Precedence Parsers). They use a precedence matrix
which requires N2 spaces, where N is a number of grammatical
symbols of a corresponding grammar. The researches to trans-
form any context free grammars to precedence grammars are

made by Fisher {8], Learner [11], and Presser [22], and they

have proved that every context free languages can be generated
by a precedence grammar.

The extensions of precedence relations are made by Colme-
rauer [10] (Total Precedence), Inoue [12], [15] (Right Prece-
dence), Graham [16] (EXtended Precedence), Sekimoto [18] (
Extended Right Precedence), Aho [20] (Weak and Mixed Strategy
Precedence), Gray [25] (Canonical Precedence), and Ochimizu
[26] (Quasi-Sequential Grammar).

On the other hand, Precedence functions are also first pro-
posed by Floyd [5] (Operator Precedence Functions). Precedence
functions are functional representation of a precedence mat-
rix and require only 2*N spaces instead of N? for a precedence
matrix. Bell [9], Martin [21], and Asai [17] [19] [24] showed
several computational methods of precedence functions and
Martin [21] showed that each context free language can be ge-
nerated by a precedence grammar for which precedence functions

exist.

These precedence functions ignore error relations, so pre-
cedence functions themselves can not detect errors. Error de-
tection in precedence parsers is described in Aho [23]. He
defined two equivalences about an error detecting capability
and used two pairs of functions, each of which are used for
shift and reduce action. There is a gap between two equiva-
lences and each pair of functions is intended to represent

three relations, so he has not yet get good results.

We intend to improve these points in Aho [23]. In chapter

2 we give the fundamental concepts about precedence parsers

and precedence grammars. Furthermore, we define the following
four equivalences for weak precedence parsers and simple pre-
cedence parsers (The first and the third are redefinition of Aho
[23]. Aho’s definitions are only for simple-precedence parsers.
The fourth is the most common type in language theories).
1). Strong Equivalence
2). Semi-strong Equivalence
3). Equivalence
4). Weak Equivalence

We give the necessary and sufficient conditions for some of
them. In chapter 3 we define ED(i,j) equivalence which is a
generalization of above equivalences for weak precedence par-
sers, and give the implementation method of weak precedence
parsers in this condition ([30], [33], [35]). In chapter 4 we
improve the functionizing method. We define the Extended Pre-
cedence Functions, in which only two relations are represented
by a pair of functions. The implementation methods in both
weak precedence parsers and simple precedence parsers are
given ([31], [32], [34], [36], [37]).

Precedence functions with almost necessary error entries
can be made for ordinary programming languages using these

methods. An example is shown for JIS ALGOL 3000 in APPENDIX.

Chapter 2. Fundamental Concepts

The following definitions and notations are essential to the
developments of the paper. In 2-1 we give the basic concepts of
precedence parsers and in 2-2 we give the equivalence relations
about the error detecting capability. The necessary and sufficient

conditions for them are also given.

2-1. Precedence Relations

[Definition 1] Context Free Grammar

A context free grammar (CFG) is a 4-tuple G=<N,Z,P,S> where
(1) N is a finite set of nonterminal symbols.
(2) ¥ is a finite set of terminal symbols, disjoint from N.
(3) P is a finite subset of NX(NVZT'. An element (A,B) in P will
be written A+ and called a production.

(4) S is a distinguished symbol in N called the sentence symbol.

[Definition 2] Proper Grammar

A CFG is said to be proper if it is cycle free, e-free, and

has no useless symbols.

Precedence relations are defined for proper CFG.

[Definition 3] Precedence Relations

Let G=<N,I,P,S> be a proper CFG. We define three precedence

relations {<,%,>} on N'zY{$} as follow, where $ is a special

symbol not in NYI.
(1) X2Y if and only if [B+aXYBR] in P.

(2) X<Y if and only if a) [B+aXCg] in P and

C;Yy, or b)X=$ and S$Yy.+

(3) X»a if and only if a) [B+aCYB] in P and C4yX, Y3aw, or b) a=

$ and S=yX.

We say that G is a precedence grammar if {<,=,>} are mutually
disjoint. G is uniquely invertible (UI) if [B+a] and [C*a] in P
implies B=C. If G is UI and a precedence grammar, we call G a

simple precedence grammar (SPG).

[Definition 4] Canonical Precedence Matrix Mc

We say that Mc is the canonical precedence matrix for G if
(1) Mc has a row and a column for each symbol in NYIY{$}.
(2) Mc[XY]=1 if and only if X=Y,

Mc[XY}=3 if and only if X<Y.

Mc[XY]=5 if and only if X»Y,

Mc[XY]=0 otherwise.

We call (X,Y) an error relation when Mc[XY]=0.

[Definition 5] Precedence Matrix M

A precedence matrix (PM) for G is defined as follow;

if Mc[XY]#0 then M[XY]=Mc[XY] else M[XY]=any.

We represent a simple precedence parser (SPP) for G as (M,P),
where M isé a PM for G and P is a set of production rules of G.
(Mc,P) is called the canonical SPP.

+ If oAB in (NVI)¥ and [A+y] in P, then we write aABsgoyB. & is
a transitive closure of = , and & is a reflexive and transitive

closure of = .

A configuration of a SPP is 3-tupple Q=[a,B,Y] where
(1) @ is a content of the shift stack and in $ (NVZ)* .
(2) B is a content of the reduce stack and in (NVI)*.
(3) v is an input string which has not yet read and in 2%
According to the above notation, a SPP has the following five
actions for each precedence relations;
If X=Y (1) [oX,,YB] + [aXY,,B]
(2) [aX,YB,y]H [o,XYB,v]
If X<Y (3) [oX,,YB] | [aXY,,B]
(4) [oX,YB,v] +IoXA,,vy] where [A»YB] in P
If X>Y (5) [oX,,YB8] Ia,X,YB]
hE represents the transition by a parser m.

[Definition 6] Weak Precedence Grammar

Let G=<N,I,P,S> be a proper CFG. We say that G is a weak pre-
cedence grammar (WPG) if the following conditions hold;
(1) The relation > is disjoint from the union of < and =.
(2) If A»oXB and B»B are in P, then neither of the relations

X<B and X=B are valid.

[Definition 7] Canonical Weak Precedence Matrix Mc

We say that Mc is the canonical weak precedence matrix for G if
(1) Mc has a column for :¥{$} and a row for N"z¥{¥§}.
(2) Mc[XY]=4 if and only if X<Y or X=2Y.

Mc[XY]=5 if and only if X Y.

Mc[XY]=0 otherwise.

We define a weak precedence matrix (WPM) in the same way as a PM.
A weak precedence parser (WPP) and the canonical WPP are also

represented as (M,P) and (Mc,P}.

A configuration of a WPP is a 2-tuple Q=[a,B] where

(1) o is a content of the shift stack and in $(NV2f .

(2) B is an input string which has not yet read and is in t*$.
According to the above notation, a WPP has the following actions;
If X<Y [oX,YB]H[oXY,R]

If X>Y [oBX,Yy]k[aA,Yy] where [A+BX] is in P and has the longest

matched right side with aBX.

2-2. Equivalence Relations

In this section we define the equivalence relations for SPP

and WPP.

2-2-1. Equivalence Relations in Simple Precedence Parsers

There are two kinds of errors in SPP. In the configuration
Q=[2,B,Yv], if M[X,a,]=0, then QFshift error (B=¢)
if M[{X;Y,1=0, then QFshift error (B#e)
if M[X,Y,]=3 and [A+»B] not in P, then Qr reduce error
(B#e),
where RMS(a)=Xn, LMS(B)=Y,, LMS(Y)=an'

[Definition 8] Strong Equivalence

Let I, and T, be two parsers for a SPG G. We say that II; and
I, are strongly equivalent if the following two conditions hold;
(1) [$,,w$]k;Q1F%...l;an%accept if and only if [$”w$]FﬁQ1Fﬁ"'F'
[}] [' 2 2
Qul=accept.
T2
(2) [$,,w$]F%Q1k;...F%Qnr;shift error (reduce error) if and only
if I[$,,w$1EQ1—...=Q,t=shift error (reduce error).
Tt Ty LG
+ RMS(a) is the rightmost symbol of «a.

LMS(B8) is the left-most symbol of B.

In the following definitions U;, I,, and condition (1) are the
same as in definition 8, so we omit these descriptions.
[Definition 9] Semi-strong Equivalence

(2) [$,,w$1Hr01,81,711=Q, [§,,w$1 az,82,721=Q;

then Qkkﬁerror if and only if sz%srror and the following

conditions hold ;
a) if k>7, then B:=e, Y2=Y, @2=01B)
b) if k<7, then B;=¢e, Y1=Y2, @1=028:

c) if k=1, then a,=0,, B1=B2, Yi1=Y2.
[Definition 10] Equivalence
(2) ($, ,w$]|.%|[oz1 »B1 ’Y1]=Qk’ [$,,ws$] %[32 »B2 ’Y2]=QZ ’

then QkF}FTTOT if and only if szifrror and Yi1=Y2.

[Definition 11] Weak Equivalence

only condition (1).

These four equivalence relations have a hierachical structure.
In [23] "Strong Equivalence " is defined as '"Exact Equivalence"
and "Equivalence" as "Equivalence', but the above definitions are
a little general. The semi-strong equivalence is the newly defined

equivalence.

2-2-2., Equivalence Relations in Weak Precedence Parsers

Two kinds of errors in WPP are defined in the same way as in
SPP.

[Definition 12} Strong Equivalence

Let I;=(M;,P) and lIo=(M,,P) be two WPPs for some WPG G. We say

that 1, and @I, are strongly equivalent if the following two

12—

conditions hold;
(1) [$,w$]fig1f%9nk%?ccept if and only if [$,w$]ki91b#9nkifccept
(2) [$,W$]I;RIF%9nF;FTrOT if and only if I$,w$]+?91}#9nkafrror
and either of the following two conditions hold;
a) M;[Xma]=M2[XmaJ=0
b) M;[Xma]=M2[Xma]=5 and for any i, 1<is<m, there is no produc-

tion rule whose righthand side is Xi...X ,

m

where Qn=[X1...Xm,av].

In the following definitions, Ii, H,, and condition (1) are the
same as in definition 12, so we omit these descriptions.

[Definition 13] Semi-strong Equivalence

(2) [$,w$]kiQ1}%aniFrror if and only if [$,w$]fﬁ91}%9nkifrror.

[Definition 14] Equivalence
(2) [$,w$]|ﬁ91}%9n|ﬁfrror if and only if I$,w$]kif1}%kaﬁfrror,
and either of the following two conditions hold;
a) if n2m, for every h, 1lshs<m, Qh=Ph and Qn=[8,x] for the case
of Pm=[a,x]
b) if ns<m, for every h, 1l<hs<n, Qh=Ph and Pm=[8,x] for the case

of Qn=[a,x].

[Definition 15] Weak Equivalence

only condition (1).

These four equivalence relations have also a hierachical structure.

-]13-

2-2-3. Conditions for Strongly Equivalent Relations

[Theorem 1]

Let G=<N,Z,P,S> be a SPG, Mc be the canonical precedence matrix
for G, and M be some precedence matrix for G. (M,P) is strongly
equivalent to (Mc,P) if and only if the following four conditions
are satisfied.

(1) If Mc[XY]#0 for any X and Y, then M[XY]=Mc[XY].
(2) If Mc[ba]=0 for any b,a in £{$}, then M[ba]l=0.
(3) If Mc[Ba]l=0 for any B in N, any a in £{$}, then a) M[Ba]=0,
or b) for all X such that [B+aX] in P, Mc[Xal#5, or c) B=S
and a=§.
(4) If Mc[XB]=0 for any B in N, then a) M[XB]=0, b) for all Y such

that [B+YB] in P, Mc[XY1#3, or c) X=$ and B=S.

[Theorem 2]

Let G=<N,z,P,S> be a WPG, Mc be the canonical weak precedence
matrix for G, and M be some weak precedence matrix for G. (M,P)
is strongly equivalent to (Mc,P) if and only if the following
three conditions are satisfied.

(1) If Mc[Xa]#0 for any X and a, then M[Xa]=Mc[Xa].
(2) If Mc[ba]=0 for any b,a in I¥{$}, then M[ba]l=0.
(3) If Mc[Xa]=0 for any X in N, any a in zV¥{$}, then a) M[Xa]=0,

or b) for every Y such that [X»aY] is in P, Mc[Ya]#5.

The proofs of these theorems are obvious from the proof in Aho
[23]. The entries satisfying the condition (3) or (4)-b) in theo-
rem 1 or the condition (3)-b) in theorem 2 can be assigned any
value {1,3,5,0} or {4,5,0}, and they are called "don’t care'" and

are assigned the value 7 for both matrices.

2-2-4. Conditions for Semi-strongly Equivalent Relations

[Theorem 3]

G, Mc, and M are the same as in theorem 1. (M,P) is semi-stro-
ngly equivalent to (Mc,P) if and only if the following four con-
ditions are satisfied.

(1) If Mc[XY]#0 for any X and Y, then M[XY]=Mc[XY].

(2) If Mc[ba]=0 for any b,a in IY{$}, then a) M[ba]=0, or b) there
is no production rule like A*>ob and M[ba]=5.

(3) If Mc[Ba]=0 for any B in N, any a in z“{$}, then a) M[Ba]=0,
or b) for all X such that [B+aX] in P, Mc[Xal]#5, or c) there
is no production rule like A»BB and M[Ba]=5, or d) B=S and
a=$.

{4) If Mc[XB]=0 for any B in N, then a) M[XB]=0, or b) for all Y
such that [B»Ya] in P, Mc[XY]#3, or c) there is no production
rule like A+-BB and M[XB]=3, or d) X=$ and B=S.

Proof

It is straightforward to show that if these conditions are satis-

fied, the parsers are semi-strongly equivalent. We therefore only

show the "Only If'" portion of the proof.

Only If:

It is clear that if condition (1) is violated, the parsers are not

semi-strongly equivalent. We therefore only show that if condition

(3) is violated, the parsers are not semi-strongly equivalent.

The cases of condition (2) and (4) are obvious from this proof.

In this case, Mc[Ba]=0, [A+8B] in P, and there is a rule B+aX
such that Mc[Xa]=5, but M[Ba]=5. Here we consider the following
derivation,

S%‘ XAy = xBBy = xBaXy %‘)wy +,

and the analysis for the input "way".

—15—

Then Q =[$,,way$]kﬁi$x6ax,,ay$]=Q1. In parser I Mc[Xa]=5 and
Mc([Ba]l=0, so Q;ki[$xBB,,ay$]= eri?rror. On the other hand in
parser I[,M[Ba]=5, so QZF%[$XA,,ay$]. This is contrary to property
(2). (T is (Mc,P) and 1 is (M,P))

This theorem shows that under the semi-strongly equivalent level,
the entry of M, which satisfies condition (2)-b) or (3)-c) can be
assigned (0 or 5), and which satisfies condition (4)-c) can be
assigned (0 or 3), adding to don’t care in the strong equivalence.
We represent the former with 8 and the latter with 9.

[Theorem 4]

G, Mc, and M are the same as in theorem 2. (M,P) 1s semi-stro-
ngly equivalent to (Mc,P) if and only if the following three con-
ditions are satisfied.

(1) If Mc[XY]#0 for any X and Y, then M[XY]=Mc[XY].
(2) If Mc[ba]=0 for any b,a in t%{$}, then a) M[bal=0, or b) there
is no production rule like A+ab and M[ba]=5.
(3) If Mc[Bal=0 for any B in N, any a in :%¥{$}, then a) M[Ba]=0,
or b) for all X such that [B+aX] in P, M[Xa]#5, or c) there
is no production rule like A+gB and M[Ba]=5, or d)} B=S and a=§.

(The proof is almost the same as that of theorem 3)

The entry of M, which satisfies (2)-b) or (3)-c), can be assi-
gned (0 or 5). We represent this entry with 8. We call the matrix
represented using {7,8,9} or {7,8} the semi-strongly equivalent
simple precedence matrix or the semi-strongly equivalent weak

precedence matrix and write as Mg,.

¥ In the derivation oAB = ayB,if B in £¥, then we call this the
rightmost derivation and write aABmayB.

Example 1

We consider the following grammar, G,=<{S$,T},{a,b,c},P,S>

P: 1)S~»T 2)S+Sc 3)T+aTb 4) T+ab
This grammar is the simple precedence grammar. The precedence
relations, the canonical precedence matrix, and the semi-strongly
equivalent precedence matrix are shown in Fig.I-2, I-3, I-4.
Let w=aabbc be an input tb the simple precedence parser for G;.
[$,,aabbc$] ~ [$a,,abbc$] +~ [$aa,,bbc§] [$aab,,bc$]
[aa,b,bc] ~ [a,ab,bc] + [$aT,,bc$] + [$aTb,,c$] [aT,b,c]
~ [a,Tb,c] + [$,aTb,c$] ~ [$T,,c$1 + [$,T,c$] +~ [$S,,c$]
[$Sc,,$] + [$S5,c,$] + [$,Sc,8] + [$S,,$] — Accept.

STabc STabc
S{? 2?2 2 = S|I0 00010
Ti? 2 2 = > > TIO 00155
alf? 2 < = ? al0 13100
bl? ? > > > bj0 0 0555
clz?2?27?>> clooooss
$le <« <« 2 2 2 $/3 33000

Fig.I-2 Fig.I-3
Precedence Relations Canonical Precedence
of G;. Matrix for G;.

STabc
S{7 77717
T|{7 77155
al7 131838
b7 70555
ci7 70055
$/3 33 8 8 8
Fig.I-4

Semi-strongly
equivalent precede-
nce matrix for G:.

—17—

Chapter 3. Construction of Weak Precedence Functions by

Postponement of Error Detection

3-1. Introduction

As mentioned in chapter 1, precedence functions have no
error detecting capability. If we apply this method to the WPP,
we can represent the error relation (?) by the functions, because
the WPP needs three precedence relations (<,>,?) only. We call

these functions the weak precedence functions (WPF). But in pra-

ctical grammars there are so many error relations in the canoni-
cal weak precedence matrix that we can not represent the matrix
by WPF. For that reason we must reduce the number of error en-
tries in the canonical weak precedence matrix in order to imple-
ment WPF.

We have already defined four equivalences. In each equivalent
levels we can change many of the error entries to others. In
this section we define the fifth equivalence ‘relation, ED(i,j)
equivalence, which is a generalization of former four,
and give the necessary and sufficient condition for some WPP to
be ED(i,j) equivalent to the canonical WPP. We also give the
procedure to compute the ED(i,j) equivalent WPF from a WPG for

some i and j.

~18—

3-2. ED(i,j) Equivalence

[Definition 16] Weak Precedence Functions

Let M be a weak precedence matrix for a WPG G=<N,I,P,S5>. We
say that a pair of functions <f,g) is the weak precedence func-
tions (WPF) for M if
(1) f maps NYIY{$} to an integer and g maps “{$} to an integer.
(2) M[Xa]=4 implies f(X)<g(a)

M[Xal=5 implies f(X)>g(a)
M[Xa]l=0 implies f(X)=g(a)

Next we define ED(i,j) equivalence.

[Definition 17] ED(i,j) Equivalence

Let 1; and NI, be WPPs for a WPG G. We say that II; and I, are
ED(i,j) equivalent if the following two conditions hold.
(1) [$,0$] Qi BQ, kraccept if and only if [§,w§] I7Qs '?r?n b
accept.
(2) We assume two kinds of sequences of moves for some input w,
[$,08] £Q1 #Q,, and [§,v$] BP1 P,

then Q |—error if and only if P_ rerror, and the following
n 'm m

n

conditions hold.

a) If nsm, then Ph=Qh for 1<hsn and Qn=[a,x1x2], Pm=[8,x2],
1si, and m-nsi+j where |z, |=1

b) If n2m, then Ph=Qh for 1g<h<m and Pm=[a,x1xz], Qn=[6,xz],

1<i, and n-msi+j where |x;]|=1.

t+ |a| is a length of a string a.

~19—

In the ED(i,j) equivalent parsers+ , 1f one detects an error,
then the other detects an error within i times shift and j times
reduce, and the two parsers do the same actions until one detects
an error. The following theorem describes the necessary and suff-
icient condition for ED(i,j) equivalence.

[Theorem 5]

Let G=<N,Z,P,S> be a WPG,Ilc =(Mc,P) be the canonical WPP for
G, and 0=(M,P) be some WPP for G. I is ED(i,j) equivalent to
IIe if and only if the following three conditions hold.

(1) If Mc[Xa]#0, then M[Xa]=Mc[Xa].
(2) If Mc[Xa;]=0 and M[Xa;]}=4, then one of the following condi-
tions hold.

a) If [X+aY] in P, then M[Ya,]#5.

b) There is no derivation Bl...Brséal...a;+(where M[Bra]#4
for any a in rY{$} and a, in IV{$} for 1sg<Z) such that
1>1 or k>j. '

(3) If Mc[Xa;]=0 and M[Xa;]=5, then one of the following condi-
tions hold.

a) If M[X-»aY] in P, then M[Ya,]#5.

X

b) There is no derivation A$3a1X152.. =aX, such that

. Do
-]
M[Xpa1]=5 for 1l<p<h, h>j, and if M[Aa:]=4 then the condi-

tion (2)-b) holds, where j-4 is assigned to j.

t We call the parser I is the ED(i,j) equivalent parser if I is

ED(i,j) equivalent to the canonical weak precedence parser HC.

t+t b means q times derivation.

—20—

If:

We suppose that II and HC satisfy the conditions in theorem
5, but are not ED(i,j) equivalent.
Case 1. Property (1) is violated. That is, Qg %9'?91 #?ccept
and QolﬁQ Q. and Q:1#Q. for some input weL(G) and Q¢=[$,w$].
Let Q be [aX,av$], then Mc[Xa]#0 and M[Xal#Mc[Xa], so this is
contrary to the condition (1).
Case 2. Property (2) is violated. That is, Q, =[§,w$] %?n'ﬁ
error and Q, ﬁQ
Q, =[aX,az$], Qm=[BY,by$], ar=yby, and |y|=1. If inﬁfeduce

" %legerror and either 1>i or m-n>7+j, where
error, then Qn=le?reduce error, so in;fhift error. There are
two cases.

Case 2-1. 1>i. If M[Xa}=5, then alxlnv%ax, M[X,a]=4, a;Xin=BY,
and n-%?y. This is contrary to condition (3). If M[Xa]=4, then
oXn=gY and n %?y. This is contrary to condition (2).

Case 2-2. m-n>7+j. This is further divided into two cases.

a) M[Xa]=4. In this case, oXn=8Y and n é%y . Then g+il=m-n>

l+j, so g>j. This 1is contrary to the condition (2). b) M[Xa]=5.
That is, alxlfgax and g=m-n, o;X;1=BY, or alxlffax , M[X;a]=4,
a1X1n=8Y, n %2y , and g+k+l=m-n. In the former case ¢>j, and
in the latter case g+k>j. Both of them are contrary to the
condition (3).
Only if:

It is straightforward to show that if the condition (1) is
violated, the parsers are not ED(i,j) equivalent. We therefore
omit this portion of the proof and proceed to the another
portion.

Case 1. Condition (2) is violated.

21—

We consider the derivation,
Y w .
Sﬁﬁxwzasd wz%\? 1W2

Then [$,wara1...ajw2$] ®[§8X, ai...a w,$]=Q, where X and a,...a

1 l

are symbols in the condition (2). Here Mc[Xa;]=0, so Q Efrror.
On the other hand, in parser II , there exists a derivation
Bl.,.Br é§a4...az and M[Xa,;]=4, so Q ¢{$BXB..--Br,wz$]- This
means over 1 times shift or over j times reduce.
Case 2. Condition (3) is violated. For some X,a (Mc[Xa}=0),
there exists a derivation,

S ﬁalxlwl ﬁahth -ﬁwzwl,

where X,=X and M[Xpa]=5 (1spsh). In parser ., [$,wraw;$] %
c

h
[$ahxh,aw1$]=Q -error. But in parser I , Q|%[$a1X1,aw1$]. 1f

C
h>j, then parser I did over j times reduce. If h<j and M[{X;al=4,
then it is clear that this violates the property in the defini-

tion from the proof in Case 1.

From the above definition, the followings are clear,
(1) ED(0,0) equivalence is semi-strong equivalence.
(2) ED(0,~) equivalence is equivalence.
(3) ED(~,») equivalence is weak equivalence.
In the same way, the conditions in theorem 5 become the condi-
tions in each equivalences when each values are assigned to (i,j).
We say that (X,Y) has an ED(i,j) equivalence relation if
(1) Mc[XY]=0
(2) M[XY] can be assigned another value with keeping ED(i,j)

equivalence.

3-3. Procedures

In this section we give the procedure which computes WPF
using ED(i,j) equivalence relations. First we give the general
flow in Fig.I-S5. In this procedure we compute WPF by changing
the error relations in a cycle of a linearization graph to ano-
ther relations with ED(i,j) equivalence, so if there is a cy-

cle which contains no error relation, then WPF do not exist.

PROCEDURE Computation of WPF in ED(i,j) equivalence
BEGIN
compute the canonical weak precedence matrix Mc; I

transform Mc to the strongly equivalent weak

precedence MatrTixXx M; ...ttt iiiniineririoenennnncnnas LI
Ll:construct the linearization graph Hm ;..........c0cet LIII
IF Hm has a cycle ...t ieieiienrionennnnenas e s LIV

THEN IF this cycle has error relations
THEN change these error relations to
another using ED(i,j) relation VI
and GG TO L1
ELSE there is no WPF;
ELSE compute WPF <f,8> ; ..ieetiiiiienenreoannnnns .V
END

Fig.I-5 Computation of WPF in ED(i,j) equivalence

-2 3—

This procedure consists of six procedures. Procedure I, II,and
IV are clear, then we describe only procedure III, V, and VI.

Procedure III. Construction of a Linearization Graph

(Input) A weak precedence matrix M
(Output) The linearization graph Hm of M
(Method) (1) Make node sets F and G. FieF corresponds to the
i-th row and GjeG corresponds to the j-th column.
{2) Make an edge set as follow;
If Mij=4", then make an edge from Gj to Fi, and if Mij=5,
then make an edge from Fi to Gj, and if M{j=0, then connect

F< and Gj with a bi-directed edge.

Next theorem is clear from the theorem in Martin [21].
[Theorem 6]

Let M be some weak precedence matrix for some WPG G. The WPF
for M exist if and only if the linearization graph Hm 1is cycle-

free.

Procedure V. Computation of WPF

(Input) The cycle-free linearization graph Hm of M

(Output) WPF <f,g> for M

(Method) (1) Let fi’ gj be each function value for f and g, and

be 0. fi(gj) corresponds to the i-th row (the j-th column) of

Hm.
(2) Repeat step (3) - (5) for every fi and gj until every fi

and gj is not changed in this sequence.

t Mij is a (i,j) element of M.

(3) Let X7 be an edge corresponding to hi(fi or gi). Compute
the following two sets,
S={x|there is a directed edge from X¢{ to x}
T={y|there is a bi-directed edge between X7 and y}.

(4) mvx=MAX{vx|vx is a function value of x in S}
mvy=MAX{vy|vy is a function value of y in T}

(5) hi=MAX{hi,mvx+1, mvy}.

Procedure VI. Changing based on ED(i,j) equivalence

(Input) A weak precedence matrix M and an error relation M[Xa]=0

(Output) Changed weak precedence matrix M, or "No"

(Method) This procedure consists of two parts, TESTI(X,a) and
TEST2(X,a). TESTI(X,a) examines whether M[Xa]=0 can be changed
to 5, and TEST2(X,a) examines whether M[Xa]=0 can be changed to

4, The detail is represented in Fig.I1-6.

Procedure VI changes an error relation to another relation
using ED(i,j) equivalence if it has an ED(i,j) equivalence re-
lation. We emphasize here that it is necessary to change ano-
ther error relations in order to change one error relation
using ED(i,j) equivalence relation. This fact makes this pro-

cedure complicated.

Begin .
Procedure TESTI1(X,a) comment test of condition (3);
Begin
If [A>§X]eP for any A and ¢ Then
Begin
If k#£j Then "No™"; k=k+1; M[Xa]=5;
1f M[Aa]l=4 Then TEST2(A,a);
I1f M{Aa]=5 Then TEST1(A,a);
If M[Aa]=7 Then M[Aa]=0;
L[Aa]=SUP(L[Aa]l, (h,k))
End
Else M[Xa]=5
End;
Procedure TEST2(X,a) comment test of condition (2);
Begin
If h>i Then "“No"; h=h+1; M[Xa]=4; Y=a; DERIVATION(I)
End;
Procedure DERIVATION(1) comment test for the following
derivation B;...Brﬁ%zal...ah;
Begin
A=y; C=Terminal(l); If M[AC]=4 Then SHIFT;
If M[AC]=5 Then REDUCE; If M[AC]=7 Then M[AC]=0;
L[AC]=SUP(L[AC],(h,k))s BACKTRACK
End;
Procedure SHIFT comment test for shift operation;
If hzi Then "No" Else Begin
vy=C; a=1; h=h+1,DERIVATION(1)
End;
Procedure REDUCE comment test for reduce operation;
Begin
If k2j Then "No';
If [B>SA)&P for any B and & Then BACKTRACK;
If —issuffix(6A,y) Then BACKTRACK;
vy=y with replaced §A by B;
B=g where Pq is [B»8A); k=k+1; DERIVATION(1)
End;

Fig.I-6 Changing based on ED(i,j) equivalence

Procedure BACKTRACK comment test for a new terminal;
If 12#|z| Then Begin 1=NEXT(Z); DERIVATION(1) End
Else BACKTRACKZ2;
Procedure BACKTRACK?2
If TOP(y)eZ
Then Begin
a=y; l=o; h=h-1;
If 1=|Z| Then
Begin If |a|=7 Then "STOP'"; BACKTRACK2 End
Else
Begin 7=NEXT(1);DERIVATION(1) End
Else Begin
i=B8; y=v with replaced TOP(y) with o where P<
is (TOP(y)»c);
End;
(h,k)=L[Xa]; vy=¢;
TEST1(X,a) or TEST2(X,a);
comment SUP((x,y), (z,w))=(x,w) if x2z and w2y.
NEXT(Z)=next terminal number, in usual case 7+1.
TOP(y)=the top symbol in the stack y.
issuffix(a,y)=if o is a prefix of the content of ¥y
then TRUE else FALSE.
TERMINAL(Z)=7th terminal symbol.
M is a weak precedence matrix and L is an error delay
matrix.;
End

Fig.I-6 Changing based on ED(i,j) equivalence (Continued)

—27—

3-4. Example

We make the WPF for the following grammar.
Gy=<{E,T,A,F},{a,(,),*,*},P,E>
P: E+E+T|T T-TAF|[F A+* F»(E)|a
We show the reduced strongly equivalent weak precedence matrix
for G, in fig.I-7, where f; and g; represent the nodes of the

linearization graph in fig.I-8.

1 g2 B3 B

a) a)

(+ * 8 (v or g
£, Ef7 4 7 0 El7 4 7 o0
£, T|7 5 4 5 17 5 a4 5
i) A4 7 7 7 Ala 5 o s
£y F|{7 5 5 5 El7 5 5 5
fs{ a) |0 5 5 5 a)lo 5 5 5
fel(+$ 14 0 0 O +$14 5 0 5
f, *(5 0 0 O xls 5 s

Fig.I-9 Cycle-free
ED(0,1)matrix

Fig.I-7 Reduced strongly equivalent

precedence matrix for G:

Fo TN | A
SRS

Fig.I-8 Linearization graph

There are cycles including error relations in this graph, but

we can delete these cycles by the procedure VI as follow;

(£1- g4~ £6- g2 £3) ... [gue £6(0,0)] » (£1- gu- £9> g1- £5> g»

> £1).... g+ £7(0,1)] > (£2~ g2- fe- ga> £2)....[g82¢ £6(0,0)]

* (g2- £ g1- £5> ga) ... [g2% £5(0,1)] » (£f1- gu- fa- g2+ £;)
cooolgue £3(0,0)] > (g1~ fo- g3~ 7> g1)....[gs« £,(0,1)] »

(f2»> gao- f3- g3~ fz)----[gz* £3(0,0)]

The resulting matrix is

all cycles are deleted.

ED(0,1) equivalent to Mc and is

shown in fig.I-9. From this matrix we can compute the WPF for

G, by the procedure V.

A F a (

Table I-1 Hierachy of Equivalences

delay by reduction |delay by shift | error
strong eq. 0 0 coincide
semi-strong eq. 0 0 not coincide
equivalence any times 0 not coincide
weak eq. any times any times not coincide

ED(i,j) eq.

j

i

not coincide

—29—

3-5, Conclusions

In this chapter we defined ED(i,j) equivalence for weak pre-
cedence parsers and gave the construction method of weak prece-
dence functions using ED(i,j) equivalence relation. The proce-
dure VI deletes cycles in the strongly equivalent precedence
matrix one by one using ED(i,j) equivalence relation. There is
another method which at first computes the ED(i,j) equivalent
weak precedence matrix for some i and j, and examines whether
it is represented by weak precedence functions.

ED(i,j) equivalence includes almost equivalence relations
but does not include the strong equivalence (these relations are
represented in Table I-1), so the procedure starts from the
strongly equivalent weak precedence matrix.

This method clarifies the error detecting capability quantita-

tively.

—30—

Chapter 4. Extended Precedence Functions

4-1. Introduction

Former precedence functions have a defect that they repre-
sent three precedence relations (<,>,=) by three functional
relations (<,>,=), so the'equality relation (=) decreases the
functionizing capability. In this chapter we introduce the new
precedence functions methods-- the Extended Precedence Functions
methods -- which use two pairs of functions, and four functio-
nal relations represent four precedence relations (<,=,>,error)
in simple precedence parsers or three precedence relations (<,
>,error) in weak precedence parsers.

Aho also uses two pair of functions, but each pair of func-
tions still represents three relations (<,>,error) or (<,2,
error).

In section 4-2, we define the Extended Precedence Functions
and give the fundamental concepts for developing the following
sections. These concepts are given both for SPP and for WPP.

In section 4-3, we give the algorithm to compute the Extended
Simple Precedence Functions (ESPF) in semi-strongly equivalent
level, and in section 4-4, we give the algorithm to compute the
Extended Weak Precedence Functions (EWPF) in the same level.

Section 4-5 gives examples both of SPP and WPP.

4-2. Extended Precedence Functions

In the following sections the term Matrix means the matrix
which has 3 kinds of value, (0,1,2), where 0 means 'don’t care",
that is, 1 or 2. It should be distinguished from a precedence
matrix. Precedence functions are also defined a little differ-
ently.

[Definition 18] Precedence Functions

We say that <f,g> are the precedence functions (PF) for a

matrix M if,

M[XY]=1 ... f£(X)=2g(Y)
M[XY]=2 ... f£(X)<g(Y)
M[XY]=0 ... any relation

The following algorithm 1 computes PF for a matrix M and is

similar to Martin?’s algorithm [21], but is much simpler.

[Algorithm 1] computation of PF

(Input) matrix M

(Output) the PF <f,g> for M, or '"No"

(Method) (1) Construct the linearization graph Hp=<V,I> as
follow;

(1)-1. v=V¥V, and peV,; corresponds to each column and yeV,
corresponds to each row.

(1)-2. If M[XY]=1, then there exists an edge e,=(¥%Y). If M[XY]
=2, then there exists an edge e,=(X+Y).

(2) If Hm has cycles, then '"No".

(3) If Hm is cycle-free, then compute <f,g> as follow;
£(X)=|o (v=) | g(Y)=|o(vy)]

where vx(vy) corresponds to the row X (the column Y) and

lo(x)l is a number of successors of the vertex .

Next theorem is clear from theorem 6.

[Theorem 7]
There exist PF for a matrix M if and only if the lineariza-

tion graph for M is cycle-free.

This graph is a little different from that of theorem 6. Fur-
ther we define two matrices which are used for the computation

of EPF.

[Definition 19] Core Matrix
We say that N is the core matrix of a matrix M if N is com-
puted by the following algorithm.
(1) For every row and column of M, do step (2).
(2) If the elements of a row (column) are all (1,0) or all (2,
0), then change the nonzero elements to 0.
(3) Repeat step (1) and (2) until no row (column) is changed.

(4) The resulting matrix is N.

We say that a core matrix N is empty if all the elements of

N are 0. Using a core matrix we can rewrite theorem 7 as follow.

[Theorem 8]

There exist PF for a matrix M if and only if the core

matrix of M is empty.

The Reverse Matrix N of a matrix M is defined as follow;

If M[XY]=1, then N[XY]=2

—33—

If M[XY]=2, then N[XY]=1
If M[XY]=0, then N[XY]=0

[Corollary]
There exist PF for a matrix M if and only if there exist PF

for the reverse matrix of M.

We compute EPF as follow;

(1) Make the Extended Precedence Matrices A and R from a pre-
cedence matrix M.

(2) Compute two PF <f,g> and <h,7>for each A and R.
(3) (<f,g>,<h,7>) is the EPF for M.

These procedures are described below in detail. In this sec-
tion we describe the conditions for the existence of EPF for
a precedence matrix and/or a weak precedence matrix. In the
next sections we give the conditions for the semi-strongly

equivalent (weak) precedence matrix,

[Definition 21] Extended Simple Precedence Matrices A,R

Let two sets S, and S; be {1,3,5,0} and {(1,2)x(1,2)}, a
morphism S;> S, be ¢. We say that a pair of matrices (A,R) is
the Extended Simple Precedence Matrices (ESPM) for a precedence
matrix M if,

¢ (M[XY])=(A[XY],R[XY])

[Definition 22] Extended Simple Precedence Functions

Let (A,R) be ESPM for a precedence matrix M. We say that two
pairs of functions (<f,g>,<h,1>) are the Extended Simple Prece-
dence Functions (ESPF) for M if <f,g> is PF for the matrix A

and <h,Z>is PF for the matrix R.

Former precedence functions are determined according to the
unique mapping between {<,=,»} and {<,=,>}, but in our method
the mapping M -+ (A,R) is not unique and there are 2% kinds of
mappings. Next theorem is the necessary and sufficient condi-
tion for existence of ESPF.

[Theorem 9]

There exist ESPF for a precedence matrix M if and only if

at least two out of three matrices (M;,M;,M;) in table I-2 have

empty core matrices.
Table I-2 Fundamental Matrices of M

M 3 1 5 0

M, 1 1 2 2

Proof

(We call the matrices constructed by the mappings in table I-2
the fundamental matrices of M)

ESPM for M are thr following three kinds.

(MZ ,MJ) (M< ,Mj) (Mi,M5) (1s<#453)

, where M{ is the fundamental matrix and Mj is the reverse
matrix of M .

We suppose that M; and M., have non empty core matrices. Then
M, and M, have also non empty core matrices. Although M3 has an
empty core matrix, (M;,Ms;) can not be ESPM for M, so M has no

ESPF.

In the case of WPP, the difinitions and the conditions are

a little different. We call (AZ,Ri¢) (1<2<3) in table I1-3 the

Table I-3 Extended Weak Precedence Matrices

M 4 5 0

Extended Weak Precedence Matrices (EWPM) for a weak precedence

matrix M. The Extended Weak Precedence Functions (EWPF) for a

weak precedence matrix are defined in the same way as in defi-
nition 22. Theorem 10 is obvious from above definition and
theorem 9.
[Theorem 10]

There exist EWPF for a weak precedence matrix M if and only
if at least one out of three pairs in table I-3 have both empty

core matrices.

In this section we described the necessary and sufficient
conditions for existence of ESPF and EWPF. There are many
kinds of (weak) precedence matrices which are semi-strongly
equivalent to Mc (the canonical (weak) precedence matrix). If
Mc has n "8" entries and m "9" entries, then there exist pntm
kinds of precedence matrices which are semi-strongly equivalent
to Mc.In the case of ordinary programming languages it is im-
possible to examine all precedence matrices because n+m become
several hundreds. In the following sections, we give the methods

which directly compute ESPF or EWPF from the semi-strongly equi-

valent (weak) precedence matrix.

4-3. Simple Precedence Parsers

A semi-strongly equivalent precedence matrix M has seven
kinds of entries {3,1,5,0,7,8,9}, so the fundamental matrices
of M are as in table I-4,

Table I-4 Fundamental Matrices in SSE level

M 3 1 B 0 7 8 9
M, 1 1 2 2 0 2 0
M 1 2 2 1 0 0 1
M3 1 2 1 2 0 0 0

Theorem 9 is not correct for these matrices because a real
M; is a little different from Ms in table I-4. That is, let
(M1,Ms) be ESPM. Then M; must satisfy the following conditions;
(1) If M[XY]=9 and f£(X)=2g(Y), then M3[XY]=1
(2) If M[XY]=9 and f(X)<g(Y), then Ms{XY]=2, where <f,g> is
some PF for M.
For the entry of a precedence matrix M such that M[XY]=0, the
relation between £(X) and g(Y) can not be determined uniquely
even if PF <f,g> for M; exist. We show the algorithm which
computes ESPF for a semi-strongly equivalent precedence matrix,
but even if this algorithm failed, there may exist ESPF for

the above reason.

[Algorithm 2] Computation of ESPF for a semi-strongly

equivalent precedence matrix
(Input) a semi-strongly equivalent precedence matrix M
(Output) ESPF (<f,g>,<h,7>) for M or "No"
(Method) (Fig. I-10)

—37—

Procedure Computation of ESPF for s semi-strongly equivalent
precedence matrix
Begin
Construct M; ,M; ,M; in table 1-4;
If the core matrix of M; is empty
Then If the core matrix of M, is empty

Then Compute ESPF from (M;,M,) and STOP
Else Begin Compute <f,g> from M,;

For all X,Y Do
Begin
If M[XY]=9 and £(X)=g(Y) Then M;[XY]=1;
If M[XY]=9 and f(X)<g(Y) Then M,;[XY]=2;

Goto L1
End
End
Else If the core matrix of M, is empty
Then
Begin

Compute <f,g> from M;,;
For all X,Y Do
Begin
If M[XY]=8 and £(X)=g(Y) Then M;[XY]=2;
If M{XY]=8 and f(X)<g(Y) Then M;[XY]=1;
Goto L1
End
End
Else there exist no ESPF for M;
L1: If the core matrix of M; is empty
Then Compute <h,1> from M;
Else there exist no ESPF for M
End

Fig. 1-10 Computation of ESPF

In this case we give only the necessary condition.
[Theorem 11]
There exist ESPF for a semi-strongly equivalent precedence

matrix M only if either M; or M, has an empty core matrix.

4-4, Weak Precedence Parsers

4-4-1. Implementation in a Semi-strongly Equivalent Level

A semi-strongly equivalent weak precedence matrix M has
five kinds of entries {4,5,0,7,8}, so EWPF for M are as in
table I-5.

Table I-5 EWPM for a semi-strongly equivalent
weak precedence matrix

M 4 5 0 7 8
Ay 2 2 0

R, 0 1 0

A, 2 1 0 0
R> 0 0 2%
A; 2 2 0 0
Rs 1 2 0 2%

In table I-5, 2* means as follow;
In a semi-strongly equivalent weak precedence matrix M, 8 means
5 or 0, so the entries of corresponding R, are 0 or 2, but this
is not free from A . That is, if f(X)>g(Y) for X, Y such that
M[XY]=8, then R, [XY] may be 0 and if f(X)<g(Y), then 2, where
<f,g> is some PF for A,. These changes also are not unique for

M, so next algorithm is not sufficient, but efficient.

[Algorithm 3] Computation of EWPF for a semi-strongly

equivalent weak precedence matrix
(Input) a semi-strongly equivalent weak precedence matrix
(Output) EWPF (<f,g>,<h,7>) for M or "No"

(Method) (Fig.1-11)

Procedure Computation of EWPF for a semi-strongly
equivalent weak precedence matrix
Begin 1=1;
Ll: Construct AZ from M in table I-5;
If the core matrix of A7 is empty
Then Begin
Compute <f,g> from AZ;
Case i of
1: ;
2: For all X,Y such that M[XY]=8 Do
If £(X)2g(Y) Then RZ[XY]=0
Else Ri[XY]=2;
3: For all X,Y such that M[XY]=8 Do
If £(X)2g(Y) Then RZ[XY]=2
Else RZ[XY]=0;
If the core matrix of R7 is empty
Then compute <h,1> for RZ and STOP
End; 1i=i+1;
If i24 Then there exist no EWPF for M
Else Goto L1
End

Fig. I-11 Computation of EWPF

4-4-2. Some Modofications

Algorithm 3 does not necessarily succeed in computation of
EWPF, especially for the case of large programming languages.
There are two cases of this reason, -

(1) EWPF of a weak precedence matrix in which all the error
entries (0 and 8) are changed to 7 (we call this weak pre-
cedence matrix the weakly equivalent weak precedence matrix
-~-- WEWPM) do not exist.

(2) EWPF of WEWPM of M exist, but EWPF of M do not exist,
that is, the entries 0 or 8 make computation impossible.

We give the improving methods for both cases. In the first
case we rewrite the grammar, and in the second case we change

some error entries 0 or 8 to 'don’t care" (7).

[Algorithm 4] Rewrite the grammar so that the corresponding

WEWPM has EWPF

(Input) a grammar and its WEWPM

(Output) the equivalent grammar whose WEWPM has EWPF

(Method) We describe only the case of (A;,R,) in table I-5,

other cases are almost the same as this.

(1) Compute the core matrix of A,.

(2) Decide the pair (X,Y) to be changed its precedence relation
from 4 (<) to 5 (>).

(3) Change the relation X<Y to X>Y with introducing one new
nonterminal symbol Z. (the detail of this step is similar
to the procedure described in Presser [22] and Asai [19])

(4) Repeat step (1) to (3) until the core matrix of A, becomes

empty.

41—

The haltness and validness of this algorithm are shown
sidilar to the proof in Presser [22], but this is easier be-
cause changing is only from 4 to 5.

[Thecrem 12}
There exists an equivalent weak precedence grammar which has

EWPF for any WPG, but which may neglect error relations.

Next algorithm is useful for construction of EWPF of ordi-
nary programming languages. This 1s also applicable to const-

ruction of ESPEF.

[Algorithm 5] Construction of EWPF by changing the quasi-least

error relations (0 and 8) to "don’t care" (7)
(Input) a semi-strongly equivalent weak precedence matrix M
(Output) EWPM for M, which have EWPF, but in which some error
entries are changed
(Method) We may select any EWPM in table I-5 at first. The
method is a little different for each (AZ,R<) and we give only

the algorithm for the case of (A;,R;) in fig. I-12.

This algorithm halts for the semi-strongly equivalent weak
precedence matrix whose WEWPM have EWPF and is locally optimum
because it changes the least number of error relations in one
loop, but not globaly optimum.

Using the above algorithms we can make the EWPF which pre-
serve many of the error entries from an unambiguous context
free grammar (Fig. I-13). These algorithms can be also app-

lied to ESPF.

Procedure Construction of EWPF by changing the quasi-least

error relations (0 and 8) to

Begin

"don’t care" (7)

While the core matrix A, is not empty Do

Begin

Compute the core matrix CA; of A,;

k=MIN{ (ROW: (1) };
If k<1

Then For every error entries

M[k,i]=7"
Else For every error
M[j,l]=7
End;
While the core matrix of R;
Begin

Compute the core matrix CR; of
1=MIN{COL2 (j)};

k=MIN{ROW, (i) };
If k<1
Then For every error
M[k,i]=7
Else For every error
M[j,7]=7
End;
comment
ROW; (1)=If there exist k
=2 Then MAX Else
CA[i,k]=2
COL, (j)=If there exist k
=2 Then MAX Else
CRz[k,j]=2;
End

Fig.
to

1=MIN{COL:(j)};

such that CA,[k,i]1=2 Do

entries such that CA;[j,l]=2 Do

is not empty Do

Ry

entries such that CR,;[k,i}=2 Do

entries such that CR,;[j,2]=2 Do

such that M{i,k]=5 and CA,[i,k]
the number of columns such that

such that M[k,jl=5 and CR; [k,j]
the number of rows such that

I-12 Changing the quasi-least error relations
""don’t care"

Unambiguous CFG

<

Computation of

No Transform the

grammar (I)

N

WPM
A>

Yes

Transformation
to semi-strongly
eq. WPM

d

Reduction of the
WPM ... M

————
Computation of

the EWPF for M
(Algorithm 3)

¥

@ es (<f,g>,<h,l>)
l No

Computation of
the EWPF for

v

WEWPM of M
C No Transform the
j grammar (II)
AliYes (Algorithm 4)

Rewrite the error
entries
(Algorithm 5)

S

A: Is G a weak precedence

grammar?
B: Are EWPF exist?

C: Are EWPF for WEWPM exist?

Fig. I-13 Computation of EWPF from an unambiguous CFG

—44—

4-5. Some Examples

Example 1. ESPF in semi-strongly equivalent level
Consider the simple precedence grammar
G3=<{S,T,B,F,E},{+,*,(,),al},P,S>

P: 1) S » S+T
2y

S+ T S T B F E + * () a $§

) T+ B sl 7 7 7 7 17 7 s 7 7
|7 7 7 7 7 5 7 7 5 7 5

4) B > B*F Bl7 7 7 7 7 5 17 5 7 5
5) B > F Fl7 7 7 7 7 5 5 7 5 7 5
6) F » (E) El7 7 7 7 7 7 7 7 1 71 7
+l7 13 3 7 8 8 3 8 3 8

7) F>a x|l7 77 1 7 8 8 3 8 3 8
8) E > S (|3 3 3 3 1 8 8 3 8 3 8
yl7 7 7 7 7 5 5 0 5 0 5

al7 7 7 7 7 5 5 0 5 0 5

$13 3 3 3 9 8 8 3 8 3 8

Fig. I-14 Semi-strongly equivalent
precedence matrix for G;

We show the semi-strongly equivalent precedence matrix in
Fig. I-14. The fundamental matrices M; and M, in table I-4
have empty core matrices, so there exist ESPF in semi-strongly

equivalent level, which are shown below.

™ 50 Hh

= = = ounn
B e =
- - - s
S !
Ul = W O
[ST 7S I 72 N oS B Y 3
NN A& DN
= B NN~
N = N N
b =N
N o N N

Example 2. EWPF in semi-strongly equivalent level
Consider the weak precedence grammar
Gk=<{S,T’F:R}’{+:*:T’())’a}'P’S>

P: 1) S » S+T

+ * 4+ () a §

2) $~» T s[4 7 7 7 a4 7 7
3) T » T*F T(5 4 7 7 5 7 5
HT~E Fls s 4 7 5 7 5
R[5 5 5 7 5 7 5

5) F > F4R +l9 9 9 4 9 4 9
6) F » R *x{9 9 9 4 9 4 9
1R+ (S) tlo 9 9 4 9 4 9
(lo 9 9 4 9 4 9

8) R~ a Yls 5 5 0 5 0 5
als 5 5 0 5 0 5

$19 9 9 4 9 4 9

Fig. I1-15 Semi-strongly equivalent weak

precedence matrix for Gy

We show the semi-strongly equivalent weak precedence
matrix for Gy in Fig. I-15. The WPF in this level do not exist,
but the EWPM (A;,R;) for this matrix have empty core matrices,

so the EWPF exist, which are shown below.

S T F + * 4 () a $
f 10 7 5 1 3 3 3 3 1 1 3
g 9 6 4 2 9 2 8
h 2 2 2 2 2 2 2 2 2 2 2
2 1 1 1 3 1 3 1

—46—

Example 3.

ESPF are computed for the following two grammars, Gs (Fig.

I-16) and G

N1 > N2;N3
N3 + N6 End|N6;N3

N5
N7
NS

¥

+

¥

N16|N5,N16
N8[N9
Write N20

N1l - N16:=N18

(Fig. I-17).

N2 + Begin N4|N2;N4
N4

N6 » N7|N11

N8 -+ Read N20

N10 + N16|N10,N16

N12 » N13|+N13|-N13|N12+N13|N12-N13

N13 + N19

N15 - (N18)|Ni6|uw|UuI

N17 - N5

N19 -+ N14|N19*N14|N19/N14
N21 + N15|N214N15

Fig.

I-16 Grammar Gs

N14 » N21
N16 ~» ID
N18 + N12
N20 - N10

iN|=21

lz]=19

+ Real N17|Integer N17

|p|=38

The grammar G, is a mini-ALGOL and the grammar G, is the

subset of G4. The error preservation ratios are shown in table

1-6.
Table I-6 Error Preservation Ratios
Gs 8 9 0 ftotal Gs 8 9 Oltotal
error error
entries 256 1 115 372 llentries 523 43 170 736
preserved|205 1 96 301 [fpreserved|301 39 133 600
ratio (%) {80.1 100 83.5] 80.9 firatio 81.8 90.7 78.2| 81.5

N1 -+ N2|N3 N2 + N4;N5

N3 -+ Begin N5 N4 > Begin N6|N4;N6

N5 + N26 End|N26;N5 N6 - Real N12|Integer N12
N7 -+ N8|N9|N10|N11:N7 :

N8 + If N16 Then N9|If N16 Then N9 Else N7

N9 - N14|N15|N3|N2 N10-> N22|N23

N11 + N13 N12 -~ N13|N13,N12
N13 + ID N14 - N13:=N25
N15 -+ Goto N11 N16 - N18

N17 - N19|+N19|-N19|N17+N19|N17-N19

N18 -~ N17>N25|N17=N25|N17=N25 N19 ~ N20|N20*N19|N20/N19
N20 - N27 N21 -+ N13|(N25)|uN|UI

N22 -+ Read N24 N23 - Write N24

N24 -+ N13|N13,N24 N25 » N17

N26 + N21|N214N27

Fig. I-17 Grammar G¢ |N|=27 lz|=27 |P|=53

4-6. Conclusions

In this chapter we introduced the extended precedence func-
tions which use two pairs of functions to represent four pre-
cedence relations (<,=,>,error) in simple precedence matrices,
or three precedence relations (<,>,error) in weak precedence
matrices. They have the following advantages;

(1) Error relations are considered (SPP).
{2) Quasi-optimum modification of error relation is possible.

Using these methods it becomes possible to make EPF for or-
dinary programming languages, which preserve about 80% of error
relations. As an example we showed the EWPF for JIS ALGOL 3000
in Appendix. This does not necessarily mean that 80% of syntax

errors are detected by EWPF in parsing time, that is, this

ratio is not dynamic but static one. If we take error probabi-
lity of each symbol pair into consideration in algorithm 5,
then the dynamic ratio will be improved.

Theorem 11 is only the necessary condition, so if either M;
or M, has an empty core matrix, there may be the case that ESPF
do not exist. The necessary and sufficient condition is the

future problem.

—49—

Chapter 5. Conclusions

Precedence functions are very useful tool for parsers gene-
ration, but they have some disadvantages for practical imple-
mentation. We made precedence functions more useful by impro-
ving these disadvantages in two ways. ED(i,j) equivalence in
chapter 3 is a generalization of some equivalences and made
clear the degree of the postponement of error detection in
weak precedence parsers with weak precedence functions. Ex-
tended precedence functions in chapter 4 are an improvement of
functionizing methods and made possible to construct the pre-

cedence functions which preserve almost all the error relations.

ED(i,j) equivalence can be used in the algorithm of fig.I-
13 in the computation of EWPF, but this is more difficult,
because the changing with ED(i,j) equivalence relations af-
fects other error relations or "don’t care'.

These functionizing methods can be applied to other prece-
dence parsers, but are a little different. These applications

are hoped for future researches.

PART I concerned mainly space reduction of parsers using
precedence functions. Precedence parsers are a little slower
than LR(k) parsers because they must do table look up for re-
duction. As the grammars become large, the corresponding par-
sers’ reduction speed becomes slow. This disadvantage is impro-

ved by the method described in [34].

PART I1

ERROR CORRECTION AND RECOVERY FOR SLR(K) PARSERS

Chapter 1. Introduction

One of the important functions of parsers is Error Proces-

sing. Practical parsers not only analyze input strings but de-

tect syntax errors as many as possible and provide diagnostic
informations. When they detect an error, they change the state
of parsers and the input string to proceed the parsing of the

rest of the string. We call these task Error Recovery. The old-

est and simplest error recovery technique that is essentially
language independent is so called Panic Mode. In this scheme,
when an error is detected, the input is advanced until one of
a class of special symbols such as a ";" or an END is found.
The applications of this method to LR(k) parsers are described
in Peterson [40] and James [41]. Graham’s method [48] is inde-
pendent of particular parsing algorithms and he gives some ex-
perimental results.

The transformation from an invalid string w to a valid st-

ring v is called Error Correction. If parsers can correct tri-

vial errors such as misspelling like BEGIM or missing an obvi-
ous symbol like a=4*(a-3_, then user’s debugging burden will
be reduced and throughput will be improved. This was consi-
dered by Iron [38] first.

Error correction in regular languages is described in
Thompson [47], Wagner [44], [46]. These are the string to st-
ring correction problems and correspond to the correction in
lexical analysis phase.

Error correction in context free languages is described

in several ways. The effects of certain class of errors from

a point of view of preservation of languages are described in
Smith [39]. Minimum distance error correcting algorithms are
described in Peterson [40], Aho {[42], Iwamoto [43], and Lyon
[45]. They use Earley’s algorithm, so their algorithms require
O(n?®) times. Considering from the users’ side, the minimum
corrected program is not necessarily the program that users
intended to make, so these methods are inadequate for practi-
cal parsers. Levy [49] also proposed a formal model for auto-
matic error correction. This model is independent of parsers
and uses a local backtrack.

Practical error correction is described in Peterson [40]
and James ({41], and these are closest to our own. Peterson
uses LR(1) parsers and James uses LALR(k) parsers. They also
made experimental evaluations.

Thomason [50] and Thompson [51] introduced error probabi-
lities for grammatical symbols and described probabilistic

error correction.

We consider error processing from a practical point of view,
so that we suppose the task of error processing is the foll-
owings;

(1). To correct the parser defined errors and reduce the bur-
den of debugging.
(2). To make the eliminated portion by recovery short and

detect errors as many as possible.

In PART 11 we consider error processing for parser defined
errors without backtracking, and propose the error correcting

and recovering algorithms for SLR(k) parsers. They have the

following characteristics;

1). Error correction and recovery are invoked by procedure
call when an error is detected, so the parsing of legal
programs is not affected.

2). They correct and recover within O(n) times.

3). Elimination of program by error recovery is smaller than

that of ordinarily used methods.

In chapter 2 we give the fundamental concepts of SLR(k)
parsers [53] and error processing. In chapter 3 and 4, we give
the error correcting and recovering algorithms using i-order
valid pairs. In chapter 5 we evaluate these algorithms by si-
mulation, and show that they correct 70-80% of erroneous pro-

grams and recover about 100%.

—53—

Chapter 2. Fundamental Concepts

In this chapter, we give the basic concepts of SLR(k) parsers

and define "Error Correction'" and "Error Recovery". The notation

of parsers are the same as in [4].

2-1. SLR(k) Parsers

[Definition 1]

Let G=<N,Z,P,S> be a context free grammar (CFG). We call
[A+0.B] a2 LR(0) item, where [A»aB]eP. LR(0) item [A»a.B] is
valid for some prefix y; of some sentential form y;yv, if there
exists ys; such that y;=vsa. A set of LR{(0) items which is wvalid
for y is called a LR(0) table, and is represented by T. A set

of T is represented by T={T,,T:,...,T,}.

The numbers of T and T are finite.

Let G=<N,Z,P,S>. We call G'=<NY{S'},z,P¥Y{S'+S},S'> the aug-
mented grammar derived from G. In the following sections we use

this augmented grammar G' instead of G, and write only G.

[Definition 2] SLR(k) parsers

We define SLR(k) parser for a CFG G as follow;
n=<£:,2,0,T¢,$,f,g>
where £,=Z%{$} is a set of input symbols,
Z=T is a set of stack symbols,
O={shift, reduce i, error, accept}] is a set of actions,

T, is an initial stack symbol,

—54—

$ is a final input symbol,
f and g are the following functions
f: action function ZIxI}~0

g: goto function ZX(Z"N)+Z

f and g are determined for each LR(0) item T as follow;

(1) action function

f(T,u)=shift + [A+a.B]eT and ueEFFy (BFOLLOW% (A))

f(T,u)=reduce i + [A+a.]eT and A+a is the i-th production
and ueFOLLOWx (A)

£(T,$")=accept » [S'+S.]eT

f(T,u)=error + else

(2) goto function

g(T,X)=T' » [A+a.XB]eT and [A+0X.R]eT' where
FOLLOWx (B)={w|S <& aBy and weFIRSTg(y)}
EFFx (a)={w|weFIRSTx (a) and there is a derivation ucé?sezwx,
where B#Awx for any AeN}
FIRSTx (a)={w|either |w|<k and o & w, or |w|=k and o & wx for

some X}

Each of functions is called the follow function, the e-free
first function, and the first function. We represent a parser’s
configuration by [a,w], where aeT* is a table sequence and

weZ*$ is an input string.

2-2. Error Correction and Recovery

In this chapter we consider the problem of error correction
and recovery in a way that parsers detect almost all errors,

provide an example of correction to help debugging, and report

few nonexistent errors. For the sake of this object, we consider
an correction algorithm as a procedure and it is called only
when an error is detected. We concern only parser defined errors

and the algorithms do not make backtrack.

[Definition 3} Valid Table Sequence

We say that the sequence of LR(0) tables, T¢T;...T,, is a
valid table sequence if there exist a terminal string w; such
that [T, w1w2$k]|1[T0T1...Tn,w2$k], where Ty is an initial

LR(0) table.

[Definition 4] Valid Sequence

We say that the sequence of LR(0) tables followed by a ter-

minal string, T,T,;...Tpaz...a

ns 15 a valid sequence if the fo-

llowing two conditions hold;
(1) TeTy...T, is a valid table sequence.

(2) [To-.-Ty,a7...anwhk] |i[ToT1...TZ;,amw$k] f(not error)

In the following we define a valid error correction and a
valid error recovery using valid table sequences and valid se-

quences.

[Definition 5] Valid Error Correction

The transformation from an error configuration [T¢...Ty,
al...ap] to a nonerror configuration [To...Ty,cag...anl is a
valid error correction if,

(1) t<ksm and aet”

(2) To...Tpoay is a valid sequence.

This correction is a local error correction and an error con-
figuration is corrected by exchanging aj;...ay_; for o, and
ay...az;_7; which has been already read is not changed, so it is

not an optimum correction.

[Definition 6] Valid Error Recovery

The transformation from an error configuration [To...Ty,
az...ay) to a nonerror configuration [To...TqT&+1...Té,aak...
ay] is a valid error recovery if,

(1) isksm, aeX® , and 0<qs<n.

(2) T°T1...TqT&+1...T§aak is a valid sequence.

In the following chapter we consider only the case of SLR(1)

parsers, but the methods are the same in the case of k:2.

Chapter 3. Error Correction by Valid Pairs

In this chapter we define a valid pair and a strictly valid
pair for terminal symbols and describe the error correcting

algorithms using above two valid pairs.

[Definition 7] i-order valid pair

We say that (T,a) is an i-order valid pair for a parser I
if there exist o and y holding the following condition;
for any 8ez* , [T,,avaé] ¢{To...Tn,Ya6]I#[TOTJ...Té,aGJIF

(not error), where T,=T, aef¥{$}, a,yel} and |v|=i.

If (T,a) is an i-order valid pair for some yeZ?, then there
exists a valid table sequence Ty...Ty (Ty=T) such that T,...T,ya
is a valid sequence, that is, i-order validness guarantees that

Y can be inserted between T and a. The following algorithm

uses this fact.

[Algorithm 1] An error correcting algorithm by i-order

valid pairs

(Input) an error configuration [Ty...Ty,az...an]

(Output) a locally corrected configuration [To...Tn,yap...am]

or "No", where p=; or z+1*

(Me thod) (Fig. II-1)

Procedure Error Correction
Begin comment input [To...T,,az...ap]}, output [Te...T,,
Yap...am];
For k=7 to 7+1 Do

For i=0 to i, Do

If (T,,agx) is an i-order valid pairc.cco.n. I
Then If there exists y such that Te...Tyvay
is a valid sequUenCe. ... vttt evrnerenans II

Then Goto SUCCEED;
error correction fails and ''No'';
SUCCEED: Correct to [To...Ty,Yax...apm]
End comment procedure I is TVP(T,a,i)

Procedure Il is TVS(TS,a,i,Y) and TS is
To e e .Tas

Fig.II-1 Error Correction using i-order valid pairs

t We restrict p to 7 or Z+1 in order to make the discarded

symbols as few as possible, but it is possible to make p

larger.

If (T,,a) is an i-order valid pair for y, then T,...Ty,vya
is a valid sequence only for particular valid table sequence
To...Tp-1, 50 it is necessary to check whether y is valid for
the current table sequence Tq...Tyn. Stepll (TVS(TS,a,i,y)) does
this check and is the most time consuming process. Step I (TVP
(T,a,i)) decreases this time. The time required by this algo-
rithm becomes larger exponentially proportion to i. We describe
in detail step I and II for the case of i=0 or 1 (in=1). For

the case of i,>1, Algorithms are almost the same as these.

{Algorithm 1-1) Test whether (T,a) is an i-order valid pair

(Input) a table T, a terminal symbol a, and an integer i

(Output) if (T,a) is an i-order valid pair then TRUE else
FALSE

(Method) TVP(T,a,i) in Fig.II-2

Generally speaking there exist some terminal strings for
which (T,a) is valid. In algorithm 1, step I judges the valid-
ness of (T,a) and step II looks for the terminal atrings and
tests whether the connected sequence To...T, is valid. Step II
is dependent on the context Ty...T,_;, but step I is indepen-
dent, so the validness of all pairs (T,a) can be computed in

advance. This information can be stored in a parsing table.

Procedure TVP(T,a,%i) comment if (T,a) is an i-order valid pair

then TRUE else FALSE;
Begin Set S;
Case i of
0: Begin comment 0-order valid pair;
If £(T,a)#ferror Then TVP=TRUE Else TVP=FALSE
End;
1: Begin comment l-order valid pair;
L1=FALSE;
For all b in I Do
Begin
S=NEXT* (T,b);
If S#empty Then
Begin
L2=FALSE;
For all T1 in S Do
Begin
T2=g(T1,b);
If £(T2,a)#error
Then L2=TRUE
End;

If L2 Then L1=TRUE

End
End;

If L1 Then 7VvP=TRUE Else TVP=FALSE
End

End comment this procedure is a test whether (T,a) is an
i-order valid pair for some b. f is an action
function and g is a goto function.

Fig.I1-2 TVP(T,a,i)

Procedure NEXT*(T,b) comment computation of NEXT* function for
a table T and a terminal symbol b;
Begin Set S; S=empty;
Case £(T,b) of
shift : S={T};
error : S=S§;
reduce: Begin U=NEXT(T,b);
For all Tl in U except T Do
Case £(T1l,b) of
error : S=§;
shift : S=S%{T1};
reduce: S=SYNEXT*(T1,b);
End
NEXT*=S
End comment NEXT(T,b)={T1|there exists T2 such that £(T,b)=
reduce i, Pi:A+a, g(T2,a)=T, and
g(T2,A)=T1};

Fig.II-2 TVP(T,a,i) (continued)

[Algorithm 1-2] Test for valid sequence

{Input) table sequence TS5=T,...T,, a terminal symbol a, and

an integer i
(Qutput) if there exist y such that Ty...Tyya is a valid

sequence and |y|=i then TRUE else FALSE
(Method) TVS(TS,a,i,y) in table II-3

Procedure TVS(IS,a,Z,y) comment if there exists y such that

To...Tyya (Ty...Ty=TS) is a valid pair

|y|=i, then TRUE else FALSE;
Begin

T=top of TS;
S={beZ| (T,b) is O-order valid pair};
TVS=FALSE;
If S#empty Then
Begin For all b in S Do
Begin y=b;
SMT (TS,b,T1);
If £(T1,b)#error
Then Begin
T2=g(T1,b);
If £(T2,a)#error Then TVS=TRUE
End
End
End
End comment SMT (TS,b,T1) computes the following T},

[To...Tn,bu]I*[TOT;...Tb,ba] -shift or error;

Fig.II-3 TVS(TS,a,i,Y)

I-order valid pairs are not necessarily valid for all the
possible valid table sequences, so algorithm 1 needs step II
which is time consuming . We define more strictly restricted
valid pairs, i-order strictly valid pairs, to give a more effi-

cient algorithm.

[Definition 8] i-order strictly valid pair

We say that (T,a) is an i-order strictly valid pair for a
parser I if there exists at least one terminal string a of
length i which satisfies the following conditions.

(1) (T,a) is an i-order valid pair for «a.
(2) For any To...T,_; such that T,...T, is a valid table sequ-

ence (T=T,), [To...T,_;T,0aB] %{TOT{...Té,aB]IF (not error).

If (T,a) is an 1-order strictly valid pair for a«, then
T¢...Tyaa (T,=T) is a valid sequence whenever T,...T, is a
valid table sequence. If we use this pair, we may look only

the top most table (T,).

[Algorithm 2] An error correecting algorithm by i-order

strictly valid pairs

(Input) an error configuration [To...T,,a7...a,]

(Output) a locally corrected configuration [To...Tn,Yap...am]
where p=7 or I+1

(Method) (Fig.I1-4)

Procedure Error Correction
Begin comment input is [T,...T4,a7...3,;] and output is

[To...Tn,aap...am] or "No"
For k=1 to 1+1 Do

For i=0 to i, Do
If (T,,ax) is an i-order strictly valid
pair for some o f it e ITI
Then Goto SUCCEED;
error correction fails and '"'No';
SUCCEED: Correct to [To...T,,caz...a,]
End comment procedure III is TSVP(T,a,i,a)

Fig.II-4 Error Correction using i-order strictly valid pairs

Whether (T,a) is an i-order strictly valid pair is deter-
mined in advance only by (T,a,i), so the test in III is done by
table look up. For this reason algorithm 2 is faster than algo-
rithm 1, but an i-order valid pair is not necessarily an i-
order strictly valid pair, so the ability of algorithm 2 is

inferior to that of algorithm 1.

[Algorithm 3] Test whether (T,a) is an i-order strictly valid

pair for some aes’?.
(Input) a table T, a terminal symbol a, and an integer i
{(Output) TRUE and o or FALSE

(Method) Tsve(T,a,i,o) in fig.II-S

TSVP is different from TVP only in the dotted square in fig.
I11-5.

Procedure TSVP(T,a,i,o0) comment if (T,a) is an i-order strict-
1Y valid pair for some o then TRUE
else FALSE;

Begin Set S;
Case i of
0: Begin comment (-order valid pair;
If £(T,a)#error Then TSVP=TRUE Else T3vP=FALSE
End '
1: Begin comment l-order strictly valid pair;
L1=FALSE;
For all b in Z Do
Begin
S=NEXT*(T,b);
If S#empty Then

L2=TRUE;

For all Tl in S Do

Begin

T2=g(T1,b);
If £(T2,a)=error
Then L2=FALSE

End;

If L2 Then Begin
L1=TRUE;
a=b

End

End; == ~—— T """ T T oS ST TTSS
If L1 Then TSVP=TRUE Else TSVP=FALSE

End
End

Fig.II-5 Test for i-order strictly valid pairs

Next theorems will be clear.

[Theorem 1]
Error correction using i-order valid pairs (algorithm 1) is

correct.

[Theorem 2]
Error correction using i-order strictly valid pairs (algo-

rithm 2) is correct.

The information about i-order strictly valid pairs can be
stored in f-function. If f(T,a)#error, then (T,a) is a 0-order
valid pair, and if f(T,a)=error and (T,a) is an i-order strict-
ly valid pair for «a, then o can be stored in f-function in-

stead of "error'.

Example 1. Error Correction in a SLR(1) parser
Consider the SLR(1) grammar G, as follow;

Gx=<{E,T,F},{a’+,*’ (,)}’P’E>

P: 1) E » E+T 2) E~ T
3) T + T*E 4) T » F
5) F » (E) 6) F > a

We show the SLR{1) parsing table M (f and g function) in fig.
II-6. In fig.II-6,

M[1i,B]=j means f(Tj,B)=shift and g(Ti,B)=Tj

M[i,B}=Rk means f(T;,B)=reduce k

M[i,B]=A means f(Tj,B)=accept

M{i,B]=a means (T;,B) is an i-order strictly valid pair

for a.

0 1 2 3 4 a a 5 a a

1 + 6 + A

2 * R2 7 * R2 R2
3 + R4 R4 * R4 R4
4 ‘+ R6 R6 * R6 R6
5 8 2 3 4 a a 5 a a

6 9 3 4 a a 5 a a

7 10 4 a a 5 a a

8 + 6) + 11)

9 * R1 7 % Rl Rl
10 + R3 R3 * R3 R3
11 + R5 R5 * R5 RS

Fig.II-6 SLR(1) parsing table M

I-order valid pairs are i-order strictly valid pair in G,
I-order strictly valid pairs are computed as follow;
For example (T,,*),
NEXT* (T ,a)=(T,}, £f(T,,*)=reduce 6
NEXT*(Ts, {)={Ts}, £(Ts,*)=error
so (Tg,%) is an l-order strictly valid pair for "a", but not
for "(". (Ty,») and (Ti1,)) is neither 0-order valid pair nor

l-order valid pair, but 2-order strictly valid pair.

Let w= a*(+a+a))+a+

ting parser for G,.

To
ToTy

TeT2T7Ts

ToT,T7Ts
TeT2T7TsTy

In this example, w is corrected to

a*(+a+a))+a+$
* (+a+a))+a+$

+a+a))+a+$

ata+a))+a+$

+a+a))+a+$

be an input to the SLR(1l) error correc-

error detected, M[5,+]=a
and M[5,a]=4. We choose M

[5,+]=a, so insert "a

error detected, M|[1,al=6,
so delete ")".

error detected, M[6,$]=a,

so insert "a

accept

a* (a+ta+ta)+a+a. This

algorithm is not deterministic. For example we can delete "+"

instead of inserting "“a"

case, w is corrected to

in the first error point.

a*§a+a !+a+a.

In this

Chapter 4. Error Recovery by Valid Pairs

In this chapter we define more general valid pairs and

error recovery method using these valid pairs.

[Definition 9] i-order valid pair

We say that (T,a) is an i-order valid pair for a parser I if
there exists y holding the following condition;
[ToT1...Ty,vad] ﬁ{ToTi...Té,ad] ?{no error),
where aez¥{$}, ve(Z¥N)', and Ty...T, (T,=T) is a valid

sequence.

Y may include non-terminal symbols, so error processing us-
ing these pairs are not error correction, but error recovery.
The most useful case is yeN. In this case, a valid pair coin-

cides with a strictly valid pair.

[Algorithm 4} Test whether (T,a) i a 1-order (strictly)

valid pair for some BeN

(Input) a LR(0) table T and a terminal symbol a
(Output) TRUE and a nonterminal symbol B, or FALSE
(Method) TVPN(T,a,B) in fig.II-7

Next algorithm is a modification of the algorithm in exer-

size 7-4-28 of [4], but more general.

[Algorithm 5] an error recovery algorithm by 1-order valid

pairs
(Input) an error configuration [Te...T,,a;...a,]
(Output) a locally recovered configuration [To...TpT,ak...am]
0<psn , I<k<m

(Method) (Fig.I11-8)

Procedure TVPN(T,a,B) comment test for l-order valid pairs:
Begin '
If there exists some BeN such that g(T,A)#error
Then Begin
T1=g(T,B);
If f(Tl,a)#error
Then Goto SUCCEED
End
TVPN=FALSE and Stop comment (T,a) is not a l-order
valid pair;
SUCCEED: TVPN=TRUE
End

Fig.II-7 Test whether (T,a) is a l-order valid pair
for some BeN

Procedure Error Recovery
Begin comment input [T,...Ty,az...ap] and [T,...T;T,
ai...aml;
For i=7 to m Step 1 Do
For j=n to 0 Step -1 Do
If (Tj,a;) is a l-order valid pair for some AeN
Then Begin T=g(Tj,A); Go to SUCCEED End;
error recovery fails and '"No";
SUCCEED: Recover to [T,...T;jT,az...am]
End

Fig.II-8 Error Recovery using l-order valid pairs

Next theorem will be clear.

[Theorem 3]

Error recovery using l-order valid pairs (algorithm 5)

is correct.

Algorithm 5 using l-order valid pairs in algorithm 4 does
not necessarily stop. For example, we suppose [T,...T,,a;...a,]
- error and recovery with (T,_;,2;). If we choose the nonter-
minal symbol A such thaf g(T,_;,A)=T, £(T,a)=reduce i, g(T,_7,

B)=T,, and P;: B+A, then algorithm 5 repeats any times. We

improve algorithm 4 for this reason.

f[Algorithm 6] Test whether (T,a) is a 1-order valid pair

for some BeN, improved version
Input and output are the same as in algorithm 4.

(Method) (Fig.II-9)

In the case of]ai|=l, there are several nonterminal symbols
which are computed by algorithm 4. They have a hierachical
relation and their formsare like A;*A;_;. In this case we must

choose the top most symbol. Algorithm 6 selects the symbol.

Procedure TVPN(T,a,B) comment test for l-order valid pairs

improved version;

Begin

If there exists some BeN such that g(T,A)#error

Then Begin
T1=g(T,B);
If £(T1,a)#error

Then If TVPNR(T1,a) Then Goto SUCCEED

End

TVPN=FALSE and Stop comment (T,a) is not

pair;
SUCCEED: TVPN=TRUE
End;

Procedure TVPNR(T1,a)
Begin
If £(T1l,a)=shift
Then TVPNR=TRUE
Else If length(a;)=1
Then Begin
S=NEXT (T1l,a);
TVPNR=TRUE;
For all T in S Do

a l-order valid

If ~ TVPNR(T,a) Then TVPNR=FALSE

End
Else TVPNR=TRUE

End comment f(Tl,a)=reduce i and P;: A - a;;

Fig.II-9 Improved TVPN(T,a,B)

Example 2. Error Recovery in a SLR(1) parser
We consider the same grammar as in example 1. 1-order valid

pairs for nonterminal symbols are computed as follow;
For example'(To,+)

g(To,E)=T; and £(T:,+)=shift

g(To,T)=T. and £f(T,,+)=reduce 2

g(To,F)=T3; énd f(Ts3,+)=reduce 4
so (To,+) is a l-order valid pair for E. Next we consider
(Ts,$),

g(Ts,E)=Ts and £(Ts,$)=error

g(Ts,T)=T2 and £(T:2,$)=reduce 2

g(Ts,F)=Ts and f£f(Ts3,$)=reduce 4
NEXT*(T2,$)={T:1,Ts} and f(T:1,$)=accept but f(Ts,$)=error. This
is the same for F, so (Ts,$) is not a l-order valid pair for
any nonterminal symbols. We show the l-order valid pairs for

nonterminal symbols in fig.II-10.

0 E T

1

2

3

4

5 E T E

6 T T

7 F F Fig.II-10

8

9 l-order valid pairs for
10 nonterminal symbols of G,
11

Let w= ax(+a+a))+a+ be an input to the SLR(1) error recover-

ing parser of Gj.
Ty

ToT,

ToT2T4Ts

ToT2T7TsTs
TeT2ToTsTeTy

ToeT:

a*(+a+a))+a+$

*(+a+a))+a+$

+a+a))+a+$ error detected, (Ts,+) is
valid for "E", and g(Ts,E)
=TB

+a+a))+a+$
a+a))+a+$

e e s a s a0

Y+a+$ error detected, (To,+) is
valid for "E'", and g(To,E)
=T1

+a+$

a+$

$ error detected, (To,$) is
valid for "E", and g(Te,E)
=T]

$ accept

In this case errors are detected at the following positions,

) + a +

4 4

—74—

Chapter 5. Some Results

In this chapter we describe about the simulation of error
correction and evaluate the algorithm. We need many erroneous
programs in order to evaluate error correctihg algorithms, so
we produce them using random numbers as in fig.II-11. In fig.
iI-ll, the kind of errors (IK), the position of errors (IP),
the number of errors (KE), and the error terminal symbols (b)
are determined using random numbers. In practical case, errors
depend on the context, but in this simulation we ignore the
context. We made the simulation under the following various
conditions for the grammar G, in fig.II-12.

(1) The input legal programs are four kinds in fig.II-13.
(2) There are three kinds of error probabilities for each

terminal symbol (Table II-1).

<Program> +<Block>

<Block> +<Blockhead><Blockbody>END
<Blockhead> +BEGIN|<Blockhead><Decl.>;
<Decl.> +TYPE id|<Decl.>,id

<Blockbody> ~+<Statement>|<Blockbody>;<Statement>
<Statement> +<Simplestate.>|<Ifstate.>
<Simplestate.>+id=<Exp.>|<Block>

<Ifstate.> +IF<Exp.>THEN<Sifiplestate.>ELSE<Statenient>

<Ifstate.> +IF<Exp.>THEN<Statement>
<Exp.> +<Term>|<Term>+<Exp.>
<Tetmi> +id| (<Bxp.>)

Fig.I1-12 Test Grammar G

Procedure Simulation of Error (Correction
Begin
Read legal program (IN) with length (N);
For each MKE=N/5, N/10, N/20 Do
Begin
determine the number of errors (KE);
For I=1,KE Do
Begin
determine the error (IK)

comment IK=1....deletion error
IK=2....insertion error
IX=3....mutation error;

determine the error position (IP);

Case IK of
1: Delete IN(IP);
2: Begin

determine the error word (b);
Insert b in IN(IP)
End;
3: Begin
determine the error word (b);
Mutate b with IN(IP)
End;
End
comment erroneous program is generated;
SYNTAX ANALYSIS AND ERROR CORRECTION;
End
End comment MKE is the error bound, IK,IP,KE, and an error

word '"b" are determined using random numbers;

Fig.II-11 Simulation program of error correction

PROGRAM 1.
Begin
Type a,a;
a=a;
If ata
Then Begin
a=ata;
a=a
End
Else a=a+a
End

PROGRAM 3.
Begin
Type a,a;
Type a;
a=(a+a);
Begin
Type a3
a=atata
End;
If a
Then a=a
Else a=a+a;
a=a
End

Fig.II-13
Four kinds of Input
legal programs

PROGRAM 2.
Begin
Type a,a;
a=at+a,;
If a
Then Begin
Type a;
a=ata;
a=a+(a+a)
End
Else Begin
a=ata+(a+a);
a=a
End;
a=a
End

PROGRAM 4.
Begin
Type a,a;
a=a+(a+a);
If ata
Then Begin
a=a;
a=(a+a)
End
Else Begin
a=(ata);
a=a
End;
Begin
Type a,a;
1f a
Then a=a
Else a=ata;
a=ata
End
End

(3) There are three kinds of error bounds (1/5, 1/10, 1/20).
(If an input program consists of 100 tokens and an error

bound is 1/20, then an average number of errors is 2.5)

We only consider the one terminal error, that is, deletion,
insertion, OTr mutation of one terminal symbol. These error
transformations are as follow;

DELETION (a1...a7.7az7a747...3y) (a1...az_7a747...3y)
INSERTION (a1...a;_7a7...3,) » (al...az_laaz...am)

MUTATION (ar...az_jazaz q...a,) > (a1...a;_jaa7;7...3,)

In the above error transformations, the terminal symbol "a"
is determined according to the three kinds of error probabi-
lities in table II-1.

The SLR(1) parsing table for the grammar G, has the foll-
owing three kinds of error entries;
(1) O-order valid pair
(2) 1-order valid pair
{3) 1l-order valid pair for nonterminal symbols
The third entries are used for error recovery. The size of the
parsing table is 36x15, and the number of error entries except

for above three kinds is 295.

Table II-1 Error Probabilities for each terminal symbol

END BEGIN ; TYPE a , = IF THEN ELSE + ()
11 2 2 5 2 6 5 5 2 2 2 5 6 6
240 1 1 5 2 6 5 5 2 2 2 5 5 6
3.1 1 1 10 1 101010 1 1 1 10 10 10

The following three kinds of error correction are possible
for the error configuration [T,...T,,az...a,]
1) Correction by deletion [Tg. - T,5a747---85]
2) Correction by mutation [Tg.--T,.a87,7...2m]

3) Correction by insertion [T,...T,,aa;...am]

The results for 100 erroneous programs in each conditions
are shown in table II-2. The correction ratios decrease as the
progran length becomes long and as the error bound increases.
One of the reasons is the method the erroneous programs are
generated. The erroneous programs are generated at random and
without regard to the context. This means that the possibility
of generating the errors which can not be corrected by algo-
rithm 2 becomes large. For example, in the following program,

Begin S; Begin S; S End; S; S End
if the second "Begin'" is deleted, an error is detected between
the first "End"” and ";'". This error can not be corrected by

algorithm 2.

Table II-2 Simulation results of Error Correction

I 11 ITI
i 1 1 i1 1+ 1 1 1
C 5 10 20 5 20 5 10 20
1 56 82 86 65 90 67 79 89
2 59 80 85 53 83 56 77 83
3 57 69 82 53 77 80 55 75 85
4 41 65 80 52 65 78 46 62 81

A...Error Probabilities
B...Error Bounds
C...Input Programs

In practical case, the number of errors is about 10 per 50
statements, so the number of errors per token is about 1/50.
Hence the error bound 1/20 is the most adequate in practical
case. In this bound, the correction ratios are about 80-90%.

These results are obtained for 100 programs, but in the case
of 1000 programs the results are almost the same.

The errors which can not be corrected by algorithm 2 can be
recovered by algorithm 5. The number of eliminated program
elements by the error recovery (algorithm 5) is 2.7 on the

average.

Chapter 6. Conclusions

In PART II we defined the i-order valid pairs and gave the
practical error correcting and recovering algorithms for SLR
(k) parsers. SLR(k) parsers are the most practical method in
fhe LR(k) family and these algorithms have the following ad-
vantages;

(1). The information of error correction and recovery can be
stored in the parsing table, so no extra memories are
needed.

(2). These algorithms can parse erroneous programs with len-
gth n within 0O(n) times.

In this thesis we only showed the case of 1l-order valid
pairs. If we use the i-order valid pairs for i>1, then the
correction ratio will be improved, but in this case extra me-
mories will be needed, too.

These methods are deterministic and non-backtracking, so
the string which has already read can not be corrected. For ex-
ample, in the case of the following input,

Begin S ; S ; Begin S End 3 End ; S ; S End

there is an extra "End", or one "Begin'" is missing. The parser

detects an error between the second "End'" and ";", but this

error can not be corrected by our algorithms, because the se-
cond "End" means the end of an input. The following symbol
must be "§'", so the remaining string '";S;S End" will be dele-
ted. But if we can make backtrack one symbol and ignore "End",
then we can correct this kind of error easily. This modifica-

tion of our algorithms is hoped for future development.

—-871—

CONCLUSIONS

We considered two problems to implement parser generation
systems;
(1). Implementation of precedence parsers using the precedence
functions with error detecting capability was investigated
in PART I.
(2). Practical error processing algorithms for SLR(k) parsers

were investigated in PART II.

Precedence parsers using precedence functions are very com-
pact but have the following disadvantages,
1). Simple precedence functions have no error detecting capa-
bility.
2). The corresponding grammatical class is very small.
These two disadvantages were improved, and the procedures to
implement simple precedence parsers and/or weak precedence
parsers using precedence functions were described in PART I.
We introduced the new equivalence relations (ED(i,j) equivale-
nce and semi-strong equivalence) and the extended precedence
functions. Using these methods we can make algorithmically the
extended precedence functions from an unambiguous context free
grammar. These extended precedence functions preserve about
80% of the error entries. The error originated in the remain-
ing 20% of the error entries are detected either as reduction
errors or as errors in the other point, that is, there exist
error detection delay originated in the unpreserved error en-

tries.

For the compilers which need precise error detection (po-
int and state), these methods are not adequate for this reason,
but in the case in which the compactness is the most important
and a little error detection delay is permitted, these methods

are very useful,

Error processing in parsing algorithms was little considered
in 1960°’s, but recently there are some researches about this
problem. This fact means that automatic generation of parsers
becomes more practical. PART II described the practical error
correcting and recovering algorithms for SLR(k) parsers and

evaluated the algorithms by simulations.

Error correction must be considered rather as the kind of
error recovery and error diagnosis than as the artificial in-
telligent tools, so our algorithms are more practical than the
minimum distant error correcting algorithms. If we consider
the heuristic compilers, we must consider the following factors;
(1)error distance, (2)backtracking, and (3)error probability.

Third factor was a little investigated in [56].

We can not connect the above results of PART I and PART II
immediately, because the object parsing algorithms are diffe-
rent, but it is possible to apply the idea in PART II to the
precedence parsers using the extended precedence functioms.
The extended precedence functions have little redundancy, so
they themselves can not represent the error correcting infor-

mation, and the extra memories are needed.

We must consider further semantic processing and metalan-
guages to implement compiler description languages systems. We
have proposed the Multi level Compiler Generating System in
M.S.Thesis. This system is the skelton of cdmpiler description
languages systems. The formalization of semantic processing
and metalanguages are more difficult than that of syntax. These

will be left for future researches.

APPENDIX
EWPF for JIS ALGOL 3000

We made the EWPF for JIS ALGOL 3000 [29]. The original grammar is
not a weak precedence grammar, so we modified it a little. The
modified grammar is shown in Fig.A-1. Precisely saying this gra-
mmar is not a WPG. Some rules in Fig.A-1 violate the condition
(2) in definition 6. These violations are resolved using con-
textual informations. The semi-strongly equivalent weak prece-
dence matrix for this grammar can not be functionized, so we apply
algorithm 5 in 4-4-2. The resulting EWPF for JIS ALGOL 3000 are
shown in Table A-2. In this case we use (A;,R3) as the EWPM, so

the weak precedence relations are decided as follow;

{F(X)<G(Y)} and {H(X)=2L(Y)} ... XsgY
{F(X)<G(Y)} and {H(X)<L(Y)} ... X»Y
{FX)2G(Y)} vevrninennnennnnns X?Y (error)

Table A-1 represents the error preservation ratio by these EWPF.

1227 error entries (0 or 8) out of 1570 are preserved in this

case.
Table A-1 Error Preservation Ratio
Precedence Relation 4 5 0 8 Error Relation
Total 147 441 981 589 1570
Reserved 147 441 682 545 1227

error preservation ratio = 78%
grammar size |[N|=73 |z|=38 |P|=126

—87—

P

(72

11

12

13

14
15
16
17

18
19
20

21
22
23
24
25

<Program> #<Block>|<Compound state.>
<Block> #<unlabelled Block>|<label>:<Block>
<unlabelled Block>#<Blockhead><Statement deli.><Compoundtail>
<Compound state.>#<unlabelled compound state.>|
<label>:<Compound state.>
<unlabelled compound state.>#BEGIN<Compoundtail>
<Blockhead> #BEGIN<Declaration>|<Blockhead><Statement deli.>
<Compoundtail>
<Compoundtail>#<Statementl>END|<Statementl><Statement deli.>
<Compoundtail>
<Statementl>#<Statement>
<Statement deli.># ;
<Statement> #<unconditional state.>|<conditional state.>|
<repeat state.>
<unconditional state.>#<fundamental state.>|<Compound state.>
| <Block>
<fundamental state.>#<unlabelled fundamental state.>|
<label>:<fundamental state.>
<unlabelled fundamental state.>#<Assignment state.>|
<Goto state.>|<Procedure state.>
<Assignment state.>#<left hand> <Arith. exp.>
<lefthand> #<Variable>:=|<Procedure name>:=
<Goto state.>#G0TO<designatinal exp.>
<conditional state.>#<if statement>|<if statement>ELSE
<Statement>|<label>:<conditional state.>
|<conditional clause><repeat state.>
<if statement>#<conditional clause><unconditional state.>
<conditional clause>#IF<Relation>THEN
<repeat state.>#<repeat clause><Statement>
|<label>:<repeat state.>
<repeat clause>#FOR<variable item><repeat element>D0
<variable item>#<simple variablel>:=
<repeat element>#<Arith. exp.>STEP 1 UNTIL<Arith. exp.>
<Procedure state.>#<Procedure name><actual parameter part>

<actual parameter part># (<actual parameter list>)

Fig.A-1 Modified JIS ALGOL 3000 Grammar

26

27
28
29
30
31
32

33
34

35

36
37
38

39
40
41
42

43
44

45

46
47
48
49
50

51

<actual parameter list>#<actual parameter>|<actual parameter
list><Parameter deli.><actual parameter>
<Parameter deli.># ,
<actual parameter>#SYMBOL|<Expression>|<Array name>
<Declaration>#<Type decl.>|<Array decl.>|<Procedure decl.>
<Type decl.>#<Type><Type 1list>
<Type> #REAL | INTEGER
<Type 1list> #<simple variable>
| <Type list><Parameter deli.><simple variable>
<Array decl.>#<Type><Array><Array list>
<Array list>#<Array segment>
|<Array list><Parameter del.><Array segment>
<Array segment>#<Array identi.>[<bound pair list>]
| <Array identi.l><Parameter deli.>
<Array segment>
<Array identi.l>#<Array identi.>
<Array> # ARRAY
<bound pair list>#<bound pair>
| <bound pair list><Parameter deli.><bound pair>
<bound pair>#<lower bound>:<upper bound>
<upper bound>#0UI
<lower bound>#UI
<Procedure decl.>#PROCEDURE<Procedure head><Procedure body>
| <Type>PROCEDURE<Procedure head><Procedure body>
<Procedure body>#<Statement>
<Procedure head>#<Procedure name><formal parameter part>;
<value part><specification part>
<specification part>#<Specifier><namelist>;
|<specification part><Type><namelist>;
<Specifier> #STRING|<Type>ARRAY
<value part>#VALUE<namelist>;
<namelist> #ID|<namelist><Parameter deli.>ID
<formal parameter part># (<formal parameter list>)
<formal parameter list>#<formal parameter>
| <formal parameter list><Parameter deli.><formal parameter>
<formal parameter>#ID

Fig.A-1 Modified JIS ALGOL 3000 Grammar (Continued)

52 <Arith. exp.> #<Term>|<adding operator><Term>
| <Arith. exp.><adding operator><Term>

53 <Term> #<Factor>|<Term><multiplying operator><Factor>
54 <Factor> #<Primary>|<Factor>+vur
55 <Primary> #UN|<variable>|<function designator>

| (<Arith. exp.1>)
56 <Arith. exp.l>#<Arith. exp.>
57 <multiplying operator># *|/
58 <adding operator># +|-
59 <Relation> #<Arith. exp.><relational operator><Arith. exp.>
60 <relational operator>#<|s|=|z|>|#
61 <designational exp.>#<label>
62 <label> #ID
63 <variable> #<simple variable>|<subscripted variable>
64 <subscripted variable>#<Array identi.>[<subscript list>]
65 <Array identi.>#ID
66 <subscript list>#<subscript exp.>
|<subscript list><Parameter deli.><subscript exp.>
67 <subscript exp.>#UI|<simple variable>|<simple variablel>+UI
|<simple variablel>-UI

68 <simple variable>#<variable identifier>
69 <variable identifier>#ID
70 <function designator>#<Procedure identi.><actual parameter

part>
71 <Procedure identi.>#ID
72 <simple variablel>#<simple variable>
73 <Expression> #<Arith. exp.>|<Relation>|<designational exp.>

74 82 THEN 90 INTEGER 98 = 106 >

75 83 FOR 91 ARRAY 99 / 107 #

76 BEGIN 84 DO 92 [100 + 108 SYMBOL
77 END 85 STEP 1 UNTIL 93] 101 - 109 ur

78 := 86 (94 PROCEDURE 102 < 110 1D

79 GOTO 87) 95 STRING 103 < 111 oW

80 ELSE 88 , 96 VALUE 104 = {112 §}

81 IF 89 REAL 97 ¢+ 105 2

Fig.A-1 Modified JIS ALGOL 3000 Grammar (Continued)

Table A-2 EWPF for JIS ALGOL 3000

10

14
10

14
14
14
10

12

12

10

10

1

13

85

86
87

88
89
90
91

92

93
94
95

96
97

98
99
100
101

102

1063
104
105
106

107
108
109
110

111
112

1

12

10

10
16
11

10
13
14
11

57
58
59

60

61

62

63

64
65

66
67

68

69

70
71
72

73
74
75
76
77
78
79
80
81

82

83

84

10

10

29
30
31

32
33
34
35

36
37

38
39
40

41

42

43
44
45

46
47

48

49

50
51
52

53
54

55
56

10

10

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24
25

26
27

28

Table A-2 EWPF for JIS ALGOL 3000 (Continued)

G L G L G L G L
74 2 2 84 4 6 94 9 3 104 4 5
75 9 85 4 5 95 9 2 1105 4 S
76 14 6 86 13 4 96 9 1 |106 4 5
77 6 10 87 7 10 97 4 3 1107 4 5
78 3 2 88 7 8 98 4 9 1108 10 2
79 14 6 89 9 2 99 4 4 {109 11 2
80 6 7 90 9 2 1100 11 5 [110 15 3
81 12 6 91 8 2 {101 11 5 1111 13 4
82 4 7 92 5 2 (102 4 5 |112 6 2
83 14 6 93 5 6 103 4 5

REFERENCES

General or Miscellaneous

[1]

[2]

[3]

[4]

PART I

[5]

[6]

[7]

[8]

[9]

[10]

J.Feldman, D.Gries: Translator Writing Systems, C.ACM,
Vol.11l, No.2Z (Nov. 1968) pp.77

William M.Mckeeman, James J.Horning, David B.Wortman:

A Compiler Generator, Prentice-Hall, 1970
D.J.Rosenkrantz, R.E.Sterns: Properties of Deterministic
Topdown Grammars, Information and Control, Vol.l17, No.3,
(1970) pp.226

Alfred V.Aho, Jeffrey D.Ullman: The Theory of Parsing,
Translation, and Compiling, Vol.I: Parsing (1972),

Vol.II: Compiling (1973), Prentice-Hall

R.W.Floyd: Syntax Analysis and Operator Precedence, J.ACM,
Vo1.10, No.3 (1963) pp.316

N.Wirth, H.Weber: Euler:A Generalization of ALGOL, and its
Formal Definition:Part I,II, C.ACM, Vol.9,No.1.2 (1966)
pPp-13, pp.89

David F.Martin: Boolean Matrix Methods for the Detection
of Simple Precedence Grammars, C.ACM, Vol.11l, No.1l0

(Oct. 1968) pp.685

J.Fischer: Some properties of Precedence Languages, Proc.
of ACM Symp. on theory of computing (May 1969) pp.181
James R.Bell: A New Method for Determining Linear Precedence
Functions for Precedence Grammars, C.ACM, Vol.12, No.l0
(Oct. 1969) pp.567

A.Colmerauer: Total Precedence Relations, J.ACM, Vol.17,

No.1l (1970) pp.1l4

~g3—

[11]

[12]

[13]

[14]

[15]

[16]

[(17]

(18]

{19}

[20]

A.Learner, A.L.Lim: A note on transforming context free
grammars to Wirth-Weber precedence form, Computer Journal,
Vol.13, No.2 (1970) pp.l42

K.Inoue: A Syntax Analysis Technique based on Right
Precedence of Precedence Languages, IPS, Japan, Vol.1ll1,
No.4 (April 1970) pp.231 (in japanese)

J.B.Morris: A result on the relationship between Simple
Precedence Languages and reducing transition Languages,
Proc.of 2nd Annual ACM Symp. on Theory of Computing

(May 1970) pp.73

J.D.Ichbiah, S.P.Morse: A Technique for generating almost
optimal Floyd-Evans productions for precedence grammars,
C.ACM, Vol.13, No.8 (Oct. 1970) pp.501

K.Inoue: Right Precedence Grammars, IPS, Japan, Vol.1ll1l,
No.8 (Aug. 1970) pp.449 (in japanese)

S.L.Graham: Extended Precedence Languages, Bounded Right
Context Languages, and Deterministic Languages, Proc. of
IEEE 11th Annual Symp. on Switching and Automata Theory,
(Oct. 1970) pp.175

K.Asai: Precedence Grammars with Precedence Functions,
1PS, Japan, Vol.12, No.5 (May 1971) pp.264 (in japanese)
S.Sekimoto: Extended Right Precedence Grammars and an
Analyzing Technique for them, IPS, Japan, Vol.12, No.9
(Sept. 1971) pp.543 (in japanese)

K.Asai: On Existence of Precedence Functions of Precedence
Grammars, IPS, Japan, Vol.13, No.4 (April 1972) pp.218
(in japanese)

A.V.Aho, P.J.Denning, J.D.Ullman: Weak and Mixed Strategy

Precedence Parsing, J.ACM, Vol.19, No.2 (1972) pp.225

[21] D.F.Martin: A Boolean Matrix Method for the computation of
Linear Precedence Functions, C.ACM, Vol.15, No.6 (June 1972)
pp.448

[22] J.McAfee, L.Presser: An Algorithm for the Design of Simple
Precedence Grammars, J.ACM, Vol.19, No.3 (1972) pp.385

[23] A.V.Aho, J.D.Ullman: Error Detection in Precedence Parsers,
MST, Vol.7, No.2 (1972) pp.97

[24] K.Asai, M.Tomiyama: Compiler Construction by Precedence
grammars, IPS, Japan, Vol.1l4, No.7 (July 1973) pp.495
(in japanese)

[25] J.N.Gray, M.A.Harrison: Canonical Precedence Schemes,
J.ACM, Vol.20, No.2 (1973) pp.214

[26] K.Ochimizu, M.Mizumoto, J.Toyoda, K.Tanaka: Quasi-sequential
Grammars and their Parsing Algorithms, IPS, Japan, Vol.1l4,
No.12 (Dec. 1973) pp.925 (in japanese)

{27] N.A.Khabbaz: Multipass Precedence Analysis, Acta Inf.,
Vol.4, No.1 (1974) pp.77

[28] R.Haskell: Symmetrical precedence relations on general
phrase structure grammars, Computer Journal, Vol.17, No.3
(1975) pp.234

[29] Programming Language for Computer ALGOL (level 3000),

JIS C6214-1967 (in japanese)

[30] T.Seno, K.Kaijiri, S.Uchinami, Y.Tezuka: The Construction
Methods of Weak Precedence Functions by Postponement of
Error Detection, IPS, Japan, Proc. of 15th Convention,
(Dec. 1974) (in japanese)

[31] K.Kaijiri, T.Seno, S.Uchinami, Y.Tezuka: On the New Prece-
dence Functions methods, IECE, Japan, Technical Group on

Automaton and Languages, AL74-57, (Feb. 1975) (in japanese)

—95—~

[32]

[33]

[34]

[35]

[36]

[37]

PART

[38]

[39]

[40]

[41]

K.Kaijiri, S.Uchinami, Y.Tezuka: On the Extended Weak
Precedence Functions, IECE, Japan, Proc. of the Annual
Convention, (March 1975) (in japanese)

K.Kaijiri, T.Seno, S.Uchinami, Y.Tezuka: The Construction
Methods of the Weak Precedence Functions by Postponement of
Error Detection, IECE, Japan, Technical Group on Automaton
and Languages, AL75-47 (Oct. 1975) (in japanese)

K.Kaijiri, S.Uchinami, Y.Tezuka: Extended Precedence Parsing
Method and its Error Detection, Technology reports of the
Osaka Univ., Vol.26, No0.1277 (March 1976)

K.Kaijiri, T.Seno, S.Uchinami, Y.Tezuka: The Construction
Methods of Weak Precedence Functions by Postponement of error
Detection, Trams, IECE, Vo0l.J59-D, No.1ll (Nov. 1976)
K.Kaijiri, S.Uchinami, Y.Tezuka: On the Realization Methods
of the Precedence Functions, IECE, Japan, Vol.J59-D, No.1l1l
(Nov. 1976) (in japanese)

K.Kaijiri, S.Uchinami, Y.Tezuka: Extended Weak Precedence
Functions, Tran. IPS, Japan (to be appeared) (in japanese)
11

E.T.Irons: An Error-Correcting Parse Algorithm, C.ACM,
Vol.6, No.11l (Nov. 1963) pp.669

William B.Smith: Error Detection in Formal Languages,

JCSS, Vol.4, No.5 (Sept. 1970) pp.385

T.G.Peterson: Syntax Error Detection, Correction and Reco-
very in Parsers, Doctoral thesis, Stevens Institute of
Technology, Hoboken, N.J., (1972)

Lewis R.James: A Syntax Directed Error Recovery Method,

Technical Report CSRG-13, University of Tronto (May 1972)

[42]

(43]

[44]

[45]

f46]

[47]

(48]

[49]

[50]

[51]

[52]

A.V.Aho, T.G.Peterson: A minimum distance error correcting
parser for context-free languages, SIAM J. of Comp., Vol.1,
No.4 (Dec. 1972) pp.305

K.Iwamoto, A.Sawano: Error Correction for Regular Languages
and Context free Languages, IECE,Japan,V0l.56-D, No.l2
(Dec. 1973) pp.675 {(in japanese)

R.A.Wagner, M.J.Fischer: The String to String Correction
Problem, J.ACM, Vol.21, No.l (Jan. 1974) pp.168

G.Lyon: Syntax Directed Least Errors Analysis for Context-
free Languages:A Practical Approach, C.ACM, Vol.1l7, No.l
(Jan. 1974) pp.3

R.A.Wagner: Order-n Correction for Regular Languages,
C.ACM, Vol.17, No.5 (May 1974) pp.265

M.G.Thomason: Errors in Regular Languages, IEEE Trans. on
EC.,Vo01.C-23, No.6 (June 1974) pp.597

S.L.Graham, S.P.Rhodes: Practical Syntactic Error Recovery,
C.ACM, Vo0l1.18, No.l (Nov. 1975) pp.639

J.P.Levy: Automatic Correction of Syntax-Errors in Progra-
mming Languages, Acta Informatica, Vol.4, No.4 (Dec. 1975)
pp-271

M.G.Thomason: Stochastic Syntax-Directed Translation Schemata
for Correction of Errors in Context-free Languages, IEEE
Trans. on EC., Vol.C-24, No.12 (Dec. 1975) pp.1211
R.A.Thompson: Language Correction Using Probabilistic
Grammars, IEEE Trans. on EC., Vol.C-25, No.3 (March 1976)
pp-275

Donald E. Knuth: On the Translation of Languages from Left

to Right, Information and Control, Vol.8, No.6 (1965) pp.607

[53] Franklin L.Deremer: Simple LR(k) Grammars, C.ACM, Vol.1l4,
No.9 (July 1971) pp.453

[54] K.Kaijiri, S.Uchinami, Y.Tezuka: On the error recovery of
LR(k) parsers, IPS, Japan, Proc. of the 15th Convention,
(Dec. 1974) (in japanese)

[55] K.Kaijiri, S.Uchinami, Y.Tezuka: A Study of Error Correction
and Recovery for SLR(k) parsers, IPS, Japan (in japanese
to be appeared)

[56] K.Kawamura, K.Kaijiri, S.Uchinami, Y.Tezuka: A Stochastic
Optimum error correction for CFG, IECE, Japan, Proc. of the

Annual Convention (March 1977) (in japanese)

