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ABSTRACT 

     This thesis investigates the use of the Bayesian approach in the 

analysis of serial data. Smoothing of serial Gaussian and 

non-Gaussian data is discussed. The detection of structural changes 

of the underlying distributions of serial data is discussed also. 

     In Chapter 1, a general formulation for smoothing is given, in 

which the smoothing problem is regarded as the simultaneous 

estimation problem of parameters depending on strata. This naturally 

leads us to Bayesian methods. and enables us to use the standard 

statistical theory in smoothing. Smoothing of serial Gaussian data 

and some related problems are discussed within the framework of this 

formulation. 

     In Chapter 2. a Bayesian method for smoothing serial count data 

is presented. Recursive formulas for estimating the trend and for 

evaluating the exact likelihood are developed. The exact likelihood 

yields the likelihood ratio test for homogeneity of the means. This 

method is constructed in accordance with the general formulation 

given in Chapter 1. and is versatile enough to permit various 

extensions including that for serial binomial data. 

     In Chapter 3, a Bayesian solution is given to the problem of 

making inferences about an unknown number of-structural changes in 

serial data. Inferences are based on the posterior distribution of 

the number of change points and on the posterior probabilities of 

possible change points. Detailed analyses are given for serial 

binomial data and some regression problems. An approximation 

procedure to compute the posterior probabilities is also presented.
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                           CHAPTER 0 

INTRODUCTION AND SUMVIARY 

     The analysis of serial data is one of the most important 

subjects in statistical analysis. Much attention has been paid on 

this subject, and various methods have been developed. Smoothing 

methods are basic ones among those methods. Let yl,---,yT be T 

observations of a random variable Y taken at design points xl.*,*,XT 

(xl:s ... :S~). The purpose of smoothing is to decompose each observation 

as 

           Yj = f(xj) + Et 

where Pxj) represents a systematic dependence of y, on x, and 6, is 

a residual. To decompose it, smoothness is assumed for the 

dependence. Chapters 1 and 2 deal with the problem of estimating 

Pxt) from the Bayesian viewpoint. 

     There are three approaches available for estimating f(xf), i.e., 

the distribution-free approach, the likelihood approach and the 

Bayesian approach. The first approach has yielded several intuitive 

methods, e.g., moving average, local linear regression and kernel 

regression. Other examples of the first approach are robust methods 

such as moving midmean, moving median, and locally weighted 

regression. The smoothing spline is also a distribution-free method, 

though it can be derived by using the Wiener process. These 

distribution-free methods have the merit that they can be used 

easily. However, since likelihood is not defined in these methods. 

it is not easy to make detailed statistical inferences. Actually, no 

                                                      -1-



general solution is given to the problems of model selection and 

tests, while the estimation of smoothing parameters which define the 

smoothness of f(xj) is possible by using intuitive criteria such as 

the risk, the prediction risk, CP statistic, Cross-Validation and 

Generalized Cross-Validation. 

     On the contrary, the likelihood approach enables us to use the 

standard statistical theory, and consequently it is relatively easy 

to make detailed statistical inferences. As examples of the second 

approach, there are polynomial regression and the regression spline. 

The problems of the parameter estimation, model selection and tests 

have been studied in detail for these methods. However, in these 

methods, it is hard to vary the smoothness of the resulting estimate. 

Actually, polynomial cannot provide flexible curves, and it is not 

easy to determine the position of knots which define the smoothness 

of the regression spline. 

     The flexibility in varying the smoothness and the easiness in 

making statistical inferences are desirable properties for smoothing 

methods. These properties can be obtained by using the Bayesian 

approach. Actually, there are some Bayesian methods which have these 

properties. These methods are based on the difference constraint and 

the integrated likelihood. The difference constraint is an effective 

tool to provide flexible curves, and their smoothness can be varied 

easily by controlling the smoothing parameter which defines the 

weight of the constraint. The difference constraint was firstly used 

for smoothing by Whittaker (1923). Shiller (1973) used it again to 

estimate smooth lag curves, and introduced the term "smoothness 

prior". In their methods, however, the selection of the smoothing
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parameter was left to the decision of the analyst, though it is a 

critical problem. A solution to this problem was given by 

Akaike (1980), who suggested the use of the integrated likelihood . 

Following Akaike, several Bayesian methods with the difference 

constraint and the integrated likelihood have been developed (e.g., 

Kashiwagi, 1982; Kashiwagi and Itani 1986). However, in these 

methods, the integrated likelihood is used only for estimating the 

smoothing parameter. 

     In Chapter 1. we give a formulation for smoothing, which is 

constructed from the viewpoint where the smoothing problem is 

regarded as the simultaneous estimation problem of parameters in a 

many strata model. The strata are assumed to be linearly ordered, 

and the neighboring strata are assumed to have densities close to 

each other. This viewpoint naturally leads us to Bayesian modeling, 

and enables us to embed smoothing methods in the standard statistical 

theory. Then we can construct estimators and test statistics by 

applying the likelihood inference. Our formulation is given in a 

general form, followed by the explicit description of the standard 

methods including the Stein problem, the one way design and useful 

smoothing methods. However, in this chapter based on 

Kashiwagi (1982), Kashiwagi and Itani (1986) and Yanagimoto and 

Kashiwagi (1990). we focus on the case where distributions are 

Gaussian. 

     Non-Gaussian smoothing is an important problem in practice. 

Especially, recent innovations of surveillance systems in health 

sciences and other fields have rapidly increased the need for 

smoothing of discrete data. It is still familiar in smoothing of
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discrete data to assume the normality for the data . However, the 

characteristics of the normal and discrete distributions are quite 

different. It is desirable to assume discrete distributions for 

discrete data, since it is more realistic. Until recently , 

non-Gaussian smoothing was hard to execute because of its 

computational difficulties, but it has now become possible by the 

developments of the state-space approach. 

      In Chapter 2, we present a method for smoothing serial count 

data. The Poisson distributions are assumed for the data, and the 

difference constraints with the log normal distributions are assumed 

for the Poisson means. Under these assumptions, the Poisson means 

are estimated simultaneously. To estimate them, recursive formulas 

in the state-space approach are used, by which the computational 

difficulties in the simultaneous estimation are largely decreased . 

These formulas, at the same time, enable us to evaluate the exact 

likelihood, which yields the likelihood ratio test for homogeneity of 

the means. However, in the usual state-space approach, the initial 

state Pxj) is assumed to be a random variable, and a prior 

distribution of the initial state is given a priori . These 

assumptions cause an arbitrariness in making statistical inferences. 

To avoid such an arbitrariness, we assume the initial state is an 

unknown parameter, and give recursive formulas for estimating the 

initial state. The method presented here is constructed in 

accordance with the general formulation given in Chapter 1, and is 

versatile enough to permit various extensions including that for 

serial binomial data. This chapter is based on Kashiwagi and 

Yanagimoto (1990).
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     Smoothing is effective for observing a smooth trend. On the 

other hand, we are sometimes interested in finding structural changes 

of the underlying distributions of serial data. The residual 

analysis in smoothing can suggest the existence of structural changes 

to some extent. However, to detect them quantitatively, the method 

for that purpose is necessary. The problem of making inferences 

about structural changes is called the change point problem. This 

problem has been considered by many authors, and various methods 

including nonparametric, parametric and Bayesian methods have been 

developed. However, most studies are concerned with the single 

change case or the detection of multiple changes by using a stepwise 

procedure, and few studies are available on the problem of detecting 

multiple changes without using a stepwise procedure. Smith (1980) is 

one of such few studies. in which he suggested the usefulness of the 

Bayesian approach for the multiple change case. 

     In Chapter 3, we give a Bayesian solution to the problem of 

making inferences about an unknown number of changes. Inferences are 

based on the posterior distribution of the number of change points 

and on the posterior probabilities of possible change points. Any 

stepwise procedure is not used. These posterior probabilities are 

evaluated by using a combinatorial method, and consequently the large 

amount of computation is required. We present an approximation 

procedure to decrease the amount of computation. Detailed analyses 

are given for serial binomial data and some regression problems. 

This chapter is based on Kashiwagi (1990). 

     To illustrate the usefulness of the methods to be presented in 

each chapter, we provide some examples of application. In Chapters 1 
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                           CHAPTER 1 

       BAYESIAN METHODS FOR SMOOTHING DATA AND SIMULTANEOUS 

                  ESTIMATION OF MANY PARAMETERS 

1.1. INTRODUCTION 

     Consider a model with T strata having the density g(yjg
,16) in 

the t-th stratum, where the parameter vector L 
I depends on the 

stratum and e is common through the stratum. Suppose nj observations 

y1l, ...' y gn I are obtained from the t-th stratum. We write 

V- t= (Ytil "" Ytnt (y, .. .... YT')' and Our problems are: 

    (a) the estimation of g 

    (b) the estimation of 6 

    (c) the test of the null hypothesis geMo* 

We assume L is an outcome from a hyperpopulation having the density 

h(AIJ) &=-D. which is called a prior density in the Bayesian context. 

The parameter space D has a limiting point 8 
0 such that h(g13) tends 

to a degenerated measure; write it h(gid 
0 ) for convenience. The null 

hypothesis in the test problem will be expressed as 6=6 
0 . 

     Most smoothing methods have been developed separately from the 

standard statistical theory. However, the smoothing problem can be 

regarded as the simultaneous estimation of the parameters in a many 

strata model under the assumptions that the strata are linearly 

ordered and the neighboring strata have densities close to each 

other. This viewpoint naturally leads us to Bayesian modeling and
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enables us to embed smoothing methods in the standard statistical 

theory. Then we can construct estimators and test statistics by 

applying the likelihood inference. In this chapter, we discuss 

smoothing methods in relation to the standard statistical methods. 

     In Section 1.2, a procedure to solve the problems (a)-(c) is 

proposed. In Section 1.3, the Stein problem, the one way design and 

several Bayesian smoothing methods are discussed within the framework 

of our formulation. In Section 1.4, our experiences in analyzing 

epidemiological data sets in terms of the smoothing methods are 

presented. 

1.2. PROPOSED PROCEDURE 

     To construct the procedure to solve the problems (a)-(c), we 

introduce the following likelihoods. 

Definition 1.1. We define the overall likelihood by 

                                 T 711         L' (A-, 9, A) = I H H g(yli 19-11 e) h(fL 16). 
Let M be the support of h(416). 

         HIM 6) = f M L (g, ~2, & ) dA 

is called the integrated I*ikelihood.0 

     Using the integrated likelihood, the likelihood ratio test 

statistic is defined. 

Definition 1.2. Let (6A) and (~f,3 be the solutions which attain 

the maximums of IL,(e,&) and iLma 
0 ), respectively. We define the
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test statistic for the null hypothesis AeKo by 

         S = 2-10g(ILM SwIL'O' a 
0 )).E 

     Our procedure is constructed as: 

     (1) Estimate and & by maximizing IL(6,3) 

     (2) Estimate by maximizing L(g,~A) 

     (3) Reject the null hypothesis when S>c,, where c, is a critical 

          value with the level a. 

Remark 1.1. The overall likelihood is proportional to the posterior 

density of 9-1 P (tt I V-' ~!' A) =L (A-, 9, A) 1IL ( el a ), and consequently 

maximization of with respect to L corresponds with that of 

the empirical posterior density P(gly,&a). Therefore, our estimate 

~ coincides with the mode of the empirical posterior distribution, 

and also it coincides with the empirical posterior mean when the 

posterior distribution is Gaussian. 

1.3. APPLICABLE MODELS 

     Selecting densities g(ylg,g) and WgJA) suitably, we can give a 

variety of methods. 

1.3.1. Stein problem 

     First, we derive a Stein type estimator with a likelihood ratio 

test. Let Y, be a random sample of size I from the t-th normal 

population N(IL,,l). Suppose (L is a random sample of size T from a 

normal hyperpopulation N(0,3). In this problem, e does not appear,
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and the null hypothesis is expressed as 3=0. When 

that gl= ... =gT=O. 

Theorem 1. 1. 

         ~t = [II.MI12 -TI +Yj/jjYjj2 

             = [11Y112 -T]+IT 

              0 IIY112 :0 
S              I jjkI12 -T-log( IIY112 IT)-T otherwise 

where [z1+=max(z,O). 

Proof. The overall likelihood is given by 

                          11 F T r 
                             )-T3-2 _,Lt)2+1 2           L(g,3) = (2x exp (Y, 2 

The integrated likelihood is obtained as 

                         -.K -_K f 11_Y112 1          IL(3) = (2x) 2(1+3) 2expt-2(f+-,,)J' 

Differentiating logIL(&) with respect to 6, we have 

         a T 112112            -j-
,-5logIL(3) 2(1+3) '2(1+3)2 - 0. 

Then it follows that 

         a = [11Y112-T1+1T. 

Maximizing L(gS) with respect to g, we obtain 

            j +Yt/lIVII2.           At ~ 17ayt = [11V112 -T] 

Since 2 -logIL(S) =-T- log2;r-T- log( 11VII 2/T) -T for 

2-logIL(O)=-T-log27c- 11 Y 112, we have 

                               10-

6=01 it follows

11 Y 112 >T and



             0 IIY112 :ST 
S 

                IIV112 -T-log( 11V1121T)-T otherwise. 0 

Corollary 1.1. The rejection region of the test for 8=0 with a 

standard level a, say .05, is given by using the X2 -distribution as 

11Y112>X2 

Proof. Differentiating S with respect to IIV112' we have 

(a/a 11 V 11 2)S= 1_T111VII 2>0 for 112112 >T. This implys that S is monotone 

increasing with respect to IIV112 when II.YI12 >T. Therefore, for an 

                                         IIkII2>X2 appropriate a, the rejection region is given by T;(l-a)' 0 

1.3.2. One way design 

     A random effect model in one way design can be discussed within 

our framework. Let Y i be a random sample of size n from the t-th 

normal population N(ttpa 2 ). Suppose g is a random sample of size T 

from a normal hyperpopulation N(P,r). The null hypothesis is 

expressed as r=O. When -r=O, it follows that 41= =AT=V-

Theorem 1.2. 

          ~t i yi+(y-yt)l( 1+[ (n-l)R-11+) 

             2 2 2 

              S~+Sb1(l+[(n-l)R-11+) 

              -
Y 

                           ]+ 2                [R-1/(n-1) S~ 

                   0 R.:W(n- 1) 

                  Tn-log{(n-1 (R+I)/n)-T-log{(n-l)R) otherwise 

where y, and y are the sample means of k t and y, respectively, 

 2 1 _F 2, S 2=1 F,(Y,-Y)' and R=S2 2 S~=Y
n t'Zi ( Y t i - Y b Tt VS~'



Proof. The overall likelihood is given by 

                                T(n+l) T 7%      L(A' CT2, v, A (2XU2)- 2 ;L -f exp - I I Z                           1 2 (,T' t Z 1 i=1 
where A=a 2 /-r. The integrated likelihood is obtained as 

                     T7% ii 
~T        L ( U2, V. '1) 2 2 )2 1 112+AI,2_ -I+A,))2                   (2xor                           exp I- 2a 2 ny 

2 Dif f erent iat ing logIL(a v,A) with respect to v. we have 

            - a OgIL( U2, v, A TnA(v-'~) = 0.           E~V-' 
a 2 (n+A) 

2 Then it follows that ~=-Y. Further, differentiating logIL(a v,A) with 

respect to a and A. we have 

           a OgIL( C2. 'I) _Tn+Tn(nS.2+A(S.2+S:))                                       3 0.                                   Cr U (n+ .I) 

                                                 2 2 
           a 2 Tn Tn Sb             OgIL(U ;L 

2 )2 0.                           2A(n+;L) 2a (n+;L 

Then it follows that 

               n/[(n-l)R-11+ 

             2 2                S
,,,+S:1{1+[(n-l)R-11+) 

                [R-1/(n-l)]+ S.2. 

2 Maximizing L(A,& with respect to g, we obtain 

                y,+(y-y,)/(l+[(n-l)R-11+). 

Since 2 - logIL 2, = -Tn log21r-Tn - log{nSZ/(n- 1 -T - logi (n- 1 R) -Tn for 
                         2 S

.2+S2 R>1/(n-1) and 2-loglL(~Y -Tn - log2x-Tn - log( b )-Tn, we have 

                0 R~1/(n-l) 

                 Tn - log{ (n- 1 (R+ 1 )/n I -T - log{ (n- 1) R) otherwise-m 
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Corollary 1.2. The rejection region of the test for r=0 with a 

standard level a is given by using the F-distribution as 

R--'F7'- 1. (.- 1 ) T; ( 1 - .) -

Proof. Differentiating S with respect to P. we have 

(a1aP.)S-T((n-l)R-l)1(R(R+l))>O for R>1/(n-1). This implys that S is 

monotone increasing with respect to R when R>1/(n-1). Therefore, for 

an appropriate a, the rejection region is given by R>FT-1,(n-1)T:(1-a)' 0 

     The above two simple examples show that the obtained estimators 

and tests are appealing. The derivation of methods based on other 

models is easily done in a parallel way, especially when conjugate 

priors are assumed. However, more useful methods pertain to 

smoothing data. We will later focus on the smoothing problem. 

1.3.3. The discrete spline 

     In smoothing, the strata are linearly ordered in t and the 

neighboring strata are assumed to have densities close to each other. 

Let Y, be a random sample of size 1 from the t-th normal population 

N(g,,a'). We describe the relations between the densities of the 

neighboring strata by 

(1. 5) At - 2gt-l + 4t-2 .- i. i. d. N(O, -r) t=3, ..., T. 

This model represents gradual change of ft, with respect to t. The 

following lemma is immediately obtained. 

Lemma 1.1. Model (1.5) can be written in the matrix form as

-13-



            AP - i. i. d. N(-D~'D,g., -r(Dp'D,)-') 

where g ,= (ILl' 42)" gp=(g3, ---, gTY and 

                     1 -2 0 

                   0 1 -2 1 

          D, 0 0 Dp .0 

                 0 0 0 1 -2 1 

We write D--[D.,,Dpl. In this problem, the prior is assumed only for 

AP, and consequently the integrated likelihood is obtained by 

integrating the overall likelihood with respect to A
p. The null 

hypothesis is expressed as r=O. When r=O, we have tL,-2g, _j+1L,-2=0, 

suggesting that all g,'s are on a straight line. 

Theorem 1.3. 

                  ( 'T T+AD'D)-i 

                 (V-,4A 1),V-1 IT 

           2 logIL, 2, A) -T-log27c &2_log I V I -T 

        ,I=a2/.r, 1 where 'T denotes the identity matrix of rank T, V=,T+-tBB' and 

              1 0 0 0 0 
                                   0 0 

              0 1 
                                  1 0 

           A 1 -2 B 
                                    2 1 

                     .T-2 1-T-
                                                                   .T- 2 T- 3 ... 1 

Proof. The overall likelihood is given by

-14-



                                                 T-2 
          L(g' CT2, ;L) = (2xu;' 2 

                                    2a 

Integrating L(gu2,A) with respect to A-P, we have 

         IL(A 2 1 L (1. 6) (2ZU2)-2 1V1_ 2 exPj__.;~_2(V-Ag,)'V_1(.y-Ag                                      2u 

Maximizing TL,(L LT 2, '1) with respect to g 
I and GT2' we obtain 

           k = (A'V-'A)-'A'V-'Y-
           2 

1 )'V_'(k-A~ I )IT. 

2 Maximizing L(Aj. A'P' 3 1) with respect to LP, we obtain 

          ~ = ('T+AD'D)-'y. 

Substituting k and & 2 into (1.6), we have 

2 

           2 - logIL (A,, A) = -T-log2x &2_1og I V I -T.m 

2 

     This result suggests that maximization of Jj,(Eilu A) with 

respect to the parameters reduces to the one-dimensional problem, 

2 
namely, maximization of loglL,(~,' A) with respect to A. This 

maximization problem is hard to solve analytically, and therefore we 

estimate A numerically by using, e.g., a line search method. 

Consequently, -the test statistic cannot be written explicitly. We 

evaluate the critical values numerically by computer simulation. 

According to our study. the critical values with the level .05 for 

several 7" s are almost 0. 

     The model assumed in this section is called the discrete spline. 
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1.3.4. Seasonal adjustment 

     Let Y, be a random sample of size 1 from the t-th normal 

population N(a,,a 2 The purpose of seasonal adjustment is to 

decompose g, as 

where vt and C, denote the trend and seasonal components, 

respectively. To decompose it, we assume the following model. 

2 
                       2L,1-1 + 1)9-2 - i. i. d. N(O, t=3, ..., T 

( 1. 7a) - N(O, 02) t=s+1, ---, T 

2 

                                       T 1 

                                     U2) ( 1. 7b) + ... + - N(O, 2 t=s, ..., T 
                                         T 2 

where s denotes the cycle of the seasonal component. More precisely, 

our model is given in the matrix form as 

2 
            ii 

P - i. i. d. M-D~1DIk,' (Dp'Dp) -1 

(1. 8) §P - i. i. d. N(-(Ep'Ep)-'Ep'Ezi,, CT 2 (Ep'E,) - 1 

where v '=(Vil V2)" ')P= ( 1)3' ...' ')T) I= 1 §-p=(f,' ...' 6T)' and
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                             0 ... 0 0 -C 1 

                           0 0 0 -C 0 

                                                               0 0 0 ... 0 -ri 

                                               _TI 0 0 0 0 r
i 

0 

   El Ep 
                 T2 T2 - 12 T2 

(2T-2s+l) (2T-2s+l) 

 X(S-1) T2 - T2 x(T-s+l) T2 T2 0 

                               T2 T2 T2 T2 'C 2 

                                                           T 2 T2 'r2 'r2 T2 

0 

                                                                     'r 
2 T2 T2 T2 'C2. 

We write IZI= V IP, I P )II RP= V and IZ= (a a The null                                      _P P I P 

hypotheses can be constructed by setting A=- and/or Ti =,r 2=00' When 

A=-, we have v,_2v,_1+)j,-2~0. When r 1 =,r 2=00 we have f t-f I-s=O and 

f +...+f t-.,,=O. 

Remark 1.2. Models (1.7) and (1.8) do not correspond with each other 

exactly. but their practical effects are almost equal. 

Theorem 1.4. 

                = (F'F) -'F'z 

2              = (z-Fj)'(z-Fj)1T 

            2 - logIL 2, A, -ri, _r2) = -T-log2rc &2+ (T- 2) - logA 

                                                 +log I Ep'Ep I -log I Fp'Fp I -T 

where z= 3T-2s-l' with 0 1 being the zero vector of size i, 

F=[F,,, Fp] and
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               12 IS -1 02x(T -2) 0(s-I)x(T-s+1)" 

             O(T-2)x2 O(T-s+I)x(s-1) IT-2 IT -s+1 

 F1 I Fp 1 

             ;L 2 DI O(T-2)x(s -1) A -2'Dp O(T-2)x(T-s+I) 

         0(2T-2s+l)x2 Ep(Ep'Ep)_1Ep'E,, 0(2T-2s+1)x(T-2) Ep 

with Ojxj being the zero matrix of size ixi. 

Proof. The overall likelihood is given by 

                                               _3T-s-1 T-2 1      L (a, CT2, 'I, TV _r2) = (2x 02 2 A 2 1 Ep'Ep 1 2 expl- 1 (z-FR)'(z-FjZ) 
                                                 2c2 

Maximizing L( _n, a 2, .1, -ril T2) with respect to Rp, we obtain 

           jP=(Fp'Fp)_1Fp'(z-F,,jZ ,                                  - T) 

Then the integrated likelihood is obtained as 

                                                       T T-2 1 -1 
     IL(R CT2, A, T 11 TO = (2x CT2)-2A 2 iEPPEPi2iFPPFPi 2X 

                                  expj__;~~_2(z-FIIZ -Fpj )'(z-F,,IZ _Fp~P)I.                                            2a I P 11 

Therefor, we have 

                = (F'F)-'F'z 

2             = (z-F~)'(z-Fi)IT. 

Substituting i l and & into ILj(IZII a 2. A, ril TO ' we have 

            2 - logIL 2, A, -ril TO = -T-log2x& 2 + (T- 2) - logA 

                                                 +log I Ep'Ep I -log I Fp'Fp I -T. N 

     We estimate the remaining parameters A, Ti and -r2 numerically by 

using a grid search method. Evaluation of the critical values may be 
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possible by computer simulation. 

1.3.5. Smoothing of quantile data 

     Let Y 
i be a random sample of size nt from the t-th population 

with a continuous density P,(Y). We consider smoothing of quantile 

data yj(jJ) (t=l, ..., T, j=l, ---, m) with respect to t. where itJ=[n,aJ1+l 

and O<al< ... <a,<l. The following asymptotic result is helpful to 

construct a model for smoothing quantile data. 

Theorem 1.5 (Mosteller, 1946). If Pt(y) is differentiable in the 

neighborhoods of the population quantiles gla J and Pt(4ta 
J )*0 

            then the joint distribution of the sample quantiles 

                 tends to a m-dimensional normal distribution with 

means 4t, 1,-,tL,am and covariances 

           coV(YJ(f ), yg(j aj(l-ak) i:sk. m                    tj A)) = n
tPt(Alai )PI(4t,k) 

      Let Y a1=(Y1(tti)' -' Yt(ftm))" 4 tam L,=(E 11, 42t Y and 

 -P -3 -T 
             1Y. Our model is assumed as: 

            Y i. i. d. N(All a 2 Ct) t=l, T 

           LP i. i. d. N(-D~1D,g,, (D,'D,) 

where C, is the mxm matrix and 

                     1. -21. 1. 0 

           DI Dp 1. -21. 1. 

                   0 0 Im -21M 1,



The elements of C, are given by 

                          aj(l-a.) 
            Ctjk = CIkj = n

tPa ipak 

where p,,J=(p(O- 1 (ai)) and O(Y) is 

density (P(Y). We usually assume 

select the best fit one among 

likelihood. Write V
C,=(Y al .. .... V.T' Y 

               C1 0' 

                C2 
C 

              0 CT

  l:Sj;Sk:Sra 

  an assumed distribution with a 

several alternatives for O(Y), then 

   them by using the integrated 

                D=[D,,Dpl and

Theorem 1. 6. 

    = (C-'+,ID'D)-'C-ly
. 
 2 = ( (Y

.-A),C-1 (V a- A) +A (DA) 'DA) /T7n 

2 - IogIL (A,. a 2, A) = -Tm-log21c &2+ (T-2)m-log.1 

                             -109 1 C 1 -109 1 Ep'C-'Ep+ ADp'Dp I -TM

where

Proof.

  Ep 02mx(T-2)m 
            I(T -2)m 

The overall likelihood is given by 

                                      (T-2)m 
  L,(A, C2, A) = (27col' 2 ICI 

                       exp ((k                      1-2 CF2

 2 x 

a- L)C-I (Y CC-L) + (DL)'DL}
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2 Maximizing L(ga A) with respect to A
P, we obtain 

           AP = (Ep'C-'Ep+ADpDp)-'(Ep'C-'.V.-;LDp'D,g,). 

Then the integrated likelihood is obtained as 

                                Tm (T-2)m 1 1 
   IL(a ll 92, A) = (21c 02)- 2 '1_2 jCj__2jEP,C-1EP+'jDP,DPj 2X 

       exp ' f ( .y.-E,g,-EpA )'C- 1 ('Y E,,gj, -Ep~ ) t (D,L +DpA )'(Dlg +DpAP) 
             2U2 P P P 

where 

                   12. 

            E, 
O(T-2)mx2m 

Therefore, we have 

            A = (C-'+,ID'D)-'C-ly 

          2 = 
a-A) +A (DA)'D~)/Tm 

Substituting and &2 into IL(g,,C 2, A), we have 

     2 - logn, 2, A) = -Tm-log2x &2+ (T-2)m-logA 

                                         -log I C I -log I Ep'C-'Ep+;LDp'Dp -Tm. m 

                                                                                                              ~2 
     The log integrated likelihood logIb(~,' CT , A) is used for 

selecting A and 0(y), and for testing the null hypothesis. 

1.3.6. Smoothing of spatial data 

     Finally. we discuss smoothing of spatial data. In spatial 

smoothing, the strata are arranged in a rectangular lattice shape. 

Let Yj be a random sample of size 1 from the (i.,j)-th normal 

population N(tLj, C2) on a two-dimensional rectangular lattice, where 
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   i = 1, ..., T" j=l, ---, Te and T=Tr. TI. Write Y~(Yiil -1 YT
rTC)' and 

   9=(ILJJ. ..., ATrTC)'- We describe the relations between the densities of 

  the neighboring strata by 

   (1. 9) 4t4ij - gj+j. j - Ai-1. i - Aj, J+1 - fj j, J- 1 - i. i. d. N ( 0, 

   with i=l, ..., Tr, j=l, ---, T. and 

   (1. 10) AoJ ~ ILJJ ATr+l, J = ATrJ Afo ~ Ail Ai.T0+1 = Ai,Tc. 

  Model (1.9) is the two-dimensional version of Model (1.5). Condition 

   (1.10) is derived from the assumption that the normal difference of 

   the first order is equal to zero on the boundary. Our model can be 

  written in the matrix form as 

              DL - i. i. d. N(O , -eIT) or L - i. i. d. N(O , !!(D'D)-') 
                               T A _T A 

  where D is the TxT matrix constructed so as to satisfy (1.9) and 

   (1.10). The null hypothesis is expressed as A=-. 

   Theorem 1.7. 

                 = ('T+AD'D)-ly 

2               = ( (y-~)'(y-~) +A (D~)'D~) IT 

              2-logIL(& 2, A) = -T-log21c &2 +T - logA +log I D'D -log IT+;LD'D -T. 

  Proof. The overall likelihood is given by 

              L,(A, U2, A) I I                           (2Z (T 2) -TA 2 1 D'D 1 2 exp                                              2
o, 2 +A (DL)'Dg) 

2   Maximizing L(E.a A) with respect to IL, we obtain 

                   ('T+AD'D)-Iy. 
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Then the integrated likelihood is obtained as 

                                  T T I I 

          IL(02, A) = (2XU2)_2.12 ID'D 1211 7,+AD'D I 2X 

                    exp[-
                               2U 

Therefore, we have 

2 
                      +1 (DA)'DA) IT. 

                ~2 IL( 
CT2, Substituting cr into ;L), we have 

           2 -logIL(& 2, A) = -T . log2X &2 +T-logA +log I D'D -log I7,+AD'D -T. m 

1.4. APPLICATIONS 

     Two examples of applying the smoothing method to actual data 

follow. 

1.4.1. Cancer mortality in Japan 

     We analyzed the yearly data cited from Japanese vital statistics 

for the crude number of cancer death in males between 1965 and 1986. 

Figure 1.1 shows the results in the case of stomach cancer in males 

by the discrete spline. We observe that even in the crude number 

base, the annual mortality has been decreasing in recent years, 

though it is widely accepted that the adjusted mortality is 

decreasing. The goodness-of-fit of the simple linear regression, 

which is the null hypothesis in the discrete spline, is apparently 

bad. This is supported by the fact that the integrated likelihood 

ratio test statistic takes 7.18. To compare with an existing method, 

we analyzed the same data by using smooth in the familiar statistical 

software, S. The results are given in Fig.1.2. The general trends 
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are similar, but the estimated line in Fig.1.2 seems to be 

overfitted. A clearer difference between the two analyses is in the 

fact that ours involves the null hypothesis test. 

     We also analyzed cancer mortality data of other sites. The 

annual mortality of lung and pancreatic cancers in males appears to 

be increasing exponentially rather than linearly. Therefore, we 

assumed y,-LN(t4j, a 2 ) , i. e. , Iogy,-N(g,, a 2). Our analysis shows that 

the estimated lines are close to the estimated exponential regression 

curves. The estimated trend in lung cancer is exponential at the 

earlier stage of the period in study, and is going down from the 

exponential curve. On the other hand, pancreatic cancer shows better 

agreement with the exponential curve. However, the tests for the 

null hypothesis are still highly significant. The case of lung 

cancer is given in Fig.1.3. 

1.4.2. SMON patient incidence 

     According to leading Japanese epidemiologists, Subacute 

Myelo-Optico Neuropathy (SMON) is a tragic large-scale side effect of 

the drug, clioquinol. At the time when the etiology of SMON was in 

study, it was suspected that a relatively high incidence of SMON 

occurred in the summer. To illustrate the usefulness of the seasonal 

adjustment method, we analyzed the data for the monthly incidence of 

SMON cited from Table 7.1 in the Research Report by the SMON Research 

Commision between November 1966 and August 1970. The estimated line 

with the estimated trend and seasonal effects is given in Fig.1.4. 

The discrete spline is also applied and is given in Fig.1.5. Both 

estimated lines appear to be acceptable. More precisely. very 
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short-term fluctuations are observed in the seasonal adjustment 

method. On the other hand, the upper and lower peaks cannot be 

interpreted well by the discrete spline. In this case, the 

integrated likelihood ratio test statistic takes 50.32. Since the 

difference of the numbers of parameters in the models is 13, the test 

for the existence of seasonal effect is obviously highly significant, 

though we do not have explicit results on the critical value. The 

estimated seasonal effects show the gradual increase from winter to 

summer and the highest peak seen in September, followed by a sharp 

decrease.
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Figure 1. 1. 
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Figure 1. 2. Smoothing the data of Figure 1.1 by smooth in the

software S.
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Figure 1.3. Smoothing the data for 

     cancer in males by the discrete 

     simple linear regression (dotted 
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Figure 1.4. Fitting the seasonal adjustment model to the 

    monthly incidence of SMON (A) with the estimated 

     the estimated seasonal effects (C).
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Figure 1. 5. Fitting the discrete spline to the data of Figure 1.4.
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                          CHAPTER 2 

      SMOOTHING SERIAL COUNT DATA THROUGH A STATE-SPACE MODEL 

2.1. INTRODUCTION 

     In this chapter, we discuss smoothing* of serial Poisson count 

data with the non-Gaussian state-space approach and propose a 

likelihood ratio test for homogeneity of the Poisson means. 

     The state-space approach has been discussed with the emphasis on 

applications to engineering and econometrics. Consequently, primary 

attention has been paid to filtering and prediction rather than 

smoothing. In addition, the estimation of the initial state has 

received little attention, presumably because sample sizes are fairly 

large in those applications. Actually, the initial state has been 

assumed to be an outcome from a known prior distribution. However, 

this assumption causes an arbitrariness in making statistical 

inferences. To avoid such an arbitrariness, we assume that the 

initial state is an unknown parameter and give recursive formulas for 

obtaining the maximum likelihood estimate of the initial state. Then 

we can construct a likelihood ratio test which does not depend on the 

unidentifiable assumption. 

     Section 2.2 reviews a state-space model for smoothing serial 

count data. In Section 2.3. an estimation procedure and a test for 

homogeneity of the means are proposed. Computational details for 

implementing the proposed procedure are given in Section 2.4. 

Section 2.5 presents examples of application. Section 2.6 is devoted 

to further extension of our approach. A brief comparison with the
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method under the normality assumption is given in Section 2.7. 

2.2. ASSUMED MODEL 

     Suppose serial data Yl''*'$YT are outcomes from the Poisson 

distributions Po (g, ---, Po (AT) , respectively. We assume that A, 

changes gradually. To model the gradual change, we impose the 

difference constraint on the canonical link IogILt: 

            16 dlogA _ i. i. d. N ( 0, U2) 

where .6 denotes the difference operator. i. e. , 6Iogat=IogAj-Ioga, _1 and d 

is the difference order. The smoothness of the resulting estimate is 

2 defined by d and c These parameters can be estimated by using the 

likelihood. However, in consideration of the testing problem, we 

focus on the case d=1. When d=1 and u 2=0, we have 

           Al ~ 42 AT 

Using this fact, we construct the test for homogeneity of the means. 

i. e. . the test for Ho :a 2= 0 against HI :0 2 >0. The alternative 

hypothesis means that A, is not stable but changes gradually. The 

case da2 will be discussed in §2.6. 

     The difference constraint is regarded as a prior distribution 

for A, in the Bayesian context. As a prior distribution, a conjugate 

prior may be more familiar. However, in smoothing, there is no merit 

in assuming a conjugate prior. Actually, the calculation of the 

likelihood cannot be simplified, even if a gamma distribution is 

assumed for A,. 

      The state-space form of our model is given as follows. 
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Lemma 2.1. The model for d=l is written in the state-space form as 

                                 -At Yt 
T (2. la) g (yt I gt) = e At /Y I t= 1, 

                                           2a 2 (loggt _1)2 (2. 1b) h(g, Igt-,, 02) = (2x) 2 ag -'e)cp _Iogg t t=2, T. n 

1 Recall that g, is an unknown parameter to be estimated. 

2.3. PROPOSED PROCEDURE 

     The procedure proposed in §1.2 is applicable to the current 

problem, but a minor modification is necessary. As in the procedure 

in §1.2. we estimate g, and cr 2 by maximizing the integrated 

likelihood 

                                T T 

(2. 2) ILOL1, a 2 0 R g(YjIgj)- R h(jLj j4t_j, U2 ) dIL2-dILT 
                                         9=1 t=2 

However, since it is difficult to directly maximize the overall 

likelihood in non-Gaussian smoothing, we introduce the smoothing 

density to estimate fL2. _..' 9T' 

Definition 2.1. The smoothing density of g, is defined by 

                         _ _ T T (2. 3) s(g, 12. gl, a 2 10 ... 10 H g(Yj hut) 0 h(gt jgj_j, a 2 ) d42 ... dtLj_jdgj+j-dILT 
                                             t=1 t=2 

where Y= ( Y1' ...' YT) " 

We estimate fL2'---'tLT by taking the expectations with respect to the 

empirical smoothing densities ). The smoothing density 

is a marginal posterior density. Therefore. our estimates of 92'...'9T 

are the empirical posterior means. 
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     The test statistic for homogeneity of the means is defined by 

         S = 2-log I L'(~J' &2)11L'(~J' 0) 

where ~, attains the maximum of IL(g,.O). The critical value c . is 

hard to obtain analytically, and consequently we obtain empirical 

critical values by computer simulation. Table 2.1 presents these 

empirical values for the level a=.05 with several sizes T and means 

141, each of which is obtained from 10000 trials. We observe that 

they slightly increase with the mean tL, but are stable as a whole. 

2.4. COMPUTATIONAL DEVELOPMENTS 

     To implement our procedure, it is necessary to calculate the 

multiple integrals in Eqs.(2.2) and (2.3). The integrations are 

facilitated by applying recursive formulas. 

Theorem 2.1. The integrated likelihood IL(1u,,c 2 ) can be calculated 

recursively by using the formulas 

0 
(2. 4a) (1 ('Y t lAt-1, CT 2) = fr(kt IfLt. U2 )h(rLi Jgj_1, CF2 )d4i 

(2.4b) r(y i-1 ltti_l' CT2) = g(yt_l ItLt_l )(I(yt IfLt_J, a 2 

where g(k t I tti_J, U2 ) and r (,y 1 02 are the conditional densities of 

t 2 = (YV ...' YT)" 

Proof. Repeating (2.4a) and (2.4b) alternately for t=T,---,2 with the 

                       YT U2 - 2) , initial condition r( _ I 1UT' ) =9 ( YT I tT)' we get r(yllgl, a which is 

just the integrated likelihood.0 

In numerical computation, by executing the above procedure for once,
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we can obtain r(,y I I t1j. U2 ) as a function with respect to ti, given yl 

and G2. Therefore, we can estimate ~j given 02 with a small amount 

of computation. However, since g(-) and r(-) cannot be normalized at 

any step in the above procedure, it is difficult to evaluate 

r (V1 ILI, U2) precisely in its absolute value. Consequently, we use 

    I tL
I , CT2 ) &2              only for estimating To estimate and to evaluate 

the log integrated likelihood, we use the following procedure. 

Theorem 2.2 (Kitagawa, 1987). Let V
,=(Yl, ---, Yj)'- The log integrated 

likelihood logIL(fLI, 0.2) can be calculated by 

T 
          log.TL(ILI, a 2 Ogg YJ I ttl ) + X logl (YJ IV t-1, 41, a 2 

                                                            J=2 

where 

           I(yt IV- I-1, U" CF2) = ro g(yt ItLI)POLI I.Y t-1, (LI, a2 )dg, 

and each P(tL,IV 2 is provided recursively by using the 

formulas 

(2.5a) P(ILt 12 - tLj, L, 2 ) = 'rh (ttj IfLt_j, Cr2)f(tLt_j ly fL1, U2 )dtLj-j                             f-1 0 

(2. 5b) Ptlt I.Et, 41, Or 2 = g(YjIAJ)P(AJIV I-1, ttj, 17 2 )/1(YjIY t-1, fL1, CY 2 

Here, I (YI gj, a 2 ), P(Ally 
I-I' fj, U2 and f (IL I I y 1, 41, a 2 denote 

conditional densities.m 

In the procedure (2.5), the initial condition is 

f(Al ly 2 -           CT with 3( being the Dirac distribution, and 

the time t runs from 2 to T. We estimate by maximizing 

logIL(~J, CT 2 ) using a line search method. 

     After estimating ~, and &2, we may calculate the empirical 
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smoothing densities. 

Theorem 2.3. The smoothing densities can be calculated by 

                        2) _ q(Y1+1 IlL
t, 02)p4g IV 2 t=2, ---, T-1.              s (g tL1, a _ t, tLI, a 

Proof. This result follows immediately from the Bayes theoremn 

When t-T, the smoothing density is identical with the filtering 

density f(9TIYT' ILV 02). 

     We implement the above formulas by using standard numerical 

methods (cf., e.g., Dahlquist and Bjorck, 1974). Each function in 

the formulas is approximated by a piecewise linear function with m 

equally spaced knots defined on the interval NL,,,e g,.], and the 

trapezoidal rule is used for integration. The constants we actually 

used are m=257, tLjn=c, gm==m-c and c=2-max y,/(m-1). 

2.5. APPLICATIONS 

     We apply the proposed method to three sets of weekly disease 

incidence data as illustrations. 

     The first data set consists of the weekly incidence of acute 

hemorrhagic conjunctivitis in Chiba-prefecture in Japan during 1987 

collected by the National Infectious Disease Surveillance Program. A 

rise in incidence of this disease was reported in 1985 and 1986. 

However, in 1987, the number of cases was relatively small, and there 

was no clear incidence trend. It is of interest to examine the 

possible existence of some systematic pattern in these data. 

Figure 2.1 shows the data and the estimated trend plotted against 

time. As seen in this figure, the estimated trend is at an increased 
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level between about the 28th and 38th weeks. It would be difficult 

to detect such an increase, which is not readily apparent in the 

data, without a suitable smoothing method. The test statistic S 

takes the value 4.8, which is greater than the critical value. This 

indicates that the mean weekly incidence was not stable during the 

period, but changed gradually. 

     The second data set consists of the weekly incidence of acute 

febrile Muco-Cutaneous Lymphnode Syndrome (MCLS) in 

Tottori-prefecture during 1982 collected by the Study Committee on 

Cause of MCLS. Figure 2.2 shows the data and the estimated trend. 

In this year, a nation-wide outbreak was reported. The data shows a 

clear rise in incidence. The estimated trend has a peak around the 

17th week, followed by a sharp decrease, and after that it maintains 

a fairly constant value until the end of the year. In this example, 

inspection by eye may yield a trend similar to the above. The test 

statistic S takes the value 20.4. 

     The last data set contains the same MCLS data as in the previous 

data set. for 1983. Figure 2.3 shows the data and the estimated 

trend. While the total number of cases in this year was not much 

smaller than in 1982, the incidence pattern was not as clear as in 

2 
the earlier example. In the present case. a = 0 and the estimated 

trend is a horizontal straight line. This result agrees with the 

report by the Study Committee on Cause of MCLS. By definition, S 

takes the value zero. 

2.6. EXTENSIONS 

     An advantage of the proposed method is that it can be extended 
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to a wide class of models. Some of these extensions are now 

discussed. 

     First, we consider the second difference constraint case, i.e., 

d=2, which is often employed in the smoothing problem. 

Lemma 2.2. The model for d=2 is written in the state-space form as 

  g(Yt1AJ) =e_AJ 14 Ilyt I t = 1, T 

1 

  h(ILt JILI-1, ILt-2' a2) = (21r) _T( ug,) -'expf - 2102 (log4t_2logttt-1 +1094t-2 )2 1 t=3, T 
where g, and g. are unknown parameters to be estimated.m 

The recursive formulas for this model can be derived by modifying the 

discussions in §2.4. Figure 2.4 presents the results of application 

of the procedure with d=2 to the data given in Fig.2.1. The 

estimated trend is smoother than that in Fig.2.1. It may be more 

appealing, but the trends are very close to each other. The 

extension to other higher order cases is straightforward, though the 

required computer memory size increases exponentially with d. The 

required memory size is roughly estimated to be proportional to T Md 

     Next, we consider the extension to the binomial case. 

Lemma 2.3. The model for smoothing serial binomial data 

corresponding to Model (2.1) is written in the state-space form as 

  g(Yj 11Lj) =M C Yj tL,)"11-Yt t = 1, T                     t yifLt 

             _1 )21 
  h(ILt 14j-1, a 2 )=(270 2{CfLt( 1-fLd exp - 1 log fLt -10 4t-1 t=2, T.m                                     1 2 G2 1-fL, gl_4t_1 

The recursive formulas mentioned in §2.4 are applicable to this model 
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with the minor modification of replacing the domain of integration 

(0, -) by (0, 1). 

     Finally, we add that our approach can be extended to include 

explanatory variables. Several authors have discussed the regression 

problem with time-dependent coefficients for serial non-Gaussian 

data. West, Harrison and Migon (1985) discussed dynamic generalized 

linear models. Zeger and Qaqish (1988) discussed quasi-likelihood 

Markov models. However, they did not attempt to evaluate exact 

likelihoods. Our approach enables us to evaluate exact likelihoods 

even in regression models with time-dependent coefficients, though it 

requires a computer with a large memory capacity. Therefore, it 

seems necessary to develop a numerical method with reduced memory 

size requirements. 

2.7. THE METHOD UNDER THE NORMALITY ASSUMPTION 

     It may be still appealing to assume normality in (2.1a) and 

(2.1b) even in the analysis of serial count data, because of its 

simplicity and familiarity. However, the characteristics of the 

Poisson and normal distributions are quite different, especially when 

the means are small. Therefore, it is desirable to assume the 

Poisson distribution for count data, because it is more realistic. 

     The comparison of smoothing methods is unfortunately difficult 

since preferences between fitted trends are largely subjective. To 

illustrate this, we present Fig.2.5, which gives the estimated trend 

with the first difference constraint under the normality assumption 

by using the data in Fig.2.2. In this figure. a relatively large 

wave is observed towards the end of the period. On the other hand,
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the general shape is close to that in Fig.2.2. 

     The comparative study of tests is easier since we have objective 

criteria such as power. Freedman (1981) assumed the alternative 

(Pl' -*P P12)~(- 'Olt - 103' 101, 085, . 076, . 073, . 076, . 076, . 073, 

.075, .073, .088) to compare the power of several tests. This 

alternative gives a gradually changing trend. We assume 

(41- ***' 412)~(Pl' ...' P12)N and N=100. The empirical lpowers at the level 

.05 with 10000 trials are .202 and .167 for the proposed test and the 

test obtained under the normality assumption, respectively. Another 

simulation study for the case 441' ...' fLl2)=( 1 ) shows that the test 

obtained under normality is slightly liberal. It is reasonable to 

believe that the reduction in power is due to the inappropriate 

normality assumption.
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Table  2. 1. 

with

Empirical critical 

10000 trials.

values c, for the level a=. 05
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T 

---------------------------------------

 10 20 30 40 50 

---------------------------------------

.41 33 . 34 . 36 .35 

.43 32 .32 .31 . 33 

.41 .37 .34 .37 .34 

.47 38 .33 33 37 

.43 .42 .35 .39 .37



Figure 2.1. Observations (x) and estimated trend (solid line) with 

     the 1st order difference constraint for the weekly incidence of 

     acute hemorrhagic conjunctivitis in Chiba-prefecture in Japan 

     during 1987.
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Figure 2. 4. 
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                          CHAPTER 3 

            BAYESIAN DETECTION OFSTRUCTURAL CHANGES 

3.1. INTRODUCTION 

      Let Vj,---,yT be a sequence of observations taken at equally 

spaced intervals. 

Definition 3.1. A sequence o f random variables Yl,---,YT is said to 

have n change points at i(l),---.j(-n) (1:~j(l)< ... <j(n)<T) if the density 

of y= (yl, ---, YTY has the form 

(3. 1) P(Yljj(l)n ... nj An), N=n, e Pj(y 16                                            0 i =O f i 

where JJM is the event that the sequence has a change po int at 

j(i); N is the number of change points; V , = (Yj(f)'1' -, Yi(i.1)) , with 

j(O)=O and j(n+l)=T; p,(y i ie, is the density of y i with the 

parameter e i and e f*eil ( io V ). 0 

In this chapter, we consider the problem of making inferences about 

change points under the conditions that the places of change points. 

the number of change points and the values of e f 's are unknown. 

     Since Page (1954), the change point problem has been considered 

by many authors from various viewpoints. (For references. see 

Poirier (1976). Zacks (1983) and Broemeling and Tsurumi (1987)). 

However, most studies have been concerned with the detection of a 

single change or the detection of multiple changes by using a 

stepwise procedure; as a result, few studies are available on the 

problem of detecting multiple changes without using a stepwise 
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procedure. Smith (1980) is one of those few works, in which he 

suggested the usefulness of the Bayesian approach for the multiple 

change case. 

     In this chapter. we are concerned with the problem of detecting 

multiple changes without using a stepwise procedure. To solve this 

problem, we propose a method for evaluating the posterior 

distribution of N and the posterior probability of each J, 

unconditionally. We also present an approximation procedure to 

decrease the amount of computation. 

     In Section 3.2, a Bayesian formulation of the problem is 

presented. In Section 3.3, the detailed analysis is given for 

binomial data and the Lindisfarne scribes problem is analyzed. In 

Section 3.4, an approximation procedure is presented. In Section 

3.5, changes in the regression case are studied for two specific 

models; the simple regression model and the discrete spline, and 

numerical illustrations are also provided. 

3.2. A BAYESIAN FORMULATION 

     In this section. we derive the posterior distribution of N and 

the posterior probability of JV 

     When the sequence is assumed to have n change points at 

j(l),---,j(n), the density of y is given by (3.1). Assuming a prior 

density w(6) for 6; where 6=(6 
0 the integrated likelihood of 

{j J(1) n ... nJ J(,L), N=n) is obtained as 

           P(Vljj(l)n ... njj(,n)' N=n) = f ... fp(yljj(l)n ... ni J(71)' N=n,e)w(O)de. 

By Bayes',theorem, the posterior probability of J J(1) n ... nJj(,) given y 
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and

                                     P (V I N=n) 

where w(JiMn ... njj N=-n) is a prior probability of Jj(i)n ... njj(-) 

given n and 

          p(VIN=n) XP(Yljj(l)n ... njj(,), N=n)co(Jj(i)n ... nij(,.) I N=n) 
                                                    -Q,n 

                      D.n ((j( 1), ---, i(n) ) 11:5",j( 1)< ... <j(n)<T). 

Taking the sum of P(Jj(1)n ... nJj(,n) ly, N=n)' s which involve J,, the 

posterior probability of J, given y and n is obtained as 

          p(Jt IV, N=n) = X p(ij(,)n ... nij(,n) IV, N=n) 
                                     D-m t 

                D, f (j ( 1), ...' j (n) ) I 

                         3k Such that j(k)=t 1:~k;~& 1:~j(l)< ... <j(n)<T). 

On the other hand, the posterior probability of N=n given Y is 

provided by Bayes' theorem as 

          P(N=n1y) = P(ylN=n)w(N=n)                       P(Y) 

where co(N=n) is a prior probability of N=n and 

       T-1 
P(2)= Z P(ylN=n)u)(N=n). The posterior probability of J, given y is 

           7L=0 

obtained as 

                                 T- 1 

         Wily) = XP(JtIy,N=n)P(N=nIV). 
                             n=1 

     The necessary ingredients to evaluate the posterior 
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n is provided as 

       P(jj(i)n ... nJj(-n) I k' N=n) 

                    P(Ylj,(,)n ... nji(,), N=n)co(Jj(i)n ... nij(,,) I N=n)



probabilities in the above formulation are p(VIJJ(l)n ... njj(-)' N=n) , 

W(Jj(1)n ... nij(,) I N=n) and co(N=n). Here, we assume the following prior 

probabilities used in Smith (1980) for a)(JiMn ... nij(,,,) I N=n) and 

co (N=n). 

                                        _JC" 1:sn<T             W(Jj(1)n ... nij(..) I N=,n) = T 

          co (N=n) 1 O:rn<T.                       - T 

The remaining ingredient, the likelihood of J={Ji(,)n ... njj(,,)' N=n) is 

provided concretely for some models in Sections 3.3, 3.5.1 and 3.5.2. 

3.3. LINDISFARNE SCRIBES PROBLEM 

     The Lindisfarne scribes problem is one of the well-known 

examples of the change point problem. The aim in this problem is to 

make inferences about changes of scribe by using the data on the 

number of occurrences of present indicative 3rd singular endings s 

and 3 in each section of Lindisfarne. Table 3.1 shows the data taken 

from Smith (1980). These data have been analyzed by Smith (1980), 

Silvey (1958), Pettitt (1979) and Carlstein (1988). The latter three 

authors drew the conclusion by using some test statistics that the 

change occurred after the 5th section. Smith (1980) evaluated the 

posterior probabilities of up to two changes and concluded that the 

change occurred after the 4th section and again after the 5th 

section. In this section, we apply our method to the data of 

Lindisfarne and compare our results with theirs. 

     Let m, and _y, be the numbers of occurrences of present 

indicative 3rd singular endings and &-forms at the t-th section
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(t=l,-,T), respectively. Similarly to Smith (1980), we assume the 

binomial distribution with parameters Mt and ef for y, 

(t=j(i)+l, ---, i(i+l), i=O, ---, n). Then the likelihood of J is written as 

                                      C eY'(l-e,)m'_Y',)(e)de           P(F_1J) = f ... f I Yi i                    1=0 fjo+lm 
where 6= ((90, ---, 6n). 

     As co(6), Smith (1980) assumed a conjugate prior. This is one of 

several possible selections. On the other hand, we specify the model 

by the maximum likelihood estimate of e, i.e., we place our 

confidence on the maximum likelihood estimate. Then we define the 

likelihood of J by using the maximum likelihood. The following lemma 

is immediately obtained. 

Lemma 3.1. The maximum likelihood estimate of 6 is given as 

            (i=O.---.n) and the maximum log likelihood is given by 

                          T -n J(i+l)     logP (Y I J, a) E log, t CY I t z z Yj'log6i+(Mj-Yj) -log( 1-61) 0                           t=1 i=of=J(i)+11 

     It may be a possible selection to use the maximum likelihood 

p(yJJ,6) as an estimate of P(ylJ). However, the maximum log 

likelihood has a bias in the following sense. 

Lemma 3. 2. 

          logp( .YIJ, 0)-Ezlogp(zlj, 6) 

                                 T TL 

                       Z (1ogMtCy1-Ezlog,,Cz,)+ z f 1 (01-61) -log                                      t=1 i=O 

where Ez denotes the expectation under the assumed distribution of Z, 

                    J(i+l) 
p(zJJ,6) and f,= Z mi (i=O, ---, n)                       I=J(i)+l
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Proof. This is a direct consequence of the definition.0 

This bias increases in average as dim(6) becomes large, suggesting 

that the use of the maximum likelihood causes an overestimation of 

the number of change points. To prevent such an overestimation, it 

is necessary to correct the bias. However. since the true parameter 

6 is unknown, the present form of the bias is useless. Consequently, 

we employ the predictive log likelihood to correct the bias. 

Definition 3.2 (Kitagawa and Akaike, 1982). The predictive log 

likelihood is defined by 

          logp,~,,Od (Y I j) = logp (V I J, 6) -E logp (Y I J, 6) -Ezlogp (Z I J,                                    - YI 

where Ey denotes the expectation under the assumed distribution of 

data.0 

Theorem 3.1. 

         Ey [logp (Y I J, 6) -EIogp (Z I J, 6) 

                                 ed. 6'-2e'+46'_3e,+_65 +O(fj                         fiei(l- f '(91 ( 1-ed 2                                    =0 f i 

Proof. The expectation of the bias can be written as 

         Ey [logp (Y I J, 6) -EIogp (Z I J, b) 7L f,Ey (OC61) -log 
                                                 1 0 

Using the power series, we have 

                                                       ) J_ 1 +          E+6j-ej) -log (1-e                                     ej )j                  (1-6j)] = J= 
Therefore, substituting the central moments, we obtain
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        Ey 11ogP (Y I J, 6) -Ezlogp (Z I J, 6) 1 

                                             6'-219'+462 -3t3j+-~~ 
                                        2 2 6 +O(f 1 3) 0                  i=O f f6i ( 1-6 1. 

Using this result, we define the predictive log likelihood in the 

current problem as 

                                                    6 4_ 263+462 -36j+-~ 
                                                 1+ +- 6     logpl~'rea (Y I J) = logP (Y I J, fi6j(1-6j) I. 

As the estimate of P(VIJ), we use expflogp Pred (RIJ)). 

     Now we apply our method to the data of Lindisfarne. Table 3.2 

presents the estimate of each P(N=nly) as well as the posterior mean, 

mode and median of N and Smith's results. Table 3.3 presents the 

estimate of each P(Jily). It is difficult to precisely compare our 

results with those of Smith because he has not presented the 

posterior probabilities of more than two changes; nevertheless, there 

seem to be some differences between them. While the posterior 

probability of two changes is quite dominant in Smith's results, it 

is not so dominant in our results. This difference may be caused by 

the difference between the assumed distributions for 6 and by the 

different policy for the bias correction. However, in spite of this 

difference between both results, we can agree with Smith's 

conclusion. Actually. if we take the posterior mode of N, the 

conclusion that there are two changes is obtained. From Table 3.3, 

it is seen that the top two P(J,jV)'s are obtained at the 4th and 5th 

sections.
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3.4. AN APPROXIMATION PROCEDURE 

     We call the evaluation of the posterior probabilities by the 

method mentioned in Section 3.2 the full computation. In the 

Lindisfarne scribes problem, the full computation was feasible. 

However, the number of estimations of P(ylJ)'s in the full 

                                             T-1 
computation, which is given by ZT-1C,' increases exponentially with 

                                           n=O 

the size of the sequence and quickly the full computation becomes 

infeasible. In this section, we present an approximation procedure 

which enables us to evaluate P(JjjV)'s even when the full computation 

is infeasible. 

     The flow of the approximation is as follows: 

     0. Calculate P(ylN=O), and set n - 1. 

     1. Calculate P(JtjkN=n) (I:St<T) by the method in §3.2. 

     2. Let m be the number of repetitions of Step 1. If n<m then 

         set n - n+l and return to Step 1. 

     3. Determine whether n is sufficiently large to terminate. if 

         so, then go to Step 7. If not. then set n - n+l. 

     4. Let a be a small value. Make the index set 

          -T,,={ijp(J,1y,N=n-1):~-.a 1:~-.i<Tl and calculate 

        g(n. t)=- Z P(ylJ) (1:~t<T) under the following assumption: 

                                   T- 2C-n- 1 - g (n- 1. t 
                                          T-2C-n-2 

          g(n.t) 
P(21j)+ p (i I y, N=n- 1) g (n. k) 

                                         ke ?L a 1- P(Jkjy,N=n-1)                                0
71 n-l 

                                                                  a ...                       -Q7, j= ((j ( 1), , i (n) 

                                    (.j ( 1 ), ..., i (n) i:~;n) 
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     5. Using g(n,t)'s and the relations 

           P(j,Iy,N--n) g (n. t ) P(ylN=n) T-1                          C, - P (V I N=ii-) n Z g(n. t).                                      T-1 T-1C.' t =1 

        calculate p(J, IV, N=n) (1:~t<T). 

     6. Return to Step 3. 

     7. Calculate P(JjIV) (1:st<T) assuming the prior 

                 1 k:~n            u)(N=k) n+1 

                     0 k>n 

     The number of estimations of P(VIJ)'s is decreased in Step 4 by 

approximating g(n,t)'s. The approximation of g(n,t) is introduced as 

follows. Consider the case where Jk is assumed to be an unimportant 

event, i. e. , I,,,= (k) . In this case, it may be reasonable to 

consider assigning approximate values to the predictive likelihoods 

of J's which involve Jk in order to decrease the amount of 

computation. To obtain such approximate values, we set the following 

two assumptions. The first assumption is that the mean of the 

predictive likelihoods of J's which involve Jk when N=n is equivalent 

to the mean of those when N=n-1. By this assumption, we have 

                   k) T- 2Cn- I - g (n- 1, k) 
                                T-2cn-2 

On the other hand, g(n,t) (tok) can be written as 

           g (n. t ) = g, (n, t +92 (n. t ) 

              gl(n t) P(k1j) 92 (n. t P(Ylj). 
                                   07L                                                                          D7L

, 

We evaluate gl(n,t) by the method mentioned in Section 3.2. However, 
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since 92(n.t) is the sum of the predictive likelihoods of J's which 

involve J., we assign an approximate value to it. An approximate 

value can be obtained by using the relation 

          ~ 92(n, t) = (n-I)g(n, k)              t*k 

This relation suggests that we may distribute (n-I)g(n,k) into 

92(n,t)'s (tok). Using the posterior probabilities when N=n-1, we 

set the second assumption 

                       P(j,jy,N=n-1) 

           92(n, t) n-l (n-l)g(n,k) tok. 
                      1- P(j,jVN=n-1)                                 n -l 

The approximation of g(n.t) has been obtained. 

     The above two assumptions may be ad hoc. However, a close 

approximation increases the amount of computation. We consider that 

they are acceptable ones in practical application. 

     In the approximation procedure, there are some arbitrary 

constants, m and m A basic strategy as to their choice is to chose 

the largest m and smallest a as large and small, respectively, as the 

computer may permit. By some experiments, we have found that: 1) 

When m is greater than the mode of N. the possibility to miss change 

points is very small. 2) When a is less than a certain value, as the 

number of elements of lna is less than about T-n-6, relatively good 

approximate values are obtained. 

3.5. DETECTION OF CHANGES BY REGRESSION MODELS 

     In this section, we give the estimate of p(ylJ) for two 
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regression models, the simple regression model and the discrete 

spline. In addition, we show an example of the application of our 

method by using the discrete spline. 

3.5.1. The simple regression model 

     Assume the simple regression model 

           Yt = a,+Ot+e, 61 - i. i. d. N(O, a') j( i )+1;5t:sj( i+l) 

for Then the density of y i can be written as 

                                             Xi 

(3. 2) PS(v IL,' a 2) = (21r 2 a--fexp 1 (k -Aik Y(v -Aik              1 1-2 C,2 i i i 
where v,=(aj, Kj=dim(y and 

              1 i(i)+2 
         Af 

Further, since the simple regression model is inapplicable to y when 

Ic,=l. we assume the following outlier model for such 

                        2) YJ(,)+,-a, (3. 3) PN(Yi U C 

where v i= (a,) and 9 denotes the standard normal probability density 

function. Using (3.2) and (3.3), the density of V can be written as 

          P(Ylj,e) PN(V i Iv,, CT 2 PS(Y i IV,, a 2 

where 6=(v 0 1) n " a 2 0;~i:sn) and 'G=i'jKj~2 0:5i:Sn). 
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Lemma 3.3. The maximum likelihood estimate of 6 is given as 

          af = yj(f)+l for ieli 

              = (AfAj)-1Aj'y for ieIG 

         2 = 1 z (Y                               -Aj~ 
                    iel G f 

and the maximum log likelihood is given by 

          logp (V I J, 6) _j. log2X &2_ T 2 

Proof. This result is obtained immediately by maximizing the log 

likelihood 

  logp(klj, 6) = -1-log2xcr2- 2 TO                   2 (YJ(,)+,-a,) +                                    2 ell ir=IG 

Lemma 3.4. 

          logP (V I J, 6) -Ezlogp (Z I J, 6) 

                  = ' ITCT2+ ~ (a,-&, )2 + (V )'A,'A,(v T 
                      2&' '. I iLzG -i Z, 

Proof. This is a direct consequence of the definition.m 

Theorem 3.2. 

         E , [Iogp (Y I J, t)) _Ezlogp (Z, J, 6) T(I+#I,+2#IG) T 
                           (,kX i-2#IG-2) 2 

where #I, denotes the number of elements included in the set 1,. 

Proof. This result follows from Lemma 3.4 and the following 

properties. 
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            (a,-a, ) 2 _ 2               2 X(I for ieI
l 

2 
                   LT 2 X(2) for ieIG 

         T&2 2               2 X E k 2#ZG)           a (fEIG C 

         2 2_ where X(k) denotes the X distribution of order k .m 

From Lemma 3.3 and Theorem 3.2, the predictive log likelihood is 

obtained as 

                           T ~2 T(Tt#11+2#IG)          logpl"' (Y I J) --tlog21ra - 2 ('k'T i-2#'G-2 

We use exp(logpi~red(y1j) as the estimate of the likelihood P(ylJ). 

3.5.2. The discrete spline 

     Harrison and Stevens (1976) presented three examples of 

sequences including a single change, which are shown in Fig.3.1. 

Although they generated these sequences by the linear growth model, 

it is possible to represent them by the model mentioned in the 

previous section. For example, the outlier case can be represented 

by applying model (3.2) to the data at 1;:~t:~4 and 6:5t:5;10 and applying 

model (3.3) to the data at t=5. However, if the data at 1:5t:~4 and 

6:~-.t:~~10 are on a curve instead of a straight line. the model mentioned 

in the previous section becomes inappropriate. For such a case, the 

discrete spline discussed in §1.3.3 is useful. 

     Assume the discrete spline
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for y 

(1. 6) 

(3.4) 

where

     yj - i. i. d. N(gj, U2 

2 
                        i. i. d. N(O, -9-1) A 

    Then the density of y can 

as 

                                        Xi 

 PD(,Yi I L,) a 2, '1) = (2Xa2) 2 lVil 2 

v = 1 ~p     4j( i )+l' ILJ( 1 )+2 Vi=IX,+jBjBj 

          1 0 

         0 1 

    A, 1 -2 Bi 

              Ki-2 1-Ki

  j(i)+lSt:~j(i+l) 

  j(i)+3stsj(i+l) 

be written by using

exp I-   1 ( 

  2U2 

and 

0 

0 

1 

2 

    Ki-2

the f orm

 ki -AiL d,Vfl(Yf-Ajk f

0 

0

xi-3

0

1

On the other hand, since the discrete spline is inapplicable to y 

when K,:~2, we assume the following model for such 

(3. 5) 11.) e a 2 J(i+l) 1. . (y, -a,)          PN(F-i tjo+l U or 
where v,=(a,). Using (3.4) and (3.5), the density of y can be 

written as 

                                             2 2            P(V I J
, 61 A) = 

f r=1 U12 Plv(vi I kil a PD(Y-f Iv,, a , A) 

G where 6=()) V Cr2), 1j={iIic,=l 0:~i:~n), -T2= /cj=2 0:~i;sn) and 
         - -0 --n 

IG=WKi;~3 "':Sn)' In this model, the maximum likelihood estimate of 

;L is hard to obtain analytically. Consequently, we first assume that 

A is f ixed.
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Lemma 3.5. The maximum likelihood estimate of 6 is given as 

           j, f yj(i)+l for ie=-Il 

                  -Vj(f),1-IYj(f)+2 
            aj = - 2 fO r i EEI 2 

              = (AjWj1Aj)-1Aj'V-'y for iE=-IG 

            2 = 2 + Aj~ ),Vil(v 
f-A                 T (YJ-aj) -f                           C=j =JM+1 fc-Z            l'E2'j(f+l) G 

and the maximum log likelihood is given by 

                                                    2_1           logp(FIj, 6, A) = -1-log2ga logiv, I-i                       2 2 ' 
G 

Proof. This result is obtained immediately by maximizing the 

likelihood 

     iogp(vii, el A) -1-log2x C2_ log jVj I 2 

G 

                     02 J~ (y,-a, )2+ -Aj                             2 U = , )+I ,                                  "
2tj('+') G 

Lemma 3.6. 

     logp(ylJ, 6, X)-Ezlogp(ZjJ, 6, ;L) 

      = 1 ITU2+ (a,-&, )2+ 2(ai-ai) 2 + 
       &2       2 1 1 2 G 

Proof. This is a direct consequence of the definition.0 

Theorem 3.3. 

          E,[IogP(Y]J, 61 ;L)-Ezlogp(ZIJ, C), A) T(T+#11+#12+2#Ic,) T                                          1 2(#1 2+ xj-2#Ic;-2) Z'

log

          V i )1. 0

iT 
2
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Proof. This result follows from Lemma 3.6 and the following 

properties. 

                                             2 -1 
              a 2 XM for iE= 1 

            2 (a, -ci, )2 2 -1 
               a 2 XM for iE= 2 

2 
                       2 X(2) for ic-IG 

         T&2 2               2 X #12+ E Xf-2#1G) -0 
                             ielG 

From Lemma 3.5 and Theorem 3.3, the conditional predictive log 

likelihood is obtained as 

          logppred (2 1 j, 'I) = -1-log2x &2_ log IV, I - T(T+#Il+#I2+2#,G)                          2 ik 2(#12+ Y, Xi-2#IG-2)* 
                                                                                         fF-IG 

We estimate P(VIJ) by feXP (logpPred (Y I j, j) )co(R)dA. The prior co(A) we 

actually assumed is (o(A)=1/8 (a 1/2= 1, 2, 4, 8, 16, 32, 64, 128). 

3.5.3. An example of application 

     In this section, we apply our method by using the discrete 

spline to the data of opinion polls on the proportion of voters who 

support the Japan Liberal Democratic Party collected by 

Chuochosa-sha, a Japanese institute conducting sample surveys every 

month from December 1978 to November 1982. Figure 3.2 shows the data 

plotted against time. In this example, since the -full comPutation is 

infeasible, we use the approximation procedure under the following 

conditions: 1) m is set as m=4. 2) a is set as a=.004n. 3) The 

procedure is terminated at n=9. The results are given in Tables 3.4 

and 3. 5. 
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     Table 3.4 presents the estimates of the posterior probabilities 

of up to nine changes as well as the posterior mean, mode and median 

of N. These results suggest that plural structural changes underlie 

the given series. 

     Table 3.5 presents the estimate of each -p(J,ly). The largest 

posterior probability is obtained at the 19th observation. Its value 

is almost equal to 1. This suggests that the 19th observation is a 

change point. Actually, it is widely recognized that the change in 

the opinion poll between June and July in 1980 was a remarkable one 

ever in the last two decades. This change is believed to have been 

caused by the sudden death of Prime Minister Oohira at the beginning 

of the election campaign that started in June 1980. 

     The second largest posterior probability is obtained at the 24th 

observation. Its value is not so large as the one at the 19th 

observation, but the 24th observation is also likely to be a change 

point since there are at least three change points according to the 

values of the mean, mode and median shown in Table 3.4. From 

Fig.3.2, it is seen that the observed value largely shifts at the 

24th observation. 

     Five other candidates for change points following the above two 

are at observation points 36, 3. 27, 4 and 28. Figure 3.2 shows that 

the changes at these points are prominent. The slope of the trend 

obviously changes at the 36th observation and the observed values 

largely shift at the other four points. 

     The Bayesian procedure identifies plural change points in the 

opinion poll data. These change points seem to agree with those 

views on the shifts of support for the LDP which were expressed by 
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political observers and shown by 

observation points also shows that 

beginning of a shift in trend in the 

     Additionally. we note that the 

Step 1 seven times are very similar 

3. 4 and 3. 5.

 analysis. The plot of the 

these change points indicate the 

data. 

 results obtained when repeating 

  to the results given in Tables
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Table 3.1. Number of 

 endings s and

occurrences of 

& for different

present indicative 3rd singular 

 sections of Lindisfarne

section 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 10 

 11 

 12 

 13

12 

26 

31 

24 

28 

34 

39 

46 

41 

19 

17 

17 

16

10 

13 

6 

24 

11 

9 

11 

7 

3 

3 

4 

4

Total 

 21 

 36 

 44 

 30 

 52 

 45 

 48 

 57 

 48 

 22 

 20 

 21 

 20



Table S. 2. Posterior distribution of N and Smitly s results.

72

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12

p (N=n I V) 

  .003 

  . 185 

  .210 

  194 

  155 

  109 

  068 

  038 

  .020 

  .010 

  .004 

  . 002 

  .001

Me an 

Mode 

Median

3.

,n

 Smith' s 

 (N=n I V) 

  000 

  069 

  931



Table S. 3. Posterior probabilities of Jt' S.

t 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12

p(ij ly) 

  265 

  176 

  215 

  544 

  744 

  382 

  205 

  210 

  158 

  151 

  158 

  146



Table 3.4. Posterior probabilities of up to nine changes.

,n P (N=n I V) 

  .000 

  .001 

  .059 

  .237 

  192 

  154 

  113 

  .098   

. 082 

  .064

Mean 

Mode 

Median

5.



Table 3. 5. Posterior probabilities
I 

of J , S.

t 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24

p(it IV) 

.074 

 089 

 301 

 209 

 104 

 067 

 150 

 118 

 022 

.020 

. 016 

.020 

 015 

 013 

 014 

 015 

 030 

 025 

 998 

.079 

 138 

 102 

 .044 

 .460

t 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47

P(jj I V) 

 .034 

 .023 

 275 

  173 

 .035 

  134 

  150 

  114 

  127 

  149 

 .088  

. 306 

 .058 

 .028  

. 015 

 .013 

 .012 

 012 

 Oil 

 012 

 Oil 

 024 

 027



Figure 3. 1. Examples of sequences including a single change.
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Figure 3. 2. 
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