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PREFACE 
 
 
Bose–Einstein condensation was discovered in atomic gas systems, where 

Bose condensate occupies 100% of the total system at zero temperature. 
Liquid helium systems have been investigated based on the Landau theory, 
where the superfluid component of liquid helium is background flow. 
According to the Landau theory, it is doubtful that the superfluid component is 
a Bose condensate. 

In experiments, the probability of helium atoms with zero momentum is a 
few percent of the total liquid helium at ultra-low temperatures. However, the 
superfluid component occupies 100% of the liquid helium at zero temperature, 
as macroscopic observations indicate. These two properties of liquid helium 
mean that the set of helium atoms with zero momentum is not a good 
approximation of the ground state. What state represents the superfluid 
component of liquid helium?  

The author introduce a quasi-particle representing an eigenstate of the 
total Hamiltonian. The author designate the quasi-particle a “dressed boson”. It 

is the most straightforward answer to the question posed above: the superfluid 
component is a Bose condensate of dressed bosons. 

Experimental data of thermodynamic quantities differ greatly from the 
theoretical values of the Landau theory near the  point. The specific heat has 
a logarithmic singularity at the  point in the experimental data; however, the 
theoretical result of the Landau theory has no singularity. 

In the present article, the diagonalized form of the total Hamiltonian is 
examined and is clarified to have a nonlinear form for the distribution function 
of the dressed bosons. The nonlinear form produces logarithmic divergence of 
the specific heat. 
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Many theoretical approaches have used a linear form in a total energy of a 
Bose system as 


i

iinE  , 

where in  is the quasi-particle number in quantum level i, and where   



i is the 
energy per quasi-particle. This familiar form maintains the order of energy 
from small to large. That is to say, the energy of level 1 is smaller than that of 
level 2 always if 21   . The property changes drastically for a nonlinear form 
of a total energy as 

 
j,i

jiji
i

ii nnfnE  . 

The energy of a quasi-particle (dressed boson) is definable as 

 
j

jij
j

jjii

i

nfnf
n

E




 , 

which depends upon the other dressed boson numbers. Consequently, the 
energy of the dressed boson with quantum level i varies depending on the 
distribution of dressed boson number. This nonlinear dependence yields level 
inversion; that is to say, which momentum level of the dressed boson has a 
minimum energy depends upon the choice of the distribution of dressed boson 
number. The level with momentum zero has minimum energy for some 
distribution. However, when the distribution of dressed boson number changes 
into a specific distribution, a level with a non-zero momentum has minimum 
energy. This level inversion produces Bose condensation of the dressed bosons 
with non-zero momentum. The stability of the moving superfluid component 
is established on the basis of this level inversion. Many other surprising effects 
arise from the nonlinearity. 

In almost all cases for many body problems, the total energy is nonlinearly 
dependent upon the distribution function of quasi-particle number. 
Accordingly, the developed method explained in this book is widely 
applicable to investigation of the statistical physics of many body problems. 

This work started about 35 years ago. The author was encouraged by 
many people. Heartfelt appreciation is extended to Professor Shigenobu 
Sunakawa, Professor Fumiaki Iwamoto, Professor Hidenobu Hori, Professor 
Koichi Katsumata, Professor Yasuyuki Kitano, Professor Takeji Kebukawa, 
Professor Kiyohisa Matsuda, Professor Masahiro Mori, Professor Shuichiro 
Yamasaki, Professor Masahiko Hirooka, Professor Akitsu Ikeda, Professor 
Yoshitaka Fujita, Professor Yorihiko Tsunoda, and Professor Takekiyo 
Matsuo. Prof. Sunakawa kindly supported investigations. Prof. Iwamoto 
provided useful advice and encouragement. Prof. Hori, Prof. Katsumata and 
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Prof. Kitano tirelessly offered encouragement through discussions of various 
branches of physics. Prof. Hori supported this investigation and gave the 
auther many opportunities of the work. Prof. Kitano collaborated in an 
experiment related to liquid helium [34]. Prof. Kebukawa has discussed many 
interesting problems in physics and offered many stimulating ideas [10, 33]. 
Prof. Matsuda investigated the theory of liquid helium and co-authored a paper 
announcing those results [7]. Prof. Mori kindly provided important 
information related to the investigation of physics. Prof. Ikeda of the Shizuoka 
Institute of Science and Technology has always provided necessary support. 
Prof. Yamasaki, Prof. Hirooka, Prof. Tsunoda, Prof. Fujita, and Prof. Matsuo 
all gave valuable encouragement with their kindness and valuable advice. 

The present work would not have been completed without their valuable 
support. Heartfelt gratitude is extended to them all. 





 

 
 
 
 
 
 

Chapter 1 

 
 
 

INTRODUCTION 
 
 
Since Kamerlingh Onnes liquefied helium gas in 1908, surprising 

properties of liquid helium have been revealed [1]. Particularly, after the -
transition was discovered, striking behavior of liquid helium has been found in 
the lower temperature phase (which is called helium II). Helium II comprises 
two components: a non-viscous component called the superfluid component 
and a viscous component called the normal-fluid component. These two 
components flow while interpenetrating each other. Each component has an 
independent velocity, although these two components are mutually mixed 
uniformly. The two velocities do not average out, even over time. In addition, 
the entropy value of each component does not take on the mean value: the 
superfluid component maintains entropy zero and the normal-fluid component 
maintains all the entropy of the whole liquid helium II. In addition to these 
properties, superfluid helium exhibits many characteristic phenomena: the 
fountain effect, the mechano-caloric effect, heat superconductivity and so on. 

Many theoreticians have remained fascinated by these phenomena and 
have made efforts to clarify their origin [2–3]. Traditional theories related to 
liquid 4

He are classified into London’s theory and Landau’s theory. Actually, 
F. London [2] neglected interatomic potentials among helium atoms, and 
investigated the statistical physics of the system. Subsequently, he arrived at 
the result that Bose–Einstein condensation occurs at some finite temperature. 
He regarded this condensate of non-interacting helium atoms as the superfluid 
component. According to his theory, the velocity of the condensate must be 
equal to the velocity of the center of mass of liquid helium, which does not 
agree with the experimental results. 
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On the other hand, Tisza and Landau [3] independently proposed a two-
fluid model. Landau developed this theory, in which he assumed the existence 
of a background flow inside the liquid helium II, which he named the 
superfluid component. In addition, he assumed that the residual component 
(normal fluid component) comprises a set of quasi-particles representing 
quantized modes of density waves, which he named the phonon and the roton. 
This theory explained the superfluidity of liquid helium and concurred with 
the specific heat near temperature zero. Many theoreticians followed Landau’s 

method in their investigations of liquid helium. 
Some calculated the single excitation energies of the quantized density 

wave (elementary excitation) approximately from the total Hamiltonian of 
liquid helium [4–7]. Bogoliubov [4] assumed macroscopic occupation of 
helium atoms with momentum zero and replaced the creation and annihilation 
operators with momentum zero to a c-number (classical number, not quantum 
number). He obtained an excitation spectrum like that of a phonon. 
Bogoliubov’s transformation violates the number conservation law of helium 
atoms, although his work is very important to clarify the existence of phonons 
in an interacting bosen system. Based on Bogoliubov’s theory, Miller, Pines 

and Nozieres [6] tried to take account of the backflow, which was first 
considered by Feynman and Cohen [6]. Feenberg [6] calculated the expansion 
series of the excitation energy systematically using the correlation functions. 
Sunakawa, Yamasaki, and Kebukawa [6] derived the same result on the basis 
of the density fluctuation and velocity operators. Sasaki and Matsuda [7] 
obtained the same result through unitary transformation. 

The single particle excitation energy has been thus obtained using various 
perturbational approaches. However, it is necessary to clarify the structure of 
the total energy for a case with a macroscopic number of excitations because 
the number of excitations is macroscopically large at a nonzero temperature in 
a real liquid helium system. Several works have examined the structure of 
multiple excitations. For example, R. Balian and C. de Dominicis [4] used a 
self-consistent Bogoliubov transformation, and developed the old theory. 
However, the theory violates the number conservation law. Therefore, the 
number of quasi-particles is not equal to the number of helium atoms. 
Accordingly, the traditional theories of liquid helium present many difficulties. 

About 30 years ago, the present author exactly diagonalized the total 
Hamiltonian of one-dimensional (1D) interacting boson system with a 
repulsive delta function potential using unitary transformation [10, 11]. The 
result shows that the total energy of the multi-excitation is not equal to the sum 
of the energies of single excitation. In other words, the functional form of the 
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total energy has a nonlinear form for the distribution function of quasi-particle 
number. This nonlinearity can be derived only from the Galilean covariance of 
the total energy. Therefore, nonlinearity also appears in almost all interacting 
many-body systems because the Galilean covariance holds. Therefore, it is 
necessary to investigate the statistical physics with a nonlinear form of the 
total energy. The investigation is executed in this book. The nonlinearity 
produces many important behaviors in thermodynamic functions. 

Experimental data at 1.6 K < T <2.17 K in liquid helium differ greatly 
from the calculated results according to the Landau theory. As an example, the 
values of specific heat are shown in the following figure.  

The dots indicate the experimental data of liquid helium, and the curve 
shows the calculated value of the Landau theory. Consequently, Landau’s 

results deviate to a great degree from the experimental data at 1.6 K<T<2.17 
K. The total energy of the Landau theory depends linearly on the number 
distribution function of elementary excitations. This property is not good in the 
actual system of liquid helium. We consider the nonlinear effect and develop 
the treatment of nonlinear properties. Thereby, we can clarify how the 
nonlinear structure produces the experimental behavior of liquid helium. 

 

 

Figure 1.1. Specific heat of superfluid helium. 
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In this book, we assume the following two postulates. We can 
theoretically derive the qualitative characteristics of superfluid helium merely 
using the two postulates. 

 
(Postulate l) 

A unitary transformation U exists from the non-interacting states to the 
eigenstates of the total Hamiltonian in a liquid helium system. 

It is noteworthy that the explicit form of U is never used herein; only the 
existence of U. This postulate is true because of the hermitian property of H 
and because of the property that no bound-state exists: no molecule is 
composed of plural helium atoms. These properties confirm the existence of a 
unitary transformation from the complete set of free states to the complete set 
of the eigenstates of H. In a previous paper [7], we demonstrated the 
approximated form of U up to the second order in the perturbation series for a 
3D system. Moreover, in a 1D many-boson system, we obtained the exact 
form of U (see reference [10]). 
 
(Postulate 2) 

Single excitation energy from the ground state has a phonon-like spectrum 
in a small momentum region. 

The detected dispersion curve of the elementary excitation exhibits 
phonon-like behavior in a small momentum region. Therefore, Postulate 2 
agrees with the experimental results. 

 
It is noteworthy that these two postulates are true in a 1D many-boson 

system with a repulsive delta function potential. The proofs have been 
presented in the relevant literature [10, 11], where the unitary transformation 
exactly diagonalizes the total Hamiltonian of the 1D system. This is 
summarized in Appendix I. 

Using the two postulates described above, we can introduce a new 
concept, i.e. "dressed boson" whose creation and annihilation operators are 
defined as follows: Transform the creation and annihilation operators of a 
helium atom by the inverse unitary transformation of U. Then, new creation 
and annihilation operators are obtained. These new operators create or 
annihilate a quasi-particle, which represents the eigenstate of the total 
Hamiltonian of liquid helium. This quasi-particle is called the "dressed boson", 
which is the key to clarification of the mysterious mechanism of superfluid 
helium. 
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In chapter II, we will examine a diagonalized form of the total 
Hamiltonian. The functional form is nonlinear with respect to the momentum 
distribution function of the dressed bosons because the interactions among 4He 
atoms are Galilean invariant. The nonlinear term is determined concretely 
using the experimental data of elementary excitation energy in neutron 
scatterings and using the latent heat per helium atom. This explicit form of the 
nonlinear term produces the remarkable properties of liquid helium. 

In chapter III, we will derive coupled integral equations that determine the 
momentum-distribution of the dressed bosons at equilibrium. At temperatures 
higher than the  point, these equations have only one solution. On the other 
hand, for temperatures lower than the  point, these equations have infinitely 
many solutions, even in fixing of the values of temperature, total number, and 
total momentum. The multiple solutions include a Bose condensate of the 
dressed bosons: a macroscopic number of dressed bosons with only one 
momentum value. Moreover, the condensed momentum value can be an 
arbitrary value within some range. The Bose condensate represents the 
superfluid component, and the residual dressed bosons represent the normal 
fluid component. Therein, even when the velocity of the normal fluid is fixed 
to a single value, many solutions exist in which the Bose condensed momenta 
differ from one another. Consequently, the velocity value of superfluid 
component can be chosen to be any value independent of the normal fluid 
velocity. For that reason, the solutions of momentum distribution of the 
dressed bosons reproduce the two-fluid model, which will be discussed in 
detail in chapter VIII. 

H. Kojima et al. [9] measured the decreasing rate of superfluid velocity. 
They prepared liquid helium II, whose superfluid component flows with an 
initial velocity through a toroidal channel, and whose normal-fluid component 
has velocity zero. Then, the superfluid velocity did not decrease for the case of 
the initial superfluid velocity smaller than 33 cm/s. That is to say, the 
superfluid component flows permanently in this case. The superfluid velocity 
would decrease to 60 cm/s after 1010 years in their experimental result when 
the initial velocity was 67.7 cm/s. Accordingly the two-fluid states are 
extremely stable. The solutions obtained in the nonlinear theory have local 
maximum entropies. Therefore, the nonlinear theory well explains the stability 
of the two fluid states in liquid helium. 

It is clarified in this book that the nonlinear theory produces the properties 
of liquid helium as  

 
1)  Existence of the -transition. 
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2)  Two interpenetrating fluids coexist at a temperature lower than the - 
transition. 

3)  Any solution representing a two-fluid state has a local maximum 
entropy among the thermal fluctuated states. 

4)  The fountain effect in superfluid helium. Dressed bosons satisfy the 
London equation. 

5)  Superfluidity and zero entropy for the superfluid component. 
 
We can calculate the thermodynamic functions of liquid helium 

numerically using the concrete form of the nonlinear term determined in 
chapter II and using the iteration method presented in chapter III. We execute 
the calculations and obtain the theoretical results in good agreement with the 
experimental data for entropy and heat capacity. Moreover, examining the 
nonlinear properties in detail, we evaluate the specific heat near the  point. 
The numerical result has logarithmic divergence at the  point. The reason for 
the appearance of the logarithmic singularity is also clarified in an analytical 
method. We theoretically obtain the phase diagram between He II and He I, 
the critical index of the Bose-condensed number at the  point, etc. via the 
nonlinear theory. 

Accordingly, the nonlinear theory presented in this book engenders the 
theoretical explanation for the macroscopic behavior of liquid helium. 



 

 
 
 
 
 
 

Chapter 2 

 
 
 

GENERAL FORM OF TOTAL ENERGY 
 
 

2.1. UNITARY TRANSFORMATION 
 
The total Hamiltonian H of liquid helium is given as 
 

  
kqp

qpkqkp
p

pp k
p

 , ,

*** aaaag
V

aa
m

H
2

1

2

2

, (2.1) 

 
where m is the mass of a helium atom, *

pa  and pa  respectively signify the 

creation and annihilation operators,  kg  is the inter-atomic potential between 
helium atoms, V is the volume of the system, and kqp  , ,  are the momenta 
whose values satisfy the periodic boundary conditions in a cubic box with side 
length L (V = L3): 

 
       integer,2 integer,2 integer,2  LpLpLp zyx    

     integer,2 integer,2  LqLq yx   (2.2) 

 2constant s'Planck . 
 
The operators *

pa  and pa  are the creation and annihilation operators 

satisfying the commutation relations 
 
      0,, , , **

,

*  qpqpqpqp aaaaaa  , (2.3) 
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where qp ,  represents Kronecker’s delta function. 
In this chapter, we examine the general form of the total energy of liquid 

helium system via the unitary transformation U diagonalizing the total 
Hamiltonian H. Actually, the existence of U is ensured by the fundamental 
requirement of quantum physics, although the explicit form of U is unknown 
because of difficulty of the many-body problem. All eigenstates of H can be 
written using the transformation from free states of helium atoms (see 
Postulate 1 in chapter I), as 

 
0stateeigen ****

321 N
aaaUa pppp , (2.4) 

 
where 0  denotes the vacuum state of the system, and where N is the total 

number of helium atoms. New creation and annihilation operators are defined 
as 

 
11   UUaA ,UUaA **

pppp . (2.5) 
 
These new operators indicate creation and annihilation operators of a 

quasi-particle with an interaction cloud. We designate this quasi-particle as a 
"dressed boson" hereinafter. We rewrite the eigenstate (2.4) using the dressed 
boson operators, thereby obtaining  

 
00stateeigen ****1**1*1*

321321
UAAAAUUaUaUUaUUa

NN pppppppp   . (2.6) 

 
Because the vacuum state 0  is the eigenstate of H, we get 

 
00 U  (2.7) 

 
Substitution of that equation into the right-hand-side of Eq. (2.6) yields 
 

0eigenstate ****

321 N
AAAA pppp  . (2.8) 

 
Therefore, the direct products of the dressed boson operators express all 

the eigenstates of liquid helium. Accordingly, the operator *Ap  creates a quasi-
particle representing an eigenstate of H. Using the dressed boson operators; we 
can rewrite the eigenequation of H as the following. 
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  0 ,,,0 ****

21

****

321321 NN
AAAAEAAAAH N pppppppp ppp    (2.9)  

 
This equation indicates that the total energy of the liquid helium depends 

only upon the number distribution of the dressed bosons in momentum space. 
That is to say, the eigenenergy E is expressed with the number distribution  

pn  

as 
 

 }{ pnEE  , (2.10) 

 
where 
 

ppp AAn *  (2.11) 
 

is the number of dressed bosons with momomtum p. 
 
 

2.2. GALILEAN COVARIANT FORM OF TOTAL ENERGY 
 
The total Hamiltonian H is Galilean covariant. Therefore the diagonal 

form of H is the sum of the kinetic energy K of the center of mass and Galilean 
invariant terms X. 

 
XKH   (2.12) 

 

M
K

2

2Q
  (2.13) 

 
In Eq. (2.13), M is the total mass and Q  is the total momentum of liquid 

helium. Because of the total momentum conservation, we obtain the following 
relations. 

 
  

q
q

q
qq

q
qq

q
qq qqqqQ nAAUaaUaa *** 1  (2.14) 

 
Hamiltonian H conserves the total number of helium atoms; therefore, the 

unitary transformation U diagonalizes H and N simultaneously. 
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  

q
q

q
qq

q
qq

q
qq nAAUaaUaaN *** 1

 
(2.15) 

 
Accordingly, the total number of helium atoms is equal to the total 

number of the dressed bosons. Substitution of Eqs.(2.14) and (2.15) into Eq. 
(2.13) yields 

 
      

















p

p

qp

qp

qp

qp

q

q

p

p
p

qpqpqpqp

n
mM

nn

M

nn

M

nn

K
2222

2
,

2

2

1

,

22

2

12

2

1

 (2.16) 

 
where 
 

NMm  (2.17)  
 

is the mass of the helium atom. Then, the diagonal form of the total 
Hamiltonian H is expressed as the following. 

 
   termsinvariant Galilean 

22

1

2

2

,

2

2
1

2

 
p

p

qp

qp

p

p

p
qp

p
n

m
Xnn

M
n

m
XKH

 (2.18) 
 
Galilean invariant terms are described only by relative momenta of 

dressed bosons. They are expressed using arbitrary functions sf  as 
 
       

kqp

kqp

qp

qp kpqpqp
, ,

32
 ,

2 ,
11

termsinvariant Galilean nnnf
N

nnf
N

 . (2.19) 

 
The function sf  indicates the coefficient of term where s dressed bosons 

mutually correlate. It is also noteworthy that 1f  does not exist because the relative 
momenta cannot be made of only one momentum. Galilean invariant terms are 
nonlinearly dependent upon number operators of dressed bosons. According to 
(2.18) and (2.19), the total energy of liquid helium has the following form. 

 

     
kqp

kqp
qp

qp
p

p kpqpqp
p

, , ,

nnn,f
N

nnf
N

n
m

E 322

2 11

2   
(2.20) 

The correlation with many particles decreases when the system becomes 
dilute. The terms 543 f f f  are smaller than 2f  because a three particle 
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collision is a rare case for diluteness of liquid helium compared with an 
ordinary liquid. We can therefore neglect higher terms. Thereby we obtain  

 

  
qp

qp
p

p qp
p

 ,

nnf
N

n
m

E
1

2

2

 (2.21) 

 
As the details are examined in Sec. 2.5, the function form    0ff k  is related 

directly to k  for a small value of k . The property is derived from Postulate 2 in 
chapter I to yield a phonon-like behavior in the excitation of dressed boson. The 
nonlinear form of (2.21) produces characteristic properties of liquid helium: 
temperature dependence of thermodynamic functions, two fluid mechanism, and 
so on. The mechanism will be examined in greater detail in chapters III–XI. 

In a 1D system, we have exact quantum solutions for interacting of many 
bosons. The total energy of the system also has a nonlinear form. The details are 
discussed in section 2.3. (Readers who are only interested in properties of liquid 
helium can skip sections 2.3 and 2.4.). 

 
 

2.3. EXACT FORM OF TOTAL ENERGY  

IN A ONE-DIMENSIONAL SYSTEM 
 
We have an exact solution for an interacting many-boson system. The 

system is a 1D many-boson system via a repulsive delta-function potential. 
The eigenenergies were obtained by Girardeau, Lieb, and Liniger [5]. The 
diagonalization of the total Hamiltonian via the unitary transformation was 
solved by Sasaki and Kebukawa [10]. 

The Hamiltonian is 
 

 
k,q,p

qp
*

kq
*

kp
p

p
*
p aaaa

L

g
aa

m

p
H

22

2

, (2.22) 

 
where m is the mass of a boson and L is the length of the 1D space. The 
diagonal form of the Hamiltonian is  

 
 

3

1

2

1

22

222 











 

NN

Lm
AAAA

mL

qp
AA

m

p
H

q,p
q

*
qp

*
p

p
p

*
p

   (2.23) 

 
for an infinitely large coupling constant g, where 
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1 UUaA pp , and 1 UUaA *
p

*
p . (2.24) 

 
The unitary transformation U is described explicitly in Appendix I. In a 

finite coupling constant value, the diagonal form is expanded by (1/g) as the 
following. 

 

 

 

 3

22

,

**2

2
22

,

**2

2
22

*
2

1Order

3

1
3

2
2

2
1

2

1

2

322

2

1

2

g

NN

L
AAAA

L

qp
N

Lmg
N

Lmgm

AAAAqp
N

LmgLmgm
AA

m

p
H

qp

qqpp

qp

qqpp

p

pp













 



































































 

 (2.25) 
 
This result shows that the nonlinear form (2.21) is reasonable. More 

details are presented in Appendix I. 
 
 
2.4. CALCULATION OF SINGLE EXCITATION ENERGY  

IN LIQUID HELIUM 
 

A liquid helium system in three-dimensional (3D) space cannot be solved 
exactly. Many investigations have been carried out to find an approximate 
form of the single excitation energy for the Hamiltonian (2.1) [4–7]. 

One is the Bogoliubov theory [4]. Therein, almost all bosons are 
considered to have momentum zero; the operators 0a  and *a0  are replaced by 

the c-number N  as 
 

Na 0  and Na* 0 . (2.26) 
 
Then, the total Hamiltonian is approximately equal to the following form. 

 
terms order higher

2

0
B

2

 H
g

V

N
H  (2.27)

 

    
k

kkkkkkkk
p

kk k
k

aaaaaaaag
V

N
aa

m
H *****

B
22

2

 (2.28) 
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We call BH  a Bogoliubov Hamiltonian. This Bogoliubov Hamiltonian 
does not conserve the total boson number because the replacement from the 
operators 

0a  and *a0  to the c-number N  violates the total number 
conservation. This simple Hamiltonian can be diagonalized as the following. 

 
 







0
2

22
*B

B

1

8k k

k

k

kkk

k





m
ccEH  (2.29) 

 
      *2sinh2cosh kkk kk  cfcfa  (2.30a) 

 
      kkk kk  cfcfa 2sinh2cosh **  (2.30b) 

 
 kk k mE B 22  (2.31) 

 
             kkkk kk  


142sinh   ,142cosh

2121
ff  (2.32) 

 
     2122 4


 Vg mN k kkk  (2.33) 

 
The excitation energy in the Bogoliubov theory BEk  is proportional to the 

momentum k for a small value of k. It is theoretically clarified that the 
elementary excitation energy has a phonon-like behavior at a small 
momentum. 

Subsequently, many physicists tried to improve the Bogoliubov theory. 
The backflow effect is considered by Feynman and Cohen, and is investigated 
based on the Bogoliubov theory by Miller, Pines, and Nozieres [6]. Feenberg 
calculated the expansion series of the excitation energy systematically on the 
basis of correlation functions. Nishiyama also investigated a new formulation 
using the number density operator and the phase operator [6]. 

Sunakawa, Yamasaki, and Kebukawa [6] rewrote the total Hamiltonian of 
liquid helium using the density fluctuation operator and its velocity operator. 
Hereafter, we call that theory the SYK theory. They evaluated the single 
excitation spectrum for a potential with square shape. As Figure 2.1 shows, 
their numerical calculation of the excitation energy showed good agreement 
with the experimental data. Their operators indicate the creation and 
annihilation operators of density wave mode. Therefore the total number of the 
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modes in SYK theory does not relate with the total number of helium atoms. 
Consequently, it is difficult in their theory to discuss Bose condensation. 

Sasaki and Matsuda [7] attempted to improve the SYK theory. Sasaki and 
Matsuda found the unitary transformation satisfying number conservation in 
perturbation method up to the second order. The unitary transformation 
produces the dressed boson operators pp   ,* . Then the total number 
conservation holds as  

 
 

 p
pp

p
pp

 all

*** aa
0

00  , (2.34) 

 
which was shown in (4.32) of reference [7]. Accordingly, the Bose condensate 
of dressed bosons appears at a sufficiently low temperature. The dressed boson 
excitation energy from momentum zero to p is equal to the excitation energy 
of the density mode in SYK theory. 

 

 

Figure 2.1. Elementary excitation energy ( BkEk ). 
Dots signify the experimental values of the excitation energy in neutron scatterings. 
The blue curve represents the calculation result of Sunakawa et al. The curve shown 
with a dashed line portrays the result obtained using the Bogoliubov theory. 

The single particle excitation energy has been approximately obtained in 
various perturbational approaches. It is necessary to determine properties of 
multiple excitations to study the thermodynamic functions of liquid helium. 
That property is examined in subsequent sections. 
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2.5. DETERMINATION OF GALILEAN INVARIANT TERM IN 

ENERGY USING EXPERIMENTAL DATA 
 
The ground state of the system is expressed as  
 

    00state Ground *

0

*

0

NN
AaU  . (2.35) 

 
The eigenequation of H is 
 

    00 00

N*
G

N* AEAH  , and (2.36a) 
 

 NfEG 0 , (2.36b) 
 

which are readily derived from Eq. (2.21). This equation indicates that the 
value  0f  is the latent heat per atom at zero Kelvin. 

 
  0f (latent heat per atom at zero Kelvin) (2.37) 

 
The single excitation state is 
 

  0state excitation single
1*

0

* 


N
AAp

. (2.38) 

 
Because the number distribution of the single excitation state is 

 1 ,10  pnNn , the total energy can be expressed as the following. 

 

           

      02
2

0

1110
1

2
2

2
2

ff
m

Nf   

fNfNfNf
Nm

E





p
p

pppp
p

 (2.39) 

 
In that equation, we used 01 N  and the spherical symmetric property of 

the function  pf  in (2.21). Comparison of two energies (2.36b) and (2.39) 

gives the energy increase as     02
2

2

ff
m

 p
p . This increasing energy 

indicates the single excitation energy 0
p . 
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    02
2

2
0 ff

m
p  p

p
  (2.40) 

 
The energy was detected by neutron scattering experiments in liquid 

helium [1, 8, 25]. Therefore, the Galilean invariant term is expressed as the 
following. 

 
      0220

2

1 fmf p  pp   (2.41) 
 
The function form of  pf  is thus determined from experimental data of 

the elementary excitation energy 0
p  and the latent heat  0f  per atom at the 

temperature 0T . 
The energy spectrum of elementary excitation is measured using neutron 

scattering experiments [8, 25]. These experimental values are presented in 
Table 1. We can apply the experimental values of 1.1 K for 0

p  (which is the 
excitation energy at zero Kelvin) because the experimental energy spectrum 
does not vary for changing of temperature value in the region lower than 1.3 
K. 

We find the analytical form of 0
p  which fits the experimental data. The 

momentum region is divided into five regions: phonon, maxon, roton, high-
momentum region 1, and high-momentum region 2. The function forms for 
each region are chosen as the following. 

 
(Phonon region) 

p cp 1
0   for 10 pp   (2.42) 

(Maxon region) 
        5

5
4

4
3

3
2

20
0

MMMMBp ppgppgppgppggk   
for 21 ppp   (2.43) 
(Roton region) 

 
rm

pp
p






2

2
00  for 32 ppp    (2.44) 

 
(High momentum region 1) 

     333
2

32310
0 pp bpp bpp cbp   for 43 ppp   (2.45) 
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Table 1. Experimental data of elementary excitation energy (The unit 

of  1010p  is 
1

A ; the unit of Bp k0  is K) 

 
 1010p  

Bp k0   1010p  
Bp k0   1010p  

Bp k0   1010p  
Bp k0  

0.0894 1.6131 0.3 5.65 1.1 13.8 1.94 8.63 
0.0946 1.7175 0.4 7.4 1.13 13.82 1.94 8.609 
0.115 2.1005 0.4036 7.6361 1.2 13.75 1.95 8.65 
0.121 2.2514 0.4082 7.7173 1.3 13.5 1.95 8.633 
0.139 2.6111 0.4187 7.9146 1.4 12.95 1.96 8.683 
0.143 2.6343 0.4232 7.9958 1.5 12.2 1.96 8.672 
0.1594 2.9709 0.4355 8.1815 1.6 11.2 1.97 8.695 
0.1767 3.2958 0.4498 8.3788 1.7 10.25 2 8.95 
0.1818 3.3887 0.4643 8.6457 1.8 9.25 2.1 10 
0.1938 3.6324 0.4785 8.8662 1.88 8.694 2.2 11.65 
0.199 3.7368 0.4926 9.1099 1.89 8.657 2.3 13.55 
0.2 3.7 0.5 9.15 1.9 8.7 2.4 15.5 
0.211 3.9689 0.5605 10.1544 1.9 8.654 2.5 16.45 
0.2162 4.085 0.6 10.75 1.9 8.634 2.6 17 
0.2278 4.2822 0.6243 11.0015 1.91 8.635 2.7 17.3 
0.2329 4.3867 0.6965 11.8023 1.91 8.616 2.8 17.5 
0.2445 4.6072 0.7 11.75 1.915 8.611 2.9 17.7 
0.2495 4.7116 0.7649 12.4173 1.92 8.626 3 17.85 
0.2611 4.9205 0.8 12.72 1.92 8.61 3.1 18 
0.2776 5.2339 0.8 12.65 1.925 8.606 3.2 18.15 
0.2825 5.3267 0.83 12.8815 1.93 8.626 3.3 18.3 
0.2938 5.524 0.8925 13.2297 1.93 8.606 3.4 18.35 
0.2988 5.6284 0.9 13.15 1.935 8.63 3.5 18.4 
0.3 5.57 1 13.55 1.935 8.612 3.6 18.45 

 
(High momentum region 2) 

   242410
0 pp dpp ddp  for 10

4 1063  .pp   (2.46) 

We abbreviate the momentum region larger than 101063 . . These 
function forms have several properties: (1) The excitation energy in the 
phonon region has the first sound velocity. (2) The shape near the roton 
minimum is a parabolic curve. (3) In the high-momentum region 1, the 
velocity is in agreement with the first sound velocity. Therefore, we adopt the 
following values for several parameters. 
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]m/s[ 2381 c  (2.47) 
 
This value is used in (2.42) and (2.45). 
The roton parameters are 
 

Bk .618  (2.48) 
 

10
0 10921  .p  (2.49) 

 
1530.r   (2.50) 

 
Table 1 shows that the maximum energy in the maxon region is 13.82 Bk  

at momentum  . 1010131  . We apply these values as 
 

82130 .g   (2.51) 
 

 .pM
1010131   (2.52) 

 
The function form of (2.46) fits the experimental data for the parameter 

values as 
 

Bk.d  7526160  (2.53) 
 

 10
1 10228773 Bk.d   (2.54) 

 
 210

2 10569681 Bk.d   (2.55) 
Three boundaries between four momentum regions are given as 
 

 .p 10
1 1050   (2.56) 

 .p 10
2 10781   (2.57) 

 
 .p 10

4 10552   (2.58) 
 
The remaining boundary is determined as follows: Equation (2.45) shows 

that the velocity of high-momentum region 1 becomes the first sound velocity 
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

c1  at 3pp  . Accordingly, the roton energy is expected to have the same 
derivative at the boundary 3pp   to hold a smooth connection at the boundary. 
Accordingly, the value of 3p  is  

 
 .p 10

3 1014952  . (2.59) 
 
The continuous connection at 3pp   leads to the following value of 

parameter 0b . 
 

 
Bk.

rm

pp
b 




 69610

2

2
03

0
. (2.60) 

 
The parameters 

432  , , ggg  and 
5g  are determined so that the phonon curve 

and roton curve connect smoothly to the maxon curve at 1pp   and 2pp  : the 
function value and the derivative are connected to both curves. In addition, the 
values of 

2b  and 
3b are determined by the conditions for smooth connection at 

4pp  . The numerical results are the following. 
 

 210
2 10880510 .g   (2.61) 

 
 310

3 10814971 .g   (2.62) 
 

 410
4 109668090 .g   (2.63) 

 
 510

5 10190447 .g   (2.64) 
 

 210
2 10434414 Bk.b   (2.65) 

 310
3 10095855 Bk.b   (2.66) 

 
Therefore, all the parameters have been determined. The analytical forms 

of (2.42)–(2.46) show good agreement with the experimental data of the 
elementary excitation energies, as presented in Figure 2.2. 
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Using the explicit forms (2.42)–(2.46) and the parameter values (2.47)–
(2.66), we determined the function form  pf . In other words, the Galilean 
invariant term is determined concretely. The value of  0f  is shown on page 
393 of reference [24]: 

 
  Bk.f  1670  . (2.67) 

 

 

Figure 2.2. Elementary excitation energy ( Bkp ). 

The dots express the excitation energies detected in neutron scatterings. The curve also 
expresses the function defined by (2.42)–(2.46). The unit for the vertical axis scale is 
K; the horizontal axis expresses  1010p  in the unit of the reciprocal of angstrom. 

Consequently, the nonlinear term is expressed as 
 
     Bk.mpcf 16722

12

1  pp
 
for 10 pp   (2.68a) 

          
  B

MMMMB

k.m             

ppgppgppgppggkf

16722

2
1

5
5

4
4

3
3

2
202

1





p

p

 

 
for 21 ppp   (2.68b) 

 

 
 

  Bk.m
rm

pp
f 1672

2

2
2

0

2
1 



















 pp

 
for 32 ppp   (2.68c) 
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        
  Bk.m            

pp bpp bpp cbf

16722

2

1

3
33

2
323102

1





p

p

 
for 43 ppp   (2.68d) 

 
         Bk.mpp dpp ddf 167222

424102

1  pp  
 

for 10
4 1063  .pp  

 (2.68e)
 

 
 

The parameter values are shown in Eqs. (2.47)–(2.66). 
The excitation energy of dressed boson depends upon T via the nonlinear 

dependence (which is discussed in detail in subsequent chapters) when the 
temperature becomes high. The nonlinear mechanism was investigated by the 
author in several previous studies [12], [19], [20], [22], and [27]. 

 





 

 
 
 
 
 
 

Chapter 3 

 
 
 

TEMPERATURE DEPENDENCE OF  

THE EXCITATION ENERGY 
 
 
Nonlinearity in Eq. (2.21) produces the temperature dependence of the 

excitation energy. We examine the dressed boson energy. The energy of one 
dressed boson is an increase value of the total energy when one dressed boson 
is added to the system. Therefore, the dressed boson energy is defined as 

 

p

p
n

E




  . (3.1) 

 
Substitution of (2.21) into (3.1) yields 
 

      
t s,

ts
q

qp tsqp
p

nnf
N

nf
Nm

T
2

2 12

2
 , (3.2) 

 
where we have used    pqqp  ff . The dressed boson energy depends upon 
the distribution  qn , as is readily apparent in Eq. (3.2). The distribution  qn  
varies with the change of temperature: the dressed boson energy is 
temperature-dependent. This nonlinear effect has been examined in the 
literature [12]. 
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3.1. DRESSED BOSON DISTRIBUTION 
 
We examine the number distribution of dressed bosons in this section. The 

calculation method determining the distribution function is explained 
separately in two cases of TT   and TT  . 

 
 

3.1.1. Case of TT   
 
The energy p  depends upon the number distribution of the other dressed 

bosons. This property produces a two-fluid state with different velocities of the 
superfluid component and the normal fluid component for TT  . The complex 
mechanism will be examined in chapter VIII. We study the case for 0nv  and 

0sv  in this chapter, where nv  and sv  respectively represent the velocities of 
normal fluid and superfluid components. 

For 0 sn vv , the number distribution of dressed bosons in a thermal 
equilibrium is given as the following. 

 

      1exp

1

B 


TkT
n

p

p

 (3.3) 

 
   T0      (for TT  ) (3.4) 

 
Therein,   is the chemical potential and Bk  is Boltzmann’s constant. This 

distribution is a well-known form in boson system, except the nonlinear 
mechanism of Eq. (3.2). The derivation is explained in details in chapter VIII. 
The chemical potential   is nearly equal to 0  when a temperature T is lower 
than the  transition temperature T . Therein, 0n  becomes a macroscopic 
number (for TT  ). Consequently, Bose–Einstein condensation of the dressed 
bosons appears. 

The dressed boson energy in the Bose condensate is 0 ; therefore the 
excitation energy from the Bose condensate is the difference between p  and 

0 . 
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           
q

qpp qqp
p

nff
Nm

TTT
2

2

2

0  (3.5) 

 
Hereinafter, we call an excitation from the Bose–Einstein condensate 

excitation from BEC. We denote the excitation energy from BEC as  Tp ; 
then we obtain the simultaneous equations as the following. 

 

     1exp

1

B 


TkT
n

p

p


 (3.6a) 

 

 
    

    






0

0
2 202

2 q
qp qqp

pp
nff

NN

nff

m
T  (3.6b) 

 
We cannot exactly solve these simultaneous equations because of their 

nonlinearity. Nevertheless, it is possible to find approximate solutions, as 
explained in section 3.2. 

At 0T , all dressed bosons have momentum of zero ( Nn 0 ). 
Accordingly, Eq. (3.6b) becomes 

 

      

0

2

02
2

p

p p
p









        

ff
m

T
, (3.7) 

 
where we have used (2.41). In this case, the number of dressed bosons 
becomes 
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 (near zero Kelvin). (3.8) 

 
Consequently, the momentum distribution of dressed bosons near zero 

Kelvin is equal to the number distribution of the elementary excitations in the 
Landau theory. The dressed boson energy with momentum zero at zero Kelvin 
is 
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This concept does not exist in the Landau theory. This value is the 
chemical potential of liquid helium at zero Kelvin. The excitation energy 

0 p  from the Bose–Einstein condensate depends upon the temperature 
value when the temperature becomes high. The dependence is calculated in 
section 3.2. 

 
 

3.1.2. Case of TT   
 
In this case, the value of 0n  is not a macroscopic number. Therefore, the 

simultaneous equations are the following. 
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There is no singularity in the simultaneous equations (3.10a,b) because of 

   T0  for TT  . These simultaneous equations are solvable 
approximately. The method is discussed below. 

 
 

3.2. INTEGRAL EQUATION FOR  

DETERMINING DRESSED BOSON ENERGY 
 

3.2.1. Integral Equation 
 

We substitute (3.6a) into (3.6b) to rewrite the simultaneous equations to 
an integral equation as in the following expression. 
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There is no singularity in the summation (3.11) because the term at 0q  

is removed from the summation. For that reason, we can rewrite the 
summation into integration as 
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where we have used momentum interval L2  and 3LV  . The number 0n  of 
the condensed dressed bosons is  
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which is derived from number conservation (2.15). Substitution of (3.13) into 
(3.12) yields the equation shown below. 
 

      
      

 
    

    























qqqp

qp
p

q

q

p

3

B

3

3

B

3

2

d
1exp

1

2

2
             

d
1exp

1

2
0

2

2

TkT
ff

N

V

TkT

V
Nff

Nm
T








   (3.14) 

 
Substituting the function form (2.41) into (3.14), we obtain the following 

expression.  
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 (3.15) 
 
These two integrations in (3.15) are gathered into an integration as shown 

below. 
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The term including  m22 qp  disappears by integration of (3.16) because 
the dressed boson energy  Tp  is spherically symmetric for the momentum 
vector. Then we obtain 
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where qdq td dd 23 q  and  pqt qp cos . Performing integration by 
angle 



 , the result is as shown below. 
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We define the kernel function as 
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Making use of the kernel (3.19), integral equation (3.18) takes the 

following form. 
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We can approximately solve this integral equation using an iteration 

method. The details are explained in subsequent sections. 
 
 

3.2.2. Approximate Solution in the First Order 
 

The excitation number from the Bose–Einstein condensate is very small 
when the temperature is very low, i.e. lower than 1.3 K. Therefore, we can 
apply 0

p  for  Tp  of the right-hand-side of (3.20); then obtain the first 
approximation of  Tp . We describe the first approximation energy by  T,p1  
and obtain the following expression:  
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In this case, we obtain the first approximation of the distribution function 

for dressed bosons as the following. 
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We can use the approximation forms of (3.21) and (3.22) for evaluating 

thermodynamic functions in a low-temperature region. Higher order 
approximations are examined in the next section. 

 
 

3.2.3. Approximate Solution in Higher Order 
 
Iteration is useful to solve the integral equation of (3.20). Replacing  Tp  

in the right-hand-side of (3.20) with  T,p1 , we obtain the second order 
solution  T,p2  as follows. 
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The second order distribution function of dressed bosons is given as 
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The j-th order approximation is obtainable from using the (j-1)-th order 

approximation, as follows. 
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Long calculation time is necessary to evaluate  T,pj  and  T,pn j  
because the integrations in (3.19) and (3.25) are very complicated. The second 
order approximations (3.23) and (3.24) are calculated numerically; thereafter 
the theoretical values of the entropy and specific heat are calculated using the 
second order approximate values explained in chapters IV and V. 

The excitation energy of the dressed boson depends on the temperature via 
the nonlinear effect. The velocity of the dressed boson becomes small and 
vanishes at the  point when the temperature approaches the  point. That 
property was discussed first in the relevant literature [27]. Details are 
examined in Sec. 5.4. 

 



 

 

 

 

 

 

 

Chapter 4 

 

 

 

CALCULATION OF ENTROPY 
 

 

The entropy of liquid helium is given as the following equation. 
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 (4.1) 

 
In that equation, Bk  is the Boltzmann constant, and pn  is the number 

distribution of dressed bosons. The derivation of (4.1) is explained in detail in 
sections (8.6) and (8.15) of chapter VIII. Substitution of (3.6a) into (4.1) gives  
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The total entropy S has a macroscopic magnitude; in fact, it is proportional 

to the total number N. The entropy of superfluid component superS  is given by 
the term with 0p  on the right-hand-side of Eq. (4.2) as the following. 
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0super  

N
NS  (4.3b) 

 
Therefore, the entropy of superfluid component is not a macroscopic 

value. For that reason, all entropy belongs to the normal fluid component 
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(which comprises dressed bosons with nonzero momentum). The summation 
in (4.2) can be changed to integration, as the following expression shows. 
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The spherical symmetric property gives 
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We substitute (3.6a) into (4.5), and obtain 
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Then, the entropy per unit mass is expressed from (4.5) or (4.6) as the 

following. 
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Therein, VmN  is the mass density of liquid helium. We calculate the 

entropy using the approximate solution described in chapter III. 
 
 

4.1. EVALUATION USING ITERATION METHOD 
 
We execute the calculation of entropy using second order approximations 

(3.23) and (3.24), which necessitates a very long computing time to obtain the 
kernel function  q,pK , the first order energy  T,p1 , and the second order 
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energy  T,p2 . When we calculate the integrations in (3.19), (3.21), (3.23), 
and (4.7a) numerically, the necessary CPU time is extremely long and the 
result cannot be obtained within any reasonable time. Therefore, we consider 
another method for obtaining the approximate values using a computer 
program. 

We produce value tables for  q,pK ,  T,p1 , and  T,p2  using a 

computer. We calculate the kernel  q,pK  in the region of 
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A . Then, we obtain a list 
of about 105 values of them. These values are stored in computer memories. It 

is worth noting at this point that the contributions from 
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
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 A .p  or 
1

63






 A .q  are negligibly small; for that reason, we abbreviate the 
momentum region. Next, we produce a computer program producing an 
approximate value of the kernel for arbitrary momenta (p, q) via the list of 
about 105 values. Using this program, we can numerically calculate  T,p1  
using only a short CPU time. We can then produce a list of function values of 
 T,p1  for about 104 points of (p, T). The list of  T,p1  enables the 

calculation of  T,p2  in (3.23) with a short CPU time. We can also produce a 
list of function values of  T,p2  for about 104 points of (p, T). 

The second order approximation value of the entropy per unit mass is 
expressed as 
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Consequently, we can evaluate the entropy per unit mass described in 

(4.8) using the list of function values of  T,p2 . The numerical results are 
portrayed in Figures 4.1 and 4.2. 

The vertical axis of Figure 4.1 is a logarithmic scale; the vertical axis of 
Figure 4.2 is a linear scale. As portrayed in those figures, the calculation 
values show good agreement with the experimental data for the region of 

K .T 12 . This calculation is executed using the Mathematica program (The 
source list is shown in end of this book).  

It is noteworthy that the present calculation incorporates only the 
experimental data of excitation energy obtained at 1.1 K. In marked contrast, 
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traditional theories have used the data of excitation energy obtained at several 
different temperatures or have adjusted parameter values for different 
temperatures to fit the experimental data. Our calculation in this section uses 
no such an artificial method. Nevertheless, the present results show good 
agreement with experimental data of the entropy for 0<T<2.1 K. 

 

 

Figure 4.1. Entropy of liquid helium on a logarithmic scale. 
Dots indicate the experimental data. The curve expresses the calculation results 
obtained using the nonlinear theory. 

 

Figure 4.2. Entropy of liquid helium on a linear scale. 
Dots indicate the experimental data. The curve shows calculation results obtained 
using the nonlinear theory. 
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4.2. TRADITIONAL THEORIES 
 

4.2.1. Landau Theory 
 
Landau calculated thermodynamic functions by applying the excitation 

energy 0
p . The theoretical value of the entropy is expressed as the sum of 

phonon part phS  (reference [3] Khalatnikov, page 11) and roton part rS  
(reference [3] Khalatnikov, page 12). 

The entropy of phonon part per unit mass is  
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where c is the phonon velocity and 



  is the mass density of liquid helium. 
The roton part per unit mass is expressed as 
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where 



  is the roton minimum energy, 



 is the effective mass of roton, and 

0p  is the momentum of roton minimum. The total entropy per unit mass is as 
shown below. 
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We use the parameters shown below. 
 
c =238 [m/s] (4.12a) 
 



  = 145.5 [kg/m3] (4.12b) 
 

]K[ 606.8 Bk  (4.12c) 
 

]kg[ 10063.116.0 27 m  (4.12d) 
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Figure 4.3. Entropy of Landau Theory for temperatures lower than 1.1 K. 
Calculated values are expressed by the curve. Dots show the experimental data. 

  ]A[ 92.110
1

10

0






p  (4.12e) 
 

where m is the mass of helium atom. The temperature dependence of Landau’s 

entropy is portrayed in Figures 4.3 and 4.4. 
 

 

Figure 4.4. Entropy of Landau Theory for temperatures higher than 1.0 K. 
Calculated values are expressed by the curve. Dots show the experimental data. 
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Figure 4.3 shows that Landau’s calculation results of entropy have good 
agreement with the experimental data obtained at less than 1.1 K. 
Nevertheless, Landau’s entropy is approximately 60% of the experimental 

value at 2.1 K, as portrayed in Figure 4.4. To improve the Landau theory for 
the region of K.T 11 , many researchers have introduced the temperature 
dependence of excitation energy. We explain their works in later sections of 
this article. 

 
 

4.2.2. BCY Theory 
 
To take account of the temperature dependence of excitation energy, P. J. 

Bendt, R. D. Cowan, and J. L. Yarnell extended Landau’s theory [13]. We 

designate their calculation BCY calculation. The momentum range was 
divided into four intervals: the phonon region, maxon region, roton region, and 
high-momentum region. Respective forms of the excitation energy for each 
momentum region are expressed as follows: 

The excitation energy in phonon region is given as 
 

   pTTp 1v , (4.13) 

 
where  T1v  represents the velocity of the first sound. The excitation energy in 
maxon region is given by a parabolic curve as 

 
     210

B 113.1105.11  pakTp , (4.14) 

 
where parameter   



a  is determined from the conditions of continuous 
connection among different momentum regions. 

In the roton region (   18210581 10 .p.   ), the excitation energy is 
calculated using interpolation of the experimental data of neutron scatterings at 
1.1 K and 1.8 K. In other words: 

 
  data  alexperiment    theof  formulaion  interpolatTp . (4.15) 

 
The roton minimum energy  T  is applied to the following interpolation 

formulas (a–f):(page 1390 in [13]). 
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Formula (a):   700840688 T ..kT B   (4.16a) 
 
Formula (b):   601550698 T ..kT B   (4.16b) 
 
Formula (c):   502890708 T ..kT B   (4.16c) 
 
Formula (d):    nB  ..kT 5641678   (4.16d) 
 
Formula (e):   excitation

22 1035.568.8 NkT B

  (4.16e) 
 
Formula (f):   heavy

22 1093.566.8 NkT B

  (4.16f) 

 
These coefficients were determined to fit the experimental data of 

excitation energy at 1.1 and 1.8 K. Formulas (c) and (d) yielded better 
agreement with entropy measurements than the other formulas written in Ref. 
[13]. 

The excitation energy in high-momentum region was defined as 
 

    bpTTp  1v . (4.17) 

 

  

Figure 4.5. BCY calculation results for the entropy of liquid helium. 
The curve expresses the results of BCY theory. Dots show experimental values of 
entropy. 
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Parameter b  is also determined according to the continuous condition 
between different regions. The phonon velocity used the value at each 
temperature. Consequently, the energy dependence is complicated, as 
described above. Then, they evaluated the theoretical values of entropy and 
specific heat. The result of entropy calculation is portrayed in Figure 4.5; it 
shows good agreement with the experimental data for K .T 41 . 

For K .TK . 2241  , their result differs from the experimental data. The 
entropy value of the BCY calculation is about 70% of the experimental value 
at 2.1 K. The BCY calculation uses many temperature dependences, as 
described above. 

 

 

4.2.3. BD Theory 
 
To explain the experimental results for higher temperature, J. S. Brooks 

and R. J. Donnelly improved the theoretical calculation of entropy and specific 
heat of liquid helium. We designate their theory as BD theory. Their results 
were obtained through a lengthy series of investigations [14]. 

 

  

Figure 4.6. Entropy of the BD theory. 
Large dots signify the experimental data. Small dots show results obtained using the 
BD theory. The scale of entropy is measured in units of [J/(g ·K)]. 
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They obtained the numerical values of excitation energies  Tp  by 
making use of various experimental data. For better understanding of the 
details of pressure dependence and temperature dependence, reference [14] is 
helpful. We present their result for entropy in Figure 4.6. 

Their results show good agreement with experimental data. It is 
noteworthy that their results are derived from use of the experimental data 
obtained at many different temperatures. In contrast, our theoretical results in 
section 4.1 are derived from experimental data at a temperature 1.1 K only. 

The calculated entropy values of the BD theory deviate from the 
experimental data near the  transition. Deviations are more readily apparent 
in the specific heat than in entropy. That fact is discussed in the next chapter. 



 

 

 

 

 

 

 

Chapter 5 

 

 

 

SPECIFIC HEAT 
 
 
A logarithmic divergence appears in experimental data of specific heat at 

the temperature T  of the  transition (see Sec. 5.3). However, the calculated 
functions of the traditional theories have no singularity (see Sec. 5.1). We 
investigate the singularity on the basis of the nonlinear theory presented in 
Sec. 5.5. 

The derivative of (4.7a) gives the isobaric specific heat per unit mass.  
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Here, the derivatives are performed under a constant pressure. 

Differentiation of (3.6a) by the temperature yields 
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which gives the following. 
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Substitution of this equation into the second integral of (5.1) yields the 

following.  
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On page 101 of reference [19], we expressed the heat capacity of liquid 

helium with total mass M as 
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where V is the volume of liquid helium. 

Using the derivative of dressed boson number (5.2), Eq. (5.4a) is rewritten 
as follows. 
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We execute differentiation    TTkB  p , and obtain the following. 
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Using the number distribution (3.6a), the isobaric specific heat per unit 

mass is described as  
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Thereby, the isobaric specific heat of liquid helium per unit mass is 

expressed using the excitation energy from the Bose–Einstein condensate and 
the number distribution of the dressed bosons in the nonlinear theory. The 
numerical calculations are executed in Sec. 5.2 and 5.6. 

 

 

5.1. VARIOUS CALCULATION METHODS 
 
Many physicists have calculated the specific heat using their own 

methods. We first explain the traditional calculations of specific heat before 
explaining the results of the nonlinear theory.  

 

 

5.1.1. Calculation of Specific Heat Using Landau Theory 
 

Landau calculated the specific heat by applying the elementary excitation 
energy 0

p . His excitation energy is independent of the temperature. Therefore, 
the right-hand-side of (5.7) can be evaluated. He obtained the approximate 
analytic forms for phonon part phC  and roton part rC  per unit mass as follows: 
(see page 11 and 12 in Khalatnikov’s book [3]). 
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The specific heat per unit mass is given as the sum of two contributions: 

(5.8) and (5.9). 
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Therein, the parameter values are already shown in (4.12). Landau’s 

results are drawn in Figures . 5.1 and 5.2. The results show good agreement 
with the experimental data for K .T 01 , as presented in Figure 5.1. 

 

 

Figure 5.1. Specific heat of the Landau theory for K .T 11 . 
The dots represent the experimental data [15]. The curve expresses Landau’s 

calculation results for the specific heat of liquid helium. The scale of specific heat is 
[J/(g ·K)]. 
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Figure 5.2. Specific heat of the Landau theory in units of [J/(g ·K)] for K .T 01 . 
Dots express experimental data [15]. The curve shows Landau’s results. 

Landau’s results deviate from the experimental values for K .T 31  under 
the saturated vapor pressure, as portrayed in Figure 5.2. Many researchers 
have made efforts to decrease the disagreement between theoretical values and 
experimental values for K .T 31 . Two approaches among them are explained 
in the following sections. 

 

 

Figure 5.3. Calculated values of specific heat in BCY theory in units of [J/(g·K)]. 
The curve shows the theoretical result. The dots express experimental values [15]. 
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Figure 5.4. Specific heat calculated using BD theory on the scale of [J/(g · K)]. Large 
red dots represent experimental values [15]; small black dots show calculated values of 
the specific heat in BD theory. 

 
5.1.2. Calculation of Specific Heat Using BCY Theory 

 
As described in chapter IV, P. J. Bendt, R. D. Cowan, and J. L. Yarnell 

calculated the specific heat via use of the temperature dependence of 
excitation energy. Their results are improved to be better fitting with the 
experimental data than in the Landau theory. The calculated values are 
depicted in Figure 5.3. 

However, the result of BCY theory is still smaller than 50% of the 
experimental data of specific heat at 2.1 K. 

 
 

5.1.3. Calculation of Specific Heat Using BD Theory 
 
In addition, J. S. Brooks and R. J. Donnelly considered the temperature 

and pressure dependences for single excitation energy of liquid helium. Their 
calculated values of specific heat are presented in Figure 5.4, which show 
good agreement with experimental data for K .T 02 . 

Their roton parameters are adjusted so that their results fit the 
experimental values. However, the results deviate by approximately 10% from 
experimental data at K .T 12 . The deviation increases approaching the  
transition. They have used only regular functions without singularity. On the 
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other hand, the experimental behavior shows a logarithmic divergence at 
K .TT 1722  . Accordingly, BD theory cannot explain the logarithmic 

divergence. 
We discuss the origin of the singularity in sections 5.3–5.6. Then, it is 

clarified that the nonlinear structure of the total energy causes the logarithmic 
singularity of the specific heat. 

 
 

5.2. EVALUATION FOR T<2.15 USING  

THE ITERATION METHOD  
 
The nonlinear theory has clarified that the excitation energy from the 

Bose–Einstein condensate of the dressed bosons varies with temperature. As 
discussed in chapter III, the kernel function  q,pK  can be calculated 
numerically based on Eq. (3.19) using the analytical forms (2.42)–(2.46). 
Thereafter, we numerically calculated the first order solutions  T,p1  and 
 T,pn1  using Eq. (3.21) and Eq. (3.22), and also the second order solutions 
 T,p2  and  T,pn2  using Eq. (3.23) and Eq. (3.24). The calculation has 

already been completed in chapter IV to obtain the entropy values. Using these 
numerical values of the second order energy  T,p2  and the second order 
distribution function  T,pn2 , we can calculate the second order approximation 
values of specific heat. 
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 (5.11) 
 
The evaluated results are presented in Figure 5.5. 
As presented in this figure, the theoretical values of the second order show 

good agreement with experimental data for K .T 12 . It is noteworthy that the 
present calculation uses the experimental values of excitation energy only for 
1.1 K. Of course the iteration method is insufficient in close vicinity of the  
transition temperature. We discuss the origin of the logarithmic divergence in 
Secs. 5.5 and 5.6. 
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Figure 5.5. The second order results [19] of specific heat via the nonlinear theory. 
The curve shows calculated values of  ]K)J/(g[log P10 C  of the nonlinear theory. Red 

dots indicate the experimental data [15]. 

 

5.3. Logarithmic Divergence of Specific Heat at the  Point 
 
The experimental data of specific heat have a logarithmic divergence at 

the  point [15]. We portray that behavior in Figure 5.6, where the scale of 
specific heat is [J/(mol·K)]. Therefore the values in Figure 5.6 are 
approximately four times larger than the values shown previously in Figures . 
5.1–5.4. 

It is difficult to measure the specific heat in close vicinity of the  point, 
i.e. in the region of   5101  TT . Gravity acts on liquid helium on the earth. 
Accordingly, the upper part of liquid helium has pressure that is less than in 
the lower part of liquid helium. This pressure gradient yields deviation of the  
transition temperatures. In other words, the lower part of liquid helium has a  
transition temperature value that is smaller than in the upper part. To eliminate 
this deviation, microgravity or zero gravity technology is necessary to measure 
the specific heat, for instance, the environment on the space shuttle. Those 
data were obtained in the space shuttle by Lipa et al. [16]. The experimental 
results are presented in Figure 5.7. (The author extends particular appreciation 
to professor Lipa for these data.). The temperature dependence shows 
logarithmic divergence at the  point. 
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Figure 5.6. Experimental data of Specific Heat for saturated vapor pressure. 
The unit of CS is J/mol·K. The horizontal axis shows   TT1log10

. 

Landau theory and its improved theories (BCY theory and BD theory) 
cannot explain the logarithmic singularity of specific heat at the  point. 
Moreover, our second order solution in the previous section is insufficient to 
explain the singularity. Infinitely numerous iterations are necessary to obtain 
the singularity. 

Deriving this singularity, we will examine the energy spectrum near the  
point in the next section. According to the examination of the spectrum, the 
cause of the singularity is clarified in section 5.5. The specific heat near the  
point is calculated numerically using the nonlinear theory described in section 
5.6. 

 

 

Figure 5.7. Experimental results of specific heat in space shuttle by Lipa et al. [16] 
Specific heat values CS are shown in units of [J/mol·K] on the vertical axis. The 
horizontal axis shows   TT1log10

. 



Shosuke Sasaki 50 

5.4. DRESSED BOSON ENERGY NEAR THE  POINT 
 
The elementary excitation energy is measurable in inelastic scatterings of 

neutron or in Brillouin scatterings of laser light. The detected energy value for 
a small momentum is more precise in Brillouin scattering experiments of laser 
light than in inelastic neutron scattering experiments. Therefore, we reexamine 
the data of spectrum in Brillouin scattering in greater detail. 

There are many experimental measurements of Brillouin scatterings in 
liquid helium [17]. We present one datum in Figure 5.8. The data were 
measured by Vaughan, Vinen, and Palin as on page 533 of reference [17]. 
Therein four peaks are detected whose two central peaks represent the second 
sound peaks (Stokes peak and anti-Stokes peak) and whose remaining two 
peaks indicate the first sound peaks. The detected width of the second sound 
peak is almost equal to the instrumental width: the intrinsic width of the 
second sound is extremely small. The width of the second sound peak was also 
detected by Winteling, Holmes, and Greytak; its value is less than 1.5 MHz for 

]K[1.0TT
, as shown on page 429 of reference [17]. The value 1.5 MHz is 

the instrumental width; therefore the intrinsic width of second sound is smaller 
than 1.5 MHz. It is readily apparent in Figure 5.8 that the second sound width 
is less than the width of the first sound peak near the  point. 

In these measurements [17], the second sound width is smaller than one-
sixth of the width of the first sound. Accordingly, the lifetime of the second 
sound is six times longer than the lifetime of the first sound because the 
lifetime is directly related to the inverse of the width. That is to say, the second 
sound mode is more stable than the first sound mode. 

 

  

Figure 5.8. Spectrum of Brillouin scattering in liquid helium [17]. 
Data measured at     



T T 0.0005[K]. 
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In the Landau theory, the theoretical width of the second sound peak 
becomes infinitely large at the  point. The discrepancy between Landau’s 

result and the experimental result suggests that the second sound peak detected 
in Brillouin scattering represents an elementary excitation, i.e. excitation of the 
dressed boson from Bose–Einstein condensate. The nonlinear theory of this 
article also supports that supposition. We explain it below. 

The excitation energy of dressed boson from Bose–Einstein condensate p  

is equal to 0
p  at 0T . The excitation energy from BEC has a value that 

differs from 0
p  when the temperature becomes high. We first examine the 

functional form of the excitation energy from BEC for a very small value of p. 
The summation in (3.2) can be rewritten to an integration, except q=0 because 
of smallness of momentum interval  L2 : 
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where 

0n  represents the number of dressed bosons in the Bose–Einstein 
condensate, and X is independent of momentum p as  
 

  
t s,

tsts nnf
N

X
2

1 . (5.13) 

 
We use the approximation form of  qp f  in a small momentum as 
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where c is the phonon velocity at zero Kelvin. The integral region in (5.12) is 
divided into a small momentum region Aqq   and a large momentum region 

Aqq   , where Aq  is an adequately small momentum. Consequently, we obtain  
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where Y is the constant part independent of p. The first integral in (5.14) is  
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Therein, we examine only the case of Aqp   because of the smallness of 

p. We can also use the approximate function form for a small momentum q as  
 

uq

Tk
n Bq , (5.16) 

 
where the value of u represents the velocity of the excitation in a small 
momentum. This value is determined later. Accordingly, the integral in (5.15) 
is equal to 
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The second integral in (5.14) is expressed as the following. 
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These calculation results imply the following expansion. 
 

   alueconstant vOrder 20  pc
N

n
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Consequently, the velocity of the dressed boson for a small momentum is 

directly related to 



n0
 as 
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 . (5.17) 
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Therefore, the velocity of the excitation from BEC is expected to decrease 
when the temperature approaches the  point. This property shows agreement 
with the property of the second sound; it was first examined in reference [27]. 
Accordingly, it is reasonable that we consider the excitation of the dressed 
boson from BEC to be the second sound mode for a small momentum near the 
 point. The reasons are summarized below: 

 
1.  The excitation mode of the dressed boson from BEC is expected to 

disappear in TT   because of disappearance of Bose condensate. The 
second sound mode also disappears in TT  . 

2.  The velocity of the dressed boson from BEC in a small momentum is 
expected to decrease when the temperature approaches the  point. 
Moreover, the velocity for a very small momentum approaches zero at 
the  point because of Eq. (5.17) and 00  

 TT
n . The velocity of 

the second sound mode has the same property. 
3.  The width of the second sound peak in Brillouin scattering is 

extremely small near the  point; therefore, the mode represents the 
elementary excitation. 

 
Consequently, we consider the second sound to be the dressed boson 

excitation from BEC. Then, the dressed boson energy near the  point can be 
determined using the experimental data. The experimental results given in 
reference [18] show that the second sound velocity u near the  point depends 
on the temperature as 

 
    2131

2 11  TTDTTcu  . (5.18) 
 
According to our viewpoint for the second sound, the excitation energy p  

from BEC has the same velocity as Eq. (5.18). For a large momentum p, p  is 

proportional to 2p  because the kinetic energy occupies a main part of the total 
energy. Consequently, the function form of excitation energy from BEC might 
be equal to 
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where 2c  and D are determined from experimental data of the second sound 
velocity, and where a and b are parameters. This energy form certainly has the 
second sound velocity as 
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2
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p , 

 
at p=0. We therefore determined the functional form of p  for a small 

momentum near the  point. This form is used in the phonon region. The 
discussion in the next section clarifies that the theoretical form of specific heat 
has a logarithmic divergence at the  point. 

 
 

5.5. ORIGIN OF THE LOGARITHMIC DIVERGENCE 

 IN SPECIFIC HEAT 
 
The theoretical form of specific heat is derived from Eq. (5.7). We 

examine the last integration of Eq. (5.7), which is 
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The logarithmic singularity of specific heat is produced from the integral 

including the last derivative as 
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This integral region is divided into a small momentum region and a large 

momentum region, as presented in the following. 
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We can use the energy form of (5.19) for the first integral in (5.21) 
because 

1q  is small. We can also use the following approximations for a small 
value of p near the  point. 
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Accordingly, the integrand of (5.21) is nearly equal to the following. 
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These approximations yield the following expression.  
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We write only a singular term at the   transition temperature as  
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This theoretical result shows that the logarithmic divergence of the 
specific heat is derived from the nonlinear property of the total energy, as 
presented in Eq. (2.21). On the other hand, the logarithmic singularity does not 
exist in the theoretical results of the Landau theory, BCY theory, or BD theory 
because their phonon velocity at the  point is not zero. 

 
 

5.6. EVALUATION OF SPECIFIC HEAT IN  

NONLINEAR THEORY NEAR THE  POINT  
 
We next calculate the temperature dependence of the specific heat near the 

 point on the basis of the nonlinear theory. The theoretical value of the 
isobaric specific heat per unit mass is given as shown in Eq. (5.7) where the 
integration range is separable into four momentum regions: phonon, maxon, 
roton, and higher momentum. We use four functional forms of the excitation 
energy from BEC, two of which are the same functional forms for the roton 
region and for high-momentum region as those in the BD theory. (We obtain 
almost same result even if we use the second order energy form (3.23) for 
roton region and for high-momentum region.) For the phonon region, we use 
Eq. (5.19). Moreover, the function parameters in the maxon region are 
determined such that the excitation energy and its tangent are connected 
continuously to both neighbor curves. 

The integrations in Eq. (5.7) are evaluated using a computer in the 
temperature range    04010 .TT   , the results of which are presented in 
Figure 5.9 (see reference [19]). The mathematica program of this calculation is 
attached in end of this book. The upper curve expresses our calculated values 
of specific heat. Dots in Figure 5.9 portray the experimental data [15] of 
specific heat for a saturated vapor pressure. Our calculation is performed under 
pressure P=0.05 bar. The difference between saturated vapor pressure and 
P=0.05 bar is negligibly small. The middle curve and the lower curve in 
Figure 5.9 depict the results of the BD theory and the BCY theory 
respectively. 

As that figure depicts, the result of the nonlinear theory agree well with 
the experimental data for    04.010  TT : the nonlinear theory produces 

logarithmic divergence of specific heat at the  point. On the other hand, the 
curve of BD theory depicts no divergent behavior. Consequently, the present 
theory is inferred to explain the temperature dependence of specific heat in 
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superfluid helium well for the whole temperature region. The second order 
solution in Sec. 5.2 is applicable to ]K[1.20  T ; and the present method in 
this section is applicable to 

TT  ]K[1.2 . 

  

Figure 5.9. Calculation result of the nonlinear theory for the specific heat. 
The upper curve portrays the calculation result of the nonlinear theory. The middle 
curve and the lower curve represent the results of the BD theory and the BCY theory 
respectively. Small red dots indicate the data of Lipa et al [16]. Large blue dots 
represent the data of references [15]. The specific heat values CS are shown in units of 
[J/(mol·K)]. The horizontal axis shows   TT1log 10

. 

The transition temperature for Bose-Einstein condensation of dressed 
bosons is simultaneously calculated and the result is 2.172 K using the same 
parameter values as in the calculation of specific heat mentioned above. It can 
be seen in the mathematica program attached in this book.  





 

 
 
 
 
 
 

Chapter 6 

 
 
 

BOSE–EINSTEIN CONDENSATE  

OF DRESSED BOSONS 
 
 
The properties of a Bose–Einstein condensate are studied for nonlinear 

theory. 
 
 

6.1. NUMBER OF CONDENSED DRESSED BOSONS  

NEAR THE  POINT 
 
Using the method explained in sections 5.5 and 5.6, we examine the Bose-

condensed number of dressed bosons near the  point. The dressed boson 
number in the Bose–Einstein condensate and the dressed boson number in the 
excited states are denoted respectively as superN  and normalN . The number 

normalN  is defined as 
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where 

 
     1exp B  Tkn pp

 , and (6.2) 
 

0    (for TT  ). (6.3) 
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The number superN  is defined as 
 

0nNsuper  . (6.4) 
 
The total number conservation of dressed bosons gives the following 

relation as 
 

NNN normalsuper   (6.5) 
 
That is to say, the total number of dressed bosons is equal to the total 

number of helium atoms N in liquid helium. The excited dressed boson 
number approaches N at the  point, and superN  approaches zero, as shown in 
the following. 
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 (6.6a) 

 
0 

 TTsuperN  (6.6b) 

 
We can evaluate the integration (6.1) using the same method as that used 

in sections 5.5 and 5.6. Near the  point, we adopt the excitation energy from 
BEC in the phonon region as 

 

      212313

2

0

11 bpTTDpapTTpc 





 ppp

 

(for 10 qp  ). (6.7) 
 
Coefficients 



c2 and D are determined as explained in Sec. 5.4. All 
functional forms are adopted to be equal to those of chapter 5. The integration 
(6.1) is also separable into four regions. Consequently, the integration can be 
calculated numerically using a computer. The temperature dependence of 

NNnormal  is portrayed in Figure 6.1. 
In the integration in (6.1), the contribution from the phonon region is 

87.0%, the contribution from the roton region is 8.8%, the contribution from 
the maxon region is 2.7%, and the contribution from the high-momentum 
region is 1.5% at the  point. Accordingly, the total fraction of dressed bosons 
with nonzero momenta becomes 100% of liquid helium at the  point. That is 
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to say, the Bose condensate of dressed bosons with momentum zero disappears 
at the  point. 

It is illustrative to examine the number of excitations in the Landau 
theory. The total excitation number of the Landau theory is approximately 
14% of the total number of helium atoms at the  point. Accordingly, it 
remains unclear in terms of the Landau theory whether the  transition results 
from Bose–Einstein condensation. 

The number of dressed bosons inside the Bose–Einstein condensate, 
0nNsuper  , has a temperature dependence near the  point as depicted in 

Figure 6.2 (see reference [20]). 
The function form of   31

1 TT  is plotted as a black line, which well fits 
the calculated value of 



n0 N . Therefore, the critical exponent of 



n0 N  is equal 
to 1/3. This mechanism is reexamined via an analytic method presented in the 
next section. 

 

 

Figure 6.1. The red curve shows the calculated values of NNnormal . 

It is shown here that the value of NNnormal
 is certainly equal to 1.0 at the  point, 

namely at   01  TT . 
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Figure 6.2. Dots represent the calculated values of  NNsuper10log . 

 
6.2. CRITICAL INDEX OF CONDENSED DRESSED  

BOSON NUMBER NEAR THE  POINT 
 
We use the functional form of energy as in chapter V: Eq. (5.22b) is 

applied to the dressed boson energy as 
 

  313
0 ap  tpc2p  , (6.8) 

 
where 

 
TTt 1 , (6.9) 

 
for a small momentum region ( spp 0 ) and for a vicinity of the  point. We 
divide the integral (6.1) into two regions, spp 0  and pps  , as 

 

   





  



 s

s

p
p

p

p
p ppnppn

m

N

N
dd

2

 4 2

0 0

2

3

normal






 , (6.10) 
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where  
 

NVm  . (6.11) 
 
Therein, m is the mass of a helium atom and   is the mass density of 

liquid helium. The dressed boson number in the first region is nearly equal to 
the following. 

 

       313

B

B0 1exp

1
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 (6.12) 

 
Substitution of this equation into (6.10) yields 
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 (6.13) 
 
The first integral shows a singular behavior at the  point, but the second 

integral has no singularity. Therefore, the second integral can be expanded into 
a Maclaurin series of 



t  as 
 

 2

10

2 Orderd ttGGppn
sp

p 
  . (6.14) 

 
The first integral is expressed using the hyper geometric function as 
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This value is expanded to the following series: 
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 , (6.16) 

 
where  x  is the Gamma function. The second term on the right-hand-side of 
(6.16) has a singular value for its derivative by t  at 0t . This expansion is 
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explained in detail in Appendix II. Substitution of (6.14) and (6.16) into (6.13) 
yields the following expansion. 
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 (6.17) 

 
The fraction NNnormal  becomes 1 at the  point because the Bose–

Einstein condensate disappears at T . This property is expressed by the 
equation shown below. 
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The fraction of condensed dressed boson number for the total number is  
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 . (6.19) 

 
The function depends upon the temperature as 31t , which means that the 

critical index of Nn0  is 1/3. The result shows good agreement with the 
numerical calculation, as depicted in Figure 6.2. 

This temperature dependence   31
0 1 TTNn   shows that the dressed boson 

velocity is directly related to   31
1 TT  based on Eq. (5.17). Consequently, this 

analytical result reproduces that the second sound velocity is directly related to 
  31
1 TT  near the  point. 

 
 

6.3. NO FRICTION AGAINST MACROSCOPIC BODY 
 
The Landau theory has clarified that the background flow cannot be 

excited using a collision against a macroscopic body. We also examine a 
collision of the dressed bosons against a macroscopic body. The dressed 
bosons inside the Bose condensate cannot be excited but the dressed bosons 
outside the Bose condensate can transfer to the other momentum state by a 
collision against a macroscopic body. This mechanism is examined as follows: 
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The macroscopic body has a velocity v , an initial energy iE  and an initial 
momentum iP  as  

 
2

2

1
vMEi   (6.20) 

 
vP Mi  , (6.21) 

 
where M and v  respectively signify the mass and the velocity of the 
macroscopic body. 

We consider the case in which this macroscopic body loses momentum q  
by the collision. The final energy fE  and the final momentum fP  of the 
macroscopic body are given as 

 
qPP  if  , and (6.22) 
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E

22

22

 , (6.23) 

 
where the final equality in (6.23) is derived from neglecting the value  Mq 22  
because q is a microscopic value and M is a macroscopic value. When the 
initial momentum of the dressed boson is described by Ap  and the final 
momentum of the dressed boson is described by Bp , the energy-momentum 
conservation is expressed as the following. 
 

AiBf pPpP   (6.24) 
 

AiBf EE pp    (6.25) 
 
Then, we obtain the following equation from (6.22–25). 
 

qpp  AB  (6.26) 
 

qvpp 
AB

  (6.27) 
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Figure 6.3. Transition of the dressed bosons by a collision against a macroscopic body. 
This figure shows the case of 0 zy pp . The horizontal axis indicates  1010xp . The 

dressed boson at point C cannot transfer to any state. The dressed boson at point A can 
transfer to point B. 

The transition of a dressed boson from momentum Ap  to 



pB  is drawn in 
Figure 6.3. 

In Figure 6.3, the gradient value of the arrows is  cos v  where   is the 
angle between v  and q . The dressed boson with 0Ap  can transfer to 
momentum Bp  (at point B) via a collision against a macroscopic body. 
However, there is no transition of the dressed bosons with zero momentum (

0Cp ) for a velocity value smaller than the critical value 



vc
. The critical 

velocity is the gradient of a tangential line from point C to the roton curve. 
This criterion is the same as that of Landau’s mechanism. However, it is 

noteworthy that no quasi-particle exists at 0p  in the Landau theory because 
the density wave has no quantized mode at zero momentum. Landau assumed 
the background flow. The background flow is not excited via a collision 
against a macroscopic body; therefore, the background flow has been 
considered to be the superfluid component of liquid helium. 
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On the other hand, all dressed bosons are in the eigenstates of the total 
Hamiltonian. Only the dressed bosons in the Bose condensate have no friction 
against a macroscopic body, as shown clearly in Figure 6.3. Therefore, the 
dressed bosons in the Bose condensate are the superfluid component, and the 
dressed bosons with nonzero momentum are the normal fluid component 
(Later in chapter VIII, we examine the case in which Bose condensation 
occurs at nonzero momentum: the case of running superfluid.). Consequently 
the superfluid component comprises the dressed bosons in a Bose condensate. 

The ratio of the dressed boson number with zero momentum to the total 
number of helium atoms, Nn0 , signifies the number fraction of superfluid 
component to the total liquid helium: 

 
Nns 0 . (6.28) 

 
The number fraction of normal fluid component is 
 





0p

p Nnn . (6.29) 

 
The temperature dependences of the number fractions were calculated in 

Sec. 6.1 and 6.2. It is noteworthy here that the quantities 



s and 



n  are not 
mass fractions, but number fractions. The following equation is derived from 
the total number conservation. 
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In that equation, we used (2.15). These number fractions have typical 

values at 0T  and TT  . 
 

10  sn   ,   (at 0T ) (6.31) 
 

01  sn   ,   (at TT  ) (6.32) 
 
The Bose condensate of the dressed bosons occupies 100% of the total 

number at zero Kelvin. The dressed bosons inside the Bose condensate cannot 
receive a friction force from a macroscopic body. Consequently, the dressed 
bosons with zero momentum are the superfluid component. Accordingly, Eq. 



Shosuke Sasaki 68 

(6.31) means that the superfluid component occupies 100% and the normal 
component disappears at zero Kelvin. 

On the other hand, at the  point, the fraction of Bose condensate of 
dressed bosons, s , disappears and the value of n  becomes 1: the normal 
fluid component of dressed bosons occupies 100% of liquid helium at TT  . 

Number 0n  is not equal to the number of helium atoms with zero 

momentum. As presented in chapter II, the dressed boson operator *A0  is 

defined by the unitary transformation U from the operator *a0  of helium atom 
as  

 
1

00
 UUaA **  . (6.33) 

 
The operator is approximately expressed as 
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where 

 
1  . (6.34b) 

 
Therefore, the dressed boson number in the Bose condensate is  
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 (6.35) 
 
As described above, the dressed boson number with zero momentum is 

not equal to the number of helium atoms with zero momentum. The 
experimental data show that the number of helium atoms with zero momentum 
is a few percent of the total number of helium atoms at an ultra-low 
temperature. 

Next we point out features of a one-dimensional (1D) boson system. The 
difference between 00 AA*  and 00aa*  is remarkable in a 1D boson system with 

delta-functional potential. The expected values of 00 AA*  and 00aa*  are, in the 
case of infinitely large coupling constant for the ground state: 
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10

*

0  
N

NGAAG  and  (6.36) 

 
00

*

0  
N

NGaaG , (6.37) 

 
where G  is the ground state. 

 





 

 
 
 
 
 
 

Chapter 7 

 
 
 

 TRANSITION AND PHASE DIAGRAM 
 
 

7.1. TRANSITION TEMPERATURE OF  

BOSE–EINSTEIN CONDENSATION 
 
The phase diagram of liquid helium can be determined based on the 

nonlinear theory by calculating the temperature at which n  becomes 1. That 
is to say, we evaluate the temperature value at which the dressed boson 
condensation disappears. The difference value  0  is zero for TT   ( 0  is 
the lowest energy of a dressed boson and  is the chemical potential) because 
the Bose condensate exists (see Eq. (3.4), and see (8.28) for more details). At 

TT  ,  0  becomes a positive value because the Bose–Einstein condensate 
disappears. This property is presented schematically in Figure 7.1. 

 

 

Figure 7.1. Schematic figure for behavior of  0 . 
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Figure 7.2. The fraction of Bose condensate and the fraction of normal fluid 
component. 
The blue curve represents Nn0

 of Bose condensate; the dashed curve represents 

NNnormal
. 

The temperature dependence of NNnormal  and Nn0  is portrayed 
schematically in Figure 7.2, where the value of NNnormal  is equal to 1 for 



T T. 
London calculated the transition temperature, the result of which is 

approximately 3.2 K for saturated vapor pressure [21]. It is noteworthy that the 
Bose condensate in London’s theory is not superfluid because London’s 

bosons with zero momentum are excited via a collision against a macroscopic 
body. On the other hand, the condensed dressed boson described in the present 
theory cannot be excited by collision against a macroscopic body because of 
its nonlinear form of energy, as clarified in Sec. 6.3. 

The lowest energy is zero in London’s theory. Therefore, London’s 
chemical potential is equal to zero for TT  . This result does not agree with 
the experimental data. In the nonlinear theory,  T0  depends upon the 
temperature. Therefore, the chemical potential  T0   depends also upon T 
for TT  . This property shows good agreement with the experimental result. 

The fraction NNnormal  in the nonlinear theory has been calculated 
numerically in Sec. 6.1 for TT  . The fraction value depends upon the 
temperature. We find a value of transition temperature where the fraction 

NNnormal  becomes 1. For pressure P=0.05 bar, we obtain the value T  as 
 

K172.2T  for bar05.0P . (7.1) 
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Figure 7.3. Phase diagrams of the three theories. 
The red curve shows results obtained using the nonlinear theory; the black curve 
represents results obtained using the London theory. For the Landau theory, the 
transition temperature is calculated in reference [21]. 

After changing the pressure value, we evaluate the transition temperature 
of Bose–Einstein condensation of the dressed bosons. Thereby, we obtain the 
phase diagram of He I and II (helium I represents a normal liquid for TT  . 
Helium II represents a superfluid state for TT  ). The numerical result is 
portrayed in Figure 7.3 (see reference [22]).  

London’s result shows that the transition temperature becomes large for 
the increment of pressure value. The experimental value of the   transition 
temperature decreases for the increment of pressure value. The calculation 
results of the nonlinear theory show good agreement with experimental data. 
The decrement of T  for the increment of pressure results from a nonlinear 
form of the total energy and by decrement of the roton minimum energy for 
the increment of pressure. 

In the Landau theory, the   transition is not caused by Bose–Einstein 
condensation. The excitation number TheoryLandau 

normalN  depends upon the 
temperature. The temperature dependence of NN TheoryLandau 

normal
 is depicted 

schematically in Figure 7.4. 
 

experimental data

calculated value in 
this paper

Landau theory

London theory

bar

K
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Figure 7.4. Temperature dependence of NN TheoryLandau 

normal
. 

The value of NN TheoryLandau 

normal
 at the  point is approximately 0.14. 

As might be apparent in Figure 7.4, NN TheoryLandau 

normal
 is only 14% at the  

point. In addition, NN TheoryLandau 

normal
 is larger than 1 for BTT   where BT  is the 

temperature at the point B. It might be difficult to consider the case of 
1TheoryLandau 

normal NN , although the number TheoryLandau 

normalN  is not directly related to the 
total number of helium atoms. In the Landau theory, the transition temperature 
is determined by the calculation of mass density, which is explained in section 
7.2. 

 
 

7.2.  TRANSITION TEMPERATURE IN LANDAU THEORY  
 
Landau calculated the mass density of normal fluid, which is described by 

n (see reference [3]). The functional form is presented on page 15 of 
Khalatnikov’s book [3]. 

 

r2

ph

n n
kT

p

c

E

33

4
2

0  (7.2) 

 
Rough dependence of n  upon the temperature is portrayed in Figure 7.5. 
The transition temperature in the Landau theory is determined as the 

temperature at which the calculated value of n  is equal to M/V ( n , M, and V 
respectively denote the mass density of normal fluid component, the total 
mass, and the volume of liquid helium). The value is shown as approximately 
2.8 K on page 195 of the book by Landau and Lifshitz [21]. 

 
K][8.2Landau T  (7.3) 
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Figure 7.5. Temperature dependence of 
n  in the Landau theory. 

M/V is the mass density of liquid helium. 

By that logic, the calculated value of n  is greater than the total mass 

density M/N of liquid helium for LandauTT  . It is difficult to conceive of a 
normal fluid having a mass that is greater than the total mass of liquid helium. 
Therefore, the Landau theory is inapplicable to a liquid helium system for 

TT  . 





 

 
 
 
 
 
 

Chapter 8 

 
 
 

TWO-FLUID MECHANISM CAUSED BY 

NONLINEAR ENERGY FORM 
 
 
In Landau’s work, elementary excitations are considered to be density 

waves in liquid helium. Accordingly, Landau’s elementary excitations with 

momentum zero never exist. Landau’s normal fluid component is constructed 
by the excitation modes, but his superfluid component is a background flow. 
The substantial existence of the background flow is unknown. 

On the other hand, in the present theory, dressed bosons with momentum 
zero exist as described above. The total number of dressed bosons is conserved 
and is equal to the total number of helium atoms. This number conservation 
causes the Bose–Einstein condensation of dressed bosons. Moreover, the 
condensation occurs at any momentum value inside some region. This 
property is derived from the nonlinear form of the total energy of liquid 
helium. We first examine the distribution function of the dressed bosons. 

 

 

8.1. DETERMINATION OF THE DISTRIBUTION FUNCTION 

OF THE DRESSED BOSONS 
 
By the present theory, the total number N, the total energy E, and the total 

momentum totP  of the dressed bosons are conserved. We consider a micro-
canonical ensemble of the dressed bosons where N, E, and totP  are fixed to 
each value. Next we find the momentum distribution of the dressed bosons at 
equilibrium. 
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First, we count the quantum levels. The momentum interval from xp  to 

xx pp   contains  2Lpx  levels where L is the side length of the cubic 
container filled with liquid helium. Therefore, the number of quantum levels, 
X, inside the momentum region zyx ppp   becomes  

 
    33

22   VpppLpppX zyxzyx  , (8.1) 
 

where 3LV   is the volume of the container. Next, we designate the number of 
the dressed bosons inside the momentum region zyx ppp   by Y as 

 
  

  


xpxpxsxp ypypysyp zpzpzszp

nY s , (8.2) 

 
where the running variables  zyx s,s,s  have values within the momentum range 

xxxx ppsp  , yyyy ppsp  , and zzzz ppsp  . Accordingly, the 
mean number of dressed bosons per quantum level is 
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n
Vppp

XYn sp

3
2  , (8.3) 

 
where the upper line in pn  denotes the mean value. Here, the momentum 
region zyx ppp   is sufficiently small, but contains an enormous number of 
levels. These two conditions are satisfied simultaneously because the value of 
V is a macroscopically large value. 

The Y dressed bosons are distributed among the X levels. To quantify the 
modes of the distributions, first we determine the number of all possible ways 
of distribution expressed by  , which is equal to 

 
    !!1!1 YXYX  , (8.4) 

 
where we have used the bosonic property that any number of dressed bosons 
can occupy a single quantum level. Taking the logarithm of both sides of Eq. 
(8.4), we obtain 
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where we have used Eqs. (8.1)–(8.4) and Stirling’s formula. The total number 
of the distribution modes   is the multi-product of   as  
 

 , 
 

which gives  
 

  loglog  . 

 
Summing up Eq. (8.5) over the whole momentum space, we obtain the 

total number of the distribution ways as 
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The total number of dressed bosons N, the total energy E, and the total 

momentum totP  are given as 
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where we have used Eq. (2.20) for the total energy. Although we can exchange 
(8.9) to a simpler form (2.21), we study the most general case in section 8.1. 

We find the distribution function in which the number of states,  , 
becomes a maximum value under fixing the values of N, E and totP . The 
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maximization derives the following relation by making use of Lagrange 
multipliers. 
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Therein the functional derivatives are the following. 
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 (8.12b) 
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  (8.13a) 
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  (8.13b) 

 
It is noteworthy in Eq. (8.12b) that we neglect the total number 

dependence of functions  ,f ,f ,f 432 . Substitution of (8.11), (8.12a) and 
(8.13a,b) into (8.10) gives  
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1

1log n  , (8.14a) 

 
which yields 
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   1exp

1




pup

p


n  , (8.14b) 

 
where u  ,,  are the Lagrange multipliers. The well-known relation 
between the entropy S and the number of states   is 
 

 logBkS , (8.15) 
 

where Bk  is Boltzmann’s constant. Accordingly, the distribution function { pn } 
has a local maximum entropy when it satisfies (8.12b) and (8.14b). 

We examine the physical meanings of the Lagrange multipliers 
u  ,, . The following relation is derived using Eq. (8.10) when the 

distribution function { pn } of the liquid helium changes slightly by { pn }: 
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which yields 

 
 totNEkS Pu   B

. 
 
Therefore, for 0u , we obtain 
 

NS
k
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
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B

1 , (8.16a) 

 
where we have fixed the volume of liquid helium, namely 0V . As is well 
known, the thermodynamic relation gives 

 
NdSdTVdPEd  .(8.16b) 

 
Comparison of (8.16a) and (8.16b) yields the following. 
 

potentialchemical,
1
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Tk

 (8.17) 
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Therefore, knowing the physical meaning of the Lagrange multipliers, the 
distribution function of the dressed boson { pn } is determined using the 
following simultaneous equations. 
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 (8.18b) 

 
The coupled integral equation (8.18 a, b) has a single solution for TT  . 

However, infinitely many solutions satisfy the coupled integral equation (8.18 
a, b) for TT   because there are infinitely many values for the condensed 
momentum. To better elucidate this mechanism, we examine the following 
simple example in which there are only two quantum levels with a nonlinear 
form of energy. Which level has lower energy depends upon the distribution of 
bosons in the two levels. 

 
 

8.2. EXPLANATION OF LEVEL INVERSION 
 
We study this simple system which includes only two levels. The total 

energy of the system is given as  
 

21122211 nnfnEnEE  , (8.19) 
 

in which 1n  and 2n  are boson numbers belonging to level 1 and 2, 
respectively, and the following inequalities hold: 

 
21 EE   and 012 f . (8.20) 
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The energy (8.19) would become a linear form with respect to the boson 
numbers if the coefficient 12f  were equal to zero. Then, the energy of level 1 
would always be lower than that of level 2 because of the inequality 21 EE  .  

On the other hand, when 012 f , the total energy has a nonlinear form. In 
this case, which of level 1 or 2 has a lower energy depends upon the number 
distribution  21 n,n . This fact is understood by studying the boson energy. The 

value of 
i  is defined as the energy increase, when we add one bose particle 

to level i (i=1 or 2): 
 

212111 nfEnE  , 112222 nfEnE  . (8.21) 
 
As the number 2n  becomes larger, the energy 1  becomes large because 

of 012 f , reaches the value of 2 , and finally becomes larger than 2 . 
Consequently, the energy magnitudes of the two levels are reversed by 
increasing the occupation number at the higher level, as presented Figure 8.1. 

This example shows the level inversion mechanism which results from 
nonlinear form of the energy. A similar inversion between energy magnitudes 
of levels also occurs in the present theory because the total energy (2.20) has a 
nonlinear form. 

 

 

Figure 8.1. Number dependence of dressed boson energies for two levels. 
2 is smaller than 1  when Ann 2  
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8.3. VARIOUS VALUES OF MOMENTUM AT WHICH 

DRESSED BOSONS CONDENSE 
 
Galilean invariant terms of the total energy have nonlinear forms. 

Therefore Eqs. (8.18a) and (8.18b) are never separated from each other. 
These nonlinear terms produce multiple solutions that satisfy the coupled 
integral equation (8.18a, b) for TT  . 

To elucidate this mechanism more precisely, we consider a case at an 
ultra-low temperature. We restrict ourselves to the following number 
distribution { pn }, where almost all dressed bosons have momentum Q: 

 
1Qn , namely, QQ nnN  . (8.22) 

 
The condensed momentum Q can have any value within some momentum 

range. We explain this mechanism in the energy form of (2.21). In this case, 
the dressed boson energy p  is expressed as in Eq. (3.2). 
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The summations in Eq. (8.23) are approximately equal to the following 

form because Qn  is large. 
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Therein, the Galilean invariant term f is expressed as Eq. (2.41). 
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Then, Eq. (8.24) becomes the following. 
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We present the momentum dependence of p  schematically in Figure 8.2. 
As might be readily apparent from this figure,  pup    has a 

minimum value at Qp  ; the value is approximately zero. 
 
  0 QuQ   (8.27) 
 
We examine this value more precisely. Equation (8.18a) is written at 
Qp   as follows. 
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Therefore, the chemical potential   relates to the dressed boson energy as 

follows. 
 

Q

Q Qu
n

TkB  (8.28) 

 

 

Figure 8.2. Momentum dependence of dressed boson energy p . 

The dashed line represents pu . 
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In that equation, the magnitude of 
Qn

TkB  is an order of 10-23. Accordingly, 

the chemical potential   deviates from QuQ   by an extremely small value 

Qn

TkB . 

We consider another value of the condensed momentum which is 
expressed by Q . In this case, we obtain another energy form as the following 
expression. 
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 (8.29) 
 
The form of (8.29) differs from that of (8.26) because of QQ  . 

Accordingly, we can consider infinitely many solutions corresponding to 
infinitely many values of the condensed momentum. 

It has been clarified that infinite multiple solutions exist in the coupled 
integral equation (8.18a, b) under fixing of the values of uandT . That is to say, 
the condensed momentum value of Q can be taken to be an arbitrary value 
within some momentum region (This restriction within the region is necessary 
to satisfy positiveness of  QpuQp  ). Therefore, we can choose any 
value for two vectors u and Q. This mechanism produces a two-fluid state 
with two arbitrary velocities of the superfluid component and the normal fluid 
component. As presented Figure 8.2, the dressed bosons with momentum Q 
have minimum energy because of the level inversion mechanism via Bose 
condensation at Q. 

In London’s theory, the Bose condensate must have the same value as the 

velocity of the center of mass because no level inversion appears. 
Consequently, the nonlinear mechanism is important for explaining the 
properties of superfluid helium. 

The following is also worth noting. A running superfluid component can 
be produced experimentally using the following process. A vessel filled with 
He I (normal liquid) is rotated at a constant angular velocity. Accordingly, the 
liquid helium has a constant angular velocity. Then, after the liquid helium is 
cooled by vaporization of the liquid helium, the temperature becomes lower 
than the  temperature ( TT  ). The superfluid component appears, and has 
non-zero velocity. Thereafter, the vessel is stopped. Then the normal fluid 



Two-fluid Mechanism Caused by Nonlinear Energy Form 87 

component also stops because of the viscosity of the normal fluid component. 
Therefore, we can produce the state in which the superfluid velocity differs 
from the normal fluid velocity. 

 

 

8.4. ITERATION METHOD 
 
In this section, we find the approximate solutions corresponding to the 

two-fluid state of He II using iteration.  
Eq. (8.27) yields the following equation. 
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Using Eq. (8.23), we obtain 
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Consequently, we can rewrite the coupled integral equation (8.18a, b) to 

the following equations. 
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 (8.32b) 

 
 
We can solve the coupled integral equation via iteration similarly to that 

explained in sections 3.2.2 and 3.2.3. We choose the zero-th order energy (i.e. 
the starting form of the energy in the iteration) as  
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which is derived from Eq. (8.26) for 1
N

nQ . It is noteworthy that the form 

depends upon the momentum value Q in the Bose condensate. 
The zero-th order distribution function is given by altering the energy 

form  Tp  to that of 0
p  in Eq. (8.32a). 
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   (for Qp  ) (8.34) 

 
This distribution function depends upon two vectors: Q and u. We 

introduce the first order functions as follows. 
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Therein, the zero-th approximation number of the dressed bosons in the 

Bose condensate is given as 
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which is nearly equal to N at an ultra-cold temperature. Then, the first order 
form of the distribution function is given as the following expression. 
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We express the  1 -th order forms of the functions using the  –th order 

forms. 
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Therein, the 



–th approximation number of the condensed dressed bosons 
is given as 
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Then, the  1 –th order form of the distribution function is expressed as 
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These relations (8.38), (8.39), and (8.40) depend on the values of T, N, V, 

u, and Q. Incidentally, in the bulk limit, these functions depend upon N/V. We 
can thereby express the higher order forms in our iteration method. We assume 
convergence of the series in the limit of  ; then we obtain the following 
functions. 
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   TnVNTn  , lim , , , pQup 

 
  for TT   (8.42) 

 
These functions are the solutions of the coupled equation (8.18a, b). Using 

the iteration method, we can adopt an arbitrary value of Q in fixing the values 
of T, N, V, and u. Consequently, we obtain infinitely multiple solutions for the 
coupled integral equation (8.18a, b) at TT  . 

On the other hand, no Bose condensate exists at TT   in the coupled 
equation (8.18a, b): no condensed momentum Q exists. Therefore, the coupled 
equations (8.18a, b) have only one set of solutions. 
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   TnVNTn  , lim , , pup 

 
  for TT   (8.44) 

 
We have discussed determination of the number distribution of dressed 

bosons in both cases of TT   and TT  . Accordingly, the present theory is 
applicable to a liquid helium system for any temperature region: He I and He 
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II. On the other hand, the Landau theory cannot treat a liquid helium system at 
TT  . The next chapter will address nonlinear properties of the solutions. 



 

 

 

 

 

 

 

Chapter 9 

 

 

 

PROPERTIES OF THE SOLUTIONS 
 
 
The solutions of the coupled equations (8.18a) and (8.18b) have important 

properties, which are summarized in 9.1–9.5. 
 
 

9.1. EXISTENCE OF THE  TRANSITION 
 

As described in previous chapters, each solution contains the Bose 
condensate at an ultra-cold temperature, but the condensate disappears at a 
high temperature. Therefore, the  transition is derived naturally from the 
nonlinear theory. 

 
 

9.2. SUPERFLUIDITY 
 

The Bose condensate of the dressed bosons gives no friction against a 
rigid body because the condensed dressed bosons cannot transfer to the other 
momentum in a collision against a macroscopic rigid body. This mechanism is 
derived from the nonlinear energy form, as discussed in Sec. 6.3. Therefore, 
the superfluid component in liquid helium comprises the condensed dressed 
bosons. The lack of a friction against a rigid body is apparent in Figure 8.2 for 
the condensed dreesed bosons with momentum Q . 
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9.3. COEXISTENCE OF TWO INTERPENETRATING FLUIDS 

(WHY ARE THE TWO FLUID-STATES SO STABLE?) 
 
It is a surprising fact that the superfluid component flows permanently in 

spite of penetration of the normal fluid component. This phenomenon was 
described by Kojima et al. [9] using a vessel similar to that portrayed in Figure 
9.1. 

The vessel has a narrow annular cavity (inner radius = 5.01 cm, outer 
radius = 5.48 cm, depth = 0.50 cm) that is packed with Al2O3 powder (grain 
size 



A 325~170 ). First the vessel is filled with He I and is rotated at a constant 
angular velocity. Then, the liquid helium is cooled by vaporization of the 
liquid helium; the temperature becomes lower than the  transition 
temperature ( TT  ). Thereafter, the vessel is stopped. Using fourth-sound 
techniques, H. Kojima et al. [9] measured the decreasing rate of superfluid 
velocity. In their paper, the highest decay rate observed is 0.63% per decade. 
The current decay is 11% during a time interval equal to the age of the earth if 
this decay rate continues indefinitely. Therefore, the persistent currents of 
superfluid are indeed persistent. Accordingly, two-fluid states of superfluid 
helium are extremely stable. 

 

 

Figure 9.1. Measurement of persistent current velocity for the superfluid component. 
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This phenomenon is clearly explained using the nonlinear theory because 
infinitely many solutions appear at TT  . The distribution function of the 
dressed bosons depends upon the two vectors u and Q as in Eq. (8.42) or 
(8.18a,b). This property implies that there are infinitely numerous equilibrium 
states with two velocities of superfluid component and normal fluid 
component that mutually differ. The distribution function of dressed bosons 
satisfies the coupled integral equations. The coupled equations represent the 
condition maximizing the entropy. Therefore, the solutions have local 
maximum entropy. This nonlinear mechanism ensures the excellent stability of 
two-fluid states with two different velocities. 

 
 

9.4. ZERO ENTROPY OF THE SUPERFLUID COMPONENT 
 

In our theory, the superfluid component comprises a macroscopically 
large number of the dressed bosons with only one momentum value. This non-
spreading of the momentum-distribution yields that the superfluid component 
has entropy zero. As examined in chapter IV, the Bose condensate of the 
dressed bosons has entropy of 

 
 0super 1log nkS B  . 

 
However, this value is extremely small in comparison to the total entropy 

S. 
 

0super  
N

SS  (9.1) 

 
All entropy of superfluid helium belongs to the normal fluid component, 

which comprises the dressed bosons outside the Bose condensate, as shown in 
Eq. (4.4). 

 
1normal  

N
SS  (9.2) 

 
That is to say, the entropy of Bose-condensed dressed bosons is zero. 
The momentum-distribution of helium atoms was measured in neutron 

scattering experiments. The results showed that helium atoms with zero 
momentum comprise a few percent of all helium atoms. Some researchers 



Shosuke Sasaki 94 

have asserted that this percentage is the ratio of Bose condensate to the total 
helium atoms. However, the helium atoms with zero momentum are not in the 
eigenstate of the total Hamiltonian because the atoms interact mutually. 
Therefore, this percentage does not represent the ratio of the real Bose 
condensate to the total liquid helium. In the nonlinear theory, the dressed 
bosons with momentum zero constitute 100% of the total dressed bosons at the 
temperature zero. 

This situation is also clearly apparent in a 1D boson system. As shown in 
Eqs.(A1.17) and (A1.18) in Appendix I, the original free bosons with 
momentum zero do not constitute any fraction of the total bosons in the 
ground state. Nevertheless, the dressed bosons with momentum zero constitute 
100% of the ground state. 

 
 

9.5. GALILEAN COVARIANCE OF  

THE DISTRIBUTION FUNCTIONS 
 

All solutions of the coupled equations (8.18a, 8.18b) are Galilean 
covariant. We prove this covariance for the two cases of TT   and TT  . 

 
(First case : TT  ) 
In the previous chapter, we used iteration method to obtain the solutions. 

We consider one solution with vectors u and Q. 
 

   TVNT  , lim , , , pQupp 





  (9.3a) 

 
   TnVNTnn  , lim , , , pQupp 

 
  (9.3b) 

 
We also write the second solution for the other vectors u  and Q . 
 

 Qupp
  , ,VN ,T  (9.3c) 

 
 Qupp

  , ,VN ,Tnn  (9.3d) 
 
Therein, the vectors u  and Q  are related to the following. 
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vuu   (9.4) 
 

vQQ m  (9.5) 
 
The coupled equations (8.32 a, b) are  
 

      1exp

1

B 


Tk
n

QpuQp

p


, (9.6a) 

 
 

       






q
q

Qp

qQqpQpu
Qp

Qpu

nff
Nm

2

2

22



, (9.6b) 

 

      1exp

1

B 


 Tk
n

QpuQp

p


 , and (9.6c) 

 

       




 

q
q

Qp

qQqpQpu
Qp

Qpu

nff
Nm

2

2

22



. (9.6d) 

 
We use the momenta vp m  and vq m  in (9.6c, 9.6d) and then obtain the 

following expressions. 
 

      1exp

1

B 





Tkm

n
m

m
QvpuQvp

vp


 (9.7) 

 
 

 
 

      















vq
vq

Qvp

vqQvqvp

Qvpu
Qvp

Qvpu

m
m

m

nmfmmf
N

         

m
m

m

m

2

2

22



 (9.8) 

 
When we substitute the relations (9.4) and (9.5) into Eq. (9.8), we obtain 

these expressions. 
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 

 
 

    

 

    



























vq
vq

vq
vq

Qvp

qQqp

Qpu
Qp

qQqp

Qpu
QpvQp

Qvpu

m
m

m
m

m

nff
N

         

m

nff
N

         

m

m

m

2

2

2

2

2

22

22



 

 
This equation is identical to (9.6b) using the assumption of qvq nn m 

 . 
 

 

 Qpu

Qvpu

Qp

Qvp



 





       

mm  (9.9) 

 
Substitution of (9.9) into (9.7) produces the following relation. 
 

pvp nn m 
  (9.10) 

 
This relation (9.10) is exactly the same as the assumed equation. Therefore 

the assumption is certainly correct. These relations (9.9) and (9.10) confirm 
the Galilean covariance between the solutions of the coupled equations (8.18a, 
8.18b). 

 
(Second case: TT  ) 
Next we examine Galilean covariance in the second case. We respectively 

use the solutions (8.43) and (8.44) for p  and pn . 
 

   TVNT  , lim , , pupp 





  (9.11a) 

 
   TnVNTnn  , lim , , pupp 

 
  (9.11b) 

 
In the case of vuu  , we obtain another solution. 
 

 upp
  ,VN ,T  (9.11c) 
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 upp
  ,VN ,Tnn  (9.11d) 

 
Using the energy form of (3.2), the coupled integral equations are satisfied 

as shown. 
 

     1exp

1

B 


Tk
n

pup

p


 (9.12a) 

 

    
t s,

ts
q

qp tsqp
p

nnf
N

nf
Nm 2

2 12

2
  (9.12b) 

 

     1exp

1

B 


Tk
n

pup

p


 (9.12c) 

 

    
t s,

ts
q

qp tsqp
p

nnf
N

nf
Nm 2

2 12

2
  (9.12d) 

 
Equation (9.12d) is rewritten as the following. 
 

     

   

















t s,
vtvs

vq
vq

t s,
ts

q
qvp

tsqpvpv
p

tsqvp
vp

mm
m

m

m

nnf
N

nf
N

m
m

          

nnf
N

nmf
Nm

m

2

2
2

2

2

12

2

1

2

12

2


 

 
They give the following expressions. 
 

 

 

   

   

























t s,
vtvs

vq
vq

t s,
vtvs

vq
vq

vp

tsqp

vuvpu
p

tsqp

vpuvpv
p

vpu

mm
m

m

mm
m

m

m

nnf
N

nf
N

                

mm
m

            

nnf
N

nf
N

                

mm
m

            

m

2

2
2

2

2
2

12

2

1

2

12

2

1

2







 

 
It is noteworthy that the value of chemical potential   in Eq. (9.12c) 

differs from that of   in (9.12a). The value of   is defined as 
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vuv  mm 2

2

1
  . (9.13) 

 
We can derive the following relation if we assume the relation qvq nn m 

 . 
 

 

pu

vpu

p

vp










                

mm  (9.14) 

 
Substitution of (9.14) into (9.12c) reproduces the assumed relation as 
 

pvp nn m 
 . (9.15) 

 
Accordingly, (9.14) and (9.15) are satisfied by the solutions of the coupled 

integral equation (8.18a, 8.18b). As a result, Galilean covariance is verified for 
the coupled integral equations derived in the nonlinear theory. 

 



 

 

 

 

 

 

 

Chapter 10 

 

 

 

CONTRIBUTION OF DRESSED BOSONS  

IN SEVERAL PHENOMENA 
 
 
The Landau theory is based on the excitation modes of phonons and 

rotons, the total number of which is not conserved. For that reason, there is no 
chemical potential for Landau’s elementary excitation modes. However, the 

dressed bosons in the nonlinear theory have chemical potential, the value of 
which is expressed by Eq. (8.28). 

 

QuQu Q

Q

Q  
n

TkB  (for TT  ) (10.1) 

 
When both the superfluid component and normal fluid component have 

zero velocity, Eq. (10.1) becomes  
 

0   (for TT  ) , (10.2) 
 

which has already been obtained in Eq. (3.4). The relation between the 
chemical potential  and the energy of the dressed bosons in the Bose 
condensate produces the characteristic phenomena in superfluid helium. We 
discuss London’s relation in Sec. 10.1 and Wyatt’s quantum evaporation in 
Sec.10.2. 
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Figure 10.1. Schematic figure depicting the fountain effect. 

 
10.1. LONDON’S RELATION IN THE FOUNTAIN EFFECT 

 

We consider a U-tube whose center part is packed with fine powder, as 
illustrated in Figure 10.1. Therein the powder size is a few hundred angstroms. 

Both sides of the U-tube are filled with He II. We designate the left side as 
“part 1” and call the right side part “part 2”. The normal fluid component 
cannot pass through the central channel of the U-tube because of the fine 
powder. Only the superfluid component can pass through the central channel 
because of its non-viscosity. The two liquid heliums inside part 1 and part 2 
have different temperatures and different pressures from each other when we 
apply an electric current to the heater in Figure 10.1. The two liquid heliums 
reach quasi-equilibrium. We respectively designate the temperatures and 
pressures at positions A and B as 1T  and 2T , and 1P  and 2P . Positions A and B 
have the same height as that shown in Figure 10.1. The heights of two liquid 
surfaces for part 1 and part 2 differ. Therefore, the pressures 1P  and 2P  are 
related as  

 
gPP  12

, (10.3) 
 

h

P1, T1 P2, T2

This part is packed with fine powder

heater

A B


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where g is the acceleration of gravity and   is the height difference of liquid 
surfaces presented in Figure 10.1. Therein we have neglected a small variation 
of the mass density   caused by pressure dependence. At that time, the 
temperatures 1T  and 2T , and the pressures 1P  and 2P  are mutually related. We 
will derive the relation between these four values on the basis of the 
microscopic viewpoint of the nonlinear theory. 

In the experiment presented in Figure 10.1, both values of u and Q are 
zero. 

 
u = 0 and Q = 0  (10.4) 
 
Therefore, the chemical potentials 21   and  at positions A and B are 

given by Eqs. (10.2) and (8.41). 
 

 0011101  , ,VN ,T   (10.5a) 
 

 0022202  , ,VN ,T   (10.5b) 
 
The Bose-condensed dressed bosons can pass through the central channel 

of the U-tube; then the connected system reaches a quasi-equilibrium state. At 
the quasi-equilibrium, the energy of a dressed boson inside the Bose 
condensate in part 1 is expected to be equal to that in part 2. (If the energy of 
condensed dressed bosons at A is greater than that at B, then the condensed 
dressed bosons transfer from A to B, and vice versa.) We can express this 
equality of the dressed boson energies in the Bose condensates. 

 
   0000 22201110  , ,VN ,T , ,VN ,T    (10.6) 

 
This relation and Eqs. (10.5a,b) give the following equation. 
 

21   =  (10.7) 
 
In that equation, the chemical potentials depend on the temperature and 

pressure. 
 

 111 P ,T=  (10.8a) 
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 222 P ,T=  (10.8b) 
 
The thermodynamic relations are well known to yield the following.  
 

    PdNVTdNS    

Pd
P

Td
T

d
TP































 (10.9) 

 
Therein,  NS  and  NV  are the entropy and volume per particle (i.e. per 

dressed boson). This equation derives the following relation. 
 
   

      PNVTNSP ,T               

PP ,TTP ,T





11

1122



  (10.10) 

 
where the temperature differnce and pressure difference between part 1 and 
part 2 are expressed as  

 
12 TTT  , and 12 PPP  . (10.11) 

 
Therein we have assumed the differences   



T  and   



P  to be small. 
Substitution of (10.7) into (10.10) yields  

 
    0 PNVTNS . (10.12) 

 
Denoting the number density and the entropy per dressed boson as 

    



  and  s , respectively, we obtain the following equalities. 
 

VN  (10.13a) 
 

NSs   (10.13b) 
 

s
T

P




  (10.13c) 

 
This relation was obtained by H. London [23] from phenomenological 

considerations. We derived this relation from the Bose condensation of 
dressed bosons on the basis of the nonlinear theory. Regarding the experiment 
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illustrated in Figure 10.1, the pressure difference   



P  is given by Eq. (10.3). 
Substitution of (10.3) into (10.13c) yields  

 
 12 TTsg     . (10.14) 

 
The relation between the mass density and the number density is 
 

 m  . (10.15) 
 
It is substituted into Eq. (10.14); then the following equation is derived as 
 

 12 TTsmg   . (10.16) 
 
In F. London’s theory (neglecting the inter-atomic potentials), the 

chemical potential is always zero. In that view, his chemical potential does not 
depend upon the temperature and the pressure. In Landau’s theory, the number 

of excitations is not conserved. For that reason, the theory does not engender 
H. London’s relation (10.13c). On the other hand, in the new viewpoint 

presented herein, relation (10.13c) is derived naturally from the nonlinear 
property of the dressed boson energy. 

 

 

Figure 10.2. Fountain effect in superfluid helium. 
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Actually, H. London’s relation engenders the famous “fountain effect” 

phenomenon illustrated in Figure 10.2. The powder absorbs the radiation from 
the left-hand side and is warmed. Therefore, the warmed superfluid helium has 
higher pressure, and a fountain of liquid helium gushes, as presented in Figure 
10.2. 

 
 

10.2. REFRACTION AND REFLECTION OF THE DRESSED 

BOSON BEAM AT A GAS–LIQUID BOUNDARY 
 
Wyatt et al. discovered the phenomenon of quantum evaporation. In the 

phenomenon, a phonon or a roton in superfluid helium ejects a 4He atom into 
the helium gas through a single quantum-process (see Ref. [24]). We can 
explain that phenomenon in terms of the nonlinear theory. The dressed boson 
throws off its interaction cloud at the gas-liquid boundary when one dressed 
boson in the superfluid helium approaches the liquid surface. Then, the 
dressed boson becomes a 4He atom and rushes out of the liquid helium into the 
vapor. It is our explanation for quantum evaporation. 

 

 

Figure 10.3. Triple refraction at the boundary between a superfluid and gas. 
The helium atom has an energy value E between E1 and E2 defined in Eq. (10.19). 
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We first examine a reversal process of the quantum evaporation. Figure 
10.3 shows the surface between superfluid and gas of helium at Z=0. A helium 
atom with energy E rushes into liquid helium at Z=0 X=0. Its momentum value 
is pA. The atom interacts with other helium atoms and is dressed with the 
interaction cloud when the helium atom enters the superfluid helium. 

The energy is expected to be conserved at the liquid–gas boundary. That is 
to say, the energy of the atom inside the gas is equal to an energy of eigenstate 
inside superfluid helium, i.e. the energy of the dressed boson. 

At an ultra-low temperature, the dressed boson energy is expressed as 
 

 000 f pp   , (10.17) 
 

which is derived from Eqs. (3.5), (3.7), and (3.9) (it is also derived from 
(8.33)). The value of  0f  is presented in reference [24] as  

 
  Bk.f  1670 . (10.18) 

 
We show the energy of dressed boson and the energy of helium atom in a 

gas in Figure 10.4. The helium atom in gas has only kinetic energy because of 
the negligibly slight interaction. 

 

 

Figure 10.4. Energy of dressed boson in liquid helium and energy of helium atom in a 
dilute gas. 
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We consider one example with an energy value E in the region E1<E<E2 
where 

 
   0 energymaxon    ,0 energyroton 21 fEfE  . (10.19) 

 
In this case, dressed bosons of three kinds have energy value E, as 

presented in Figure 10.4. 
 

DCB

A ===
m

E qqq

p


2

2

  (10.20) 

 
Therefore, the helium atom A in Figure 10.4 changes to the dressed boson 

B or C or D at the liquid-gas boundary. The group velocity is expressed as 
 

p

p




  velocitygroop  . (10.21) 

 
This value is positive for B and D, but is negative for C in Figure 10.4. 

Accordingly, the velocity direction of dressed boson at B and D is the same 
direction as its momentum; however, the velocity direction at C is the opposite 
direction of its momentum, as portrayed in Figure 10.3. The momentum 
magnitudes of the dressed bosons B, C, and D are obtained as qA, qB, and qC 
respectively from Figure 10.4. The surface between the liquid and gas gives 
the helium atom a force that is vertical to the surface. Therefore, the 
momentum of the direction Z is not conserved, but the parallel momentum to 
the surface is conserved. This conservation yields the following relation. 

 
DDCCBBAA sin  sin  sin  sin  qqqp   (10.22) 

 
We calculate the angles for an example as follows: The example is the 

case of E=5kB and 15A . Using energy conservation (10.20), we can obtain 
the momentum magnitudes as follows: 

 
Ap 0.9A-1, Bq 0.7A-1, Cq 1.5A-1, Dq 2.2A-1 (10.23) 

 
where A-1 indicates the reciprocal of angstrom. Then, (10.22) gives 

 



Contribution of Dressed Bosons in Several Phenomena 107 

DAADCAACBAAB sinsin  ,sinsin  ,sinsin qpqpqp   . (10.24) 
 
Substitution of   



A 15  gives the values of angles as follows. 
 

 6919 DCB  ,  ,   (10.25) 
 
Quantum evaporation is the reverse process of that discussed above, as 

discovered by Wyatt et al. [24]. In a boundary between liquid and gas, triple 
refraction occurs when a beam of helium atoms has an appropriate energy and 
direction. Similarly, there is a triple reflection of a dressed boson beam at a 
boundary between the superfluid helium and a solid wall. In the triple 
refraction and triple reflection, the branching ratios are calculable from the 
interaction at the boundary. The branching ratio with a large momentum 
transfer is predicted to be smaller than that with a small momentum transfer. 
More comprehensive investigation is explained in Ref. [29], where the ratios 
of the transmission rates are calculated and the triple reflection is also 
discussed. 

 





 

 
 
 
 
 
 

Chapter 11 

 
 
 

THERMODYNAMIC FUNCTIONS 
 
 
In this chapter, we express various thermodynamic functions in terms of 

the distribution function of dressed bosons in the case of u=Q=0.  
Entropy S is obtainable using Eq. (4.1). 
 

    



p

ppp

1
1log1log nnnkS B

 (11.1) 

 
The total energy is expressed as Eq. (2.21) as (a more general case has the 

energy form (2.20)) 
 

  
qp

qp
p

p qp
p

 ,

nnf
N

n
m

E
1

2

2

. (11.2) 

 
We calculate the free energy F of the present system. 
 

 

    
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nnnTk

nnf
N

n
m

TSEF

B

 (11.3) 

 
Therein the factor  1

1log


 pn  is expressed as  

 
     Tkn B

1
1log  



pp
 , (11.4) 
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which is derived from (3.3) or (8.18a) in the case of u=Q=0. Substitution of 
this equation into (11.3) yields the following expression. 

 

 

      
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 (11.5) 

 
The Gibbs free energy is equal to N . The chemical potential is equal to 

0  for the case of TT  . Accordingly,  
 

      
t s,

ts

q

q tsq nnf
N

nfTNNG
1

20 . (11.6) 

 
Equation (11.5) and (11.6) gives PV as follows. 
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Consequently, the pressure P is expressed as 
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(11.8) 

 
We can also express the enthalpy H using Eqs. (11.2) and (11.7) as the 

following. 
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   
p

pp

p

p nnTkPVEH 1logB
 (11.9) 

 
Therefore, we obtained various kinds of thermodynamic functions E, F, H, 

G, S, and P. The functions can also be calculated using a different process. As 
an example, the entropy and pressure are calculated using the partial 
derivatives of the free energy F. The calculations are executed in Appendix III. 
Of course, our results through this different process are the same as the 
previous calculation results in this section. In the calculation of the partial 
derivative by V, it is noteworthy that the intervals of the momentum-levels 
vary according to the change of the volume. The details are provided in 
Appendix III.  

If the temperature dependence of the energies does not satisfy the coupled 
nonlinear equations (8.18a) and (8.18b), then two calculation results of one 
thermodynamic function via two different processes are not in mutual 
agreement. The calculation results are incredible when the temperature 
dependence of elementary excitation energy is artificially chosen (where the 
energy form does not generally satisfy the coupled equation). 

Regarding the quantum dynamics of a many-body system, its 
eigenenergies do not include temperature variable. The temperature variable 
appears in statistical physics. The temperature dependence of excitation energy 
is caused by changing of quasi particle distribution via changing of a 
temperature value. Therefore the variation of excitation energy does not occur 
in linear form of eigenenergy like 

p
ppnE   because the excitation energy is 

independent of quasi particle distribution. Consequently it is doubtful to apply 
both use of linear form like 

p
ppnE   and use of the temperature dependence 

of p  simultaneously. If the simultaneous use is employed, two calculation 
results of one thermodynamic function via two different processes are not in 
mutual agreement as mentiond above. However, the methods are used widely 
to explain the temperature dependence of excitation energy. In this article, we 
have created the more reliable method described above. 





 

 
 
 
 
 
 

Chapter 12 

 
 
 

DISCUSSION AND CONCLUSIONS 
 
 
A nonlinear mechanism has been examined in the previous chapters for a 

liquid helium system. The total Hamiltonian has a Galilean covariant form. 
Therefore, the diagonalized form of the total Hamiltonian has a nonlinear form 
with respect to the number operators of the dressed bosons. This nonlinearity 
yields the coupled integral equations determining the momentum distribution 
of dressed bosons. These coupled equations have infinitely numerous solutions 
at a temperature lower than the  point. The nonlinearity produces remarkable 
properties; for example, two-fluid mechanism, logarithmic divergence of 
specific heat, critical exponent at the  point, fountain effect, quantum 
evaporation, and so on. 

In this final chapter, we briefly discuss a few phenomena expected from 
the present theory. 

 
 
12.1. WIDTH OF ELEMENTARY EXCITATION ENERGY 
 
The dynamic structure factor  ,qS  has been measured in experiments of 

neutron scattering [25] or laser-light scattering [17] of superfluid helium, 
where q denotes the momentum transfer and   is the energy transfer. The 
function form of  ,qS  has a peak for changing of energy transfer 



  under 
fixing of q. According to Landau’s theory, the peak width becomes larger as 

the temperature approaches the  point. On the other hand, the nonlinear 
theory predicts that the dynamic structure factor has a delta-function peak 
produced by excitation of a dressed boson inside the Bose condensate to the 
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other momentum state. For the momentum transfer q, the dressed boson has 
the following momentum value. 

 
(Initial momentum)=0, (Final momentum)=q (12.1) 
 
(Energy transfer)= 0  q  (12.2) 
 
The Bose condensate disappears at a temperature higher than the - point. 

Therefore, the delta-function peak also disappears at TT  . 
We can consider another excitation of dressed boson outside the Bose 

condensate. In the excitation, the initial momentum and final momentum are 
expressed as follows. 

 
(Initial momentum)=k, (Final momentum)=k+q( 0k ) (12.3) 
 
(Energy transfer)= kqk     (12.4) 
 
The values of momentum k ( 0k ) are distributed in a wide region. 

Therefore, the energy transfer has various values. This excitation process 
produces a broad peak in  ,qS . Moreover, we can consider the multiple 
excitations. These excitations also have a broad peak. As an example, we 
present the schematic behavior of  ,qS

 
at the momentum transfer of roton 

minimum rotonqq   in Figure 12.1. 
As presented in Figure 12.1, in the nonlinear theory, it is predicted that a 

sharp peak appears at TT   , but disappears at TT  . This sharp peak has an 
instrumental width. The peak energy value of the broad peak differs from that 
of the sharp peak. The behavior depends on the distribution of the dressed 
bosons. 

We can see precise behaviors of the dynamic structure factor for an 
extremely small momentum transfer in laser light scatterings. Experimental 
results were obtained from many experiments [17]. Four peaks are detected. 
Two correspond to the first sound peak and second sound peak of the Stokes 
process. The other two peaks belong to the anti-Stokes process. The peak 
width of the second sound is smaller than that of the first sound near the  
point [17]. The experimental width of the second sound peak is equal to the 
instrumental linewidth. This fact is a strong impetus to consider the second 



Discussion and Conclusions 115 

sound peak near the  point as the excitation mode from the Bose–Einstein 
condensate. 

This second sound peak had not been detected in any neutron scattering. 
However, the author surmises that the peak will also be discovered in neutron 
scatterings if the instrumental linewidth becomes narrower and if the neutron 
scattering is carried out in an extremely small momentum transfer near the  
point. (The dynamic structure factor  ,qS  observed in neutron scatterings 
should have the same peaks as in Brillouin scattering of laser-light.) The 
relevant details are discussed in references [26] and [27]. 

Brillouin scattering of laser light in superfluid helium has been measured 
using a Fabry-Perot interferometer, as described in the related literature [17]. 
The other techniques are investigated to improve accuracy. Eden and Swinny 
measured Brillouin spectra of xenon gas using an optical beating technique 
[30]. Sakai and Takagi improved the technique and then achieved a small 
instrumental linewidth [31]. The second sound peak width will be much 
smaller than that in Fabry-Perot measurement if this technique is applied to 
measure the Brillouin spectra of superfluid helium. 

 

 

Figure 12.1. Schematic diagram of dynamic structure factor predicted using the present 
theory. 

 

/roton 

S(q,) 

T 
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12.2. TEMPERATURE GAP APPEARING IN ROTATING 

SUPERFLUID HELIUM:  

(TEMPERATURE DEPENDENCE OF CRITICAL VELOCITY) 
 
We discuss the temperature dependence of the critical velocity of a 

superfluid component for the case with zero velocity of normal fluid 
component. As explained in Sec. 5.4, the energy of the dressed boson near the 
 point is expressed as in Eq. (5.17). 

 

  0

20 Order   pcp
N

n
p  (12.5) 

 
This energy form derives the velocity of the dressed boson for a small 

momentum near the  point as 
 

  310 TTc
N

n

p
 



p . (12.6) 

 
This velocity of the dressed boson becomes smaller than Landau’s critical 

velocity in a vicinity of the  point. Accordingly, the critical velocity of the 
present theory is given as  

 
  31

TTVC    (near the  point). (12.7) 
 
We drew a schematic figure of the critical velocity near the  point in 

Figure 12.2. 
We next consider the following experiment: We prepare a toroidal vessel 

filled with liquid helium. We rotate the vessel around its axis at a temperature 
higher than   



T . The liquid helium rotates with the vessel. The superfluid 
component of the dressed bosons appears at TT   if we lower the temperature 
while holding the angular velocity constant. These condensed dressed bosons 
continue to flow along the toroidal channel. The angular velocity of the 
superfluid component does not change because of the lack of friction, even 
when we stop the vessel. Subsequently, we heat this state of superfluid helium. 
What phenomenon will occur?  
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Figure 12.2. Critical velocity     



VC  near the  point. 

Our answer is as follows: In this experiment, we express the superfluid 
velocity by SuperV . This value is smaller than the critical velocity CV  at an 
adequately low temperature as presented in Figure 12.2. When the temperature 
value is increased, CV  varies to be a smaller value. Accordingly the value of 

SuperV  becomes equal to the critical velocity CV  at temperature TA, as seen in 
Figure 12.2. Thereafter the Bose-condensed dressed bosons transfer to the 
other momentum states. Then, frictional heat is generated and the temperature 
becomes high to the value TB suddenly. The behavior is presented in Figure 
12.3. That is to say, the temperature value jumps from TA to TB at time t0. For 
that reason, a temperature gap appears in the experiment. 

 

 

Figure 12.3. Time dependence of temperature. 
The horizontal axis represents the time value and the vertical axis represents the 
temperature. 
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We can determine the temperature dependence of the critical velocity near 
the  point if this phenomenon is discovered. The measurement is repeated for 
various values of SuperV  and the value TA is detected for each value of SuperV . 
We plot the values (TA, SuperV ) and then we obtain the temperature dependence 
of the critical velocity. Related details are discussed in a previous report [28]. 

 
 

12.3. A. C. JOSEPHSON EFFECT IN SUPERFLUID HELIUM 
 
In superfluid helium, the ac Josephson effect might occur. A few groups 

attempted to verify this phenomenon [32]. They consider that the phenomena 
are produced using a phase slip of the vortex. They detected oscillations with 
very low frequencies. However, it is difficult to confirm the relation between 
the frequency and the difference of pressures. 

We examined this phenomenon in reference [33]. The dressed bosons in 
the Bose condensate oscillate between two superfluid heliums connected 
through a pinhole. Then, we can derive the relation as 

 
  2mgf  ,  (12.8) 

 
where f is the frequency, m is the mass of helium atom, g is the gravitational 
acceleration, 



 is the difference of the heights of the two superfluid heliums, 
and  2  is Planck’s constant. This relation is derived from the fact that the 

energy of the Bose condensed dressed boson is equal to the chemical potential 
(see reference [33]). If experiments are executed in a higher pressure 
difference, high-frequency oscillation might be detected, and the relation 
might be confirmed (approximately 1 MHz per centimeter difference in 
height). 

 
 

Conclusion 
 
The concept of the dressed boson and nonlinear mechanism of the energy 

form are valuable for investigation of liquid helium. The author earnestly 
hopes that this new viewpoint will be used to improve investigations of 
superfluid helium and other many-boson systems. 

 



 

 
 
 
 
 
 
 
 
 

APPENDIXES 
 

APPENDIX I 
 
We summarize the dynamics of a 1D many-boson system described by the 

Hamiltonian: 
 

       
k,q,p

qp
*

kq
*

kp
p

p
*
p aaaaLgaampH 222 , (A1.1) 

 
where pa  and *

pa  respectively signify the annihilation and creation operators 
of a boson, m is the mass of the boson, and L is the length of the 1D space. The 
commutation relations among these operators are 

 
  qpqp aa ,

*,  ,   0, qp aa ,   0, ** qp aa . (A1.2)  

 
The Hamiltonian is diagonalized completely by the unitary operator U, 

which was obtained by S. Sasaki and T. Kebukawa [10]. The unitary operator 
is denoted as 



UN
 for the total boson number N. Then, the unitary operator 



UN
 

is given as 
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 (A1.3)  

 
in the case of an infinitely large coupling constant g. 
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Therein,  
q

qqqqq n
N

!1
321 ,, , (where 0 ! = 1) , (A1.4) 


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

jiL

ji

jiL

kij

 for 

 for 0

 for 




, (A1.5) 

 
 = (Planck’s constant) /  2  (A1.6) 

 
jiij pp   (A1.7) 

 
Nqq,q,q 321

  is the normalization constant of the free state. All the running 
momenta Nqq,q,q 321  and the transfer-momenta ijp  take the values  L2  
integer because of the periodic boundary condition as follows:  

 
    integer2integer,2  LpLq iji  . (A1.8)  

 
We proved in an earlier paper [10] that this operator U satisfies the unitary 

relations 1UU*  and 1*UU . The unitary operator U diagonalizes the total 
Hamiltonian (A1.1), and the diagonalized form becomes the following form at 
an infinitely large limit of g (see Ref. [11]):  
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We define the new creation and annihilation operators as 
 

1 UUaA pp , and 1 UUaA *
p

*
p , (A1.10) 

 
which represent the operators of the "dressed boson". We can reexpress the 
total Hamiltonian using only the number operators of dressed bosons  s*

s AA  as 
the following. 
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For a finite coupling constant, we can expand the diagonalized form of the 
Hamiltonian into the power series of (1/g). The result up to the second order, is 
the following. 
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 (A1.12) 
 
Rewriting this expression in a form resembling Eq. (3.18), we obtain  
 
(total energy) =    3
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where the following hold. 
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As might be readily apparent from this expression, all Postulates of Sec. 1 

are definitely satisfied in the present 1D system. There is an interesting 
property of the ground-state, which is 

 
  1stateGroundstateGround1 0

*

0  AAN , for any value of g, (A1.17) 

 
  0stateGroundstateGround1 0

*

0  aaN , for g  N . (A1.18) 
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The dressed bosons with momentum zero occupy 100% in the ground-
state, but the original free bosons with momentum zero occupy 0% in the 
ground-state for g  and N .  

 
 

APPENDIX II 
 
The left-hand-side of (6.15) can be expanded to the series of t as follows: 

The integral of (6.15) is rewritten as the following. 
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Here, we introduce a new variable y as 
 
 tapy 3  . (A2.3) 

 
Changing the integral variable p to  tap3 , we obtain the following 

expressions. 
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We denote the upper limit of y by 



ys as 
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Equation (A2.4) becomes the following. 
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The upper limit 



ys  becomes very large when the value of 



t  is small. 
Therefore, the integration (A2.6) is expanded to the expression shown below. 
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The first integral in the right-hand-side of (A2.7) is 
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The second integral in the right-hand-side of (A2.7) is as shown below. 
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The integral value is expanded to the series of 



ys as 
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Substitution of (A2.8) and (A2.10) into (A2.7) yields the following. 
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This equation is equivalent to (6.16). 
 
 

APPENDIX III 
 
We have expressed the entropy and the pressure using the number 

distribution of dressed bosons in chapter XI. We will derive the function forms 
via another process in this Appendix. First, we calculate the partial derivative 
of free energy F (F is expressed in (11.3)) by T while fixing the values of N 
and V, as 
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where we have used the symmetry property of    pqqp  ff . The 
coefficient  1

1log
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 pn  in the last term of (A3.1) is rewritten using of Eqs. (11.4) 

and (3.2) as 
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Substitution of (A3.2) into (A3.1) yields the following expression. 
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(A3.3) 

 
The second term of the right-hand side of Eq. (A3.3) is rewritten as 
 

   

  0
1

11

2

22
























































 

V,N

V,NV,N

T

N
nnf

N
                                                         

T

n
nnf

NT

n
nnf

N
















t s,
ts

p

p

t s,
ts

p

p

t s,
ts

ts

tsts

.
 (A3.4) 

 
Therein the total number N is fixed in the partial derivative; therefore this 

term becomes zero. Substitution of (A3.4) into (A3.3) yields 
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Consequently, Eq. (A3.5) reproduces Eq. (11.1). 
Next, we take the partial derivative of F by volume V in fixing the values 

of T and N. It is important in this differentiation by V that the level interval of 
the momenta varies along with the change of the volume. At the 
thermodynamic limit, the summation can be replaced with integration. 
Consequently, we obtain the partial derivative by V for the example shown 
below. 
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Applying the same procedure to the partial derivative of F, we obtain 
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(A3.6) 

 
Substitution of (A3.2) into (A3.6) yields 
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Therein the last partial derivative must be treated carefully because of the 

following relation:  
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The left-hand side of Eq. (A3.8) is zero because of the fixed value of N. 

Thus, we obtain 
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Substitution of (A3.9) into (A3.7) yields the following expression. 
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We substitute equation (A3.2), i.e. 
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into (A3.10); then we obtain the following. 
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Consequently, we obtain the function form of pressure as shown below. 
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This result has the same form as that in (11.8). Therefore, the pressure 

calculation has reproduced the same result via a process that differs from the 
one presented in chapter XI. 





 

 
 
 
 
 
 
 
 
 

MATHEMATICAL PROGRAMS 
 
 

MATHEMATICA PROGRAM 1  

(DETERMINATION OF NONLINEAR TERM) 
 

This program determines the function forms (2.68a-e) and the perameter 

values of (2.47)-(2.66) 

 

(*  This program determines the non-linear functional form of dressed   
bosons *) 

(*  ======== constant values ========  *) 
(*  NA:Avogadro number   *) 
NA=6.0221367*10^23 
(*  hbar:Planck's constant/(2 Pi)   *) 
hbar=6.6260755*10^-34/(2*Pi) 
(*  kB:Boltzmann constant   *) 
kB=1.380658*10^-23 
(* m=mass of He atom, unit: kg  *) 
m=(4.002602/(6.0221367*10^23))*10^-3 
(* roh= mass density of liquid helium,  at saturated vapor pressure and 

1.1Kelvin unit: kg/m^3  *) 
roh=145.5 
(* numberDensity: number density of liquid helium unit: 1/m^3   *) 
numberDensity=roh/m 
(* energyData is the excitation energy data by neutron scatterings.  \ 
{(momentum/hbar)*10^-10, data=energy/Boltzmann constant}  namely,  
  unit {angstrom^-1,Kelvin} *) 
energyData={{0.0894,1.6131},{0.0946,1.7175},{0.1150,2.1005},{0.1210, 
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      2.2514},{0.1390,2.6111},{0.1430,2.6343},{0.1594,2.9709},{0.1767, 
      3.2958},{0.1818,3.3887},{0.1938,3.6324},{0.1990,3.7368},{0.2000, 
      3.7000},{0.2110,3.9689},{0.2162,4.0850},{0.2278,4.2822},{0.2329, 
      4.3867},{0.2445,4.6072},{0.2495,4.7116},{0.2611,4.9205},{0.2776, 
      5.2339},{0.2825,5.3267},{0.2938,5.5240},{0.2988,5.6284},{0.3000, 
      5.5700},{0.3000,5.6500},{0.4000,7.4000},{0.4036,7.6361},{0.4082, 
      7.7173},{0.4187,7.9146},{0.4232,7.9958},{0.4355,8.1815},{0.4498, 
      8.3788},{0.4643,8.6457},{0.4785,8.8662},{0.4926,9.1099},{0.5000, 
      9.1500},{0.5605,10.1544},{0.6000,10.7500},{0.6243,11.0015},{0.6965, 
      11.8023},{0.7000,11.7500},{0.7649,12.4173},{0.8000,12.7200},{0.8000, 
      12.6500},{0.8300,12.8815},{0.8925,13.2297},{0.9000,13.1500},{1.0000, 
      13.5500},{1.1000,13.8000},{1.1300,13.8200},{1.2000,13.7500},{1.3000, 
      13.5000},{1.4000,12.9500},{1.5000,12.2000},{1.6000,11.2000},{1.7000, 
      10.2500},{1.8000,9.2500},{1.8800,8.6940},{1.8900,8.6570},{1.9000, 
      8.7000},{1.9000,8.6540},{1.9000,8.6340},{1.9100,8.6350},{1.9100, 
      8.6160},{1.9150,8.6110},{1.9200,8.6260},{1.9200,8.6100},{1.9250, 
      8.6060},{1.9300,8.6260},{1.9300,8.6060},{1.9350,8.6300},{1.9350, 
      8.6120},{1.9400,8.6300},{1.9400,8.6090},{1.9500,8.6500},{1.9500, 
      8.6330},{1.9600,8.6830},{1.9600,8.6720},{1.9700,8.6950},{2.0000, 
      8.9500},{2.1000,10.0000},{2.2000,11.6500},{2.3000,13.5500},{2.4000, 
      15.5000},{2.5000,16.4500},{2.6000,17.0000},{2.7000,17.3000},{2.8000, 
      17.5000},{2.9000,17.7000},{3.0000,17.8500},{3.1000,18.0000},{3.2000, 
      18.1500},{3.3000,18.3000},{3.4000,18.3500},{3.5000,18.4000},{3.6000, 
      18.4500}} 
(* We use phonon velocity value 238 which is the experimental value at \ 
0.2-1.0K. *) 
(* We use roton minimum energy = 
    8.61*kB  at p/(10^10*hbar) = 1.92 from experimental data   *)  
(* eData is the data for high momentum (momentum/(hbar*10^10))>2.4   *)  
eData={}; Do[ 
  If[energyData[[n,1]]>2.4,eData=Join[eData,{energyData[[n]]}]],{n,1, 
    Length[energyData]}] 
eData 
(* best fit curve of the excitation energy  
      for momentum p=>2.55*10^10*hbar        *) 
func=Fit[eData,{1,kkk,kkk^2},kkk] 
ggg=ListPlot[eData,PlotStyle\[Rule]{PointSize[0.015],RGBColor[1,0,0]}] 
gg=Plot[func,{kkk,2.5,3.6}] 
Show[ggg,gg] 
g=ListPlot[energyData,PlotStyle\[Rule]{PointSize[0.015],RGBColor[1,0,0]}] 
(* ==== elementary excitation energy near zero Kelvin  *) 
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(*  velocity of first sound =c1=238 :unit:[m/s] *) 
(*  e0phonon is the phonon energy at zero Kelvin :unit:J,   
  where p is momentum. 
      This function is equal to (2.42) in chaper II of my book  *) 
e0phonon[p_]:=c1*p 
c1=238. 
(*  dPhonon is the derivative of phonon energy by momentum   *) 
dPhonon[p_]:=c1 
(*  maxon energy at zero Kelvin :unit:J. 
            This function is equal to (2.43) in chaper II of my book  *) 
e0maxon[p_]:= 
  maxon1*kB+(maxon2+maxon3*(p-pMax)+maxon4*(p-pMax)^2+ 
          maxon5*(p-pMax)^3)(p-pMax)^2 
maxon1=13.82;pMax=1.13*10^10*hbar 
(* Maximum energy data in maxon region is 13.82 at pMax= 
    1.13. Therefore we use the data in this program. *) 
dMaxon[p_]:=(2*maxon2+3*maxon3*(p-pMax)+4*maxon4*(p-pMax)^2+5* 
          maxon5*(p-pMax)^3)(p-pMax) 
(*  roton energy at zero Kelvin :unit:J. 
            This function is equal to (2.44) in chaper II of my book  *) 
e0roton[p_]:=fDelta0*kB+1/(2*fM0*m)*(p-fQ0*10^10*hbar)^2 
fDelta0=8.61;fQ0=1.92;fM0=0.153 
dRoton[p_]:=1/(fM0*m)*(p-fQ0*10^10*hbar) 
(* e0high1 is the excitation energy for higher region 1 
      p3<=p<p4. 
        This function is equal to (2.45) in chaper II of my book *) 
e0high1[p_]:=hh+c1*(p-p3)+aaa*(p-p3)^2+bbb*(p-p3)^3 
dHigh1[p_]:=c1+2*aaa*(p-p3)+3*bbb*(p-p3)^2 
(* hh is the energy at p=p3 *) 
(* higher energy region 2 
    This function is equal to (2.46) in chaper II of my book *) 
e0high2[p_]:=kB*func/.{kkk\[Rule]p/(10^10*hbar)} 
(* p1 is the momentum of upper bound for phonon : its momentum unit:kg 

m/sec *) 
(* p2 is the momentum of lower bound for roton : its momentum unit:kg 

m/sec *) 
(* p3 is the momentum of upper bound for roton : its momentum unit:kg 

m/sec, 
  p3 is determined by equality of derivative coefficient at the boundary \ 
between roton and higher region *) 
(* p4 is the momentum of upper bound for higher region 1 :  
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    its momentum unit:kg m/sec  *) 
p1=0.5*10^10*hbar;p2=1.78*10^10*hbar;p4=2.55*10^10*hbar; 
(* Solve the parameters in order to connect the excitation energy functions \ 
in three regions. *) 
sol=Solve[{e0maxon[p1]==e0phonon[p1],dMaxon[p1]\[Equal]dPhonon[p1],     

e0maxon[p2]==e0roton[p2],dMaxon[p2]\[Equal]dRoton[p2]},{maxon2,
maxon3, 

      maxon4,maxon5}] 
maxon2=maxon2/.sol[[1,1]] 
maxon3=maxon3/.sol[[1,2]] 
maxon4=maxon4/.sol[[1,3]] 
maxon5=maxon5/.sol[[1,4]] 
(* Solve the parameter p3 in order to connect the excitation energy at the \ 
boundary between roton and higer region. *) 
sol=Solve[dRoton[p3]\[Equal]c1,p3] 
p3=p3/.sol[[1,1]] 
(* Solve the parameter hh in order to connect the excitation energy \ 
continuously *) 
sol=Solve[e0roton[p3]\[Equal]hh,hh] 
hh=hh/.sol[[1,1]] 
D[e0high2[p],p]/.p\[Rule]p4 
(* Solve the parameters aaa and bbb in order to connect the excitation energy \ 
at p=p4 continuously *) 
sol=Solve[{e0high1[p4]\[Equal]e0high2[p4], 
      dHigh1[p4]\[Equal]D[e0high2[p],p]/.p\[Rule]p4},{aaa,bbb}] 
aaa=aaa/.sol[[1,1]];bbb=bbb/.sol[[1,2]] 
(* We define new function e0[p]. 
        This function is equal to the function defined by (2.42)-(2.46) in \ 
chapter II of my book *) 
e0[p_]:=e0phonon[p]/;0<=p<p1 
e0[p_]:=e0maxon[p]/;p1<=p<p2 
e0[p_]:=e0roton[p]/;p2<=p<p3 
e0[p_]:=e0high1[p]/;p3<=p<p4 
e0[p_]:=e0high2[p]/;p4<=p 
(* We will confirm that the function of func is identical to High2  *) 
func 
(*  The function High2[k] is equal to (2.46) in chaper II of my book,  
  but the variable k is different from p  *) 
High2[k_]:=dd0+dd1*(k-p4/(10^10*hbar))+dd2*(k-p4/(10^10*hbar))^2 
dd0=func/.kkk->p4/(10^10*hbar) 
dd1=D[func,kkk]/.kkk->p4/(10^10*hbar) 
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dd2=D[func,{kkk,2}]/2 
(* test of  (HIgh2=func)      *) 
{High2[2.6],func/.kkk\[Rule]2.6} 
{High2[2.9],func/.kkk\[Rule]2.9} 
(* We write parameter values (2.47)-(2.66) in chapter II of Sasaki's book.   
        The parameters in Sasaki's book are related by the following equation \ 
*) 
(* c1=c1, Delta=fDelta0*kB; p0=fQ0*10^10*hbar; r=fM0 *) 
c1 
fDelta0 
fQ0 
fM0 
(* g0=maxon1 ; pM=pMax  *) 
maxon1 
pMax/(10^10*hbar) 
(* d0=dd0*kB ; d1=dd1*kB/(10^10*hbar) ; d2=dd2*kB/(10^10*hbar)^2  *) 
dd0 
dd1 
dd2 
(* p1=p1 ; p2=p2 ; p3=p3 ; p4=p4   *) 
p1/(10^10*hbar) 
p2/(10^10*hbar) 
p3/(10^10*hbar) 
p4/(10^10*hbar) 
(* b0=hh, g2=magnon2/kB , g3=magnon3/kB , g4=magnon4/kB, 

g5=magnon5/kB,  
  b2=aaa, b3=bbb  *) 
hh/kB 
maxon2*(10^10*hbar)^2/kB 
maxon3*(10^10*hbar)^3/kB 
maxon4*(10^10*hbar)^4/kB 
maxon5*(10^10*hbar)^5/kB 
aaa*(10^10*hbar)^2/kB 
bbb*(10^10*hbar)^3/kB 
(* We show that the experimental data of elementary excitation energy are \ 
agreement with the function e0  *) 
ge0=Plot[e0[k*10^10*hbar]/kB,{k,0,3.6}] 
Show[g,ge0] 
(* We show the behavior of elementary excitation energy in the region of -

3.6< 
    k<3.6  *) 
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ge0=Plot[e0[Abs[k]*10^10*hbar]/kB,{k,-3.6,3.6}] 
 
 

MATHEMATICA PROGRAM 2  

(APPROXMATION IN SECOND ORDER) 
 

This program determines the kernel function and the temperature 

dependence of the dressed boson excitation energy from Bose-Einstein 

condensate. The kernel values and the energy values are saved in the files 

“kernelListNonLinearTheory”, “e1ListNonLinearTheory” and 

“e2ListNonLinearTheory”. Therefore further calculations can start from 

reading these three files.  

 

(*  This program is used the parameters which are determined by 
experimental \ 

data at 1.1K. The values are shown in (2.47)-(2.66) of this book.  *) 
(* These parameters are almost equal to ones of Bendt et al.  
      If we change the fuctional forms in phonon region and high \ 
momentumregion 2,   
  we can obtain more sutable parameters fitting to experimental data of \ 
elementary excitation energy *) 
(* Running time of this program is about 3 hours at first running. 
       This program makes the three files "kernelListNonLinearTheory", \ 
"e1ListNonLinearTheory", "e2ListNonLinearTheory". *) 
(*  ======== constant values ========  *) 
(*  NA:Avogadro number   *) 
NA=6.0221367*10^23 
(*  hbar:Planck's constant/(2 Pi)   *) 
hbar=6.6260755*10^-34/(2*Pi) 
(*  kB:Boltzmann constant   *) 
kB=1.380658*10^-23 
(* m=mass of He atom, unit: kg  *) 
m=(4.002602/(6.0221367*10^23))*10^-3 
(* roh= mass density of liquid helium, 
         at saturated vapor pressure and 1.1Kelvin unit: kg/m^3  *) 
roh=145.5 
(* numberDensity: number density of liquid helium unit: 1/m^3   *) 
numberDensity=roh/m 
(* We set the function of excitation energy *) 
(* Parameter values of (2.47)-(2.66)  *) 
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c1=238. 
delta=8.61*kB 
p0=1.92*10^10*hbar 
r=0.153 
g0=13.82 
pM=1.13*10^10*hbar 
d0=16.7526*kB 
d1=3.22877*kB/(10^10*hbar) 
d2=-1.56968*kB/(10^10*hbar)^2 
p1=0.5*10^10*hbar 
p2=1.78*10^10*hbar 
p3=2.1495*10^10*hbar 
p4=2.55*10^10*hbar 
b0=10.696*kB 
b2=14.4344*kB/(10^10*hbar)^2 
b3=-55.0958*kB/(10^10*hbar)^3 
g2=-10.8805/(10^10*hbar)^2 
g3=-1.81497/(10^10*hbar)^3 
g4=-0.966809/(10^10*hbar)^4 
g5=7.19044/(10^10*hbar)^5 
(* We define new function e0 *) 
e0[p_]:=c1*p/;0<=p<p1 
e0[p_]:=kB*(g0+g2*(p-pM)^2+g3*(p-pM)^3+g4*(p-pM)^4+g5*(p-pM)^5) 

/;p1<=p<p2 
e0[p_]:=delta+(1/(2*m*r))*(p-p0)^2 /;p2<=p<p3 
e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)^2+b3*(p-p3)^3 /;p3<=p<p4 
e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)^2 /;p4<=p 
ge0=Plot[e0[k*10^10*hbar]/kB,{k,0,3.6}] 
energyData={{0.0894,1.6131},{0.0946,1.7175},{0.1150,2.1005},{0.1210, 
      2.2514},{0.1390,2.6111},{0.1430,2.6343},{0.1594,2.9709},{0.1767, 
      3.2958},{0.1818,3.3887},{0.1938,3.6324},{0.1990,3.7368},{0.2000, 
      3.7000},{0.2110,3.9689},{0.2162,4.0850},{0.2278,4.2822},{0.2329, 
      4.3867},{0.2445,4.6072},{0.2495,4.7116},{0.2611,4.9205},{0.2776, 
      5.2339},{0.2825,5.3267},{0.2938,5.5240},{0.2988,5.6284},{0.3000, 
      5.5700},{0.3000,5.6500},{0.4000,7.4000},{0.4036,7.6361},{0.4082, 
      7.7173},{0.4187,7.9146},{0.4232,7.9958},{0.4355,8.1815},{0.4498, 
      8.3788},{0.4643,8.6457},{0.4785,8.8662},{0.4926,9.1099},{0.5000, 
      9.1500},{0.5605,10.1544},{0.6000,10.7500},{0.6243,11.0015},{0.6965, 
      11.8023},{0.7000,11.7500},{0.7649,12.4173},{0.8000,12.7200},{0.8000, 
      12.6500},{0.8300,12.8815},{0.8925,13.2297},{0.9000,13.1500},{1.0000, 
      13.5500},{1.1000,13.8000},{1.1300,13.8200},{1.2000,13.7500},{1.3000, 
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      13.5000},{1.4000,12.9500},{1.5000,12.2000},{1.6000,11.2000},{1.7000, 
      10.2500},{1.8000,9.2500},{1.8800,8.6940},{1.8900,8.6570},{1.9000, 
      8.7000},{1.9000,8.6540},{1.9000,8.6340},{1.9100,8.6350},{1.9100, 
      8.6160},{1.9150,8.6110},{1.9200,8.6260},{1.9200,8.6100},{1.9250, 
      8.6060},{1.9300,8.6260},{1.9300,8.6060},{1.9350,8.6300},{1.9350, 
      8.6120},{1.9400,8.6300},{1.9400,8.6090},{1.9500,8.6500},{1.9500, 
      8.6330},{1.9600,8.6830},{1.9600,8.6720},{1.9700,8.6950},{2.0000, 
      8.9500},{2.1000,10.0000},{2.2000,11.6500},{2.3000,13.5500},{2.4000, 
      15.5000},{2.5000,16.4500},{2.6000,17.0000},{2.7000,17.3000},{2.8000, 
      17.5000},{2.9000,17.7000},{3.0000,17.8500},{3.1000,18.0000},{3.2000, 
      18.1500},{3.3000,18.3000},{3.4000,18.3500},{3.5000,18.4000},{3.6000, 
      18.4500}} 
g=ListPlot[energyData,PlotStyle\[Rule]{PointSize[0.015],RGBColor[1,0,0]}] 
Show[g,ge0] 
(*   function kernel is defined as below    *) 
kernel[p_,q_]:= 
  NIntegrate[e0[Sqrt[Abs[p^2-2*p*q*t+q^2]]],{t,-1,1}]-2*e0[p]-2*e0[q]/; 
    p≠0||q≠0 
kernel[p_,q_]:=0/;p==0 && q==0 
(*   Approximation of function kernel is defined as below    *) 
(* Next command should be done at the first execution of program in order to 

\ 
make the file "kernelListNonLinearTheory".  
      Making of the file needs a long time. Therefore,  
  we should read the file in the second execution.   *) 
kList=Table[{x,y,kernel[x*10^10*hbar,y*10^10*hbar]},{x,0,3.62,0.01},{y,0,

3.62, 
        0.01}]>>"kernelListNonLinearTheory" 
OpenRead["kernelListNonLinearTheory"];kList= 
  Get["kernelListNonLinearTheory"];Close["kernelListNonLinearTheory"] 
kApp1[p_,q_]:= 
  z/.{x=p/(10^10*hbar);y=q/(10^10*hbar);nx=IntegerPart[x*100]+1; 
      ny=IntegerPart[y*100]+1;a00=kList[[nx,ny,3]];a10=kList[[nx+1,ny,3]]; 
      a01=kList[[nx,ny+1,3]];a11=kList[[nx+1,ny+1,3]]; 
      z->a11*(100*x-nx+1)*(100*y-ny+1)+a10*(100*x-nx+1)*(1-100*y+ny-

1)+ 
          a01*(1-100*x+nx-1)*(100*y-ny+1)+a00*(1-100*x+nx-1)*(1-

100*y+ny-1)} 
kApp3[p_,q_]:= 
  z/.{x=p/(10^10*hbar);y=q/(10^10*hbar);nx=IntegerPart[x*100]; 
      ny=IntegerPart[y*100];tx=100*x-nx-0.5;ty=100*y-ny-0.5; 
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      zz1=kList[[nx,ny,3]];zz2=kList[[nx+1,ny,3]];zz3=kList[[nx+2,ny,3]]; 
      zz4=kList[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=kList[[nx,ny+1,3]];zz2=kList[[nx+1,ny+1,3]]; 
      zz3=kList[[nx+2,ny+1,3]];zz4=kList[[nx+3,ny+1,3]]; 
      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=kList[[nx,ny+2,3]];zz2=kList[[nx+1,ny+2,3]]; 
      zz3=kList[[nx+2,ny+2,3]];zz4=kList[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=kList[[nx,ny+3,3]];zz2=kList[[nx+1,ny+3,3]]; 
      zz3=kList[[nx+2,ny+3,3]];zz4=kList[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z->((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 
            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 
kApprox[p_,q_]:=kApp1[p,q]/;p<=0.01*10^10*hbar || q<=0.01*10^10*hbar  
kApprox[p_,q_]:= 
  kApp3[p,q]/; 
    0.01*10^10*hbar<p<=3.6*10^10*hbar && 

0.01*10^10*hbar<q<=3.6*10^10*hbar  
(* ======= test of approximation ========  *) 
pp=1.135*10^10*hbar;qq=1.875*10^10*hbar;{kernel[pp,qq], 
  kApprox[pp,qq],(kApprox[pp,qq]-kernel[pp,qq])/kernel[pp,qq]} 
pp=0.005*10^10*hbar;qq=1.875*10^10*hbar;{kernel[pp,qq], 
  kApprox[pp,qq],(kApprox[pp,qq]-kernel[pp,qq])/kernel[pp,qq]} 
(* result 
    kApp1 is worse function than kApp3,  
  and therefore kApprox has larger error for p<=0.01*10^10*hbar ||  
    q<=0.01*10^10*hbar than in the other region   *) 
pp=1.555*10^10*hbar;qq=1.555*10^10*hbar;t1=TimeUsed[];Do[ 
  kernel[pp,qq],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001*10^ 

10*hbar}];t2= 
  TimeUsed[];Do[ 
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  kApprox[pp,qq],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001* 
10^10*hbar}];t3= 

  TimeUsed[];{t2-t1,t3-t2} 
(* This result shows that the approximation is precise for almost all region,  
  and is more speedy program *) 
(* ======= end of approximation test ========  *) 
(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *) 
nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999) 
(* Divergence occurs because of numerical evaluation error,  
  when denominator is extremely small. Therefore,  
  we change the value 1 to 0.9999999 ; 
  Deviation caused by this change is negligibly small  *) 
(* excitation energy of first order *) 
e1[p_,T_]:=e0[p]+r1[p,T]/;p≠0 && T≠0 
e1[p_,T_]:=e0[p]/; p≠0 && T==0 
e1[p_,T_]:=0/;p==0 
(* recidual part of energy: r1 *) 
r1[p_,T_]:=(2Pi/(numberDensity(2Pi*hbar)^3))* 
    NIntegrate[kApprox[p,q]*nnn[q,T]*q^2,{q,0,3.6*10^10*hbar}, 
      PrecisionGoal\[Rule]4] 
(* The integral region is 0\[LessEqual]q\[LessEqual]3.6*10^10*hbar,  
  and the contribution from q> 
    3.6*10^10* 
      hbar is negligibly small.  
        Therefore we have neglected the higher momentum region. *) 
(* ======== approximation of e1[p,T] ========= *) 
(*Next command should be done at the first execution of program in order to \ 
make the file "e1ListNonLinearTheory". Making of the file needs a long time.  
      Therefore, we should read the file in the second execution.   *) 
e1List=Table[{k,T,e1[k*10^10*hbar,T]},{k,0,3.6,0.01},{T,0,2.4, 
        0.1}]>>"e1ListNonLinearTheory" 
OpenRead["e1ListNonLinearTheory"];e1List= 
  Get["e1ListNonLinearTheory"];Close["e1ListNonLinearTheory"] 
e1App1[p_,T_]:= 
  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 
      tx=x*100-nx;ty=y*10-ny;zz1=e1List[[nx+1,ny+1,3]]; 
      zz2=e1List[[nx+2,ny+1,3]]; 
      z1=tx*zz2+(1-tx)*zz1; 
      zz1=e1List[[nx+1,ny+2,3]];zz2=e1List[[nx+2,ny+2,3]]; 
      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 
e1App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 
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      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 
      zz1=e1List[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1List[[nx+2,ny,3]]; 
      zz4=e1List[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]]; 
      zz3=e1List[[nx+2,ny+1,3]]; 
      zz4=e1List[[nx+3,ny+1,3]]; 
      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+2,3]];zz2=e1List[[nx+1,ny+2,3]]; 
      zz3=e1List[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+3,3]];zz2=e1List[[nx+1,ny+3,3]]; 
      zz3=e1List[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 
            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 
e1Approx[p_,T_]:=e1[p,T]/;p==3.6*10^10*hbar 
e1Approx[p_,T_]:= 
  e1App1[p,T]/; 
    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  
      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar || T\[LessEqual]0.1 
e1Approx[p_,T_]:= 
  e1App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 

0.1<T\[LessEqual]2.2 
(* ======= test of approximation for e1 =======  *) 
T=1.85;pp=1.155*10^10*hbar;{e1[pp,T], 
  e1Approx[pp,T],(e1Approx[pp,T]-e1[pp,T])/e1[pp,T]} 
T=1.85;pp=0.005*10^10*hbar;{e1[pp,T], 
  e1Approx[pp,T],(e1Approx[pp,T]-e1[pp,T])/e1[pp,T]} 
T=1.85;pp=1.155*10^10*hbar;t1=TimeUsed[];Do[ 
  e1[pp,T],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001*10^10 

*hbar}];t2= 
  TimeUsed[];Do[ 
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  e1Approx[pp,T],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001*10^ 
10*hbar}];t3= 

  TimeUsed[];{t2-t1,t3-t2} 
(* This result shows that the approximation is precise for all region,  
  and is more speedy program *) 
(* ===\[Equal] end of test ===========  *) 
(* ------------------------------- *) 
(* excitation energy of second order *) 
(* n1[q_,T_] is the dreesed boson number in first order aproximation *) 
n1[q_,T_]:=1/(Exp[e1Approx[q,T]/(kB*T)]-0.9999999) 
e2[p_,T_]:=e0[p]+r2[p,T]/;p≠0 && T≠0 
e2[p_,T_]:=e0[p]/; p≠0 && T==0 
e2[p_,T_]:=0/;p==0 
(* recidual part of energy: r2 *) 
r2[p_,T_]:=(2Pi/(numberDensity(2Pi*hbar)^3))* 
    NIntegrate[kApprox[p,q]*n1[q,T]*q^2,{q,0,3.6*10^10*hbar}, 
      PrecisionGoal\[Rule]4] 
(* The integral region is 0\[LessEqual]q\[LessEqual]3.6*10^10*hbar,  
  and the contribution from q> 
    3.6*10^10* 
      hbar is negligibly small.  
        Therefore we have neglected the higher momentum region. *) 
(* ======== approximation of e2[p,T] ========= *) 
(* Next command should be done at the first execution of program in order to 

\ 
make the file "e2ListNonLinearTheory". Making of the file needs a long time.  
      Therefore, we should read the file in the second execution.   *) 
e2List=Table[{k,T,e2[k*10^10*hbar,T]},{k,0,3.6,0.01},{T,0,2.2, 
        0.1}]>>"e2ListNonLinearTheory" 
OpenRead["e2ListNonLinearTheory"];e2List= 
  Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"] 
e2App1[p_,T_]:= 
  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 
      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 
      zz2=e2List[[nx+2,ny+1,3]]; 
      z1=tx*zz2+(1-tx)*zz1; 
      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 
      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 
e2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 
      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 
      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 
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      zz4=e2List[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 
      zz3=e2List[[nx+2,ny+1,3]]; 
      zz4=e2List[[nx+3,ny+1,3]]; 
      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 
      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 
      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 
            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 
e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0 
e2Approx[p_,T_]:=e2[p,T]/;p==3.6*10^10*hbar || T\[Equal]2.2 
e2Approx[p_,T_]:= 
  e2App1[p,T]/; 
    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  
      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   
      2.1\[LessEqual]T<2.2 
e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 

0.1<T<2.1 
(* ======= test of approximation for e2 =======  *) 
T=1.85;pp=1.155*10^10*hbar;{e2[pp,T], 
  e2Approx[pp,T],(e2Approx[pp,T]-e2[pp,T])/e2[pp,T]} 
(* ===\[Equal] end of test ===========  *) 
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MATHEMATICA PROGRAM 3  

(CALCULATION OF ENTROPY) 
 
This program determines the temperature dependence of entropy.  

 
(*  This program calculates entropy  *) 
(* The excitation energy values of the second order are already saved in the \ 
files "e2ListNonLinearTheory"  *) 
(*  ======== constant values ========  *) 
(*  NA:Avogadro number   *) 
NA=6.0221367*10^23 
(*  hbar:Planck's constant/(2 Pi)   *) 
hbar=6.6260755*10^-34/(2*Pi) 
(*  kB:Boltzmann constant   *) 
kB=1.380658*10^-23 
(* m=mass of He atom, unit: kg  *) 
m=(4.002602/(6.0221367*10^23))*10^-3 
(* roh= mass density of liquid helium, 
         at saturated vapor pressure and 1.1Kelvin unit: kg/m^3  *) 
roh=145.5 
(* numberDensity: number density of liquid helium unit: 1/m^3   *) 
numberDensity=roh/m 
(* We set the function of excitation energy *) 
(* Parameter values of (2.47)-(2.66)  *) 
c1=238. 
delta=8.61*kB 
p0=1.92*10^10*hbar 
r=0.153 
g0=13.82 
pM=1.13*10^10*hbar 
d0=16.7526*kB 
d1=3.22877*kB/(10^10*hbar) 
d2=-1.56968*kB/(10^10*hbar)^2 
p1=0.5*10^10*hbar 
p2=1.78*10^10*hbar 
p3=2.1495*10^10*hbar 
p4=2.55*10^10*hbar 
b0=10.696*kB 
b2=14.4344*kB/(10^10*hbar)^2 
b3=-55.0958*kB/(10^10*hbar)^3 
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g2=-10.8805/(10^10*hbar)^2 
g3=-1.81497/(10^10*hbar)^3 
g4=-0.966809/(10^10*hbar)^4 
g5=7.19044/(10^10*hbar)^5 
(* We define new function e0 *) 
e0[p_]:=c1*p/;0<=p<p1 
e0[p_]:=kB*(g0+g2*(p-pM)^2+g3*(p-pM)^3+g4*(p-pM)^4+g5*(p-pM)^5) 

/;p1<=p<p2 
e0[p_]:=delta+(1/(2*m*r))*(p-p0)^2 /;p2<=p<p3 
e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)^2+b3*(p-p3)^3 /;p3<=p<p4 
e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)^2 /;p4<=p 
(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *) 
nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999) 
(* ======== approximation of e1[p,T] ========= *) 
(* We read the file "e1ListNonLinearTheory". Then,  
  we calculate the approximate value of e1[p,T].   *) 
OpenRead["e1ListNonLinearTheory"];e1List= 
  Get["e1ListNonLinearTheory"];Close["e1ListNonLinearTheory"] 
e1App1[p_,T_]:= 
  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 
      tx=x*100-nx;ty=y*10-ny;zz1=e1List[[nx+1,ny+1,3]]; 
      zz2=e1List[[nx+2,ny+1,3]]; 
      z1=tx*zz2+(1-tx)*zz1; 
      zz1=e1List[[nx+1,ny+2,3]];zz2=e1List[[nx+2,ny+2,3]]; 
      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 
e1App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 
      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 
      zz1=e1List[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1List[[nx+2,ny,3]]; 
      zz4=e1List[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]]; 
      zz3=e1List[[nx+2,ny+1,3]]; 
      zz4=e1List[[nx+3,ny+1,3]]; 
      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+2,3]];zz2=e1List[[nx+1,ny+2,3]]; 
      zz3=e1List[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
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                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+3,3]];zz2=e1List[[nx+1,ny+3,3]]; 
      zz3=e1List[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 
            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 
e1Approx[p_,T_]:=e1[p,T]/;p==3.6*10^10*hbar 
e1Approx[p_,T_]:= 
  e1App1[p,T]/; 
    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  
      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar || T\[LessEqual]0.1 
e1Approx[p_,T_]:= 
  e1App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 

0.1<T\[LessEqual]2.2 
(* n1[q_,T_] is the dreesed boson number in first order aproximation *) 
n1[q_,T_]:=1/(Exp[e1Approx[q,T]/(kB*T)]-0.9999999) 
(* ======== approximation of e2[p,T] ========= *) 
(* We read the file "e2ListNonLinearTheory". Then,  
  we calculate the approximate value of e2[p,T].   *) 
OpenRead["e2ListNonLinearTheory"];e2List= 
  Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"] 
e2App1[p_,T_]:= 
  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 
      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 
      zz2=e2List[[nx+2,ny+1,3]]; 
      z1=tx*zz2+(1-tx)*zz1; 
      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 
      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 
e2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 
      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 
      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 
      zz4=e2List[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 
      zz3=e2List[[nx+2,ny+1,3]]; 
      zz4=e2List[[nx+3,ny+1,3]]; 
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      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 
      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 
      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 
            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 
e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0 
e2Approx[p_,T_]:=e2[p,T]/;p==3.6*10^10*hbar || T\[Equal]2.2 
e2Approx[p_,T_]:= 
  e2App1[p,T]/; 
    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  
      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   
      2.1\[LessEqual]T<2.2 
e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 

0.1<T<2.1 
(* n2[q_,T_] is the dreesed boson number in the second order aproximation *) 
n2[q_,T_]:=1/(Exp[e2Approx[q,T]/(kB*T)]-0.9999999) 
(* ============================== *) 
(* calculation of entropy per atom    *) 
(* zeroth order entropy s0[T] (per atom)    *) 
s0[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)^3))* 
    NIntegrate[(Log[1+nnn[p,T]]+(e0[p]/(kB*T))nnn[p,T])*p^2,{p,0, 
        3.6*10^10*hbar}] 
(* first order entropy s1[T] (per atom)    *) 
s1[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)^3))* 
    NIntegrate[(Log[1+n1[p,T]]+(e1Approx[p,T]/(kB*T))n1[p,T])*p^2,{p,0, 
        3.6*10^10*hbar},PrecisionGoal\[Rule]4] 
(* second order entropy s2[T] (per atom)    *) 
s2[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)^3))* 
    NIntegrate[(Log[1+n2[p,T]]+(e2Approx[p,T]/(kB*T))n2[p,T])*p^2,{p,0, 
        3.6*10^10*hbar},PrecisionGoal\[Rule]4] 
(* Calculation result of entropy: 
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      s2[T]/m indicates entropy per kg, (s2[T]/m)/ 
      1000 indicates entropy per g *) 
Table[{T,(s0[T]/m)/1000,(s1[T]/m)/1000,(s2[T]/m)/1000},{T,0.5,2.15,0.05}] 
(* The List obtained above indicates{temperature, entropy of zeroth order,  
      first order, second order} 
    where the entropy unit is J/(K*g)   *) 
(* entropyExp is the entropies of experiment *) 
entropyExp={{0.2,0.00005},{0.3,0.00018},{0.4,0.00044},{0.5,0.00085},{0.6

, 
      0.00147},{0.7,0.00276},{0.8,0.00475},{0.9,0.00885},{1.0,0.0168},{1.1, 
      0.0304},{1.2,0.0523},{1.3,0.0853},{1.4,0.132},{1.5,0.197},{1.6, 
      0.284},{1.7,0.395},{1.8,0.535},{1.9,0.715},{2.0,0.940},{2.1,1.24}} 
gExp=ListPlot[entropyExp,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.02

]}] 
entropyCal=Table[{T,(s2[T]/m)/1000},{T,0.2,2.15,0.005}]; 
gCal=ListPlot[entropyCal,PlotStyle\[Rule]{RGBColor[0,0,0],PointSize[0.007

]}] 
Show[gExp,gCal] 
entropyExpLog10= 
    Table[{entropyExp[[n,1]],Log[10,entropyExp[[n,2]]]},{n,1, 
        Length[entropyExp]}]; 
entropyCalLog10= 
    Table[{entropyCal[[n,1]],Log[10,entropyCal[[n,2]]]},{n,1, 
        Length[entropyCal]}]; 
gExpLog10= 
  ListPlot[entropyExpLog10,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize 

[0.02]}] 
gCalLog10= 
  ListPlot[entropyCalLog10,PlotStyle\[Rule]{RGBColor[0,0,0],PointSize 

[0.005]}] 
Show[gExpLog10,gCalLog10] 
 
 

MATHEMATICA PROGRAM 4  

(CALCULATION OF SPECIFIC HEAT FOR 0.2-2.15K) 
 

This program calculates the temperature dependence of specific heat in 

the temperature region 0.2 - 2.15 K.  
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(*  This program "AppendixSpecificHeat0.2-2.15.nb" uses the excitation 
energy \ 

form at 1.1 K calculated by program "AppendixEnergyForm" *) 
(* This program also uses the two files "e1ListNonLinearTheory",  
  "e2ListNonLinearTheory" which are obtained by the program \ 
"AppendixKernelEnergy". *) 
(*  ======== constant values ========  *) 
(*  NA:Avogadro number   *) 
NA=6.0221367*10^23 
(*  hbar:Planck's constant/(2 Pi)   *) 
hbar=6.6260755*10^-34/(2*Pi) 
(*  kB:Boltzmann constant   *) 
kB=1.380658*10^-23 
(* m=mass of He atom, unit: kg  *) 
m=(4.002602/(6.0221367*10^23))*10^-3 
(* roh= mass density of liquid helium, 
         at saturated vapor pressure and 1.1Kelvin unit: kg/m^3  *) 
roh=145.5 
(* numberDensity: number density of liquid helium unit: 1/m^3   *) 
numberDensity=roh/m 
(* We set the function of excitation energy *) 
(* Parameter values of (2.47)-(2.66)  *) 
c1=238. 
delta=8.61*kB 
p0=1.92*10^10*hbar 
r=0.153 
g0=13.82 
pM=1.13*10^10*hbar 
d0=16.7526*kB 
d1=3.22877*kB/(10^10*hbar) 
d2=-1.56968*kB/(10^10*hbar)^2 
p1=0.5*10^10*hbar 
p2=1.78*10^10*hbar 
p3=2.1495*10^10*hbar 
p4=2.55*10^10*hbar 
b0=10.696*kB 
b2=14.4344*kB/(10^10*hbar)^2 
b3=-55.0958*kB/(10^10*hbar)^3 
g2=-10.8805/(10^10*hbar)^2 
g3=-1.81497/(10^10*hbar)^3 
g4=-0.966809/(10^10*hbar)^4 
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g5=7.19044/(10^10*hbar)^5 
(* We define new function e0 *) 
e0[p_]:=c1*p/;0<=p<p1 
e0[p_]:=kB*(g0+g2*(p-pM)^2+g3*(p-pM)^3+g4*(p-pM)^4+g5*(p-pM)^5) 

/;p1<=p<p2 
e0[p_]:=delta+(1/(2*m*r))*(p-p0)^2 /;p2<=p<p3 
e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)^2+b3*(p-p3)^3 /;p3<=p<p4 
e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)^2 /;p4<=p 
(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *) 
nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999) 
(* ======== approximation of e1[p,T] ========= *) 
(* We read the file "e1ListNonLinearTheory". Then,  
  we calculate the approximate value of e1[p,T].   *) 
OpenRead["e1ListNonLinearTheory"];e1List= 
  Get["e1ListNonLinearTheory"];Close["e1ListNonLinearTheory"] 
e1App1[p_,T_]:= 
  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 
      tx=x*100-nx;ty=y*10-ny;zz1=e1List[[nx+1,ny+1,3]]; 
      zz2=e1List[[nx+2,ny+1,3]]; 
      z1=tx*zz2+(1-tx)*zz1; 
      zz1=e1List[[nx+1,ny+2,3]];zz2=e1List[[nx+2,ny+2,3]]; 
      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 
e1App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 
      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 
      zz1=e1List[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1List[[nx+2,ny,3]]; 
      zz4=e1List[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]]; 
      zz3=e1List[[nx+2,ny+1,3]]; 
      zz4=e1List[[nx+3,ny+1,3]]; 
      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+2,3]];zz2=e1List[[nx+1,ny+2,3]]; 
      zz3=e1List[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e1List[[nx,ny+3,3]];zz2=e1List[[nx+1,ny+3,3]]; 
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      zz3=e1List[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 
            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 
e1Approx[p_,T_]:=e1[p,T]/;p==3.6*10^10*hbar 
e1Approx[p_,T_]:= 
  e1App1[p,T]/; 
    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  
      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar || T\[LessEqual]0.1 
e1Approx[p_,T_]:= 
  e1App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 

0.1<T\[LessEqual]2.2 
(* n1[q_,T_] is the dreesed boson number in first order aproximation *) 
n1[q_,T_]:=1/(Exp[e1Approx[q,T]/(kB*T)]-0.9999999) 
(* ======== approximation of e2[p,T] ========= *) 
(* We read the file "e2ListNonLinearTheory". Then,  
  we calculate the approximate value of e2[p,T].   *) 
OpenRead["e2ListNonLinearTheory"];e2List= 
  Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"] 
e2App1[p_,T_]:= 
  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 
      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 
      zz2=e2List[[nx+2,ny+1,3]]; 
      z1=tx*zz2+(1-tx)*zz1; 
      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 
      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 
e2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 
      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 
      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 
      zz4=e2List[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 
      zz3=e2List[[nx+2,ny+1,3]]; 
      zz4=e2List[[nx+3,ny+1,3]]; 
      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
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      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 
      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 
      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 
            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 
e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0 
e2Approx[p_,T_]:=e2[p,T]/;p==3.6*10^10*hbar || T\[Equal]2.2 
e2Approx[p_,T_]:= 
  e2App1[p,T]/; 
    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  
      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   
      2.1\[LessEqual]T<2.2 
e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 

0.1<T<2.1 
(* ======== approximation for the derivative of e2[p,T]  
        We should note that dTe2Approx[p,T]  is not defined at p= 
    3.6*10^10*hbar. Also it is not defined at T=2.2. ========= *) 
dTe2App1[p_,T_]:= 
  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 
      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 
      zz2=e2List[[nx+2,ny+1,3]]; 
      z1=tx*zz2+(1-tx)*zz1; 
      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 
      z2=tx*zz2+(1-tx)*zz1;z\[Rule]10*z2-10*z1} 
dTe2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 
      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 
      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 
      zz4=e2List[[nx+3,ny,3]]; 
      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 
      zz3=e2List[[nx+2,ny+1,3]]; 
      zz4=e2List[[nx+3,ny+1,3]]; 
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      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 
      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 
      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 
      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 
      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 
                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
      z\[Rule]10(((z3-z2)-(z4-z1-3*z3+3*z2)/24)+(z1-z2-z3+z4)/2* 
                ty+(z4-z1-3*z3+3*z2)/2*ty^2)} 
dTe2Approx[p_,T_]:=0/; T\[Equal]0.0 
dTe2Approx[p_,T_]:= 
  dTe2App1[p,T]/; 
    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  
      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   
      2.1\[LessEqual]T<2.2 
dTe2Approx[p_,T_]:= 
  dTe2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T<2.1 
(* ======= test of approximation for derivative of e2 by T =======  *) 
T=1.65;pp=1.155*10^10*hbar;{dTe2App1[pp,T], 
  dTe2App3[pp,T],(dTe2App1[pp,T]-dTe2App3[pp,T])/dTe2App3[pp,T]} 
{-1.19005×10\^-23,-1.18632×10\^-23,0.00313924} 
T=2.199999;pp=3.599999*10^10*hbar;dTe2Approx[pp,T] 
-6.14294×10\^-23 
(* ===\[Equal] end of test ===========  *) 
(* ============================== *) 
(* calculation of specific heat per atom    *) 
(* zeroth order specific heat C0[T] (per atom)    *) 
C0[T_]:=(4*Pi/(numberDensity*(2*Pi*hbar)^3))* 
    NIntegrate[((nnn[p,T])^2*Exp[e0[p]/(kB*T)](e0[p]/(kB*T))^2)*kB* 

p^2,{p,0, 
        3.6*10^10*hbar}] 
(* second order specific heat C2[T] (per atom)    *) 
(* n2[q_,T_] is the dreesed boson number in second order aproximation *) 
n2[q_,T_]:=1/(Exp[e2Approx[q,T]/(kB*T)]-0.9999999) 
C2[T_]:=(4*Pi/(numberDensity*(2*Pi*hbar)^3))* 
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    NIntegrate[(n2[p,T])^2* 
        Exp[e2Approx[p,T]/(kB*T)]*((e2Approx[p,T]/(kB*T))^2* 
              kB-(e2Approx[p,T]/(kB*T))*dTe2Approx[p,T])*p^2,{p,0, 
        3.599999*10^10*hbar}] 
T=1.9;C2[T]/m/1000 
(* The next Table is the calculated List as{temperature,  
      specific heat of zeroth order, second order}  *) 
Table[{T,(C0[T]/m)/1000,(C2[T]/m)/1000},{T,0.2,2.15,0.05}] 
(* We make the list of specific heat{temperature, 
        specific heat (unit:J/(K*g)} *) 
t1=TimeUsed[];specificHeatCal=Table[{T,C2[T]/m/1000},{T,0.2,2.15,0.005}

];t2= 
  TimeUsed[];t2-t1 
(* specificHeatExp is the specific heat of experiment *) 
specificHeatExp={{0.2,0.0002},{0.3,0.0005},{0.4,0.0013},{0.5,0.0025}, 

{0.6, 
      0.0044},{0.7,0.0098},{0.8,0.0222},{0.9,0.0510},{1.0,0.1042},{1.1, 
      0.191},{1.2,0.322},{1.3,0.516},{1.4,0.780},{1.5,1.127},{1.6,1.572},{1.7, 
      2.11},{1.8,2.81},{1.9,3.79},{2.0,5.18},{2.1,7.51}} 
gExp=ListPlot[specificHeatExp, 
    PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.02]}] 
specificExpLog10= 
    Table[{specificHeatExp[[n,1]],Log[10,specificHeatExp[[n,2]]]},{n,1, 
        Length[specificHeatExp]}]; 
specificCalLog10= 
    Table[{specificHeatCal[[n,1]],Log[10,specificHeatCal[[n,2]]]},{n,1, 
        Length[specificHeatCal]}]; 
gExpLog10= 
  ListPlot[specificExpLog10,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize 

[0.02]}] 
gCalLog10= 
  ListPlot[specificCalLog10, 
    PlotStyle\[Rule]{RGBColor[0,0,0],PointSize[0.005]}] 
Show[gExpLog10,gCalLog10] 
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MATHEMATICA PROGRAM 5  

(CALCULATION OF SPECIFIC HEAT NEAR THE  POINT) 
 
This program calculates specific heat near the  point. We use the 

temperature dependence of experimental data for  second sound verocity. 

 
(* Calculation of Specific Heat near the lambda transition  *) 
(*  alpha:   
    expansion coefficient of liquid helium near lambda transition : 
        unit:K^-1    
        where T and P indicate the temperature and pressure respectively.*) 
\!\(alpha[P_, T_] =  
    0.20821014177938688`\[InvisibleSpace] - 0.19315882351879696`\ P +  
      0.001665065420298923`\ P\^2 + 5.000779466327585`*^-6\ P\^3 -  
      3.3575696795459315`*^-7\ P\^4 - 0.1817968215507505`\ T +  
      0.1935429711624159`\ P\ T - 0.00042826241460284105`\ P\^2\ T +  
      0.035644114587116915`\ T\^2 - 0.04892332663996617`\ P\ T\^2 -  
      0.00024311096857724168`\ P\^2\ T\^2\) 
(*     energy of phonon part (second sound) :unit:J   *) 
\!\( (*\ \ velocity\ of\ second\ sound\  = \(21.547\ tt\^\(1/3\) -  
          0.35276\ P\ tt\^\(1/3\) + 32.226\ \@tt - 0.27876\ P\ \@tt +  
          0.0051713\ P\^2\ \@tt\ \ \ \ where\ tt = 1 - T/Tlambda\)\ \ *) \) 
energyPhonon[tt_,p_]:= 
  p(c1+c2*P)(tt+(a*p/(2*m))^3)^(1/3)+p(d1+d2*P+d3*P^2)(tt+(b*p/(2* 

m))^2)^(1/2) 
(* dedTPhonon = the derivative coefficient, namely D[energyPhonon,T]   *) 
dedTPhonon[tt_, 
    p_]:=-(1/(3*Tlambda))* 
      p*(c1+c2*P)(tt+(a*p/(2*m))^3)^(-2/3)-(1/(2*Tlambda))* 
      p(d1+d2*P+d3*P^2)(tt+(b*p/(2*m))^2)^(-1/2) 
derivPhonon[tt_, 
    p_]:=(c1+c2*P)(tt+(a*p/(2*m))^3)^(1/3)+(d1+d2*P+ 
          d3*P^2)(tt+(b*p/(2*m))^2)^(1/2)+(a*p/(2*m))^3*(c1+ 
          c2*P)(tt+(a*p/(2*m))^3)^(-2/3)+(b*p/(2*m))^2*(d1+d2*P+ 
          d3*P^2)(tt+(b*p/(2*m))^2)^(-1/2) 
c1=21.547;c2=-0.35276;d1=32.226;d2=-0.27876;d3=0.0051713;bb=0.565;b= 
  bb*(1-(c1+c2*P)a)/(d1+d2*P+d3*P^2) 
(*   functions   *) 
exPhonon[tt_,q_]:=Exp[energyPhonon[tt,q*hbar]/(kB*Tlambda*(1-tt))] 
nPhonon[tt_,q_]:=1/(exPhonon[tt,q]-1) 
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fPhonon[tt_,q_]:= 
  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nPhonon[tt,q]]+ 
          energyPhonon[tt,q*hbar]*nPhonon[tt,q])+ 
    exPhonon[tt, 
        q]*(energyPhonon[tt, 
            q*hbar]/(kB*Tlambda*(1-tt)))(energyPhonon[tt, 
              q*hbar]/(Tlambda*(1-tt))-dedTPhonon[tt,q*hbar])*nPhonon[tt,q]^2 
(*  specific heat for phonon region:   unit is J/(mole K)    *) 
q1=0.47*10^10 
cPhonon[tt_]:= 
  NIntegrate[fPhonon[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,1,q1}] 
(* ================ *) 
(*  energy form of thermal roton   *) 
(*  These function forms are derived from BD theory.     
        fDelta=roton minimum energy, unit K 
      fQ=roton minimum wave vector,unit A^-1 
      fMeff=effective mass of roton,ratio to the mass of He atom    *) 
\!\(fDelta[P_, T_] =  
    11.817996949160221`\[InvisibleSpace] + 0.005462313498632458`\ P +  
      0.00007060004218597404`\ P\^2 - 1.994136758893095`\ T -  
      0.03904567848829687`\ P\ T - 0.0004472451972962349`\ P\^2\ T\) 
(* cD is the derivative coefficient D[fDelta,T]   *) 
\!\(cD = \(-1.994136758893095`\)\  -  
      0.03904567848829687`\ P\  - \(\(0.0004472451972962349`\)\(\ \ 
\)\(P\^2\)\(\ \)\)\) 
\!\(fQ[P_, T_] =  
    1.9117207681118162`\[InvisibleSpace] - 0.0025819515490051043`\ P +  
      0.0002580457099968077`\ P\^2 + 0.0019883653842202686`\ T +  
      0.005281830335301087`\ P\ T - 0.00018934972954181802`\ P\^2\ T\) 
(* cQ is the derivative coefficient D[fQ,T]   *) 
\!\(cQ = \(+0.0019883653842202686`\)\  +  
      0.005281830335301087`\ P\  - \(\(0.00018934972954181802`\)\(\ \ 
\)\(P\^2\)\(\ \)\)\) 
\!\(fMeff[P_, T_] =  
    0.21803261551944467`\[InvisibleSpace] + 0.00003466145724840003`\ P +  
      5.577735788725462`*^-7\ P\^2 - 0.03676347248658116`\ T -  
      0.0007115671371523195`\ P\ T - 7.100620816409547`*^-6\ P\^2\ T\) 
(* cM is the derivative coefficient D[fMeff,T]   *) 
\!\(cM = \(-0.03676347248658116`\)\  -  
      0.0007115671371523195`\ P\  - \(\(7.100620816409547`*^-6\)\(\ \ 
\)\(P\^2\)\(\ \)\)\) 
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(* energyRoton=roton energy, unit J   *) 
energyRoton[tt_,p_]:= 
  1/(2*fMeff[P,Tlambda*(1-tt)]*m)*(p-fQ[P,Tlambda*(1-

tt)]*10^10*hbar)^2+ 
    fDelta[P,Tlambda*(1-tt)]*kB 
(* derivRoton is the derivative coefficient D[energyRoton,p]   *) 
derivRoton[tt_,p_]:= 
  1/(fMeff[P,Tlambda*(1-tt)]*m)*(p-fQ[P,Tlambda*(1-tt)]*10^10*hbar) 
d2Roton[tt_,p_]:=1/(fMeff[P,Tlambda*(1-tt)]*m) 
(* dedTRoton is the derivative coefficient D[energyRoton,T]   *) 
dedTRoton[tt_, 
    p_]:=-cM/(2*fMeff[P,Tlambda*(1-tt)]^2*m)*(p- 
            fQ[P,Tlambda*(1-tt)]*10^10*hbar)^2-2(cQ*10^10* 
          hbar/(2*fMeff[P,Tlambda*(1-tt)]*m))*(p- 
          fQ[P,Tlambda*(1-tt)]*10^10*hbar)+cD*kB 
(* calculation of heat capacity for roton region  *) 
exRoton[tt_,q_]:=Exp[energyRoton[tt,q*hbar]/(kB*Tlambda*(1-tt))] 
nRoton[tt_,q_]:=1/(exRoton[tt,q]-1) 
fRoton[tt_,q_]:= 
  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nRoton[tt,q]]+ 
          energyRoton[tt,q*hbar]*nRoton[tt,q])+ 
    exRoton[tt, 
        q]*(energyRoton[tt, 
            q*hbar]/(kB*Tlambda*(1-tt)))(energyRoton[tt, 
              q*hbar]/(Tlambda*(1-tt))-dedTRoton[tt,q*hbar])*nRoton[tt,q]^2 
(*  specific heat for roton region:   unit is J/(mole K)    *) 
q2=1.75*10^10 
(*  We will set q3 after *) 
cRoton[tt_]:=NIntegrate[fRoton[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,q2,

q3}] 
(* ==================== constant values   *) 
(* NA:Avogadro constant   *) 
NA=6.0221367*10^23 
hbar=6.626*10^-34/(2*Pi) 
h=6.626*10^-34 
kB=1.381*10^-23 
(* m=mass of He atom, unit: kg  *) 
m=(4.0026/(6.0221367*10^23))*10^-3 
\!\( (*\ \ \((0.02210\[InvisibleSpace] + 0.0002426\ P -  
          2.621*10^\(-6\)\ P\^2)\)\  = \  
      number\ of\ atoms\ per\ unit\ volume\ 1  Å\^\(-3\)\ \ *) \) 
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(*  roh is the mass density which depends on P and T. unit:kg/m^3  
========= *) 

\!\(roh =  
    m*10^30*\((0.02210\[InvisibleSpace] + 0.0002426\ P -  
          2.621*10^\(-6\)\ P\^2)\)\) 
roh=146.89+1.6125 P-0.01742 P^2 
(* These two expressions of roh are equivalent. *) 
\!\(Tlambda = 2.1725 - 0.00977\ P - 0.000127\ P\^2\) 
T=Tlambda*(1-tt) 
(* energy function for maxon *) 
(* maxon1 is a peak energy of maxon which is derived from BD (Brooks & \ 
Donnelly) theory  unit: K *) 
\!\(maxon1 =  
    3.206405433445097`\[InvisibleSpace] + 0.27134388495988193`\ P -  
      0.011766735067301868`\ P\^2 + 0.00039726430827396715`\ P\^3 -  
      5.301226864013549`*^-6\ P\^4 + 12.668467578023716`\ T -  
      0.09966957241809207`\ P\ T - 3.8815941717254123`\ T\^2 +  
      0.023402114681846813`\ P\ T\^2\) 
(* maxon curve *) 
pMax=1.4*10^10*hbar 
energyMaxon[tt_,p_]:= 
  maxon1*kB+(maxon2+maxon3*(p-pMax)+maxon4*(p-pMax)^2+ 
          maxon5*(p-pMax)^3)(p-pMax)^2 
derivMaxon[p_]:= 
  2*maxon2*(p-pMax)+3*maxon3*(p-pMax)^2+4*maxon4*(p-pMax)^3+5* 
      maxon5*(p-pMax)^4 
energyMaxon[tt,q1*hbar] 
energyPhonon[tt,q1*hbar] 
energyRoton[tt,q2*hbar] 
sol=Solve[{energyMaxon[tt,q1*hbar]==energyPhonon[tt,q1*hbar], 
        derivMaxon[q1*hbar]\[Equal]derivPhonon[tt,q1*hbar], 
        energyMaxon[tt,q2*hbar]==energyRoton[tt,q2*hbar], 
        

derivMaxon[q2*hbar]\[Equal]derivRoton[tt,q2*hbar]},{maxon2,maxon3, 
        maxon4,maxon5}]; 
maxon2=maxon2/.sol[[1,1]] 
maxon3=maxon3/.sol[[1,2]] 
maxon4=maxon4/.sol[[1,3]] 
maxon5=maxon5/.sol[[1,4]] 
(*   define functions  This definition is important. We donot use ":=".  
      This delayed definition ":="  derives the incorrect result. *) 
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dedTMaxon[tt_,p_]=-D[energyMaxon[tt,p],tt]/Tlambda 
(* calculation of heat capacity for maxon region  *) 
exMaxon[tt_,q_]:=Exp[energyMaxon[tt,q*hbar]/(kB*Tlambda*(1-tt))] 
nMaxon[tt_,q_]:=1/(exMaxon[tt,q]-1) 
fMaxon[tt_,q_]:= 
  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nMaxon[tt,q]]+ 
          energyMaxon[tt,q*hbar]*nMaxon[tt,q])+ 
    exMaxon[tt, 
        q]*(energyMaxon[tt, 
            q*hbar]/(kB*Tlambda*(1-tt)))(energyMaxon[tt, 
              q*hbar]/(Tlambda*(1-tt))-dedTMaxon[tt,q*hbar])*nMaxon[tt,q]^2 
(*  specific heat for maxon region:   unit is J/(mole K)    *) 
cMaxon[tt_]:= 
  NIntegrate[fMaxon[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,10^10,q2}] 
cPhMaxon[tt_]:= 
  NIntegrate[fMaxon[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,q1,10^10}] 
(* high momentum curve  *) 
firstVelocity={{0.05,237},{2.533125`,257},{5.06625`,273},{10.1325`, 
      300},{15.19875`,326},{20.265`,346},{25.33125`,365}} 
h1=Fit[firstVelocity,{1,P,P^2},P] 
p3List=Table[ 
      Join[{P,tt},p/.Solve[derivRoton[tt,p]\[Equal]h1,p]],{tt,0,0.01, 
        0.002},{P,0,29}]; 
p3List=Join[p3List[[1]],p3List[[2]],p3List[[3]],p3List[[4]],p3List[[5]], 
      p3List[[6]]]; 
p3=Fit[p3List,{1,P,tt,P*tt},{P,tt}] 
q3=p3/hbar 
h2=energyRoton[tt,p3] 
energyHigh[tt_,p_]:=h1*(p-p3)+h2 
Clear[tt];dedTHigh[tt_,p_]=-D[energyHigh[tt,p],tt]/Tlambda 
(* calculation of heat capacity for High momentum region  q3 < q < 5*10^10 

*) 
exHigh[tt_,q_]:=Exp[energyHigh[tt,q*hbar]/(kB*Tlambda*(1-tt))] 
nHigh[tt_,q_]:=1/(exHigh[tt,q]-1) 
fHigh[tt_,q_]:= 
  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nHigh[tt,q]]+ 
          energyHigh[tt,q*hbar]*nHigh[tt,q])+ 
    exHigh[tt, 
        q]*(energyHigh[tt, 
            q*hbar]/(kB*Tlambda*(1-tt)))(energyHigh[tt, 
              q*hbar]/(Tlambda*(1-tt))-dedTHigh[tt,q*hbar])*nHigh[tt,q]^2 
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(*  specific heat for High momentum region :   unit is J/(mole K)    *) 
cHigh[tt_]:= 
  NIntegrate[fHigh[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,q3,5*10^10}] 
(* Figure of function form of excitation energy *) 
P=0.05;ttt=0.01;a=0.005426;g1=Plot[energyPhonon[ttt,p]/kB,{p,0,q1*hbar}] 
q2 
q3 
P=0.05;tt=0.01;g2=Plot[energyMaxon[tt,p]/kB,{p,q1*hbar,q2*hbar}] 
P=0.05;tt=0.01;g3=Plot[energyRoton[tt,p]/kB,{p,q2*hbar,q3*hbar}] 
P=0.05;tt=0.01;g4=Plot[energyHigh[tt,p]/kB,{p,q3*hbar,2.6*10^10*hbar}] 
pMax/hbar 
Show[g1,g2,g3,g4] 
Show[g1,g2,PlotRange\[Rule]{0,5}] 
(*  next functions indicate the fractions of the dressed boson numbers inside \ 
various momentum regions for the total number of helium atoms  *) 
(*  fraction1 = phonon region / total   *) 
ratioPhonon[tt_]:=NIntegrate[nPhonon[tt,q]*q^2/((roh/m)*2*Pi^2),{q,1,q1}] 
(*  fraction2 = Maxon region / total   *) 
ratioMaxon[tt_]:=NIntegrate[nMaxon[tt,q]*q^2/((roh/m)*2*Pi^2),{q,10^10,q

2}] 
(*  fraction3 = the region between phonon and maxon / total   *) 
ratioPhMaxon[tt_]:=NIntegrate[nMaxon[tt,q]*q^2/((roh/m)*2*Pi^2),{q,q1,10

^10}] 
(*  fraction4 = roton region / total   *) 
ratioRoton[tt_]:=NIntegrate[nRoton[tt,q]*q^2/((roh/m)*2*Pi^2),{q,q2,q3}] 
(*  fraction5 = High momentum region / total   *) 
ratioHigh[tt_]:=NIntegrate[nHigh[tt,q]*q^2/((roh/m)*2*Pi^2),{q,q3,5*10^10}

] 
ratioHR[tt_]:=ratioHigh[tt]+ratioRoton[tt]; 
ratioHRM[tt_]:=ratioHR[tt]+ratioMaxon[tt]; 
ratioTotal[tt_]:=ratioPhonon[tt]+ratioPhMaxon[tt]+ratioHRM[tt] 
(* Next, we clarify that the transition temperature is certainly equal to the \ 
T=Tlambda=2.172 K  *) 
P=0.05;tt=0;ratioPhonon[tt]+ratioPhMaxon[tt] 
P=0.05;tt=0;ratioMaxon[tt] 
P=0.05;tt=0;ratioRoton[tt] 
P=0.05;tt=0;ratioHigh[tt] 
P=0.05;tt=0;ratioTotal[tt] 
Tlambda 
(* This result indicates that the total number of dressed bosons with non- 
      zero momentum is equal to the total number of helium atoms at T= 
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    Tlambda. Accordingly,  
  Bose condensation disappears at T=Tlambda. That is to say,  
  the transition temperature is certainly equal to Tlambda *)  
(* calculation of heat capacity, 
  make the list area  *) 
r=Table[{0.1,n},{n,1,15}] 
(* calculation of heat capacity of roton;  
  momentum region from q2*hbar to q3*hbar *) 
P=0.05;tt=0.01;cRoton[tt] 
P=0.05;Do[{tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cRoton[tt]},{n,1,15}] 
(*  heat capacity (unit:J/(K\[Bullet]mole)) of roton region  
          horizontal axis is t=1-T/Tlambda *) 
g1=ListPlot[r,PlotStyle->PointSize[0.02]] 
Clear[tt];cRotonFit[tt_]=Fit[r,{1,tt},tt] 
(* calculation of maxon momentum region from 1 to 1.75 A^-1  *) 
(*  heat capacity (unit:J/(K\[Bullet]mole)) for maxon region  
        from 1 to 1.75 A^-1 *) 
tt=0.01;cMaxon[tt] 
P=0.05;Do[{tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cMaxon[tt]},{n,1,15}] 
g1=ListPlot[r,PlotStyle->PointSize[0.02]] 
Clear[tt];cMaxonFit[tt_]=Fit[r,{1,tt},tt] 
(* calculation of phonon-maxon momentum region from q1 to 1 A^-1  *) 
(*  heat capacity (unit:J/(K\[Bullet]mole)) for phonon- 
    maxon region from q1 to 1 A^-1 *) 
P=0.05;Do[{tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cPhMaxon[tt]},{n,1,15}] 
g1=ListPlot[r,PlotStyle->PointSize[0.02]] 
Clear[tt];cPhMaxonFit[tt_]=Fit[r,{1,tt},tt] 
(* calculation of another momentum region from q3 to 5 A^-1  *) 
Do[{P=0.05;tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cHigh[tt]},{n,1,15}];ListPlot[r, 
  PlotStyle->PointSize[0.02]] 
Clear[tt];cHighFit[tt_]=Fit[r,{1,tt},tt] 
Clear[tt];cRotonFit[tt] 
cMaxonFit[tt] 
cHighFit[tt] 
(* experimental data of heat capacity for svp   *) 
(*   CsDataLow={{t=(1-T/Tlambda),Cs},\[Bullet]\[Bullet]\[Bullet]\[Bullet]} 
      Cs:unit is J/(mole K)    *) 
CsDataLow={{6.6758747697974216`*^-6,76},{4.511970534069982`*^-6, 
      78},{2.5782688766114177`*^-6,83.5`},{6.583793738489871`*^-6, 
      77.1`},{3.7292817679558014`*^-6,80.5`},{4.604051565377532`*^-6, 
      77.7`},{8.47145488029466`*^-6,75.9`},{2.302025782688766`*^-6, 
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      82.8`},{8.747697974217312`*^-6,74},{3.2228360957642724`*^-6, 
      81.9`},{2.9926335174953956`*^-6,82.2`},{1.1049723756906076`*^-6, 
      86.8`},{0.00008291896869244934`,63.7`},{0.000015750460405156538`, 
      71.8`},{0.003007366482504604`,44.67`},{0.0028540515653775324`, 
      44.92`},{0.0026988950276243093`,45.25`},{0.002541436464088398`, 
      45.54`},{0.002379834254143646`,45.93`},{0.002222375690607735`, 
      46.27`},{0.0019129834254143646`,47.07`},{0.001757366482504604`, 
      47.6`},{0.0016012891344383059`,48.06`},{0.001443830570902394`, 
      48.61`},{0.001285451197053407`,49.23`},{0.0011325966850828728`, 
      49.88`},{0.000979281767955801`,50.65`},{0.0008084714548802946`, 
      51.71`},{0.0006523941068139964`,52.85`},{0.0004986187845303868`, 
      54.28`},{0.0003450736648250461`,56.2`},{0.00022895948434622468`, 
      58.32`},{0.00013282688766114178`,61.05`},{0.00005902394106813 

996`, 
      65.28`},{0.0007923572744014733`,51.84`},{0.0007163904235727441`, 
      52.28`},{0.0006395027624309393`,52.93`},{0.0005626151012891344`, 
      53.58`},{0.0004857274401473297`,54.44`},{0.0004088858195211787`, 
      55.22`},{0.000331353591160221`,56.36`},{0.0004640883977900552`, 
      54.6`},{0.00038637200736648243`,55.56`},{0.0003088397790055249`, 
      56.72`},{0.00023158379373848986`,58.3`},{0.0001541436464088398`, 
      60.31`},{0.00007757826887661141`,63.88`},{0.00022398710865561 

693`, 
      58.34`},{0.00014631675874769796`,60.5`},{0.00005593922651933702`, 
      65.37`},{0.00023825966850828727`,57.97`},{0.0001626611418047882`, 
      60.04`},{0.00008517495395948435`,63.29`},{0.007739410681399631`, 
      39.17`},{0.004604051565377532`,42.3`},{0.003066298342541436`, 
      44.6`},{0.0006823204419889503`,52.6`},{0.0005308471454880295`, 
      54.02`},{0.0003670349907918969`,55.92`},{0.00020635359116022098`, 
      58.98`},{0.002012891344383057`,46.86`},{0.0016984346224677715`, 
      47.79`},{0.0013964088397790053`,48.86`},{0.0007941988950276243`, 
      51.79`},{0.0004930939226519337`,54.28`},{0.00021818600368324123`, 
      58.46`},{0.000056169429097605894`,65.51`},{0.007315837937384899`, 
      39.48`},{0.006533149171270718`,39.76`},{0.004990791896869245`, 
      41.76`},{0.004216850828729282`,42.76`},{0.0034507366482504605`, 
      43.89`},{0.00268232044198895`,45.3`},{0.0021404235727440148`, 
      46.52`},{0.0012094843462246777`,49.61`},{0.000901012891344383`, 
      51.12`},{0.0005920810313075507`,53.32`},{0.00028747697974217313`, 
      57.03`},{0.0000998158379373849`,62.4`},{0.016445672191528544`, 
      34.04`},{0.014742173112338858`,34.94`},{0.012767034990791896`, 
      35.89`},{0.011063535911602211`,36.97`}} 
CsDataLipa={{0.0091136`,38.294`},{0.0075245`,39.44`},{0.0063279`, 
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      40.449`},{0.0048267`,41.991`},{0.0037505`,43.384`},{0.0033287`, 
      44.034`},{0.0026579000000000004`,45.247`},{0.002016`, 
      46.744`},{0.0016499`,47.778`},{0.0011681999999999999`, 
      49.584`},{0.0010217`,50.278`},{0.00077205`,51.734`},{0.00065997`, 
      52.535`},{0.00048398`,54.11`},{0.00036973`, 
      55.491`},{0.00024743000000000003`,57.548`},{0.0001862`, 
      58.987`},{0.00014084`,60.394999999999996`},{0.00010746`, 
      61.775000000000006`},{0.000081065`,63.166`},{0.000060605`, 
      64.615`},{0.00004564`,66.03099999999999`},{0.00003928400000000 

0005`, 
      66.774`},{0.000029536`,68.215`},{0.000025569`, 
      68.905`},{0.000018917999999999997`,70.389`},{0.000013931`, 
      71.894`},{0.000011789`,72.69099999999999`},{0.000010101`, 
      73.465`},{7.1855999999999994`*^-

6,75.127`},{5.2386999999999995`*^-6, 
      76.6`},{3.7254999999999997`*^-6,78.282`},{3.0057`*^-6, 
      79.27199999999999`},{2.501`*^-6,80.22`},{1.9984`*^-6, 
      81.214`},{1.6451`*^-6,82.228`},{9.015`*^-7,85.095`},{5.8475`*^-7, 
      87.091`},{4.0001`*^-7,88.965`},{2.8675`*^-7,90.447`},{2.382`*^-7, 
      91.46600000000001`},{1.9685`*^-7,92.212`},{1.4472`*^-7, 
      93.734`},{1.3269`*^-7,93.811`},{9.4706`*^-8, 
      95.544`},{7.165899999999999`*^-8,96.836`},{5.8321`*^-8, 
      97.98400000000001`},{5.004`*^-8,98.051`},{4.0329`*^-8, 
      99.24300000000001`},{2.9670999999999998`*^-8,101.04`},{2.4924`*^-

8, 
      102.72`},{2.0000999999999998`*^-8,103.53`},{1.572`*^-8, 
      104.28999999999999`},{1.2073`*^-8,106.22`},{9.794199999999999`*^-

9, 
      108.13000000000001`},{7.8027`*^-9,105.77`},{6.2719`*^-9, 
      108.75999999999999`},{4.8799`*^-9,108.38000000000001`},{4.01`*^-9, 
      110.92`},{3.1344`*^-9,108.71000000000001`},{2.4785`*^-9, 
      111.91`},{1.9753`*^-9,116.07000000000001`},{1.5505`*^-9, 
      118.`},{1.2454999999999999`*^-9,116.91`},{1.0115`*^-9, 
      111.97`},{7.9398`*^-10,122.09`}} 
data1=ListPlot[CsDataLow,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.01

]}] 
data2=ListPlot[CsDataLipa,PlotStyle\[Rule]{RGBColor[0,0,1],PointSize[0.01

]}] 
P=0.05;th= 
  Plot[{cHighFit[ttt],cRotonFit[ttt]+cHighFit[ttt], 
      cMaxonFit[ttt]+cRotonFit[ttt]+cHighFit[ttt], 
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      cPhonon[ttt]+cMaxonFit[ttt]+cPhMaxonFit[ttt]+cRotonFit[ttt]+ 
        cHighFit[ttt]},{ttt,0.0000000001,0.017}, 
    PlotStyle\[Rule]{RGBColor[1,0,1],RGBColor[0,1,0],RGBColor[0,0,1], 
        RGBColor[1,0,0]}] 
Show[data1,data2,th,PlotRange\[Rule]{{0,0.017},{0,125}}] 
CsDataLowLog= 
    Table[{Log[10,CsDataLow[[n,1]]],CsDataLow[[n,2]]},{n,1, 
        Length[CsDataLow]}]; 
dataLowLog= 
  ListPlot[CsDataLowLog,PlotStyle\[Rule]{RGBColor[0,0,1],PointSize 

[0.02]}] 
CsDataLipaLog= 
    Table[{Log[10,CsDataLipa[[n,1]]],CsDataLipa[[n,2]]},{n,1, 
        Length[CsDataLipa]}]; 
dataLipaLog= 
  ListPlot[CsDataLipaLog,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize 

[0.012]}] 
theoryLog= 
  ParametricPlot[{xx, 
      cPhonon[10^xx]+cRotonFit[10^xx]+cMaxonFit[10^xx]+cPhMaxon 

Fit[10^xx]+ 
        cHighFit[10^xx]},{xx,-9.2,-1.6}, 
    PlotRange\[Rule]{{-9.2,-1.6},{20,125}}, 
    PlotStyle\[Rule]{Thickness[0.0045]}] 
Show[dataLowLog,dataLipaLog,theoryLog,PlotRange\[Rule]{{-9.2,-

1.6},{0,125}}] 
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