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ABSTRACT

This thesis investigates the use of the Bayesian approach in the
analysis of serial data. Smoothing of serial Gaussian and
non-Gaussian data is discussed. The detection of structural changes
of the underlying distributions of serial data is discussed also.

In Chapter 1, a general formulation for smoothing is given, in
which the smoothing problem is regarded as the simultaneous
estimation problem of parameters depending on strata. This naturally
leads us to Bayesian methods, and enables us to use the standard
statistical theory in smoothing. Smoothing of serial Gaussian data
and some related problems are discussed within the framework of this
formulation.

In Chapter 2. a Bayesian method for smoothing serial count data
is presented. Recursive formulas for estimating the trend and for
evaluating the exact likelihood are developed. The exact likelihood
yields the likelihood ratio test for homogeneity of the means. This
method is constructed in accordance with the general formulation
given in Chapter 1, and is versatile enough to permit various
extensions including that for serial binomial data

In Chapter 3. a Bayesian solution is given to the problem of
making inferences about an unknown number of -structural changes in
serial data. Inferences are based on the posterior distribution of
the number of change points and on the posterior probabilities of
possible <change points. Detailed analyses are given for serial
binomial data and some regression problems. An approximation

procedure to compute the posterior probabilities is also presented.
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CHAPTER 0

INTRODUCT ION AND SUMMARY

The analysis of serial data is one of the most important

subjects in statistical ahalysis. Much attention has been paid on
this subject., and various methods have been developed. Smoothing
methods are basic ones among those methods. Let y;, vy, be T

observations of a random variable Y taken at design points Zys s Tp
(zy=-szr). The purpose of smoothing is to decompose each observation

as
Y, = f{z;) + ¢,

where f(x,) represents a systematic dependence of y, on xz, and ¢, is
a residual. To decompose it, smoothness is assumed for the
dependence. Chapters 1 and 2 deal with the problem of estimating
J(xz,;) from the Bayesian viewpoint,

There aré three approaches available for estimating f(x,), i.e.,
the distribution-free approach. the 1likelihood approach and the
Bayesian approach. The first approach has yielded several intuitive
me thods, e. g moving average, local 1linear regression and kernel
regression. Other examples of the first approach are robust methods
such as moving midmean, moving median, and locally weighted
regression. The smoothing spline is also a distribution-free method,
though it can be derived by using the Wiener process. These
distribution-free methods have the merit that they can be used
easily. However, since likelihood is not defined in these methods,

it is not easy to make detailed statistical inferences. Actually, no



general solution is given to the problems of model selection and
tests, while the estimation of smoothing parameters which define the
smoothness of f(x,) is possible 5y using intuitive criteria such as
the risk. the prediction risk, C, statistic, Cross-Validation and
Generalized Cross-Validation.

On the contrary. the likelihood approach enables us to use the
standard statistical theory, and consequently it is relatively easy
to‘make detailed statistical inferences. As examples of the second
approach, there are polynomial regressiqn and the regression spline.
The problems of the parameter estimation, model selection and tests
have been studied in detail for these methods. However, in these
methods, it is hard to vary the smoothness of the resulting estimate.
Actually, polynomial cannot provide flexible curves, and it is not
easy to determine the position of kn?ts which define the smoothness
of the regression spline.

The flexibility in varying the smoothness and the easiness in
making statistical inferences are desirable properties for smoothing
methods. These properties can be obtained by using the Bayesian
approach. Actually, there are some Bayesian methods which have these
properties, These methods are based on the difference constraint and
the integrated likelihood. The difference constraint is an effective
tool to provide flexible curves, and their smoothness can be varied
easily by controlling the smoothing parameter which defines the
weight of the constraint. The difference constraint was firstly used
for smoothing by Whittaker (1923). Shiller (1973) uséd it again to
estimate smooth lag curves, and introduced the term "smoothness

prior”. In their methods, however, the selection of the smoothing



parameter was left to the decision of the analyst, though it is a
critical problem A solution to this problem was given by
Akaike (1980), who suggested the use of the integrated likelihood.
Following Akaike, several Bayesian methods with the difference
constraint and the integrated likelihood have been developed (e. g. .,
Kashiwagi, 1982; Kashiwagi and Itani 19886). However, in these
methods, the integrated 1likelihood 1is used only for estimating the
smoothing parameter.

In Chapter 1, we give a formulation for smoothing, which is
constructed from the viewpoint where the smoothing problem is
regarded as the simultaneous estimation problem of parameters in a
many strata model. The strata are assumed to be linearly ordered,
and the neighboring strata are assumed to have densities close to
each other. This viewpoint naturally leads us to Bayesian modeling,
and enables us to embed smoothing methods in the standard statistical
theory. Then we can construct estimators and test statistics. by
applying the 1likelihood inference. Our formulation is given in a
general form followed by the explicit description of the standard
methods including the Stein problem the oné way design and useful
smoothing methods. However, in this chapter based on
Kashiwagi (1982), Kashiwagi and Itani (1986) and Yanagimoto and
Kashiwagi (1880), we focus on the case where distributions are
Gaussian.

Non-Gaussian smoothing is an important problem in practice.
Especially, recent innovations of surveillance systems in health
sciences and other fields have rapidly increased the need for

smoothing of discrete data. It is still familiar in smoothing of



discrete data to assume the normality for the data. However, the
characteristics of the normal and discrete distributions are quite
different. It is desirable to assume discrete distributions for
discrete data, since it is more realistic. Until recently,
non-Gaussian smoothing was hard to execute because of its
computational difficulties, but it has now become possible by the
developments of the state-space approach.

In Chapter 2. we present a method for smoothing serial count
data. The Poisson distributions are assumed for.the data. and the
difference constraints with the 1log normal distributions are assumed
for the Poisson means. Under these assumptions, the Poisson means
are estimated simultaneously. Té estimate them recursive formulas
in the state-space approach are used, by which the computational
difficulties in the simultaneous estimation are largely decreased.
These formulas, at the same time, enable us to evaluate the exact
likelihood; which yields the likelihood ratio test for homogeneity of
the means. However, in the usual state-space approach the initial
state f(xy) 1is assumed to be a random variable, and a prior
distribution of the 1initial state is given a priori. These
assumptions cause an arbitrariness in making statistical inferences.
To avoid such an arbitrariness, we assume the initial state is an
unknown parameter, and give recursive formulas for estimating the
initial state. The method presented here is constructed in
accordance with the general formulation given in Chapter 1, and 1is
versatile enough to permit various extensions including that for
serial binomial data. This chapter is based on Kashiwagi and

Yanagimoto (1990).



Smoothing is effective for observing a smooth trend. On the
other hand. we are sometimes interested in finding structural changes
of the wunderlying distributions of serial data. The residual
analysis in smoothing can suggest the existence of structural changes
"to some extent. However, to detect them quantitatively, the method
for that purpose 1is necessary. The problem of making inferences
about structural changes is <called the change point problem. This
problem has been considered by many authors, and various methods
including nonparametric, parametric and Bayesian methods have been
developed. However, most studies are concerned with the single
change case or the detection of multiplé changes by using a stepwise
procedure, and few studies are available on the problem of detecting
multiple changes without using a stepwise procedure. Smith (1980) is
one of such few studies, in which he suggested the usefﬁlness of the
Bayesian approach for the multiple change case.

In Chapter 8, we give a Bayesian solution to the problem of
making inferences about an unknown number of changes. Inferences are
based on the posterior distribution of the number of change points
and on the posterior probabilities of possible change points. Any
stepwise procedure is not used. These posteriof probabilities are
evaluated by using a combinatorial method, and consequently the large
amount of computation 1is required. We present an approximation
procedure to decrease the amount of computation. Detailed analyses
are given for serial binomial data and some regression problems.
This chapter is based on Kashiwagi (1990).

To illustrate the usefulness of the methods to be presented in

each chapter, we provide some examples of application. In Chapters 1



and 2, smoothing methods are applied to epidemiological data sets.
In Chapter 3, the Lindisfarne scribes problem and opinion poll data

are analyzed.



CHAPTER 1

BAYES|AN METHODS FOR SMOOTHING DATA AND SIMULTANEOUS

ESTIMATION OF MANY PARAMETERS

1. 1. INTRODUCTION

Consider a model with T strata having the density g(ylgt,g) in
the ¢-th stratum where the parameter vector &, depends on the
stratum and © is common through the stratum. Suppose #n, observations
Yi10 » Yin, are obtained from the t-th stratum We write

gt=(yu.m,yhn)ﬂ g=(g;.m,grﬁ' and g=(g;,m,grﬂ'. Our problems are:

(a) the estimation of g
(b) the estimation of 6

(c) the test of the null hypothesis ueM,.

We assume g is an outcome from a hyperpopulation having the density
h(pld) éeD. which is called a prior density in the Bayesian context.
The parameter space D has a limiting point éo such that h(ugld) tends
to a degenerated measure; write it h(glgo) for convenience. The null
hypothesis in the test problem will be expressed as §=§d

Most smoothing methods have been developed separately from the
standard statistical theory. However, the smoothing problem can be
regarded as the simultaneous estimation of the parameters in a many
strata model under the assumptions that the strata are linearly

ordered and the neighboring strata have densities close to each

other. This viewpoint naturally 1leads us to Bayesian modeling and



enables us to embed smoothing methods in the standard statistical
theory. Then we can ‘construct estimators and test statistics by
applying the 1likelihood inferencé. In this chapter, we discuss
smoothing methods in relation to the standard statistical methods.

In Section 1.2, a procedure to solve the problems (a)~(c) is
proposed. In Section 1.3, the Stein problem. the one way design and
several Bayesian smoothing methods are discussed within the framework
of our formulation. In Section 1.4, our experiences in analyzing
epidemiological data sets in terms of the smoothing methodé are

presented.

1. 2. PROPOSED PROCEDURE
To construct the procedure to solve the problems (a)~(c), we

introduce the following likelihoods.

Definition 1. 1. We define the overall likelihood by

T "
L(w 6 3) = {H 1 g(y,,!e,sg)]%(elé%

=1 i=1

Let M be the support of A(uld).

ILG §) = [ Liw6 ) au

is called the integrated likelihood. m

Using the integrated 1likelihood, the 1likelihood ratio test

statistic is defined.

Definition 1. 2. Let (8, §) and (Q,EO) be the solutions which attain

the maximums of IL(6, d) and IL(Q,QO). respectively. We define the



test statistic for the null hypothesis ueM, by

S = 2-log{IL(b, 8)/IL(B, 50)}.-

Our procedure is constructed as:

(1) Estimate & and § by maximizing IL(6: §)
(2) Estimate g by maximizing L(w 6 §)
(3) Reject the null hypothesis when S>c,. where ¢, is a critical

value with the level a.

Remark 1. 1. The overall likelihood is proportional to the posterior
density of L pluly 6 8)=L(w 6, 8)/IL(6: 8), and consequently
maximization of L(g 8, §) with respect to i corresponds with that of
the empirical posterior density p(uly 8 §). Therefore, our estimate
é coincides with the mode of the empirical posterior distribution,
and also it coincides with the empirical posterior mean when the

posterior distribution is Gaussian.

1. 3. APPLICABLE MODELS
Selecting densities g(y|w 6) and h(gl|d) suitably, we can give a

variety of methods.

1. 3. 1. Stein problem

First, we derive a Stein type estimator with a likelihood ratio

test. Let Y, be a random sample of size 1 from the ¢-th normal
population N(u, 1). Suppose ¢ is a random sample of size T from a
normal hyperpopulation N(O, §). In this problem @ does not appear



and the null hypothesis is expressed as §=0. When 6=0,

that g,=-=p=0.

Theorem 1. 1.

LIgl?-T1 Y, /lyl®

Lyl 2-T1* /T

R
"

0 lyl®sT

HQHZ—T-Mg(HgHZ/T)—T otherwise

where [2]*=maz(z, 0).

Proof. The overall likelihood is given by

T T
L(w 8) = (2z)77s zexp[—%z {(y;-u¢)2+%u3”.

t=1

The integrated likelihood is obtained as

-5 -z lyh®
IL(3) = (27) (1+68) exp -m f

Differentiating logIL(d) with respect to §, we have

7 lgl?
2(148) "2(1+45)2

Ll0gIL(8) =
Then it follows that

§ = [lyl?-T1*/T.

Maximizing L(g §) with respect to g we obtain

~

8 +
i = 50, - Clgl®-T1 y /g2,

Since 2-logIL(8)=-T log2z-T-log( Iyl %/T)-T for

21ogIL(0)=-T"log2z~|lyl% we have

-10-

it follows

Hg"2>T and



) lyl3sT

HQHZ—T~mg(HgH2/T)-T otherwise. ®

Corollary 1. 1. The rejection region of the test for 6=0 with a
standard level a, say . 05 is given by using the x2-distribution as

N21®>X%; (1) -

Proof. Differentiating S with respect to Hg”z. we have
(3/3llyl%)S=1-T/liyli>>0 for |yl®T. This implys that S is monotone
increasing with respect to ngz when Hg"2>T. Therefore, for an

appropriate a. the rejection region is given by Hg"2>x§“1_a).l

1. 3. 2. One way design

A random effect model in one way design can be discussed within

our framework. Let Z‘ be a random sample of size n from the f{-th
normal population N(u,,oz). Suppose ¢ is a random sample of size T
from a normal hyperpopulation N(v. 7). The null hypothesis is

expressed as 7=0. When =0, it follows that u,;=+=ur=v.

Theorem 1. 2.
Ly = ¥,+(y-9,)/{1+[(n-1)R-11"}
A2 2 o2 +
0 = S;+S,/{1+[(n-1)R-11"}
Vo= y
T = [R-1/(n-1)1*S2
0 Rs1/(n-1)
s - _

Trn-log{(n-1)(R+1)/n}-T-log{(n-1)R} otherwise

where 5, and y are the sample means of Y, and Y respectively

1 =~ 2 2_le,— =42 2 )2
53=Tﬁ§§(yzi"yt) , Sb=T§(y,—y) and R=S./S,.

~11-



Proof. The overall likelihood is given by

T
E};“Z[Z(y“ ﬂg) +A(ﬂ;'u) ]]

t=1\i=1

_T(n+l) T
L(g 6% v, 2) = (270%) 2 2 exp[—

where l=02/r. The integrated likelihood is obtained as

T

IL(0% v, 2) = (2r0%) T(rwl) exp[ ziz,;{"*’* 12¢202-— Lo (ng e a0) ”

Differentiating MgIL(o2,u,l) with respect to v, we have

3 2 . _Tri(v-Yy)
_10 IL g%, ) A = - = O-
gylogIL(o% v, 4) o2(n+d)

Then it follows that b=y. Further, differentiating logIL(o% v, A) with

respect to ¢ and A, we have

2 2, o2
P 5 T Tn{nS,+A(S,+S;)}
Sl0gIL( 0% v, A1) = -=— = 0.
5g o8 ILlo% v 4) N 0®(n+)
202
Tn Tn™S, ~

Then it follows that

A = n/[(n-1)R-11*

-2 2 2 +
0 = Sy#Sg/{1+[(n-1)R-11"}
T = [R-1/(n-1)1*S2.

.2 .
Maximizing L(g 0, v 1) with respect to g we obtain

-

Ly = ¥t (y-y)/{1+[(n-1)R-11"}.

a2 .
Since 2-10gIL(G > b, A)=-Tn-log2n-Tn log{nS2/(n-1)}-T log{(n-1)R}-Tn for

~2 ~
R>1/(n-1) and 2-logIL(7 , ¥, )= ~Tn-log2x-Tn log(S2+S%)-Tn, we have

0 . Rs1/(n-1)
Trn-log{(n-1)(R+1)/n}-T log{(n-1)R} otherwise. ®

-12-



Corollary 1. 2. The rejection region of the test for =0 with a

standard level a is given by using the F-distribution as

R>Fp_y, (n-1)T: (1-a)*

Proof. Differentiating S with respect to R, we have
(8/0R)S=T{(n-1)R-1}/{R(R+1)}>0 for R>1/(n-1). This implys that S is
monotone increasing with respect to R when R>1/{n-1). Therefore, for

an appropriate a. the rejection region is given by R>Fr_y, (n-1)7:(1-a)-®

The above two simple examples show that the obtained estimators
and tests are appealing. The derivation of methods based on other
models is easily done in a parallel way, especially when conjugate
priors are assumed. However, more useful methods pertain to

smoothing data. We will later focus on the smoothing problem

1. 3. 3. The discrete spline

In smoothing, the strata are 1linearly ordered in ¢ and the
neighboring strata are assumed to have densities close to each other.
Let Y, be a random sample of size 1 from the t-th normal population
N(u,.oz). We describe the relations between the densities of the

neighboring strata by
(1. 5) @y — 2,y + Ly_g ~ 1.1.d. N(O T) t=3, - T.

This model represents gradual change of g, with respect to ¢. The

following lemma is immediately obtained.

Lemma 1. 1. Model (1. 5) can be written in the matrix form as

-18-



g, ~ i 6. d.N(-Dp'Dyp, ©(Dp'Dp) ")

where gl=(u1.u2)ﬁ gp=(ug =+ )’ and

[ 1 -2 7 [ 1 0 ]
-2 1
D;=10 0 Dp = 1 -2 1 .
L O O | | O 1 -2 1]
We write D=[D, Dpl. In this problem the prior is assumed only for

EP' and consequently the integrated 1likelihood is obtained by
integrating the overall 1likelihood with respect to Epe The null
hypothesis is expressed as 7=0. When <=0, we have p,-2u, ,+u1, ,=0,

suggesting that all u,”s are on a straight line.

Theorem 1. 3.

i (Ip+AD'D) 'y

-2
g

(y-Ag )V (y-A ) /T

A a2 .2
2~MgIL(gI.o » &) = -T-log2rag -log|V|-T

where A=0%/7, I, denotes the identity matrix of rank T, V=IT+%BB’ and
0 0 0 ]
[1 0]
0] 0
0 1
1 0
A= 1 -2 B =
2 1
L T-2 1-T]
| T-2 T-3 ~ 1 |

Proof. The overall 1ikelihood is given by

-14-



T-2
L{g 0% 1) = (2z0%)"(T-13 2 exp[—ai—z—{(g-g)'(g—g)u(og)'pg}}.

Integrating L(g 0% 1) with respect to g, we have

zoo1
(1. 6) IL(g, 0% 2) = (2z0%) 2|V 2exp{—#(a—Ag,>’V“(g~Ag,>}.

Maximizing Ib(gl.az.l) with respect to &, and o we obtain

= (AIV—IA)-lA'V-Iy

R
~

Q>
©
It

(y-Ai )V (y-Ak ) /T.
- .2
Maximizing L(gl.gp,o, A) with respect to L, we obtain

g = (Ip+ADD) 'y,

“ .2
Substituting &1 and ¢ into (1.6), we have

A a2 .2
Z‘ngL(gI,a »A) = -T-loglrno -log|V|-T.m

This result suggests that maximization of Ib(gf 0% 1) with
respect to the parameters reduces to the one-dimensional problem,
namely, maximization of MgIL(Ql.ﬁz.l) with respect to A. This
maximization problem is hard to solve analytically, and therefore we
estimate A numerically by using e. g a line search method.
Consequently, ‘the test statistic cannot be written explicitly. We
evaluate the critical wvalues numerically by computer simulation
According to our study. the critical wvalues with the level .0b for
several T" s are almost O.

The model assumed in this section is called the discrete spline.

-1b-



1. 3. 4. Seasonal adjustment

Let Y, be a random sample of size

population N(u,,oz). The purpose of

decompose {,; as

where v,

By = vyt €y

and §, denote the trend

1 from

seasonal

the ¢-th normal

adjustment 1is to

and seasonal components,

respectively. To decompose it, we assume the following model.

(1. 7a)

(1. 7b)

where s denotes the cycle of the

our model

(1.8)

02
Ve - 2y, + vy, ~ 14 d N0 S)

&, - &, ~N(0.-g—2')

§: 1t §4 g1 ~ N(O'g_z)

is given in the matrix form as

s . —1 02 ’ -1

t=3: "y T
t=s+1, T
t=S) "y T

seasonal component.

§, ~ i 4. d N(-(Ep'Ep) 'Ep’Es€ » 02 (Ep'Ep) ")

More precisely,

where 31=(v1,v2)3 £P=(v3,m,vT)ﬁ §1=(§1.m.§s_1)2 ﬁp=(§s'“'fr)' and

-16-



-z, O 0] o0 1
-7, 0 0O 0 = 0
-1, 0 0O O 0 7,
-7y, 0 O 0 0 7
0
-z, 0 - 0 0 0 7,
E, = Epn =
Tg Tg ™ Ty T2
(2T7-2s5+1) (2T-2s+1)
Tg = T T T 0
x(s-1) 2 2 x(T-5+1) 2 "2
T2 Ty Tg Ty T2
Tg Tg Tp ™ Tg T3
0]
| . I Ty, " Ty Ty Ty Tg)
We write ZLI=(£I.§I Y ﬁP=(gP,_§_P) and 11=(11I.31P) . The null
hypotheses can be constructed by setting A=x and/or t,;=Ty=w. When
A=, we have v,-2v,_;+v, ,=0. When 7,=7,=, we have ¢§{,-§, =0 and

§ottéy 541=0.

Remark 1. 2. Models (1. 7) and (1. 8) do not correspond with each other

exactly, but their practical effects are almost equal.

Theorem 1. 4.

i = (F’F)“IF'E
.2 ; .
¢ = (z-Fn)'(z-Fq)/T

- a2 .2
2-logIL(111. 0,4 T Ty) = -Trlog2ro +(T-2) *logd

tlog | Ep'Ep | -log | Fp'Fp|-T

where §=(g’,gaT zg_l’)' with Qi being the =zero vector of size 1,

F=[Fp Fp] and

-17-



[ 1'2 I 1 [

s-1 02x(T—2) 0(5’—1))((1’-.'«1'+1)ﬁ
O(T-z)xz 0(T—s+1)x(s—1) IT-—2 IT-s+l
. 2
A*D; O(r-2)x(s-1) A*Dp O(r-2yx(T-5+1)
-1 ’
Oc2r-2541)x2 Ep(Ep'Ep)  Ep'Ej] O2r-2s+1)x(7-2) Ep

with 0,,, being the zero matrix of size ixj.

Proof. The overall likelihood is given by

_8T-s-1 T-2 1 1
L(n 0% A 74 75) = (2m0%) 2 2 2 IEP'EPIzexp{——z—gg(_z_—Fy_)’(g—Fy_)}.

Maximizing L(x%: a?, 2, 70 T3) With respect to 1, we obtain

= (Fp'Fp) 'Fp'(2-Fym ) .

Then the integrated likelihood is obtained as

T I-2 1 1
IL(7, 0% A 15 75) = (270%) 24 % |Ep'Ep|2|Fp'Fpl 2x

1 Sy ;
exp{—W(E—F’zZl,—FPZLP) (E'FIEITFPEP)} '

Therefor, we have

_ (F,F)_IF'E

ISEH
1

I

(z-F9)'(2-F7)/T.

. .2
Substituting n, and ¢ into IL(ZZI' o% A T Tg)s» we have

.~ a2 .2
2:logIL(n ., 0, A Ty Ty) = =T-log2ro +(7T-2) -logd
1 1* Y2

+log | Ep'Ep| -log | Fp'Fp|-T.m

We estimate the remaining parameters A, 7, and 7, numerically by

using a grid search method. Evaluation of the critical values may be

-18-



possible by computer simulation.

1. 3. 5. Smoothing of quantile data

Let Zt be a random sample of size =, from the ¢t-th population
with a continuous density p,(y). We consider smoothing of quantile
data Yec, (¢=1, T, j=1,-»m) with respect to & where i,,~[n,a;]+1
and O<a;<-<a,<1. The following asymptotic result is helpful to

construct a model for smoothing quantile data.

Theorem 1.5 (Mosteller, 1946). If p,(y) 1is differentiable in the
neighborhoods of the population quantiles Hia, and P,(u,aj);eo
(j=1, - m), then the Jjoint distribution of +the sample quantiles
Y,(,tl), N Y‘“tm’ tends to a m-dimensional normal distribution with

means Ly " Hia, and covariances

14 Yice,.y) = 2y 1-0) isk.m
0oVt ec Vet ) = WE T 18 (frray) ISk
Let Zat=(yt<1t1)' oy Yf(“tm))” g:‘=(u‘a1’ oy ﬂlam), , &1=(E1” &2')' and
EP=(ES’, gT')'. Our model is assumed as:
y y 2 - .
Zat i. 1. d. N(gt.oC,) o t=1L T
. -1 o® -1
&, ~ % %.d N(-Dp Dy, 7 (Dp'Dp)™")
where C, is the mxm matrix and
[ I, -2I, ] In 017
I, -2I, I,
D, = Dp = | I, -2I, I,
L O J 0] I, -2I1, I,

-19-



The elements of C, are given by

a;(1-a,)

1sjsksm
ntpajpak J

Cigp = Ciry =

where pmj=¢(¢“1(aj)) and ¢(y) is an assumed distribution with a
density ¢(y). We usually assume several alternatives for ¢(y), then
select the best fit one among them by using the integrated

likelihood. Write ga=(ga;.m.garﬂ’, g=(g{kgp'y. D=[D; Dp] and

c 0

Theorem 1. 6.

1~%)
|

= (C'1+AD‘D)"IC‘Iga

Q
I

{(y,~)'C"(y_~@)+A(Di)'Di}/Tm

.2
-Tm-log2ro +(T-2)m-logA

2-1gIL(i . 6 3)

-log |C| -log | Ep'C ' Ep+ADp'Dp | -Tm

where

02mx(T—2)m
Ep = .

I(T—Z)m

Proof. The overall likelihood is given by

(T-2)m 1

L(w 0% 1) = (2r0®)"T"Dm 2 ) 2y

exp[-g‘(l;g( (y -w)c (3a—g)+(Dg)’Dg}] .
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Maximizing L(g,az.l) with respect to Ly we obtain

i, = (Ep'CT'EptaDp'Dp) ™ (Bp'C'y ~ADpDyps ) .

Then the integrated likelihood is obtained as

Im (T-2)m 1 1
IL(g, 0% 2) = (2z0%) 22 % |C| 2|Ep'CT'Ep+ADp'Dp| 2x
1 by Ve nd ~ ~ ’ ~
exp[-ﬁ{(ga—ElgI—Eng) (o4 1(Ha_EIEI'EP&PH(D1E1+DPEP) (DIP_‘I*DPEP) }]

where

IZm
EI = .
0(T—-2)mx2m

Therefore, we have

(C'1+XD'D)'IC"1ga

18
]

Q>
I

((y,-2)'C* (y -@k)+A(Di)’Di}/Tm.

o .2
Substituting and ¢ info IL( ,02.1). we have
&, &,

2-10gTL(4, 0 3) = ~Tm-log2xd’ +(T-2)mlogA

-log |C|-log | Ep'C *Ep+ADp'Dp | -Tm. ®

. a2
The log integrated 1likelihood MgIL(gI.U » A) is used for

selecting A and ¢(y), and for testing the null hypothesis.

1. 3. 6. Smoothing of spatial data

Finally, we discuss smoothing of spatial data. In spatial
smoothing, the strata are arranged 1in a rectangular lattice shape.
Let Y,j be a random sample of size 1 from the (i, j)-th normal

population N(u,f 0?) on a two-dimensional rectangular lattice, where

-21-



i=1 - T, j=1, T, and T=T,'T,. Write y=(Y1y» > yr 7 )’ and
g=(u11,m,u1rrc)ﬁ We describe the relations between the densities of

the neighboring strata by

2
(1. 9) Uiy = Bypr g = o g = B gey - B g~ de6do N0 )

With i=19 "ty TT’ j=13 ] TG and
(1. 10) Hoj = Hay K1 41,5 = Hr1.4 Hio = Hq Bi,7 41 = By, 7"

Model (1. S) is the two-dimensional version of Model (1.5). Condition
(1. 10) is derived from the assumption that the normal difference of
the first order is equal to zero on the boundary. Our model can be

written in the matrix form as

2 2
.. a . " nvpy -
Dy ~ i.1.d. N(O_, +I7) or u ~ t.i.d N(Q,=(DD) )

where D is the TxT matrix constructed so as to satisfy (1.9) and

(1. 10). The null hypothesis is expressed as A=,

Theorem 1. 7.

£ = (Ip;+AD'D)7'y
~2 - - - -
6 = {{(y-p)'(y-p)+A(Du)’'Du}/T
- "2
2-10gIL(5° A) = -T-log2nd +T-logA+log | D'D|-log | I,+AD'D|-T.

Proof. The overall likelihood is given by

‘ 1
L(g d% 1) = (Znoz)‘leID’DIzexp[——é%g{(g-g)’(g—g:)ﬂ(Dy_.)'Dg}].
Maximizing L(g;oz,l) with respect to w we obtain

& = (Ip+AD'D) 'y.
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Then the integrated likelihood is obtained as

Iz 1 -1
IL(0% 2) = (2m0®) 22%|D'D|%|I,+AD'D| %x

exp[—al’—g{ (g—é)'(g—@mwg)w@] .

Therefore, we have

.2 R R A

0 = {(y-g)'(y-p)+A(Dy)'Du}/T.
Substituting &  into IL(o% i), we have

-2 "2
2¢logIL(0 , A) = -T:log2rno +T-logA+log|D’'D|-log|I;+AD'D|-T.®

1. 4. APPLICATIONS
Two examples of applying the smoothing method to actual data

follow.

1. 4. 1. Cancer mortality in Japan

We analyzed the yearly data cited from Japanese vital statistics
for the crude number of cancer death in males between 1965 and 1986.
Figure 1.1 shows the results in the case of stomach cancer in males
by the discrete spline. We observe that even in the crude number
base, the annual mortality has been decreasing in recent years,
though it is widely accepted that the adjusted mortality is
decreasing. The goodness-of-fit of the simple linear regression,
which is the null hypothesis in the discrete spline, is apparently
bad. This is supported by the fact that the integrated likelihood
ratio test statistic takes 7. 18. To compare with an existing method,
we analyzed the same data by using smooth in the familiar statistical

software, S. The results are given in Fig. 1. 2. The general trends
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are similar, but the estimated 1line 1in Fig. 1.2 seems to be
overfitted. A clearer difference between the two analyses is in the
fact that ours involves the null hypothesis test.

We also analyzed cancer mortality data of other sites. The
annual mortality of lung and pancreatic cancers in males appears to
be increasing exponentially rather than linearly. Therefore, we
assumed y‘~LN(u,.02). i. e., ng,~N(u,,02). Our analysis shows that
the estimated lines are close to the estimated exponential regression
curves. The estimated trend in 1lung cancer is exponential at the
earlier stage of the period in study, and is going down from the
exponential curve. On the other hand. pancreatic cancer shows better
agreement with the exponential curve. However, the tests for the
null hypothesis are still highly significant. The case of lung

cancer is given in Fig. 1. 8.

1. 4. 2. SMON patient incidence

According to leading Japanese epidemiologists, Subacute
Myelo-Optico Neuropathy (SMON) is a tragic large-scale side effect of
the drug, clioquinol. At the time when the etiology of SMON was in
study, it was suspected that a relatively high incidence of SMON
occurred in the summer. To illustrate the usefulness of the seasonal
adjustment method, we analyzed the data for the monthly incidence of
SMON cited from Table 7.1 in the Research Report by the SMON Research
Commision between November 1966 and August 1970. The estimated line
with the estimated trend and seasonal effects is given in Fig. 1. 4.
The discrete spline is also applied and is given in Fig. 1. 6. Both

estimated lines appear to be acceptable. More ©precisely, very
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short-term fluctuations are observed in the seasonal adjustment

method. On the other hand, the wupper and lower peaks cannot be
interpreted well by the discrete spline. In this case, the
integrated likelihood ratio test statistic takes 50. 32. Since the

difference of the numbers of parameters in the models is 13, the test
for the existence of seasonal effect is obviously highly significant,
though we do not have explicit results on the critical value. The
estimated seasonal effects show the gradual increase from winter to
summer and the highest peak seen 1in September, followed by a sharp

decrease.
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CHAPTER 2

SMOOTHING SERIAL COUNT DATA THROUGH A STATE-SPACE MODEL

2. 1. INTRODUCTION

In this chapter, we discuss smoothing of serial Poisson count
data with +the non-Gaussian state-space approach and propose a
likelihood ratio test for homogeneity of the Poisson means.

The state-space appréach has been discussed with the emphasis on
applications to engineering and econometrics. Consequently, primary
attention has been paid to filtering and prediction rather than
smoothing. In addition, the estimation of the initial state has
received little attention, presumably because sample sizes are fairly
large in those applications. Actually, the initial state has been
assumed to be an outcome from a Kknown prior distribution. However,
this assumption causes an arbitrariness in making statistical
inferences. To avoid such an arbitrariness, we assume that the
initial state is an unknown parameter and give recursive formulas for
obtaining the maximum likelihood estimate of the initial state. Then
we can construct a likelihood ratio test which does not depend on the
unidentifiable assumption.

Section 2. 2 reviews a state-space model for smoothing serial
count data. In Section 2.3, an estimation procedure and a test for
homogeneity of the means are proposed. Computational details for
implementing the proposed procedure are given in Section 2. 4.
Section 2. 5 presents examples of application. Section 2.6 is devéted

to further extension of our approach. A brief comparison with the
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method under the normality assumption is given in Section 2. 7.

2. 2. ASSUMED MODEL

Suppose serial data y; *»y, are outcomes from the Poisson
distributions Po(y,), - Po(uy), respectively. We assume that g,
changes gradually. To model +the gradual change, we impose the

difference constraint on the canonical 1link logit , ¢

2%ogu, ~ i. 4. d. N(O, d®)

where 4 denotes the difference operator, i.e., d4logu,=logy,-logw, ; and d
is the difference order. The smoothness of the resulting estimate is
defined by d and o, These parameters can be estimated by using the
likelihood. However, in consideration of the testing problem we

focus on the case d=1. When d=1 and 02=0, we have
Ky = Hg = ™ = Hp.

Using this fact, we construct the test for homogeneity of the means,
i.e., the test for H0202=O against H1202>0. The alternative
hypothesis means that ug, is not stable but changes gradually. The
case d=2 will be discussed in §2. 6.

The difference constraint is regarded as a prior distribution
for p, in the Bayesian context. As a prior distribution, a conjugate
prior may be more familiar. However, in smoothing, there is no merit
in assuming a conjugate prior. Actually, the calculation of the
likelihood cannot be simplified, even 1if a gamma distribution is
assumed for u,.

The state-space form of our model is given as follows.
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Lemma 2. 1. The model for d=1 is written in the state-space form as

(2. 1a) gly,le,) = ety t=1, - T

(2.15) hlu,le, . 0%)

]

1
(2m) % cm,)'lexp{—z—iz(logut-logug-l )2} t=2, - T. »
Recall that g, is an unknown parameter to be estimated.

2. 3. PROPOSED PROCEDURE
The procedure proposed in §1.2 is applicable to the current
problem but a minor modification is necessary. As in the procedure
2

in §1.2, we estimate wu; and o by maximizing the integrated

likelihood

T T
2y _ . . 2 -
(2. 2) APRE S I J:tﬂlg(y,lu,) t[[zh(u,lu,_l, 0%) duy-dpiy.

However, since it is difficult to directly maximize the overall
likelihood in non-Gaussian smoothing, we introduce the smoothing

density to estimate uy = fip.

Definition 2. 1. The smoothing density of u, is defined by
T T

(2.8) st lwap o)« [0 o la) - [ re, e,y o) dug-di, du, -dug
t=1 t=2

Where H=(y11 Ty yT),-.

We estimate gy » gy by taking the expectations with respect to the
A a2

empirical smoothing densities s(u,ly 0 ). The smoothing density

is a marginal posterior density. Therefore, our estimates of wugy =ty

are the empirical posterior means.
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The test statistic for homogeneity of the means is defined by

- -2 ~
S = 2-log{IL(u.1, & ) /IL(L,, 0)}

where £; attains the maximum of IL(g,, O). The critical value c, is
hard to obtain analytically, and consequently we obtain empirical
critical vélues by _computer simulation. Table 2.1 presents these
empirical values for the level a=.05 with several sizes T and means
Ly each of which is obtained from 10000 trials. We observe that

they slightly increase with the mean g; but are stable as a whole.

2. 4. COMPUTAT IONAL DEVELOPMENTS
To implement our procedure, it is necessary to calculate the
multiple integrals in Egs. (2.2) and (2.3). The integrations are

facilitated by applying recursive formulas.

Theorem 2. 1. The integrated 1likelihood IL(ul,oz) can be calculated

recursively by using the formulas

(2. 4a) oyt e,y 0®) J:r(g‘lu,» o® (e 0°)du,

(2. 4b) (¥ e, 0®) = gty ey e,y %)

where q(y‘lu, ;» 0?) and 7(y'lu, 0®) are the conditional densities of

Y=y yp).

Proof. Repeating (2.4a) and (2.4b) alternately for ¢=T, - 2 with the
initial condition 7(y” lup 0®)=g(yrlur), we get »(y'lw, 0®), which is

just the integrated likelihood. m

In numerical computation, by executing the above procedure for once,
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we can obtain r(glluv 0®) as a function with respect to u; given y!
and o2, Therefore. we can estimate 4, given 0® with a small amount
of computation. However, since g(-) and 7(+) cannot be normalized at
any step in the above procedure, it is difficult to evaluate
r(y' ey, 0°) precisely in its absolute value. Consequently, we use
r(gllul.az) only for estimating &1. To estimate &2 and to evaluate

the log integrated likelihood, we use the following proéedure

Theorem 2. 2 (Kitagawa, 1987). Let yt=(y1.m.y,y. The log integrated

likelihood MgIL(ul,az) can be calculated by

T
logIL(py 0%) = logg(y, 1) + Zlogl(y,lyt_l- ty, %)
=2

where

Wy ly, »up o?) = f:g(yﬂut)p(u,lg‘_l. ty 0%)de,

and each p(utIgLJ,ul.oz) is provided recursively by wusing the

formulas

(2.5a)  plugly, »ap 0?) f:h(utlu,_l, 0*)Fluyy 1y, 0y 0010y

(2.56)  flayly, pp o)

]

gy lu)ple,ly, uyp 62 /1y, ly, o+ pg o).
t-1 -1

Here, L(y,ly, »up 0®)  plugly, o upo®) and Slugly, uyp 0®)  denote

conditional densities. =

In the procedure (2. 5), the initial condition is
f(ullgl.ﬁl,oz)sa(al—&l) with d(+) Dbeing the Dirac distribution, and
the time ¢ runs from 2 to T. We estimate &2 by maximizing
MgIL(ﬁl.oz) using a line search method.

. .2
After estimating ¢, and o0, we may calculate the empirical
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smoothing densities.

Theorem 2. 3. The smoothing densities can be calculated by

S(u’tl‘u: ul' 02) « Q(}ihl latl Uz)f(ﬂ'tlat’ u’l’ 02) t=2, "ty T_lo

Proof. This result follows immediately from the Bayes theorem. ®m

When t=T, the smoothing density is 1identical with the filtering
density .f(ﬂTtgi,ul,az).

We implement the above formulas by using standard numerical
methods (cf., e.g , Dahlquist and Bjorck, 1974). Each function in
the formulas is approximated by a piecewise linear function with m
equally spaced knots defined on the interval [f,yp Unez]l> ~and the
trapezoidal rule is used for integratﬁon. The constants we actually

used are m=257, (l;n=C> UUpg=Mm'C and c=2~m?x y/(m-1).

2. 5. APPLICATIONS

We apply the proposed method to three sets of weekly disease
incidence data as illustrations.

The first data set consists of +the weekly incidence of acute
hemorrhagic conjunctivitis in Chiba-prefecture 1in Japan during 1987
collected by the National Infectious Disease Surveillance Program. A
rise in incidepce of this disease was reported in 1985 and 1986.
However, in 1987, the number of cases was relatively small, and there
was no clear incidence trend. It 1is of interest to examine the
possible existence of some systematic pattern in these data.
Figure 2.1 shows the data and the estimated trend plotted against

time. As seen in this figure, the estimated trend is at an increased
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level between about the 28th and 38th weeks. It would be difficult
to detect such an increase, which 1is not readily apparent in the
data, without a suitable smoothing method. The test statistic S
takes the value 4.8  which is greater than the critical value. This
indicates that the mean weekly incidence was not stable during the
period, but changed gradually.

The second data set consists of the weekly incidence of acute
febrile Muco-Cutaneous Lymphnode Syndrome (MCLS) in
Tottori-prefecture during 1982 <collected by the Study Committee on
Cause of MCLS. Figure 2. 2 shows the data and the estimated trend.
In this year, a nation-wide outbreak was reported. The data shows a
clear rise in incidence. The estimated trend has a peak around the
17th week, followed by a sharp decrease, and after that it maintains
a fairly constant value until the end of the year. In this example,
inspection by eye may yield a trend similar to the above. The test
statistic S takes the value 20. 4.

The last data set contains the same MCLS data as in the previous
data set, for 1988. Figure 2.3 shows the data and the estimated
trend. While the total number of cases in this year was not much
smaller than in 1982, the 1incidence pattern was not as clear as in
the earlier example. In the present case, 82=0 and the estimated
trend is a horizontal straight line. This result agrees with the
report by the Study Committee on Cause of MCLS. By definition, S

takes the value zero.

2. 6. EXTENSIONS

An advantage of the proposed method 1is that it can be extended

~-387-



to a wide <class of models. Some of +these extensions are now
discussed.
First, we consider the second difference constraint case, i. e.,

d=2, which is often employed in the smoothing problem.

Lemma 2. 2. The model for d=2 is written in the state-space form as

2, Y
g(yglﬂg) =e tﬂ-g‘/yg! S t=1 T

1
R ey ypr 02)=(2T) 2(U{.L,)'lexp{-ﬁ(108‘#,-2108‘ﬂ;_1+108‘#t_2)2} t=3, T
where ¢, and g, are unknown parameters to be estimated. ®

The recursive formulas for this model can be derived by modifying the
discussions in §2. 4. Figure 2.4 presents the results of application
of the procedure with d=2 to the data given in Fig. 2. 1. The
estimated trend is smoother than that in Fig. 2. 1. It may be more
appealing, but the +trends are very <close +to each other. The
extension to other higher order cases is straightforward, though the
required computer memory size increases exponentially with d. The
required memory size is roughly estimated to be proportional to T me.

Next, we consider the extension to the binomial case.

Lemma 2. 3. The model for smoothing serial binomial data

corresponding to Model (2. 1) is written in the state-space form as

my-Yy

Y
gy, lu,) =”‘tcytu"t(1 - fy) t=1, T

1 2
21 _ @ Ly
Rl i, 6%)=(27) T{op,(1-p,)} lexp{— ('°g1-Zc, ‘°g1—Ztt11) } t=2, - T.®

20°

The recursive formulas mentioned in §2.4 are applicable to this model

-38-



with the minor modification of replacing the domain of integration
(0, =) by (O 1).

Finally, we add that our approach can be extended to include
explanatory variables. Several authors have discussed the regression
problem with time-dependent coefficients for serial non-Gaussian

data. West, Harrison and Migon (1985) discussed dynamic generalized

linear models. Zeger and Qagish (1988) discussed quasi-likelihood
Markov models. However, they did not attempt to evaluate exact
likelihoods. Our approach enables us to evaluate exact likelihoods

even in regression models with time-dependent coefficients, though it
requires a computer with a large memory capacity. Therefore, it
seems necessary to develop a numerical method with reduced memory

size requirements.

2. 7. THE METHOD UNDER THE NORMALITY ASSUMPTION

It may be still appealing to assume normality in (2. 1a) and
(2. 1b) even in the analysis of serial count data, because of its
simplicity and familiarity. However, the characteristics of the
Poisson and normal distributions are quite different, especially when
the means are small. Therefore, it is desirable to assume the
Poisson distribution for count data, because it is more realistic.

The comparison of smoothing methods 1is unfortunately difficult
since preferences between fitted trends are largely subjective. To
illustrate this, we present Fig. 2. 5, which gives the estimated trend
with the first difference constraint wunder the normality assumption
by using the data in Fig. 2. 2. In this figure, a relatively large

wave is observed towards the end of the period. On the other hand,

-89~



the general shape is close to that in Fig. 2. 2.

The comparative study of tests is easier since we have objective
criteria such as power. Freedman (1981) assumed the alternative
(py» = Py9)=(. 101, . 103, .101, .085 .076, .073, .076, .076, .078,
.075 .078 .088) to compare the power of several tests. This
alternative gives a gradually changing trend. We assume
(ftys o ty9)=(Dy» > D15)N and N=100. The empirical powers at the level
.05 with 10000 trials are .202 and . 167 for the proposed test and the
test obtained under the normality assumption, respectively. Another
simulation study for the case (u; v #y,)=(1,» 1) shows that the test
obtained under normality is slightly 1liberal. It is reasonable to
believe that the reduction in power is due to the inappropriate

normality assumption.
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Table 2. 1. Empirical critical values ¢, for the level a=. 05

with 10000 trials.

T
Ly 10 20 30 40 50
1 41 33 . 34 36 35
3 43 32 . 32 31 33
5 .41 .37 . 34 . 387 . .34
7 . 47 . 38 . 338 . 338 . 87

10 . 43 .42 . 356 . 39 . 387
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CHAPTER 3
BAYESIAN DETECTION OF STRUCTURAL CHANGES

3. 1. INTRODUCTION
Let y,»» yr be a sequence of observations taken at equally

spaced intervals.

Definition 3. 1. A sequence of random variables Y, Y; is said to
have »n change points at j(1), j(n) (15j(1)<-<j(n)<T) if the density

of y=(y;» » yYp)’ has the form

n
(3. 1) DAYNT 5(1)NNT jiny N=m 055 8 ) = iﬂopi(gilgi)

-n

where JJ(,) is the event that the sequence has a change point at
j(i); N is the number of change points; gi=(yj(”+1.m,yﬂ,+1)y with
j(0)=0 and j(n+1)=T; p{(gilgi) is the density of Y, with the

parameter Qi and Q{#Qr (i#1’'). =

In this chapter, we consider the problem of making inferences about
change points under the conditions that the places of change points,
the number of change points and the values of Q"s are unknown.

Since Page (1954), the change point problem has been considered
by many authors from various viewpoints. (For references, see
Poirier (1976), Zacks (1983) and Broemeling and Tsurumi (1887)).
However, most studies have been concerned with the detection of a
single change or the detection of multiple changes by using a
stepwise procedure; as a result, few studies are available on the

problem of detecting multiple changes without using a stepwise
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procedure. Smith (1980) is one of those few works. in which he
suggested the usefulness of the Bayesian approach for the multiple
change case.

In this chapter, we are concerned with the problem of detecting
multiple changes without using a stepwise procedure. To solve this
problem we propose a method for evaluating the posterior
distribution of N and the posterior probability of each J,
unconditionally. We also present an approximation procedure to
decrease the amount of computation.

In Section 3.2, a Bayesian formulation of the problem is

presented. In Section 3.3, the detailed analysis 1is given for
binomial data and the Lindisfarne scribes problem is analyzed. In
Section 3. 4, an approximation procedure 1is presented. In Section

3. 5 changes in the regression case are studied for two specific
models; the simple regression model and the discrete spline, and

numerical illustrations are also provided.

3. 2. A BAYESIAN FORMULATION

In this section, we derive the posterior distribution of N and
the posterior probability of J,.

When the sequence is assumed to have = change points at
j(1), = j(n), the density of y is given by (3. 1). Assuming a prior
density w(8) for 6: where Q=(Qo,w,Qn). the integrated likelihood of

{J;¢1)N"NJ 5y N=n} is obtained as

DAY 51y 00 gy N=n) = [0y 1T 51,000 4y N=m 8) () dE.

By Bayes’ theorem the posterior probability of Jj“)ﬂanﬂn) given y
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and n is provided as

P(J 51y gy |22 N=m)

_ Pyl 500y jmyr N=1)0(J 51,00 5y I N=72)
P(yIN=n)

where (J;1)NNJ ) IN=n) is a prior probability of J;,nNJ,,,

given n and

DlYIN=n) = }D(YIT 51 yNNT yenyr N=1) (T 51,10 5y IN=0)
Q

n

Qp = {(j(1), = j(n)) 1155 (1)<<j(n)<T}.

Taking the sum of P(J;;yN"NJ 44yl N=n)'s which involve J,, the

posterior probability of J, given y and » is obtained as

DI lg N=n) = ) b(J 410N sy | g N=m)
9

K

3k such that j(R)=t 1sksn 15j(1)<<j(n)<T}.

On the other hand, the posterior probability of N=n given y is

provided by Bayes’ theorem as

P(y|N=n)w(N=n)

where w(N=n) is a prior probability of N=n and
T-1
ply)= Z%p(g|N=n)w(N=n). The posterior probability of J, given y is
Sy
obtained as
T-1
p(T 0y) = ) (I, 1y N=n)p(N=nly).
n=1
The necessary ingredients to evaluate the posterior
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probabilities in the above formulation are p(ylJ;yN"NJ 0y N=n),
w(Jj“JnanjhnlN=n) and w(N=n). Here, we assume the following prior
probabilities wused in  Smith (1980) for w(J;yNNJs,,IN=n) and
w(N=n).

1
-1C.

n

w(Jju)nwan“nlN=n) = - 1sn<T

o(N=n) = % Osn<T.

The remaining ingredient, the 1likelihood of J={Jj“)nanj“”,N=n} is

provided concretely for some models in Sections 8.3, 8.5.1 and 8. 5. 2.

3. 3. LINDISFARNE SCRIBES PROBLEM

The Lindisfarne scribes problem is one of the well-known
examples of the change point problem The aim in this problem is to
make inferences about changes of scribe by using the data on the
number of occurrences of present indicative 8»d singular endings s
and 6 in each section of Lindisfarne. Table 8.1 shows the data taken
from Smith (1980). These data have been analyzed by Smith (1980),
Silvey (1958), Pettitt (1979) and Carlstein (1988). The latter three
authors drew the conclusion by using some test statistics that the
change occurred after the bth section. Smith (1980) evaluated the
posterior probabilities of up to two changes and concluded that the
change occurred after the 4th section and again after the b5th
section. In this section, we apply our method to the data of
Lindisfarne and compare our results with theirs.

Let m, and w, be the numbers of occurrences of present

indicative 3rd singular endings and dJ&-forms at the t-ith section
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(¢=1,-T), respectively. Similarly to Smith (1880), we assume the
binomial distribution with parameters m, and 0, for v,

(t=7(2)+1, = j(i+1), 1=0, ~v n). Then the likelihood of J is written as

FIL T sevitia-epme
plylJd) = |- C,,0:4(1-68,) ¢t "tw(g)de
1=0 ¢=4 i)+1mt Vi !

where 6=(6y > 6,).

As w(0), Smith (1980) assumed a conjugate prior. This is one of
several possible selections. On the other hand, we specify the model
by the maximum 1likelihood estimate of 6, i.e., we place our
confidence on the maximum 1likelihood estimate. Then we define the
}ikelihood of J by using the maximum 1likelihood. The following lemma

is immediately obtained.

Lemma 3. 1. The maximum likelihood estimate of 6 is given as

é,=§yt/§mt (2=0, ~»n) and the maximum log likelihood is given by
n J(i+l)

T
logp(y|J: 8) = ) I0gn Cy,* ).
t=1

{y,-logé,+(m,—y,> log ( 1-9,)}.-
1=0¢=4(1)+1

It may be a possible selection to use the maximum likelihood
p(g]J,Q) as an estimate of p(ylJ). However, the maximum log

likelihood has a bias in the following sense.

Lemma 3. 2.

logp(y|J, B)-Ejlogp(Z1J. B)

T n
= ) (logp Cy ~E logn Cz )+ ) F4(0,-6,) log——
121 m;MY, b4 m, ¢ iZ; i 1 1 (1_91)

where E, denotes the expectation under the assumed distribution of Z

FCi+1) .
p(z|J, 8) and f‘=z=15)+1m‘ (2=0, v n).
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Proof. This is a direct consequence of the definition. ®

This bias increases in average as dim(6) becomes large. suggesting
that the use of the maximum 1likelihood causes an overestimation of
the number of change points. To prevent such an overestimation, it
is necessary to correct the bias. . However, since the true parameter
© is unknown, the present form of the bias is useless. Consequently,

we employ the predictive log likelihood to correct the bias.

Definition 3. 2 (Kitagawa and Akaike, 1982). The predictive log

likelihood is defined by

logp?™*(y1J) = logb(y|J, 8)-Ey[logp (Y |J. 8)-Elogn(Z1J. §)]

where Ey denotes the expectation under the assumed distribution of

data. m

Theorem 3. 1.

Ey[logp(Y1J. 8)-Elogp(Z1J, 8) ]
2 1 4 3 2 5
i . 63-6,+% +e,,—ze>1,+4e,—36,+~6~+0(f_3) .
e f36,(1-6;) ffo(l—B,)2 !

Proof. The expectation of the bias can be written as

6,
(6,—6, ) 'logm{—)"] .

n
Ey[logp(Y|J, 8)-Eogp(Z1J. 8)] = ) 7By
i=0

Using the power series, we have

vl [ 1 B.-p. 1941
v|(8,-6,)" 108‘(1 é )] ZJ { o7 +(1—6,)j]EY( =877

Therefore, substituting the central moments, we obtain
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Ey [logp(Y1J, 8)-Elogp(Z1J, 8) ]

_ i Ny 63-6,+7 leﬁ—ze?+4e§—3e,+—g’-lo(f_3) .
Lo|” F404(1-60) 7 rie2(1-9,)2 Tt |”

Using this result, we define the predictive 1log likelihood in the

current problem as

2 1 4 _,3 2 5
n 6,-6,+5 6,-26,+46,-36,+2
logp?™* (y|J) = logp(y|J. 8)- ) {14—pg 2yt L L "6
=0 fiéi(l_éf) f?éi(l_é‘)z

As the estimate of p(yl|J), we use exp{logp? **(y|J)}.

Now we apply our method to the data of Lindisfarne. Table 3. 2
presents the estimate of each p(N=nl|y) as well as the posterior mean.
mode and median of N and Smith's results. Table 3.3 presents the
estimate of each p(J,ly). It is difficult to precisely compare our
results with those of Smith because he has not presented the
posterior probabilities of more than two changes; nevertheless, there
seem to be some differences between them While the posterior
probability of two changes is quite dominant in Smith’ s results, it
is not so dominant in our results. This difference may be caused by

the difference between the assumed distributions for 8 and by the

different policy for the bias correction. However, in spite of this
difference Dbetween both results, we can agree with Smith's
conclusion. Actually, if we take the posterior mode of N, the
conclusion that there are two changes is obtained. From Table 3. 3,

it is seen that the top two p(J,ly)’ s are obtained at the 4th and 5th

sections.
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3. 4. AN APPROXIMATION PROCEDURE

We call the evaluation of the posterior probabilities by the
method mentioned in Section 3.2 the Jfwll computation. In the
Lindisfarne scribes problem the Jfull computation was feasible.
However, the number of estimations of p(ylJ)' s in the full
computation, which is given by :g;pdcn. increéses exponentially with
the size of the sequence and quickly the [full computation becomes
infeasible. In this section, we present an approximation procedure
which enables us to evaluate p(J,ly)’ s even when the full computation
is infeasible.

The flow of the approximation is as follows:

0. Calculate p(yiN=0), and set n ~ 1.

1. Calculate p(J,|y N=n) (1st<T) by the method in §8. 2.

2. Let m be the number of repetitions of Step 1. If n<m then
set n « n+l1 and return to Step 1.

8. Determine whether n is sufficiently large to terminate. If
so, then go to Step 7. If not, then set n « =m+1l.

4. Let a be a small value. Make the index set
I, ~{ilp(J;ly N=n~1)sa 1si<T} and calculate

g(n.t)EQE p(ylJ) (1=t<T) under the following assumption:
n ¢

[ r-oCnmygn-1 t)

tel

7-20n-2 e
g(n ) = p(J 1y N=n-1
(| N=n-1)g(n, E)
plyld)s Z p(Jplg Nn-1) teln o
0 ¢ belna  1- n-1

Q% ={(F(1) = i(n)) ]

(F(1) = j(n))eR, , i(i)el, . 1sisn}.
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5. Using g{(m t) s and the relations

T-1
_ - gi{n t) _ _ 1
p(J |y N=n) r-1Cn'P(E|N=”) p(yIN=n) —‘-——-T_lcn_ntzlg(‘n. t)

calculate p(J,|y N=n) (1st<T).
6. Return to Step 8.

7. Calculate p(J,|ly) (1st<T) assuming the prior

1
— ksn
w(N=R) = ntl

0 E>n

The number of estimations of p(yl|J) s is decreased in Step 4 by
approximating g(=n t)’'s. The approximation of g(=n t) is introduced as
follows. Consider the case where J, is assumed to be an unimportant
event, i.e.. I, ={R}. In this case, it may be reasonable to
consider assigning approximate values to the predictive likelihoods
of J's which involve J, in order to decrease the amount of
computation. To obtain such approximate values, we set the following
two assumptions. The first assumption is that the mean of the
predictive likelihoods of J's which involve J, when N=n is equivalent
to the mean of those when N=n-1. By this assumption, we have

7-2Cn1°9(n-1, R)

3 k =
g(m ) T—ZC ~2

On the other hand, g(n t) (t+k) can be written as

g(n t) = gy(m t)+gy(m t)

gi(m t) = ) p(yld) g2(m t) = ) plyld).
O, 4 O, =97, ¢

We evaluate g,{(nm t) by the method mentioned in Section 3. 2. However,
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since gy(m t) is the sum of the predictive 1likelihoods of J' s which
involve J,» we assign an approximate value to it. An approximate
value can be obtained by using the relation

Y gaim t) = (n-1)g(n k).
t+k

This relation suggests that we may distribute (n-1)g(#n R) into
go(n t)' s (t#R). Using the posterior probabilities when N=n-1, we
set the second assumption

p(J,lys N=n-1)
1

n_
golnm t) = ) p(JkIg,N=n—1)(n_1)g(n’k) t+k.

n-1

The approximation of g(»n t) has been obtained.

The above two assumptions may be ad hoc. However, a close
approximation increases the amount of computation. We consider that
they are acceptable ones in practical application.

In the approximation procedure, there are some arbitrary
constants, m and a. A basic strategy as to their choice is to chose
the largest m and smallest a as large and small, respectively, as the
computer may permit. By some experiments, we have found that: 1)
When m is greater than the mode of N, the possibility to miss change
points is very small. 2) When a is less than a certain value, as the

number of elements of I, . is less than about T-n-6. relatively good

24

approximate values are obtained.

3. 5. DETECTION OF CHANGES BY REGRESSION MODELS

In this section, we give the estimate of p(ylJ) for two
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regression models, the simple regression model and the discrete
spline. In addition., we show an example of the application of our

method by using the discrete spline.

3.5.1. The simple regression model

Assume the simple regression model

Y, = a;+B;t+e, €y ~ i.i.d.N(O,oz) Jli)+1st<si(i+1)
for Y, Then the density of ¥, can be written as
kg
(3.2) psy, v, 0%) = (27) 2o “exp —L(u Ay )'(y, -Aw )
) Sty 902 2T, )Y T4,
where v =(a; B;)' &,=dim(y, ) and

1 j(i)+1

1 j(i)+2
A, =

1 7(2+1)

Further, since the simple regression model is inapplicable to g‘ when

£,;=1, we assume the following outlier model for such Y,

Yicires—Q
(8. 3) pyly, |y, 0%) = %q;(_&).o_l_._i)

where 31=(a,) and ¢ denotes the standard normal probability density

function. Using (3.2) and (3.3), the density of y can be written as

p(yld. €) = || pyly, Iy, o®) - || psly, |y, 0®)
i€l tels

where O=(v % -y % 0%), I;={ilr,;=1 Osisn} and Ig~{ilx,22 Osisn}.
- —0 -
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Lemma 3.3. The maximum likelihood estimate of 6 is given as

Qs = Yj01)+1 Jor iel,
b, = (4407 ALY, for ielg
~2

Q
it

1 ’ - o ’ _ 3
742}6\}1‘ A ) (Y, ~AD)

and the maximum log likelihood is given by

a2
logp(y1J: 8) = -%-1og2nd”-L.

Proof. This result is obtained immediately by maximizing the log

likelihood

logp(ylJ 8) = -5-log2r0®—La[ | (yiypima)® ) (g4 ) (g4 ) ]
20 i1, i€l

Lemma 3. 4.
logp(y|J, 8)-Ejlogp(Z1J, 8)

= *%7 To%+
20

(a,-d,)%+ 2 (2,244 -5 ) ]-F.
161, €1,

Proof. This is a direct consequence of the definition. ®m

Theorem 3. 2.

T(T+#I,+2#15)
Ey[logp(Y1J. 8)-Eogb(Z1J. 8)] = 2( 1 G )_;g_

) ky-2#1G-2
iEIG

where #I, denotes the number of elements included in the set I,.

Proof. This result follows from Lemma 3.4 and the following

properties.
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~ 2
(a{—a{ )

2 .
> ~ X1 Jor iel,
(”i‘ﬁt)'A154¢(”t‘af) . 2 .
> ~ X(2) Jor iel,
.2
To

~ X%/ 5 ko201
2 (telo ‘— G)
where’x?k) denotes the x®-distribution of order k.m

From Lemma 3.3 and Theorem 3. 2, the predictive 1log likelihood is

obtained as

.2 T(T+#I,+2#1,)
logp?% (y|J) = —%;ogZEO - 1 G .
2 Z; K -2#15-2

i€ G ‘

We use mm{bgPMWd(glJ)} as the estimate of the likelihood p(yl|J).

3.5.2. The discrete spline

Harrison and Stevens (1976) presented three examples of
sequences including a single change, which are shown in Fig. 3. 1.
Although they generated these sequences by the linear growth model,
it is possible to represent them by the model mentioned in the
previous section. For example, the outlier case can be represented
by applying model (8.2) to the data at 1lsts4 and 6sts10 and applying
model (8.3) to the data at ¢=5b. However, if the data at 1=¢=4 and
6=<t<10 are on a curve instead of a straight line, the model mentioned
in the previous section becomes inappropriate. For such a case, the
discrete spline discussed in §1. 3.3 is useful.

Assume the discrete spline

-59-



Yy, ~ i.i.d Ny 0%) Cjli)+1stsi(i+1)

2
L2, g4y g ~ i i d N, F) J(i)+8stsi(i+1)

for Y, Then the density of Yy, can be written by using the form

(1. 6) as

il _1
(8.4) pply,ly, 0% 1) = (2z0®) 2|V, Zexp{—-z—ig(gi-/ligi)'V}I(},_J‘-A,g‘)}

, 1 ,
where v =(t (4 Bycayse)s Vy=Ic +71B(B, and

. o o 0]
10 o o
0
1 0
Sl Beml g
k-2 1l-«
- - k-2 k-8~ 1|

On the other hand, since the discrete spline is inapplicable to g‘

when £;<2, we assume the following model for such EF

]

J(i+1)
Y,~Qa
(3.5)  pyly,ly, o) HJ]” l%wp(——‘(, ‘)
= +

where g1=(ai). Using (8.4) and (38.5), the density of y can be

written as

pyld 82 = [ paly,ly, o) ]-Lpp(yilgi, 0% 1)
iel Ul, ielg
where Q=(£J.m.£;.02), I,={ilk;=1 Osisn}, I,={i|k;=2 Osisn} and
Ic={ilk;28 Osisn}. In this model, the maximum likelihood estimate of

A is hard to obtain analytically. Consequently, we first assume that

A is fixed.
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Lemma 3. 5. The maximum likelihood estimate of O is given as

Ay = Yjiym1 for iel,
- Y Y
a; = j(’”42 2112 for iel,
B, = (A{'V;lA,)'lA,’V;lgd for iel,
J(i+1)
a2 1 ~ ° ny- >
g =7 (yt’a¢)2+ Z (g‘—Aig‘)qu(gi—A,gt)
1€1,t=3(1)+1 el

and the maximum log likelihood is given by

_ _T, ~2_ 1 T
logh(y|J, & &) = -5-log2rd -5 ) loglV,|-5.
i€l
Proof. This result is obtained immediately by maximizing the log

likelihood

logp(yld, 8, 1) = ~%-mg2m02~% Z log |V, |
i€lg

1 Al 2 1
“20? Z (yp-ay) "+ Z (g,-Ap )V (Y, ~Ap ).
1€l Ul t=5(1)+1 i€l

Lemma 3. 6.

logp(y|J: 8, X)-Ejlogp(Z|J, 6, 1)

- Lo[ro% ¥ (aman? | 20ai-an)® ) (v-5,) 4,704,000 |3
20 i€l i€l, i€l

Proof. This is a direct consequence of the definition. m

Theorem 3. 3.

T(T+#I+#1,+2#1;5) T

2(#1,+ Z ky-2#15-2)
i€l

Ey[logp (Y1, 8 A)-Elogp(21J. 8. 1) =
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Proof. This result follows from Lemma 3.6 and the following

properties.

(ai—&i) .
2 X?l) for iel,
Z(Gi-ai) .
Yz " x?l) Jor iel,
(V=)' AV A (v,-D)) .
a2 e~ xd, for ielg
a2
To

2
2~ X (#Iy+ B ok -2¢1G) ™
i€l

From Lemma 8.5 and Theorem 3. 38, the conditional predictive log

likelihood is obtained as

.2 T(T+#I,+#I,+2#1
10gp?"*(y|J, ) = -L.log2z5 -+ ) log|V, |- 172 )
2 2 1
1&g 2(#I,+ ) £,~2#1G-2)
1€l
We estimate p(ylJ) by ‘ﬁmpﬂogpMWd(glJ.l)}w(l)dl. The prior w(i) we

actually assumed is w(1)=1/8 (1'/%=1, 2, 4, 8. 16, 32, 64, 128).

3.5.3. An example of application

In this section, we apply our method by using the discrete
spline to the data of opinion polls on the proportion of voters who
support the Japan Liberal Democratic Party collected by
Chuochosa-sha. a Japanese institute conducting sample surveys every
month from December 1978 to November 1982. Figure 3. 2 shows the data
plotted against time. In this example, since the full computation is

infeasible, we use the approximation procedure under the following

conditions: 1) m is set as m=4. 2) a is set as a=. 004n. 3) The
procedure is terminated at n=8. The results are given in Tables 3. 4
and 3. 5.
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Table 3.4 presents the estimates of the posterior probabilities
of up to nine changes as well as the posterior mean, mode and median
of N. These results suggest that plural structural changes underlie
the given series.

Table 3. 5 presents the estimate of each p(J,ly). The largest
posterior probability is obtained at the 19¢th observation. Its value
is almost equal to 1. This suggests that the 19th observation is a
change point. Actually, it is widely recognized that the change in
the opinion poll between June and July in 1980 was a remarkable one
ever in the last two decades. This change is believed to have been
caused by the sudden death of Prime Minister Oohira at the beginning
of the election campaign that started in June 1980.

The second largest posterior probability is obtained at the 24th
observation. Its value is not so large as the one at the 19th
observation. but the 24th observation is also likely to be a change
point since there are at least three change points according to the
values of the mean. mode and median shown in Table 8. 4. From
Fig. 8. 2, it is seen that the observed wvalue largely shifts at the
24th observation.

Five other candidates for change points following the above two
are at observation points 36, 3, 27, 4 and 28. Figure 3. 2 shows that
the changes at these points are prominent. The slope of the trend
obviously changes at the 36f{h observation and the observed values
largely shift at the other four points.

The Bayesian procedure identifies plural change points in the
opinion poll data. These change points seem to agree with those

views on the shifts of support for +the LDP which were expressed by

-63-



political observers and shown by analysis. The plot of the
observation points also shows that these change points indicate the
beginning of a shift in trend in the data.

Additionally, we note that the results obtained when repeating
Step 1 seven times are very similar to the results given in Tables

3.4 and 3. 5.
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Table 8. 1. Number of occurrences of present indicative 8»d singular

endings s and é for different sections of Lindisfarne

section s o Total
1 12 9 21
2 26 10 36
3 31 13 44
4 24 6 30
5 28 24 52
6 34 11 45
7 39 8 48
8 46 11 57
9 41 7 48
10 19 3 22
11 17 3 20
12 17 4 21
18 16 4 20



Table 3. 2. Posterior distribution of N and Smith' s results.

n p(N=nn|y)
0 . 008
1 . 185
2 . 210
3 . 194
4 . 165
5 . 109
6 . 068
7 . 038
8 . 020
9 . 010
10 . 004
11 . 002
12 . 001

Mean 3.4

Mode 2
Median 3

Smith' s

n p(N=nly)
. 000
1 . 069

2 . 931



Table 8. 8. Posterior probabilities of J,' s.

A

p(Jd,ly)
. 265
. 176
. 215
. 544
. 744
. 382
. 205
. 210
. 158
. 161
. 158
. 146

O 00 3 O o Hh W N e

e i
N = O



Table 8.4. Posterior probabilities of up to nine changes.

p(N=nly)
. 000
. 001
. 059
. 287
. 192
. 154
. 118
. 098
. 082
. 064

© O 3 O o1 b W DM = O N

Mean 5 0
Mode 3
Median 5]



Table 8. 5. Posterior probabilities of J,'s.

¢ p(J, 1Y) ¢ p(J, 1Y)
1 . 074 25 . 034
2 . 089 26 . 028
8 . 801 27 .. 275
4 . 209 28 . 173
5 . 104 29 . 085
6 . 087 30 . 134
7 . 160 31 . 1560
8 . 118 32 . 114
9 . 022 838 . 127
10 . 020 34 . 149
11 . 016 35 . 088
12 . 020 36 . 306
13 . 016 37 . 058
14 . 018 ' 38 . 028
15 . 014 39 . 0156
16 . 015 40 . 018
17 . 080 41 . 012
18 . 025 42 . 012
19 . 998 43 . 011
20 . 079 44 . 012
21 . 138 45 . 011
22 . 102 46 . 024
23 . 044 47 . 027

24 . 460



Figure 8. 1. Examples of sequences including a single change'.




Figure 8. 2. A time-series plot of a public support rate for the Japan

Liberal Democcratic Party.
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