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Abstract 

 

The receptive fields of complex cells in the early visual cortex are economically 

modeled by combining outputs of a quadrature pair of linear filters. For actual complex 

cells, such a minimal model may be insufficient, since many more simple cells are 

thought to make up a complex cell receptive field. To examine the minimalist model, I 

analyzed spatial relationships between the internal structure (subunits) and the overall 

receptive fields of individual complex cells by a two-stimulus interaction technique. The 

receptive fields of complex cells are more circular and only slightly larger than their 

subunits in size. In addition, complex cell subunits occupy similar spatial extents to 

simple cell receptive fields. Therefore, in these respects, the minimalist schema is a fair 

approximation to actual complex cells. However, there are violations against the 

minimal model. Simple cell receptive fields have significantly fewer subregions than 

complex cell subunits. And simple cell receptive fields are elongated more horizontally 

than vertically in general. This bias is absent in complex cell subunits and receptive 

fields. Thus, simple cells cannot be equated to individual complex cell subunits, and 

spatial pooling of simple cells may occur anisotropically to comprise a complex cell 

subunit. Moreover, when linear filters for complex cell subunits are examined separately 

for bright and dark responses, there are significant imbalances and 

position-displacements between them. This suggests that actual complex cell receptive 

fields are constructed by a richer combination of linear filters than proposed by the 

minimalist model. 
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Chapter 1.  Introduction 

 

 Vision is a crucial sense for survival in mammals such as carnivores and 

primates. It is not only a necessity but also a luxury; we enjoy wonderful visual 

experiences in daily life. Amazingly, these are mental phenomena, while they are caused 

by physical reality. All of our percepts are attributable to the activities of myriads of 

neurons in the brain. First of all, how are visual signals transformed and represented in 

individual neurons in the brain? 

Information processing in the visual cortex begins with cells known as simple 

cells, and their outputs are considered to be passed onto complex cells. Intensive 

endeavors have been devoted to elucidating how simple cells encode visual information 

in the receptive fields. However, this is not the case for complex cells partly due to 

technical difficulty. In this dissertation, I present a detailed analysis of internal spatial 

organization of complex cells, and compare internal structure with receptive fields to 

examine the possibility of spatial pooling and the hierarchical relationship between 

simple cells and complex cells. 

 

1.1 Simple cell and complex cell 

When Hubel and Wiesel started single unit recordings in the primary visual 

cortex, they first attempted to excite neurons by diffuse light and dark spot (Hubel and 

Wiesel, 1998). Those stimuli are effective drivers for retinal and lateral geniculate 

nucleus (LGN) cells (Figs. 1.1.1A and B; Kuffler, 1953), but turned out to be in vain for 

cortical neurons. Hubel and Wiesel recollect that the first major break was thanks to the 

edge of the glass slide. They discovered a neuron responding vigorously to the faint but 
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sharp line shadow cast on the retina by the moving edge of the glass, not by retinal 

stimuli they prepared. Their collaboration made a series of discoveries concerning 

information processing in the visual system, culminating in reception of the Nobel Prize 

in Physiology or Medicine in 1981. 

Neurons in the primary visual cortex are driven effectively by a bar and edge 

stimulus having orientation optimal for them (Hubel and Wiesel, 1959). The 

organization of their receptive fields was examined by using a bright spot and bar 

stimulus, and classified into two categories (Hubel and Wiesel, 1962). If neurons 

satisfied the following four criteria, they were termed as simple (1) the receptive fields 

were subdivided into distinct ON and OFF subregions; (2) there was summation within 

the separate ON and OFF subregions; (3) there was antagonism between ON and OFF 

subregions; and (4) it was possible to predict responses to stationary and moving spots 

of various shapes from a map of the ON and OFF subregions (Fig. 1.1.1C-G). 

Otherwise, neurons were grouped as complex. They responded in a complex manner 

that bore little obvious relationship to the receptive fields. 

Therefore, simple cells and complex cells differ substantially in a manner how 

they summate the distributions of light intensities in the receptive fields. To examine 

spatial summation property quantitatively, stationary and drifting sinusoidal gratings 

should be employed in addition to bar and edge stimuli. Prior to application to cortical 

cells, such tests were already conducted to examine the properties of spatial summation 

for retinal (Enroth-Cugell and Robson, 1966) and LGN cells (Shapley and Hochstein, 

1975). 
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1.2 Simple cell 

 Effective stimuli for simple cells can be predicted by the organization of their 

receptive fields (Hubel and Wiesel, 1959, 1962). This raised a possibility that simple 

cells calculate a weighted linear sum for the distributions of light intensities impinged 

on the receptive fields, although early studies by Hubel and Wiesel were qualitative 

rather than quantitative. If linearity of spatial summation holds, responses measured in 

the space and the frequency domains must be converted to each other via Fourier 

analysis. Movshon et al. (1978a) measured line-weighting functions (space domain) for 

simple cells by bar stimuli elongated along the axis of optimal orientation, and 

compared them with contrast-sensitivity functions (frequency domain) measured with 

the use of sinusoidal grating stimuli of variable spatial frequency. Close match between 

the two measurements indicates that majority of simple cells were described fairly well 

as linear spatial filters (see also Jones and Palmer, 1987). 

Some simple cells exhibited a systematic shift in latencies for stationary grating 

stimuli having different phases (Movshon et al. 1978a). This characteristic first emerges 

in the cerebral cortex in cats and primates (Enroth-Cugell and Robson, 1966). This was 

of particular interest with regard to the neuronal mechanism for selectivity to the 

direction of motion because this suggests that the motion computation in the early visual 

cortex does not rely on ‘AND’ operation (Adelson and Bergen, 1985; Watson and 

Ahumada, 1983, 1985; Reichardt 1961). Now the temporal dimension must be taken 

into account seriously for the receptive fields of simple cells. Since a monocular image 

projected onto the retina can be fully specified by three dimensions (two dimensions of 

space x, y, and one dimension of time t), the spatiotemporal characterization of receptive 

field structure is a complete depiction for monocular visual information processing 
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performed in single neurons. 

It is worth addressing an issue whether the temporal integration of visual 

signals is also linear or not. DeAngelis et al. (1993) followed authentic linearity tests 

(Enroth-Cugell and Robson, 1966; Movshon et al. 1978a), which, in their case, 

compared the responses in the temporal domain with those in the temporal frequency 

domain. The spatiotemoral receptive fields were measured for simple cells by a reverse 

correlation technique, which is also known as a spike-triggered averaging (STA) method 

(Jones and Palmer, 1987; Sutter 1975). In this technique, a simple cell was simulated 

with a long, pseudorandom sequence of briefly flashed small bright and dark bars over a 

region covering the spatial receptive field (imagine white and black ‘snowflakes’ 

presented on the display). To obtain the spatial receptive field structure with a latency of 

 ms, votes were cast by all stimuli preceding spikes by  ms for contrast polarities and 

locations. The temporal dimension was added by varying a parameter of . Subtraction 

of the votes to dark stimuli from those to bright stimuli produced the composite 

receptive field map. 

The temporal frequency tuning was estimated via Fourier analysis by the 

spatiotemporal receptive fields. These predictions were compared with the temporal 

frequency tuning measured by using drifting sinusoidal gratings. The optimal and 

cut-off values of temporal frequency tuning curves were generally consistent between 

the actual measurements and the predictions made by the spatiotemporal receptive fields. 

Direction selectivity indices, however, tended to be underestimated in the linear 

predictions compared with the actual measurements obtained by drifting grating stimuli. 

This systematic discrepancy was readily reconciled by expansive nonlinearity that may 

reflect nonlinear contrast response (Albrecht and Geisler, 1991; Albrecht and Hamilton 
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1982).  

 

1.3 Complex cell 

 Complex cells exhibit gross nonlinear property of summation, while simple 

cells show linearity of spatiotemporal summation. Complex cells exhibit elevated 

maintained discharge for drifting sinusoidal gratings (Movshon et al. 1978b), while 

simple cells show modulated responses to them (a half-wave rectified sinusoidal wave 

in ideal cases; Movshon et al. 1978a). This is a major difference between the two cell 

groups. A test by an optimal sinusoidal grating has been conventionally used to quantify 

the degree of linearity of spatiotemporal summation performed by neurons (Li et al. 

2003; Skottun et al. 1991). 

The spatial extents of complex cell receptive fields are obtained by turning on 

and off a single bar elongated along the axis of optimal orientation. However, this 

simple experiment fails to uncover a manner in which complex cells summate light 

intensities in the receptive fields to yield selectivities to stimulus features such as 

orientation, spatial frequency, and so on. The functional internal structure, called 

subunit, of complex cells can be unveiled by presenting two bars simultaneously. As 

inferred from selectivity for spatial frequency, the relative positions and contrast 

polarities (bright or dark) of two bars are critical parameters to elicit responses in 

complex cells. Movshon et al. (1978b) first examined two-bar interaction profiles by 

changing the relative position and contrast polarity of the second bar while presenting 

the first bar somewhere in the receptive fields. The two-bar interaction profiles obtained 

by this method could predict the contrast-sensitivity functions measured by grating 

stimuli of variable spatial frequency. Therefore, these interaction profiles represent the 
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spatial structure of functional units acting as spatial linear filters internal to complex 

cells. 

In terms of nonlinear systems identification, two-bar interaction profiles 

obtained by Movshon et al. (1978b) are intimately related to second-order Wiener 

kernels (Marmarelis and Marmarelis, 1978). To account for various functional 

characteristics of complex cells, second-order interaction analysis was extended to the 

temporal domain (Emerson et al. 1987), and then along the parallel axis to optimal 

orientation by using two-dots, rather than two-bar, stimuli (Gaska et al. 1994; 

Livingstone and Conway, 2003). The interaction profiles were often obtained as a 

variant of STA maps, in which spike votes were given to a combination of two stimuli. 

The general consensus of the above studies is that selectivity to orientation, the 

direction of motion, spatial and temporal frequency is explained well by the 

second-order interaction maps for complex cells. 

More sophisticated spike-triggered techniques have been developed recently to 

estimate stimulus patterns that is associated with change in the spike statistics of 

neurons by using principle component analysis and/or information theoretic approach 

(Pillow and Simoncelli, 2006; Prenger et al. 2004; Rust et al. 2005; Sharpee et al. 2004; 

Touryan et al. 2002). In these methods, dynamic dense noise stimuli are presented 

during the recording of a spike train, and the distribution of spike-triggered stimulus 

patterns is compared with that of all stimulus patterns actually presented. When a 

certain stimulus pattern occurs more or less frequently in spike-triggered stimuli above 

chance, it should be associated to the enhancement or the depression of the neuronal 

activity, respectively. Such a pattern is related to the profile of an excitatory or a 

suppressive filter. All filters may be recovered which influence the firing probabilities of 
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neurons. This is a great advantage over traditional STA methods, which can find only a 

single net excitatory filter. 

 

1.4 Experimental paradigm 

One goal of systems neuroscience is to understand neural codes. This may be 

addressed bi-directionally: questions in the forward direction ask how individual 

neurons fragment, transform, and represent sensory signals, while ones in the reverse 

direction ask how neuronal ensembles reconstruct sensory signals presented to an 

animal. Inquiries in the reverse direction are beyond the scope of this dissertation. 

To characterize input-output relationships, a set of stimuli was often selected in 

advance and/or customized during a recording session by investigators so that the 

response properties of neurons of interest were measured for each of them. For instance, 

grating stimuli having different orientations were prepared for early visual cortical 

neurons to measure their orientation tuning curves. This approach is practical, but it 

should be pointed out that it has essential fallacies. 

Basically, the above experimental design aims at searching for an optimal 

stimulus by making a list that maps a visual stimulus to a neuronal response for each 

stimulus. This method can determine which stimulus produced the best response among 

stimuli in the list. However, the result cannot predict how strong response would be 

produced for an item that was not enlisted in the list. Therefore, it does not predict what 

stimulus would produce the best response; the best stimulus in the present list may not 

be the best any longer when a new stimulus is added to it. In the case of the above 

example, measurements for optimal orientation predict nothing about tuning for other 

stimulus parameters such as spatial frequency and size. Thus, a primary attempt to 
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search for an optimal stimulus cannot be fulfilled with this method. 

Moreover, vision is a multidimensional sense. Even when an artificial and 

simple stimulus such as a sinusoidal grating is selected, many parameters may affect the 

responses of visual neurons: retinal position, orientation, spatial frequency, size, etc. 

Therefore, an ideal approach discovers dimensions actually exciting or suppressing 

neurons by encompassing all dimensions that potentially influence the responses. 

Spike-triggered analysis by using dense noise stimuli meets this requirement. Noise 

stimuli have advantages over other visual stimuli in terms of generality. In other words, 

dense noise stimuli are broadband in the frequency domain, and can represent (or 

imitate) any pattern in the space domain. Physiological investigation may be conducted 

under minimal assumption. A practical drawback of this strategy is that dense noise 

stimuli cannot be very efficient drivers for visual cortical neurons, and might be totally 

ineffective for neurons in the higher visual cortex in primates. 

 

1.5 Functional model 

Linear filters and other functional ingredients of early visual cortical neurons 

can be discovered by spike-triggered techniques. How well do these components predict 

their responses? Modern V1 neuroscientists are serious about building a model (or a 

theory), and making predictions based on the model, and verifying the model (or 

clarifying deviations from the current model for further elaboration). I am not 

necessarily in tune with this fashion, but still believe that this is one rational method for 

checking how much one understands the behavior of single neurons in the early visual 

cortex. 

Theoretical framework and analytical techniques, including linear filter theory 
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and STA approaches, contributed to the physiological elucidation of the neuronal 

computation performed by single neurons in the early visual cortex. Now, almost 50 

years have passed since early exploration by Hubel and Wiesel, and many have been 

added to the inventories of the functional properties of early visual cortical neurons such 

as adaptation (Carandini and Ferster, 1997; Movshon and Lennie, 1979; Ohzawa et al., 

1982), gain control (Carandini et al. 1997; Carandini and Heeger, 1994) and various 

suppressive phenomena (Benevento et al. 1972; Bredfeldt and Ringach, 2002; Ringach 

et al. 2002). 

However, most of the response properties of early visual cortical neurons can 

be captured concisely in functional models known as standard liner-nonlinear models 

(Fig. 1.5.1). The functional models are phenomenological representations for the 

computation preformed by single neurons. While the functional models do not intend to 

resemble anatomical or biophysical substrates for the computation preformed by single 

neurons, one can imagine parallelism between actual biology and the model. That is, the 

linear component may correspond to the spatiotemporal integration of postsynaptic 

potentials caused by synaptic transmissions. On the other hand, the nonlinear 

component may correspond to transformation from the membrane potential to a firing 

rate. The nonlinear component may be followed by a Poisson spike generator, which 

converts the rate signal into spikes. Such extended models are called 

linear-nonlinear-Poisson models. 

 For a simple cell, the liner-nonlinear model can be fully identified on the basis 

of physiological measurements (Fig. 1.5.1A). The linear filter corresponds to the 

receptive field mapped by the STA technique (DeAngelis et al. 1993; Jones and Palmer, 

1987; Sutter 1975). For the output of the filter, a negative value is not observed (thus, 
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half-wave rectification), and a positive value is converted expansively (typically, 

squaring operation). The nonlinear function from physiological data can be estimated by 

comparing the distribution of the filter outputs of spike-triggered stimuli to that of all 

stimuli (Anzai et al., 1999). 

 By definition, complex cells show nonlinearity of spatiotemporal summation. 

They are insensitive to precise positions and contrast polarities of a visual stimulus. 

When complex cells are completely insensitive to these stimulus features, they measure 

the magnitude, or energy, of local contrast without regard to the precise position or 

polarity of stimulus. This computation can be economically performed by two linear 

filters of which outputs are squared and summed (Fig. 1.5.1B; Adelson and Bergen, 

1985; Fleet et al. 1996). Because the number of linear filters is minimized in this model, 

this standard energy model will be referred as the minimalist energy model in this 

dissertation. It should be noted that, in reality, four linear filters with half-squaring 

operation are required for equivalent computation to account for the fact that spike 

output cannot transmit a negative signal (Ohzawa et al. 1990; Pollen et al. 1989). 

The minimalist energy model for the receptive fields of complex cells is rather 

conceptual compared with the model characterization for simple cells. This is partly due 

to the fact that currently available methods cannot reveal two (or more) biological linear 

filters for the receptive fields of compel cells. Second-order interaction analysis can find 

not more than one filter. Recent techniques including a spike-triggered covariance 

(STC) cannot meet the condition, either. Although multiple filters may be recovered by 

these methods, the recovered filters may not represent how light signals are actually 

combined because of mutual orthogonality imposed on them. 

However, it is still worth reviewing investigations conducted by the STC 
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method. Its first application for cortical neurons aimed at isolating linear filters internal 

to a complex cell (Touryan et al. 2002). More than three-fourth of complex cells 

recorded in this study had exactly two filters, as the standard energy model proposes 

(Fig. 1.5.1B). On the other hand, Rust et al. (2005) reported that additional filters were 

recovered in many complex cells by collecting many spikes (minimum of 50 spikes per 

spatiotemporal dimension), because the number of recorded spikes can be a limiting 

factor to the recovery of filters. Surprisingly, full-wave rectifying filters were 

discovered for simple cells also. Moreover, not only excitatory but also suppressive 

filters were recovered, and interestingly suppressive filters usually showed opposite 

direction preference to excitatory ones. This indicates that neurons in the early visual 

cortex can perform a very intricate computation to compare the strength of visual 

features moving in opposite directions (Adelson and Bergen, 1985). Therefore, the 

richness of neuronal computation remains to be unveiled in early visual cortical 

neurons. 

 

1.6 Subunit 

 Subunits refer to the internal functional structure revealed by second-order 

interaction analysis for complex cells (Livingstone and Conway, 2003; Movshon et al. 

1978b; Ohzawa and Freeman, 1986; Rust et al. 2005). Subunits are spatial (or 

spatiotemporal) linear filters themselves, and resemble linear filters in the energy model 

closely (Figs. 1.5.1B and C). However, subunits should be contributed by multiple 

underlying linear filters in the neuronal circuitry in the brain. In this sense, subunits are 

different from linear filters in the energy model, because linear filters in the energy 

model do not have underlying component filters. Moreover, plausible contribution from 
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many filters suggests that subunits are virtual entities and do not represent single 

anatomically identifiable cells. 

 

1.7 Hierarchical model 

The nervous system is organized in a hierarchical fashion. Therefore, it is 

natural to consider that the receptive field of a cortical simple cell is constructed by 

afferent inputs from LGN neurons (Fig. 1.7.1A; Hubel and Wisel, 1962). More 

specifically, Hubel and Wiesel (1962) proposed that an ON subregion in the receptive 

field of a simple cell is generated by a group of ON-center LGN cells that are aligned 

specifically in the simple cell ON subregion, while an OFF subregion is generated by 

OFF-center LGN cells in such a manner. To examine this model, receptive field maps 

were obtained simultaneously from cortical simple cells and LGN neurons, and rules to 

govern their connectivity were investigated (Reid and Alonso, 1995; Alonso et al. 2001). 

Between a monosynaptically connected pair of cells, the center of an LGN receptive 

field tended to overlap a subregion with matched sign (ON or OFF) in a simple cell 

receptive field. Moreover, opposite-sign overlap was rarely observed between such a 

pair. This is consistent with the hierarchical model between cortical simple cells and 

LGN cells (Hubel and Wiesel, 1962). 

The hierarchical model was extended to a relationship between cortical cells. 

Hubel and Wiesel (1962) suggested that a complex cell is constructed by collecting 

inputs from simple cells for which receptive fields all have identical axis orientation, 

but differ from one another in their exact retinal positions (Fig. 1.7.1B). This hypothesis 

is consisted of three parts. (1) A complex cell is constructed by collecting inputs from 

simple cells. (2) The receptive fields of simple cells all have identical axis orientation 
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(identical orientation). (3) But they differ from one another in their exact retinal 

positions (spatial pooling). These three components will be treated as separate 

hypotheses for clarity in this dissertation. The identical orientation hypothesis appears 

obvious, because haphazard convergence from cells that prefer various orientation 

results in the deterioration of orientation tuning (see also Alonzo and Martinez, 1999). 

In the remaining of this dissertation, the hierarchical model refers to the first part, which 

proposes that a complex cell is constructed by collecting inputs from simple cells, 

because a word ‘hierarchy’ is derived from a possible hierarchical relationship between 

simple cells and complex cells. The possibility of spatial pooling is not considered in 

this nomenclature. 

Physiological evidence for the hierarchical model is scarce and rather 

controversial. A pioneer cross-correlation study by Toyama et al. (1981) investigated 

functional connectivity between many pairs of intracortical neurons, and found no 

excitatory connections from a simple cell to a complex cell. On the other hand, such 

connections were reported from a simple cell in layer IV to a complex cell in layer II/III 

(Alonso and Martinez, 1999; Martinez and Alonso, 2001). Direct and strong evidence 

for the hierarchical model should discuss the filter structure internal to a complex cell in 

terms of the organization of an antecedent simple cell receptive field. Unfortunately, the 

above studies examined the overall spatial extent of complex cell receptive fields, 

instead of internal functional filters of complex cells. 

Recent theoretical (Chance et al. 1999; Mechler and Ringach, 2002) and 

experimental (Priebe et al. 2004) investigations have questioned the rigid hierarchical 

organization between simple cells and complex cells. As a matter of fact, both cell 

groups may be generated in an ‘egalitarian’ network (Tao et al. 2004). The hierarchical 
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relationship between simple cells and complex cells have been commonly believed 

partially by the fact that the degree of modulated spike responses to optimal drifting 

sinusoidal gratings shows a bimodal distribution for a population of early visual cortical 

neurons (Li et al. 2003; Skottun et al. 1991). This bimodality, however, does not 

necessarily imply two distinct classes of neurons, because the bimodal distribution may 

be generated from a unimordal distribution by a nonlinear transformation rule which 

converts membrane potentials into spike rates (Mechler and Ringach, 2002). When it is 

measured based on membrane potentials instead of spike rates, the degree of the 

modulation to optimal drifting sinusoidal gratings became a continuous distribution 

(Priebe et al. 2004). Moreover, simple cells and complex cells form almost identical 

distributions in this measure. 

 

1.8 Spatial pooling 

 The spatial extents in which two visual stimuli can interact are limited to those 

of biological substrates of linear filters. Therefore, the hierarchical model predicts that 

the spatial properties of subunits, which are obtained by second-order interaction 

analysis, resemble those of simple cell receptive fields closely. The minimalist energy 

model has the smallest number of linear filters to achieve insensitivity to precise 

positions and contrast polarities of visual stimuli, and the linear filters are located at 

identical positions and occupy spatial extents between themselves (Fig. 1.5.1B; Adelson 

and Bergen, 1985; Fleet et al. 1996). This proposes that the size of the subunit is 

identical to that of a complex cell receptive field. 

However, if simple cells are pooled extensively in space in order to generate a 

complex cell (Fig. 1.5.1C), the spatial extents of the subunit must be limited to a small 
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portion of the receptive field of a complex cell. The possible extensive spatial pooling 

of simple cells to comprise a complex cell is inferred by at least three pieces of evidence. 

(1) A hand-plotting mapping study for receptive fields reported that the receptive field 

sizes of complex cells were on average three times larger than those of simple cells 

(Hubel and Wisel, 1962). (2) The binocular interaction profiles of complex cells tend to 

be elongated more than those of simple cells (Sanada and Ohzawa, 2005). Spatial 

pooling of simple cells may explain the elongation of the binocular interaction profiles 

for complex cells. (3) Connection between a pair of neurons is so weak that 

simultaneous contributions from many cells are required to excite a postsynaptic cell 

(~10% correlation strength on average for a pair of cells with identical orientation 

preference (difference <22); Alonso and Martinez, 1999). 

 The spatial properties of subunits will be characterized with the use of 

second-order interaction analysis, and related to those of the receptive fields for 

individual complex cells. What is the shape of the subunits and the overall receptive 

fields of complex cells? Are subunits pooled spatially to comprise the receptive field of 

a complex cell? Is the composition of linear filters consistent with that proposed by the 

energy model? In addition, comparisons of properties of these subunits with those of 

simple cell receptive fields are also presented in order to examine the details of the 

hierarchical model of complex cell receptive fields. 
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Chapter 2.  Materials and Methods 

 

I recorded single units in area 17 of 37 adult cats. All animal care and 

experimental guidelines conformed to those established by the National Institute of 

Health (Bethesda, MD) and were approved by the Osaka University Animal Care and 

Use Committee. 

 

2.1 Surgical procedure and animal maintenance 

After initial preanesthetic doses of hydroxyzine (Atarax, 2.5 mg im) and 

atropine (0.05 mg im), each cat was anesthetized with isoflurane (2-3.5% in O2) for the 

remainder of the surgical preparation. Lidocaine was injected subcutaneously or applied 

topically at all points of pressure and possible sources of pain. Electrocardiogram 

(ECG) electrodes were secured, a rectal temperature probe was inserted, and a femoral 

vein was catheterized. Body temperature was maintained near 38C with the use of a 

feedback-controlled heating pad for the remainder of the experiment. Subsequently, a 

tracheostomy was performed, and a glass tracheal tube was inserted for artificial 

respiration. The animal was then secured in a stereotaxic apparatus with the use of ear 

and mouth bars and clamps on the orbital rim. Anesthesia was then switched to sodium 

thiopental (Ravonal, 1.0 mgkg-1h-1 iv). After the stabilization of anesthesia, the animal 

was paralyzed with a loading dose of gallamine triethiodide (Flaxedil, 10 mgkg-1h-1 iv) 

to minimize eye movements during single unit recording, and placed under artificial 

ventilation with a gas mixture of 70% N2O-30% O2. End-tidal CO2 was maintained at a 

constant level of 3.5-4.3% throughout the experiment. For the remainder of the 

experiment, the infusion fluid was delivered, containing sodium thiopental (Ravonal, 
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1.0 mgkg-1h-1 iv), gallamine triethiodide (Flaxedil, 10 mgkg-1h-1 iv), and glucose (40 

mgkg-1h-1 iv) in lactated Ringer solution. In addition to body temperature and end-tidal 

CO2, heart rate, ECG, and intratracheal pressure were monitored and maintained within 

a normal range throughout the experiment. Pupils were dilated with atropine (1%), and 

nictitating membranes were retracted with phenylephrine hydrochloride (Neosynesin, 

5%). Contact lenses with 4-mm artificial pupils were then placed on each cornea. 

A craniotomy was carried out above the central representation of the visual 

field in visual area 17 approximately at the Horseley-Clarke coordinate, P4-L2.5. This 

corresponds to < 10 degrees in retinal eccentricity. The dura was removed to permit the 

insertion of tungsten microelectrodes for single unit recording. Setting the electrodes 

close to the cortical surface, agar was applied over the cortex for protection, and melted 

wax was applied over the agar to create a sealed chamber for stabilization. When the 

electrodes were retracted, electrolytic lesions (5 A, 5 s) were made at 700-1,500 m 

intervals for each electrode track. Typically, recordings from an animal lasted four days. 

At the end of an experiment, the animal was administered an overdose of 

pentobarbital sodium (Nembutal), and perfused through the heart with formalin (4% in 

buffered saline). The recorded areas were frozen, sectioned into 40-60 m slices, and 

stained with thionin. The locations of electrode tracks were identified. 

 

2.2 Single unit recording 

Lacquer-coated tungsten microelectrodes (1-5 M; A-M Systems, Sequim, 

WA) were used to record single unit activities. Typically, two electrodes mounted in a 

single protective guide tube were driven in parallel with a common microelectrode drive 

to increase the chance of encountering neurons. The signals from the electrodes were 

 21



amplified (10,000), bandpass filtered (300-5,000 Hz), and fed into a custom-made data 

acquisition computer system (Ohzawa et al. 1996). The data acquisition system 

consisted of analog-to-digital converters and a spike waveform discriminator that sorted 

signals from each electrode in real time. The time-stamped spike events (time resolution, 

40 s) were sent from the data acquisition system, along with their waveforms, to a 

separate computer that controlled the experiment. This second computer saved to files 

the spike data and other events, including the onset and the offset times of each trial and 

stimulus presentations, parameters and conditions of the spike sorter, and the entire set 

of experimental parameters. The stored data were analyzed on a third computer during 

and after the experiment. 

 

2.3 Visual stimulation 

Generations of visual stimuli were performed using custom-built software on 

yet another computer. At the request of the experiment control computer noted above, 

visual stimuli were generated by the fourth computer controlling a graphics card 

(Millenium G550; Matrox, Dorval, Quebec, Canada), and displayed on a cathode ray 

tube monitor (76Hz frame rate, 1600  1024 pixels; GDM-FW900; Sony, Tokyo, Japan) 

through the green channel only to avoid color misconvergence across channels. In each 

experiment, the luminance nonlinearity of the display was measured using a photometer 

(Minolta CS-100; Konica Minolta, Osaka, Japan), and linearized by gamma-corrected 

lookup tables. The animal saw the display through a custom-built haploscope, which 

allows visual stimuli to be presented to the left and right eyes separately (Sanada and 

Ohzawa, 2006). A black separator was placed between the left and right visual fields to 

preclude the projection of stimuli to unintended eyes. Distance (total length of light 
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paths) between the screen and the eyes was set to 57 cm, subtending the visual field of 

23  30 for each eye. 

 

2.4 Recording procedure 

When a single unit was isolated, preliminary observations were made to 

determine its optimal orientation, spatial frequency, as well as the position and the size 

of its receptive field. In this “search” procedure, the orientation, spatial frequency, 

position, and size of a patch of drifting sinusoidal grating could be adjusted with the use 

of a pointing device (mouse). Having completed the above procedure, tuning in the 

orientation and spatial frequency domain was measured for the cell by presenting 

flashed sinusoidal grating stimuli (Nishimoto et al. 2005) and/or drifting sinusoidal 

grating stimuli. The degree of response modulation was assessed by presenting 

sinusoidal grating with a combination of orientation and spatial frequency that elicited 

the largest number of spikes. The cell was then classified into simple or complex on the 

basis of the amplitude of the first harmonic component relative to the average firing rate 

(F1/F0 ratio; Li et al. 2003; Skottun et al. 1991). 

 To evaluate the receptive field structure, I presented dynamic two-dimensional 

noise stimuli with 51  51 small dots. The noise stimuli covered an area typically two to 

three times larger than the receptive field of the neuron in both the horizontal and the 

vertical directions. Each dot was assigned with dark (~3 cdm-2), bright (~90 cdm-2), or 

gray luminance (~47 cdm-2) at equal probability. The gray dots had the same luminance 

value as the mean luminance of the display. The dot size was determined for each cell 

primarily based on optimal spatial frequency to achieve both sufficient spatial resolution 

and signal-to-noise ratio (0.12  0.12 to 0.67  0.67 for individual dots; 5.3 dots per 
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subregion width on average). The noise pattern was refreshed at every 26 or 13 ms, 

which corresponded to two or one video frame, respectively. The presentation of the 

dynamic noise stimuli lasted about 30 min for collecting a sufficient number of spikes 

for the following data analysis. 

 

2.5 First-order map and second-order interaction map 

Monocular visual stimuli, S, can be fully characterized by two dimensions of 

space (x, y) and one of time (t), S(x, y, t). The two-dimensional dynamic noise stimuli 

used in this study consisted of three luminance values, 0, -1, 1, which corresponded to 

gray, dark, bright dots, respectively. Spike-triggered stimuli were of particular interest 

among S(x, y, t). 

For simple cells, the first-order maps were calculated to analyze the receptive 

field structure. 

The first-order map, h1(x, y, ), represents the linear component of neuronal 

responses, and was obtained by the spike-triggered averaging of S(x, y, ti) 
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where N is the total number of spikes collected during the stimulus presentation, and i is 

i

teraction maps were computed to 

examine the intern

 map, h2(x1, x2, y1, y2, 1, 2), was calculated by 

an index for the i-th spike, which was produced at time t . The first-order map was 

obtained for correlation delays ranging from 0 to 289 ms in 13 ms (one video frame 

duration) intervals. 

For complex cells, the second-order in

al structure of their receptive fields. This procedure is schematically 

illustrated in Fig. 2.5.1. 

The second-order interaction
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corresponds to a temporal offset between them. Thus, the second-order interactions are 

described by the six-dimensional function. 

This computation casts a positive v

 same contrast polarity (dark-dark and bright-bright), and a negative vote for an 

interaction between those with the opposite contrast polarity (dark-bright, bright-dark). 

When at least one member of a pair of stimuli is a gray dot, no vote is presented. This 

calculation is, therefore, essentially identical to one used for sparse noise stimuli in 

previous studies (Gaska et al. 1994; Livingstone and Conway, 2003). 

To obtain a second-order interaction map, one stimulus locati

rence and fixed at a particular spatial coordinate (x1, y1) and a particular 

correlation delay 1 as shown in Fig. 2.5.1B. Then, the second-order interaction map for 

the reference (x1, y1, 1) was calculated within the local neighborhood of this reference, 

as indicated by the dashed square in Fig. 2.5.1B. The spatial displacements for dx and dy 

ranged from -10 to 10 stimulus dots. Empirically, this extent for the second-order 

analysis was sufficiently wide for containing significant interactions. The second-order 

interaction with itself (i.e. dx = 0, dy = 0, and d = 0) cannot be measured with ternary 

dense noise stimuli, since overlapping stimuli cannot be represented. For further 

analysis, the value at zero displacement was filled in by a spline interpolation from 
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neighboring pixels in the interaction map. Since the two-stimulus interaction profiles 

are strongest and occupy the largest spatial extent between simultaneously presented 

stimuli in general (Anzai et al. 2001; Gaska et al. 1994), the temporal offset d was 

always set to 0 ms to evaluate the spatial structure and extent of second-order 

interaction maps. Accumulation of votes for all spikes produced the second-order 

interaction map for the reference (x1, y1, 1). By changing the values of x1, y1, and 1, 

second-order interaction maps were obtained for references at every dot locations in 

visual stimuli for correlation delays from 0 to 197 ms in 13 ms (one video frame 

duration) steps. 

 

2.6 Second-order interaction map and subunit 

nsively for referring to a functional or 

.7 Data analysis 

First-order receptive fields and subunits in second-order maps are usually 

 The term subunit has been used exte

virtual unit that operates as a linear spatial (or spatiotemporal) filter internal to a 

complex cell (Livingstone and Conway, 2003; Movshon et al. 1978b; Ohzawa and 

Freeman, 1986; Rust et al. 2005). In this report, I define a subunit as a functional unit 

that is described by a second-order interaction profile as explained above. A subunit is 

closely related to, but is not identical to linear filters depicted in models for complex 

cells (Figs. 1.5.1B and C). As mentioned in the previous reports, a subunit contains 

contributions from multiple linear filters, presumably simple cells according to the 

hierarchical model (Hubel and Wiesel, 1962), and therefore does not represent a single 

anatomically identifiable cell. 

 

2
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modulated along an axis perpendicular to the optimal orientation. I obtained their spatial 

extents b

First, 

the two-

y using a partial Hilbert transform (Hahn, 1992). This method for obtaining an 

envelope is applicable for any multi-dimensional data modulated along a single axis, 

because it does not assume a specific functional form. Alternatively, my maps could 

have been fitted by a model function selected a prioi, and its envelopes may have been 

extracted for subsequent analyses. A reasonable candidate for such a model function is a 

Gabor function, as employed by most recent studies dealing with simple cell receptive 

fields. However, some second-order maps of complex cells may have broader flanking 

subregions than a central one (Szulborski and Palmer, 1989). This characteristic is not 

captured well by a Gabor function, thus I avoided fitting second-order maps by it. 

Here, the partial Hilbert transform was carried out in the two-dimensional 

spatial frequency domain along an axis perpendicular to the optimal orientation. 

dimensional Fourier transform of the map was computed. Then, the spatial 

frequency domain was divided into two mirror symmetrical halves about the axis 

perpendicular to a vector pointing to the optimal orientation and spatial frequency from 

the origin. As a result, each half of the spatial frequency domain had spectral 

components that are identical in amplitude and are different in the sign of imaginary 

parts. The spatial frequency components in one half were shifted by 90 in phase. For 

the other half, they were shifted by -90 in phase. The inverse Fourier transform of the 

result yielded a complex signal where the real parts retained the original signal (Fig. 

2.5.1E) and formed a quadrature pair with the imaginary parts (Fig. 2.5.1F). The 

envelope of the map (Fig. 2.5.1G) was obtained by calculating the absolute value 

(amplitude) of the complex signal. Since the second-order interaction maps were 

obtained for all dot locations in visual stimuli, some of maps were outside the complex 
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cell receptive field and contained no signal. For these maps, the axis for the partial 

Hilbert transform could not be determined. Likewise, for cells without significant 

orientation tuning or spatial antagonism, the axis could not be determined either. 

Therefore, for these cases, the absolute values of interaction maps themselves were used 

as their envelopes. 

In previous studies, the second-order interaction maps were often averaged 

across all reference positions within the receptive field of a complex cell to enhance 

signal-to-noise ratios for a single final map (Emerson et al. 1987; Gaska et al. 1994; 

Livingstone and Conway, 2003). This means that the six dimensional interaction maps, 

h2(x1, x1+dx, y1, y1+dy, 1, 1+d), were reduced to just three dimensions of dx, dy, and 

d. In this approach, the original maps were assumed to be spatially homogeneous. This 

assumption is justified for some complex cells (Emerson et al. 1987), but not for others 

(Szulborski and Palmer, 1990). Therefore, I have examined second-order interaction 

maps and their envelopes for all individual reference positions separately. I assume that 

the strength of a second-order subunit is proportional to the collective responses of 

underlying linear filters contributing to that subunit. With this assumption, the overall 

receptive field of a complex cell may be obtained by collecting the envelopes of the 

second-order interaction maps. A complex cell receptive field at a correlation delay of  

was obtained as follows. First, I squared the envelopes of second-order interaction maps 

at a delay  at all reference locations. The squaring operation was incorporated to 

approximate the effects of power-law static nonlinearities at the outputs of subunits 

(Gaska et al. 1994). Then, the squared envelopes were summed into a larger map (Fig. 

2.5.1H) at their respective positions. Finally, its square root was computed. For further 

analysis, an optimal correlation delay was determined at which the amplitude of the 
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receptive field was at maximum. I found that >95% interaction maps exhibited the 

strongest interactions at the optimal correlation delay. This supports that the receptive 

field size was estimated appropriately because of constancy in timing across interaction 

maps. 

As describe above, the receptive field envelopes of a simple cell were obtained 

in 13-ms intervals. These were then spline-interpolated along the time axis in 1-ms steps. 

For a co

 of simple cells. To 

extract 

rrelation delay where the interpolated envelope had the maximum response, the 

receptive field and its envelope were computed for further analysis. 

I evaluated the spatial shape for the second-order interaction envelopes and the 

receptive fields of complex cells, and the receptive field envelopes

parameters for characterizing them, each of them was fitted by a 

two-dimensional Gaussian function having the form 
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where B, K, x0, y0, x’, y’, and  are free parameters. Specifically, the spatial coordinate 

(x0, y0) corresponds to the center position, and  rotates the translated coordinate system 

e parameters 

to align x and y axes with the major and minor axes of the Gaussian function. x’ and y’ 

are measures of the spatial extent. B is a baseline parameter, and K is simply a scaling 

factor. The Gaussian fit accounted for 70% of variance in data on average. 

 Spatial properties for the subunits and receptive fields were quantified on the 

basis of the parameters of the best fitted Gaussian function. To evaluate siz

such as length, width, and area, a bound was drawn at a criterion level that is 5% of the 

peak amplitude of the fitted Gaussian function. For this boundary, length and width 
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were measured along the parallel and perpendicular axes to the optimal orientation, 

respectively. Fig. 2.7.1 schematically shows the length and the width for the subunits 

and the receptive fields of complex cells. The length and the width for the receptive 

fields of complex cells were defined with respect to the optimal orientation of the 

subunits with the highest amplitude. For the receptive fields of simple cells, the length 

and the width were obtained for the optimal orientation. Optimal orientation was 

obtained via Fourier analysis, and is a parameter independent of the major axis of the 

fitted Gaussian function. 
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Chapter 3.  Results 

 I analyzed data from 86 complex cells in area 17 of adult cats. Of these, three 

neurons were recorded in penetrations in the area 17/18 border zones, but their tuning 

properties such as the receptive field size and optimal spatial frequency were close to 

those of average area-17 cells. Therefore, these cells are included in the rest of the 

analyses. To compare spatial properties between complex cell subunits and simple cell 

receptive fields, I also analyzed data from 152 simple cells in area 17. Simple and 

complex cells were classified based on the ratio of the first harmonic amplitude to the 

mean discharge rate for responses to drifting sinusoidal gratings (Li et al. 2003; Skottun 

et al. 1991). For complex cells, the spatial structure of subunits and receptive fields 

were computed through the second-order interaction analysis. As described in the 

previous section, second-order interaction maps were calculated at a temporal offset = 0 

between the reference and neighboring stimuli, i.e., between two simultaneously 

presented stimuli. To obtain second-order interaction maps with sufficient 

signal-to-noise ratios, the analysis requires more spikes than the first-order analysis. 

Thus, our sample contained fewer complex cells than simple cells, for which receptive 

fields were calculated through the first-order analysis. The average numbers of spikes 

collected during one measurement with the dynamic noise stimuli were 9867.7  9221.8 

for complex cells and 4454.2  3935.0 for simple cells (mean  SD). The minimum 

numbers of spikes were 649 and 180 for complex and simple cells, respectively. 

Likewise, the maxima were 47115 and 20017. 

One of the major purposes of this study is to examine spatial pooling of 

subunits that collectively comprise the receptive fields of single complex cells. To 

achieve this goal, spatial characteristics are compared between the subunits and the 
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overall receptive fields for individual complex cells. If the hierarchical model of Hubel 

and Wiesel (1962) is correct (Alonso and Martinez, 1998; Martinez and Alonso, 2001; 

but see also Toyama et al. 1981), subunits of a complex cell should closely reflect 

properties of simple cells contributing inputs to it. Although simple cells in my 

population were recorded separately from complex cells and do not have direct 

connection to the complex cells, I am able to compare the two cell types as groups. 

Specifically, it is worth comparing corresponding parameters between the subunits of 

complex cells and the receptive fields of simple cells. The simple and complex cells 

were recorded from the same set of electrode tracks in the same animals using 2-d 

dynamic noise stimuli, although the proportions of cell types varied from one track to 

another. 

 

3.1 Second-order interaction maps 

 Fig. 3.1.1 shows a representative example of the second-order interaction 

analysis for a complex cell. In A, interaction maps are tiled to reflect the spatial 

locations of their references. Although the references may be at every dot location of the 

stimuli, the results are displayed here for reference positions at every two stimulus dots. 

The interaction maps at the top-left and center in A are partially overlapping in the 

actual stimulus domain as indicated on a noise stimulus frame (Fig. 3.1.1B), and 

outlined by dashed and thick lines, respectively. The interaction maps vary in shape 

depending on reference positions (Szulborski and Palmer, 1990). The central interaction 

map in A is also shown magnified in panel C. To determine the spatial extent of a 

subunit in the map, the partial Hilbert transform (Hahn, 1992) was performed as shown 

in D, and then the envelope was obtained as shown in E. Note that C and D differ in 
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spatial phase by 90 and hence form a quadrature pair. To illustrate the bounds of the 

interaction map, dashed line is drawn in C and E at a criterion level that is 5% of the 

peak height of the two-dimensional Gaussian function fitted to the envelope of the 

interaction map. By taking the square root of the sum of the squared envelope maps for 

all reference positions, the receptive field of the complex cell was obtained as shown in 

F.  

In principle, the size of the overall receptive field of a complex cell may be 

much larger than those of individual interaction envelopes if there is extensive spatial 

pooling. However, there was little spatial pooling for this cell. Therefore, the region 

depicted in F is cropped to match the spatial position and scale of C, D, and E for ease 

of comparison. The bounds for the overall receptive field were again determined using a 

criterion amplitude that was 5% of the peak height of the Gaussian function fitted to the 

receptive field. This area is marked by a solid contour in F, and also shown in C and E 

for size comparison with the size of the subunit. Note that the solid and dashed contours 

in C and E are nearly superimposed exactly, indicating that the subunit size was nearly 

the same as that of the overall receptive field for this complex cell. The reference 

position of the interaction map in C was at the center of the receptive field, and 

therefore showed the strongest interactions among all reference locations. 

 The degree of spatial pooling of subunits may be quantified by the difference in 

spatial extent between the subunits and the overall receptive field. When the outputs of 

many subunits are pooled across different spatial positions to generate an overall 

receptive field, its size should occupy a much larger spatial extent than those of 

individual subunit envelopes. However, when pooling is absent, the size of a receptive 

field is expected to be identical to those of subunit envelopes. Therefore, the complex 
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cell depicted in Fig. 3.1.1 exhibited hardly any spatial pooling. The absence of spatial 

pooling is in fact what is predicted by the minimalist energy model. Therefore, the 

energy model is an accurate representation of the cell in Fig. 3.1.1. 

 Fig. 3.1.2 shows data from another complex cell in the same format as that for 

Fig. 3.1.1. For this cell, the size of the overall receptive field (solid ellipse in Fig. 3.1.2C, 

E, and F) was significantly larger than that of the subunit envelope (dashed ellipse; 

169% in terms of area; P < 0.05, resampling). Therefore, spatial pooling of subunits did 

take place for this neuron. 

Are there complex cells with concentric second-order interaction maps 

showing poor orientation selectivity (Szulborski and Palmer, 1990)? Among 86 complex 

cells, I found only one neuron that exhibited such characteristics as shown in Fig. 3.1.3. 

The subunits were round, and appeared to have a weak antagonistic surround (Fig. 

3.1.3C). However, due to its weak contribution, the subunit envelope was essentially 

determined by the central region alone (Fig. 3.1.3D). Since the optimal axis of the 

partial Hilbert transform could not be determined for this neuron, the envelopes of the 

interaction maps were obtained by taking the absolute values of them. The size of the 

receptive field (solid ellipse in Fig. 3.1.3C, D, and E) is much larger than that of the 

subunit envelope (dashed ellipse; 473% in terms of area; P < 0.05, resampling). This 

complex cell showed the largest degree of spatial pooling in my sample. 

 For five other complex cells, Fig. 3.1.4 shows the second-order interaction 

maps, their envelopes, and the overall receptive fields. For each example in this figure, 

the interaction map illustrated was obtained with the reference position at the center of 

the Gaussian function fitted to the receptive field of the cell. Using the same criteria as 

used in Figs. 3.1.1-3, solid and dashed contours are drawn to demarcate the bounds of 
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receptive fields and second-order interactions, respectively. Fig. 3.1.4C illustrates a cell 

that had the largest number of subregions within a subunit among all the complex cells I 

analyzed.  Fig. 3.1.4D depicts a complex cell that exhibited a substantial spatial 

pooling of subunits along the axis of the optimal orientation, but not along the width 

dimension. 

For the vast majority of complex cells, the neuronal activities were recorded 

with dynamic noise stimulation to their dominant eye alone. However, responses to 

dynamic noise stimuli were measured for both eyes separately in a few binocular 

neurons. Figs. 3.1.4E and F show results for the second-order interaction analysis for a 

single complex cell in the right and the left eyes, respectively. Interaction maps as well 

as the receptive field profiles were highly similar for the two eyes. 

 

3.2 Length and width 

 Having examined interaction maps and the extent of pooling for representative 

complex cells, I now analyze these properties for the population of cells I have recorded. 

In the population analyses, complex cell subunits were sampled at the center of the 

receptive fields. First, what relationships are found between the length and the width for 

complex cell subunits, receptive fields, and simple cell receptive fields? Fig. 3.2.1A 

shows a relationship between the length and the width for the subunits of complex cells. 

The length and the width were defined with respect to the optimal orientation (obtained 

via Fourier analysis) for the subunits (Fig. 2.7.1). To make a cell-by-cell comparison of 

the two values possible, subunit length is plotted against subunit width. Each circle in 

the scatter plot represents a datum from one complex cell. Note that the majority (63%) 

of circles lie above the identity line. The histograms show the distributions of the length 
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(right) and the width (upper) for subunits, with median values of 4.05 and 3.63, 

respectively, as indicated by arrows. The subunit length was generally longer than the 

subunit width (P = 0.0042, Wilcoxon sign rank test). 

 Are complex cell receptive fields circular in shape or are they elongated along 

a specific direction? Fig. 3.2.1B shows a relationship between the length and the width 

for the receptive fields of complex cells. Again, the length and the width of receptive 

fields were measured with respect to the optimal orientation of their subunits (Fig. 

2.7.1). On average, the receptive fields of complex cells were longer along the length 

axis than the width axis (P = 0.015, Wilcoxon sign rank test). However, the degree of 

elongation was not as significant as that for subunits. The median values of the 

receptive field length and the width were 4.72 and 4.40 (arrows), respectively. 

 Fig. 3.2.1C illustrates a relationship between the length and the width for the 

receptive fields of simple cells. Each circle in the scatter plot denotes a datum from a 

simple cell. The histograms show the distributions of the length (right) and the width 

(upper) for the receptive fields of simple cells, respectively. The majority (65%) of 

symbols are above the identity line. The median length was 4.40, and the median width 

was 4.00. This difference was statistically significant (P < 0.001, Wilcoxon sign rank 

test). This was exactly the same trend as observed for the subunits of complex cells as 

shown in Fig. 3.2.1A. Are the distributions of subunit length and width similar to those 

of receptive fields of simple cells? The answer is yes, and there was not a significant 

difference in either the length or the width (P > 0.05, Mann-Whitney U test). 

 

3.3 Number of subregions 

 A chief functional characteristic of the early visual cortical neurons is 
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selectivity for orientation and spatial frequency (Hubel and Wiesel, 1959, 1962; 

Movshon et al. 1978a, b). Among various mechanisms contributing to the determination 

of tuning parameters (Benevento et al. 1972; Bredfeldt and Ringach, 2002; Ringach et 

al. 2002), the number of subregions in complex cell subunits is inversely related to 

tuning bandwidths for orientation and spatial frequency (Gaska et al., 1994; Movshon et 

al. 1978b). The number of subregions for a subunit was calculated as follows 

2 SFoptwidthsubregionsofNumber  

where width is the subunit width (see Fig. 2.7.1) and SFopt is the optimal spatial 

frequency obtained from the Fourier analysis of the second-order interaction map at the 

center of the complex cell receptive field. The product of the subunit width and the 

optimal frequency gives the number of cycles within the subunit. Therefore, this value 

is doubled to convert it into number of subregions because one cycle of modulation 

contains two subregions. Fig. 3.3.1A shows the distribution of the number of subregions 

in the subunits of complex cells. The mean of this distribution was 3.21, and the SD was 

1.08. These values are roughly comparable to those reported by Movshon et al. (1978b). 

Does the number of subregions match between the subunits of complex cells 

and the receptive fields of simple cells? Fig. 3.3.1B shows the distribution of the 

number of subregions within the receptive fields of simple cells. The number of 

subregions for simple cell receptive fields was calculated in the same manner as that for 

complex cell subunits. The median number of subregions within the receptive fields of 

simple cells was 2.53, which was significantly different from 3.00, the median number 

of subregions within the subunits of complex cells (P < 0.001, Mann-Whitney U test; 

see also Fig. 3.3.1A). Therefore, the subunits of complex cells tended to have 

significantly more subregions than simple cells. This difference may be related to the 
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fact that subunits are functionally defined units and cannot be equated to individual 

simple cells (Movshon et al. 1978b; Rust et al. 2005). 

 

3.4 Length-to-width ratios and aspect ratios 

 Fig. 3.4.1A compares length-to-width ratios between subunits and receptive 

fields. Note that length-to-width ratios are aspect ratios defined with respect to the 

preferred orientation. However, I reserve the term, aspect ratios, to refer only to those 

related to the elliptic elongation of subunit envelopes and complex cell receptive fields 

(see below). There was a strong correlation between the two ratios (r = 0.81). The two 

distributions also had indistinguishable medians (1.12 and 1.04 for the length-to-width 

ratios of subunits and receptive fields, respectively, as indicated by arrows; P > 0.05, 

Wilcoxon sign rank test). These results appear to indicate that shapes of subunits are 

reflected directly to those of the overall receptive fields of complex cells. 

  With respect to length-to-width ratios, do simple cell receptive fields have 

indistinguishable distributions from those for complex cell subunits? Fig. 3.4.1B shows 

the distribution of length-to-width ratios for the receptive fields of simple cells. The 

median of the distribution was 1.08. There was not a significant difference in the 

median values of length-to-width ratios between the receptive fields of simple cells (Fig. 

3.4.1B) and the subunits of complex cells (Fig. 2.10A top; P > 0.05, Mann-Whitney U 

test). 

 The direction of receptive field elongation, if any, can be different and may be 

independent of the preferred orientation of a neuron in general (Fig. 2.7.1). A similar 

distinction also applies for properties of subunits. Are complex cell receptive fields 

more elongated in a particular direction than their subunits? Is there any relationship 
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between the direction and degree of subunit elongation and pooling? To address these 

questions, I quantified the degree of elongation by aspect ratios, which were defined by 

the length ratios of major and minor axes for subunit envelopes or complex cell 

receptive fields. 

 Fig. 3.4.2A compares aspect ratios between the subunit envelopes and the 

receptive fields of complex cells. The two ratios were correlated (r = 0.68). The median 

value of the distribution of aspect ratios for receptive fields, 1.28, was significantly 

smaller than that for subunits, 1.32 (P < 0.001, Wilcoxon sign rank test). This indicates 

that the receptive fields of complex cells are more circular in shape than the subunits. 

The reduction of aspect ratios may be caused by the spatial pooling of subunits, which 

will be examined in the section below entitled as Pooling of subunits. 

Fig. 3.4.2B shows the distribution of aspect ratios for the receptive fields of 

simple cells. The median of the distribution was 1.34, which was not significantly 

different from that for the subunits of complex cells, 1.32 (P > 0.05, Mann-Whitney U 

test; see also the upper histogram in Fig. 3.4.2A). Therefore, both the length-to-width 

ratios and the aspect ratios were consistent between the receptive fields of simple and 

the subunits of complex cells, as a population. 

 

3.5 Orientation of elongation 

 There may be a bias in the elongation of the subunit envelopes and the 

receptive fields of complex cells with respect to the absolute horizontal and vertical. 

Scatter plots in Fig. 3.5.1 show aspect ratios against the orientation of the major axis for 

subunit envelopes (left) and receptive fields (right). These two quantities show no 

systematic relationship for respective panels. The horizontal solid line is drawn at an 
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arbitrary criterion level (aspect ratio = 1.2) to determine whether subunit envelopes and 

receptive fields are sufficiently elliptic for the subsequent analysis. For subunit 

envelopes and receptive fields with small aspect ratios ( 1.2; open symbols), their 

major axis cannot be determined reliably. On the other hand, those with large values (> 

1.2; filled symbols) were judged as sufficiently elliptic, and were counted in histograms 

to examine the distributions of the orientation of the major axis (n = 66 for subunit 

envelopes, n = 56 for receptive fields). These distributions were not different from 

uniform distributions (P > 0.05, Kolmogorov-Smirnov test). Therefore, the results show 

no special orientation bias in the aspect ratios for both subunits and overall receptive 

fields of complex cells. 

The prominent ‘oblique effect’ is reported for the distribution of preferred 

orientations of simple cells (Li et al. 2003). Does the orientation of receptive field 

envelopes of simple cells exhibit any biases? Fig. 3.5.2 shows a relationship between 

the orientation of the major axis for the receptive field envelopes for simple cells, and 

their optimal orientation. These values were measured counterclockwise from the 

horizontal axis in visual scene (0). Based on the same criterion as that used in Fig. 

3.5.1, the receptive field envelopes were classified as elongated (aspect ratio > 1.2; 

filled symbols; n = 114) or circular (aspect ratio  1.2; open symbols; n = 38). Simple 

cells that prefer horizontal orientation (0 and 180) appear less likely to have vertically 

elongated receptive field envelopes (90). To investigate the biased elongation of 

receptive field envelopes regardless of optimal orientation, the number of simple cells 

was counted in the top histogram (for cells with sufficiently elongated envelopes). Its 

striking U shape demonstrates a general tendency in which there were more simple cells 

with horizontally elongated envelopes than those elongated vertically (P < 0.05, 
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Kolmogorov-Smirnov test for uniform distribution). 

Since optimal orientation seems related to the elongation angle of receptive 

field envelopes for simple cells, length-to-width ratios are evaluated in terms of optimal 

orientation in Fig. 3.5.3A. Circles, triangles, and square symbols denote neurons that 

prefer low, middle, and high spatial frequency, respectively. Most of cells that prefer 

horizontal orientation (0 and 180) appear to have length-to-width ratios above one. 

This means that these cells tended to be elongated along the length, or the horizontal, 

axis, which is consistent with the biased distribution in Fig. 3.5.2. A solid curve and 

error bars indicate the geometric mean and SD values of the length-to-width ratios for 

simple cells grouped based on the optimal orientation in 30 steps. The variances of the 

length-to-width ratios were significantly different across these groups (P < 0.05, Bartlett 

test). The receptive fields of simple cells pointed to by arrows in Fig. 3.5.3A are 

illustrated as representative examples in Figs. 3.5.3C-J. 

Optimal spatial frequency was also related to length-to-width ratios (Fig. 

3.5.3B). Circles, triangles, and square symbols denote simple cells that prefer horizontal, 

oblique, and vertical orientations, respectively. Neurons that prefer low spatial 

frequency tended to exhibit low length-to-width ratios, i.e. elongated along the width 

axis, while those that prefer high spatial frequency were elongated along the length axis 

in general. A positive correlation is evident between optimal spatial frequency and 

length-to-width ratios (r = 0.31). The median values of the length-to-width ratios were 

significantly different across different spatial frequency groups (P < 0.01, 

Kruskal-Wallis test). 
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3.6 Pooling of subunits 

 To evaluate the degree of the spatial pooling of subunits that make up complex 

cells, a pooling ratio in terms of area was calculated for each neuron 

envelopesubunittheofareathe
fieldreceptivetheofareatheratiopoolingAreal   

The areas were those enclosed within the 5% contours defined previously (see Figs. 

3.1.1-4). To achieve response invariance to contrast polarity, the simplest version of the 

energy model for complex cells posits a minimal number of linear filters, which forms a 

quadrature pair, and their outputs are squared and combined. In this model, there is no 

spatial pooling as defined in Fig. 1.5.1C because the subunit size matches the receptive 

field size of a complex cell. Therefore, the areal pooling ratio is predicted to be close to 

one. On the other hand, much larger values for the areal pooling ratio are expected when 

subunits are pooled spatially. The histogram of Fig. 3.6.1A shows the distribution of the 

areal pooling ratios observed for 86 complex cells. The median of the areal pooling 

ratios was 1.21. In length or width terms, this amounts to a 10% difference on average. 

These values indicate that, if anything, the spatial extents of receptive fields of complex 

cells were only slightly larger than those of the subunits. For each complex cell, a 

bootstrap test was performed to assess whether the areal pooling ratio was significantly 

different from one. For 32 out of 86 cells (37%), the areal pooling ratio was 

significantly larger than one (P < 0.05, resampling; black bars). 

Deep layers are thought to have neurons with large receptive fields (Gilbert, 

1977). Thus, the laminar dependence of the areal pooling ratios was examined for 

complex cells having areal pooling ratios more than 1.5. Based on limited laminar 

analyses for tracks for which histological determinations of layers were carried out with 

confidence (29% of cells), cells with the large areal pooling ratios were present in both 

 42



deep layers and supra-granular layers. For example, the cell with a circular subunit 

profile and the largest areal pooling ratio (4.73; Fig. 3.1.3) among my sample was 

recorded at the cortical depth of 180m, which must be in layer 2. This neuron was not 

likely to be a special complex cell, because it had a receptive field size of less than two 

degrees and had almost no spontaneous discharge. Therefore, unfortunately, I did not 

have a neuron in my sample, which was positively identified as a special complex cell 

(Gilbert, 1977). A complete picture on the laminar distribution of cells with large 

pooling ratios requires further investigation. 

It is possible that my analyses might underestimate the receptive field sizes of 

complex cells, if weak subregions of subunits were to be missed in noisy maps. This 

could lead to incorrect estimation of the degree of spatial pooling. If this were the case, 

quality of data would have influenced the number of subregions in subunits and the 

areal pooling ratios. Thus, a signal-to-noise ratio was calculated for each subunit. Signal 

can be considered as an amplitude parameter obtained by the Gaussian function fitted to 

the subunit envelope. Noise level was estimated as the SD of amplitudes of envelopes 

that were obtained by correlating spike sequence I actually recorded to stimulus noise 

patterns I did not present but with otherwise identical statistical properties. Examination 

of the signal-to-noise ratios of subunits revealed no systematic relationships with the 

number of subregions in subunits or the areal pooling ratios. 

 Figs. 3.6.1B and C compare the sizes of complex cell subunits, receptive fields, 

and simple cell receptive fields. By using hand-plotting mapping protocol for the 

minimum response fields, Hubel and Wiesel (1962) reported that the receptive fields of 

complex cells were, on average, three times larger than those of simple cells. The 

median of the receptive field areas of simple cells I recorded was 2.42 degree2. And 
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those of the subunit areas and the receptive field areas of complex cells were 1.93 and 

2.89 degree2, respectively. I found that the receptive fields of simple cells have the equal 

spatial extents to the subunits and the receptive fields of complex cells (P > 0.05, 

Mann-Whitney U test). 

Is there any particular axis along which pooling of subunits tends to occur? As 

shown in Fig. 3.4.2A, aspect ratios are smaller for the receptive fields of complex cells 

than for the subunits. Decrease in the aspect ratios can be readily explained, if subunits 

are pooled more extensively along the minor axis of their envelopes. To examine the 

possible radial anisotropy of spatial pooling, the degree of pooling was evaluated 

directionally along radial axes that were at various angles with the major axis of subunit 

envelope, as illustrated in Fig. 3.6.2C. Specifically, the sizes were measured along each 

radial axis for the subunit envelope and the receptive field. The directional pooling ratio 

was defined as the receptive field size divided by the subunit envelope size. Directions 

were then searched for which the directional pooling ratios are maximal and minimal. 

Fig. 3.6.2A shows the distributions of the directional angle at which the 

maximal directional pooling occurs (left), and those for the minimal pooling (right). The 

directions for maximal and minimal pooling are not necessarily orthogonal to each other. 

The subunit envelopes of complex cells were grouped as sufficiently elliptic (aspect 

ratio > 1.2; filled symbols) or not (open symbols) in the scatter plots. Only complex 

cells with sufficiently elliptic subunit envelopes were accumulated in the histograms 

above. For neurons for which the areal pooling ratio was significantly larger than one (P 

< 0.05, resampling), the data are represented by black circles in the scatter plots and by 

black bars in the histograms. For cells without pooling, the data are shown by gray 

circles and by gray bars. Remarkably, the directional angle is clustered around 90 and 
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–90 for the maximal directional pooling ratios, and 0 for the minimal pooling ratios. 

This means that pooling tended to occur along the direction for which the subunits were 

skinnier. Therefore, the result is consistent with the above hypothesis for reconciling the 

discrepancy of aspect ratios between subunit envelopes and receptive fields. The 

distributions of the directional angle for both the maximal and the minimal directional 

pooling ratios were significantly different from a uniform distribution (P < 0.001, 

Kolmogorov-Smirnov test for uniform distribution). 

Fig. 3.6.2B depicts the average  SE values of the directional pooling ratios as 

a function of the angle from the subunit major axis. The difference in the pooling ratios 

across different directional angles was statistically significant (P < 0.001, Friedman 

test). 

 

3.7 Subunit organizations of complex cells underlying contrast-sign invariance 

 How do complex cells acquire response invariance to the sign or polarity of 

contrast of visual stimuli? The minimalist scheme, often used in modeling, for response 

invariance to contrast polarity is a full-wave rectification of the outputs of two linear 

filters that differ in spatial phase by 90 (Adelson and Bergen, 1985; Fleet et al. 1996). 

In reality, biological substrates for the linear filters feeding into a complex cell are 

selective for the contrast polarity, and their outputs are half-wave rectified. Functionally, 

therefore, linear filters must be organized as a push-pull pair (Ohzawa et al. 1990; 

Pollen et al. 1989; Troyer et al. 1998). In theory, members of such push-pull pairs 

should have receptive fields that are inverted versions of each other, as assumed by 

various energy model schemes (Adelson and Bergen, 1985; Emerson et al. 1992; 

Ohzawa et al. 1990). However, there is no guarantee that this is actually the case for real 
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complex cells. Therefore, I will examine positive and negative halves of subunit 

organizations by sorting separately the second-order response maps according to the 

contrast polarity of reference stimuli (Emerson et al. 1987; Livingstone and Conway, 

2003). 

Together with second-order interaction maps, Fig. 3.7.1 depicts 

bright-minus-dark maps for dark and bright reference stimuli separately for four 

complex cells. These maps in a given row were obtained at the identical location at 

which the strongest second-order interactions were observed for each cell. The left 

panel shows a bright-minus-dark map when a dark stimulus was presented as the 

reference, and the center panel shows a bright-minus-dark map when a bright stimulus 

was presented as the reference. The gray scale is matched between the two maps. As 

described in Materials and Methods, the subtraction of these bright-minus-dark maps 

yielded a second-order interaction map as shown in the right panel. (Multiplication by a 

negative (dark) reference corresponds to subtraction.) The reference location is denoted 

by the cross hairs in each map. Different biological substrates are recruited by visual 

stimuli having opposite contrast polarities as the reference, and, in ideal complex cells, 

the two bright-minus-dark maps should be an inverted version of each other. This 

appears to be the case for cells illustrated in Figs. 3.7.1A and B. 

However, in general, the two bright-minus-dark maps could not be related by 

simply inverting the sign for other complex cells. For a cell shown in Fig. 3.7.1C, the 

center positions of the envelopes are different between the bright-minus-dark maps. 

Although these maps cannot be equated to the receptive fields of simple cells, it is 

tempting to consider that these responses are contributed by separate populations of 

antecedent simple cells for which receptive fields are displaced along the width 
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direction (e.g. Rust et al. (2005)). Another cell depicted in Fig. 3.7.1D shows imbalance 

in amplitude as well as the displacement of the center positions between the two 

bright-minus-dark maps. 

All four complex cells presented here exhibit even-symmetric second-order 

interaction maps (the right-most column) as reported previously (Emerson et al. 1987; 

Gaska et al. 1994; Livingstone and Conway, 2003). However, a distinction must be 

made between my second-order maps and those of previous studies. For previous results, 

due to simple methodological reasons, the interaction maps were guaranteed to be 

even-symmetric because the maps were averaged for all reference positions. Since each 

of my maps is for a single reference position, there is no such methodological basis for 

the symmetry. Therefore, the even symmetry in my maps represents the true nature of 

the two-stimulus interaction sampled near the center of the complex cell receptive fields. 

In fact, examinations of interaction maps near the fringes of complex cell receptive 

fields often revealed asymmetric interaction maps (see maps in the fifth row in Fig. 

3.1.1A). 

In contrast to the second-order interaction maps, however, internal 

organizations of subunits exhibited various response patterns to dark and bright 

reference stimuli. The bright-minus-dark maps can show different center positions and 

unequal strength between dark and bright references. 

 The minimalist energy model predicts that, when the reference is located at the 

center of a complex cell receptive field, the bright-minus-dark maps for dark and bright 

references have (1) centers at the reference location and (2) identical amplitude. These 

predictions are obviously violated in some complex cells as shown in Figs. 3.7.1C and 

D. Thus, I evaluated deviations from the model predictions for a population of complex 
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cells actually recorded. First, the envelope for a bright-minus-dark map was computed 

by partial Hilbert transform. Then, a Gaussian function was fitted to the envelope, and 

the parameters for center position and amplitude were examined. The center position 

was measured from the reference location and converted into spatial phase angle with 

respect to the optimal spatial frequency when the center was projected onto the width 

axis (the axis orthogonal to the optimal orientation for the subunit). 

Fig. 3.7.2 illustrates the distributions of center position and amplitude for the 

envelopes of bright-minus-dark maps for dark (left) and bright (right) references. 

Neurons shown in Fig. 3.7.1 are indicated by the corresponding labels. The center 

position expressed as a phase angle represents a spatial offset, thus it was not artificially 

wrapped into a range from –180 to 180. However, the actual data points were 

scattered within the range. The amplitude was normalized by the SD of the amplitude 

values on the edges of the bright-minus-dark map envelope, which is considered to 

represent the noise level. Therefore, the normalized amplitude may be thought of as a 

signal-to-noise ratio. Both of the distributions show an inverted-V shape centered about 

zero, indicating that maps with high amplitudes tended to have its center at the reference 

location. This is consistent with the minimalist energy model. However, the center 

position could be distant from the reference location as the amplitude decreased. 

It is still possible that centers are at an identical position between the dark- and 

bright-reference maps if their centers are shifted in the same direction to the same 

amount. Fig. 3.7.3 shows the ratio of amplitudes against the difference in center 

positions between the two maps. For this analysis, 78 complex cells were selected for 

which the normalized amplitude exceeded three for both dark- and bright-reference 

maps. As noted above, the minimalist energy model predicts no difference in center 
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positions and identical amplitudes between the two maps, as marked by the cross hairs. 

In contrast, actual complex cells exhibited a variety of combinations between these two 

parameters. The two bright-minus-dark map envelopes differ in center positions by 

48.2  41.7 (mean  SD). And the stronger of the bright-minus-dark maps had an 

amplitude 1.53  1.38 times larger than that of the weaker one (mean  SD). Therefore, 

although the minimalist energy model is generally capable of explaining various 

properties of complex cells, subunits comprising actual complex cells do not necessarily 

follow the "ideal" scheme, e.g., often showing amplitude differences greater than 50%. 
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Chapter 4.  Discussion 

 

 I have studied the internal spatial organization of complex cells in the early 

visual cortex with the use of the second-order interaction analysis. Previous studies 

examined the spatiotemporal characteristics of the second-order interaction maps of 

complex cells in an attempt to account for selectivity to orientation, direction, and 

spatial and temporal frequency (Emerson et al. 1987; Gaska et al. 1994; Livingstone and 

Conway, 2003; Movshon et al. 1978b). Instead of focusing on tuning for these stimulus 

parameters, I have examined the spatial and structural relationships between the 

receptive field of a complex cell and their subunits as revealed through the second-order 

interaction maps. The results are summarized in Table 4.1. 

 

4.1 Comparison of spatial properties between subunit envelopes and receptive fields for 

complex cells 

 A notion often held regarding complex cells is that their receptive fields tend to 

be large compared with simple cells, occupying an area three times as large on average 

(Hubel and Wiesel, 1962). A prediction based on this idea is that a large number of 

simple cells must be combined hierarchically for constructing a complex cell receptive 

field. To my surprise, this initial expectation was not fulfilled in general. When 

examined quantitatively, the sizes of receptive fields of complex cells on average were 

only slightly larger (1.21 times in area) than those of their subunit envelopes (Fig. 

3.6.1A). The sizes of receptive fields for simple cells were also comparable to those of 

subunits for complex cells. Therefore, the casually held notion is not correct for typical 

complex cells. 
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   What could be the sources of the discrepancy between the Hubel and Wiesel's result 

and mine? Sampling biases between the cell types are unlikely to be the cause because 

my simple and complex cells were from the same set of electrode penetrations. 

Although individual tracks varied in their eccentricity and ratio of cell types, these 

factors should not influence the overall distributions for the entire population of cells. 

Furthermore, I have obtained about 10 pairs of simultaneously recorded simple and 

complex cells. The receptive field sizes of simple and complex cells within a given pair 

were always closely similar. Essentially the same results, obtained for the relationships 

between the complex cells and their subunits, and those between the simple and 

complex cells, also strengthen my results. 

It is possible that the "minimum response field" plotting (Bishop and Henry, 

1972) used in typical hand mapping of receptive fields may miss weak subregions of 

simple cells, thereby underestimating the receptive field size. This problem would be 

more acute if only a bright bar is used in mapping (which is true for nearly all early 

studies including those by Hubel and Wiesel), because a dark-excitatory subregion of a 

simple cell may not generate any OFF response if the temporal response is monophasic 

(Fig. 5B of DeAngelis et al. 1995). In such cases, even a very strong dark-excitatory 

subregion would be missed, leading to an underestimation of receptive field area in 

excess of a factor of two or more. On the other hand, however, complex cells are not 

likely to be affected by this problem because, by definition, ON and OFF subregions are 

overlapping for these cells and the use of a bright bar only is not an obstacle for 

estimating the receptive field size correctly. 
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4.2 Spatial pooling of subunits 

In theory, if there is a substantial degree of spatial pooling, the second-order 

interaction for a particular reference location can be limited to a portion of the receptive 

field, and do not necessarily cover the entire spatial extent of the receptive field of a 

complex cell. However, in the cat early visual cortex, I have demonstrated that subunits 

obtained by the second-order interaction analysis are pooled spatially only to a small 

degree for most cells. In other cortical areas, such a pooling does take place. For 

example, Pack et al. (2006) measured second-order interaction maps for MT neurons in 

the spatiotemporal domain, to study the direction selectivity, and found that the spatial 

extent of two-stimulus interaction is limited to a small portion in the receptive field. 

Since neurons projecting from the primary visual cortex to MT are predominantly 

direction-selective complex cells (Movshon and Newsome, 1996), complex cells having 

the receptive fields in various positions might serve as subunits that are pooled spatially 

to comprise the receptive field of a MT cell. Note that my results do not prove or 

disprove pooling of simple cells in making up spatially larger subunits. This is because 

summation of multiple linear receptive fields cannot be distinguished from a single 

large linear receptive field. 

 

4.3 Subunit organizations of complex cells underlying contrast-sign invariance 

 The seminal characteristic of complex cells is that ON and OFF responses may 

be elicited everywhere within the receptive field (Hubel and Wiesel, 1959, 1962). Such 

insensitivity to the contrast polarity is thought to be achieved by combining the outputs 

of multiple simple cells that are sensitive to the contrast sign. Internal structures of these 

complex cells have been studied with various nonlinear systems analysis techniques, 
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most of which have assumed symmetrical structures for the contrast sign (e.g. 

Marmarelis and Marmarelis, 1978). However, actual complex cells do not necessarily 

respond identically to dark and bright stimuli (e.g., Fig. 1B of Ohzawa et al. 1990). 

Therefore, I have examined second-order interaction maps separately for the bright and 

dark reference stimuli. This analysis demonstrated that, contrary to the energy model 

assumption, the two maps could not be related to each other simply by inverting signs. 

The unmatched positions of bright-minus-dark maps could account for the fact that 

complex cell subunits have more subregions than simple cells. Together with the 

position-displacement, the imbalanced amplitudes between these maps might contribute 

to produce "imperfect" complex cells, which exhibit a minor degree of response 

modulation (e.g. 0.2 < F1/F0 ratio < 0.8) when a drifting sinusoidal grating is presented. 

 

4.4 Relationship to other studies on internal organizations of complex cell receptive 

fields 

Second-order interaction maps represent how two visual stimuli interact to 

elicit the responses of complex cells. Thus, they may be interpreted as one possible set 

of linear filters for explaining complex cell responses, although they do not necessarily 

correspond to biological entities such as the receptive fields of simple cells that feed 

into complex cells. 

 Several spike-triggered techniques are also suited for revealing the filter 

structure of complex cells. Recently developed STC techniques discover 

multidimensional axes, or filters, relevant for explaining the variance structure of 

spike-triggered stimuli in the multidimensional space (Rust et al. 2005; Touryan et al. 

2002). These methods rely on principal component analysis to minimize the number of 
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filters by imposing mutually orthogonal relationships on them. Therefore, a set of 

recovered filters can economically span the entire subspace in which neuronal responses 

are increased (excitatory filters) and decreased (suppressive filters). This has an 

advantage over second-order interaction analysis, which reveals only a single net 

excitatory filter for each reference position. However, filters recovered by the STC can 

be too large in spatial extent, in the sense that visual stimuli may not interact in the 

entire spatial extents of recovered filters to elicit neuronal responses and shape tuning 

for stimulus features (Rust et al. 2005). Therefore, even though neither the map obtained 

from the second-order interaction analysis nor that from the STC technique represents 

responses of a single biological entity, the second-order interaction maps are closer to 

the biological reality, in that they accurately reflect the spatial limits within which linear 

summation of stimuli takes place. 

Other promising methods examine the net excitatory and inhibitory responses 

of complex cells in the spatial frequency domain. With these techniques, spike-triggered 

stimuli are first converted to their spectra in the spatial frequency domain by the Fourier 

transform, and then they are averaged in the frequency domain separately for different 

phases (David et al. 2004) or without regard to phase (Nishimoto et al. 2006; Ringach et 

al. 1997). Spectral representation potentially enables suppressive responses, such as 

suppression at low spatial frequency and cross-orientation suppression, to be dissociated 

from excitatory responses (Bredfeldt and Ringach, 2002; Nishimoto et al. 2006; 

Ringach et al. 2002). These suppressive responses are masked by excitatory responses 

in second-order interaction analysis, because they are usually overlapped in the space 

domain. 
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4.5 Comparison of spatial properties between complex cell subunits and simple cell 

receptive fields 

As a population, the receptive fields of simple cells were comparable to 

complex cell subunits in width, length, width-to-length ratios, and aspect ratios. 

However, complex cell subunits contain more subregions than simple cell receptive 

fields. This is consistent with my findings that bright-minus-dark maps for dark and 

bright reference stimuli are often displaced, and therefore underlying linear filters for 

complex cells do not necessarily form a push-pull pair. Another interesting fact is that 

the receptive field envelopes of simple cells tended to be elongated horizontally rather 

than vertically. Complex cells, on the other hand, exhibited no such bias either for the 

subunits or for the receptive fields. Therefore, multiple simple cells could feed into a 

complex cell in an anisotropic manner such that the bias toward the horizontal 

elongation of their receptive fields is weakened. 

In this dissertation, I have examined spatial relationships between the subunits 

and receptive fields for individual complex cells. My strategy is a logical practical step 

toward understanding how the receptive fields of complex cells are built up from simple 

cells, as modeled by Hubel and Wiesel (1962). In order to obtain the unequivocal 

answer, future studies must compare subunit properties of complex cells to those of 

antecedent simple cells that are directly connected to them (Alonso and Martinez, 

1998). 
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Figure 1.1.1. Receptive fields of LGN neurons (A and B) and cortical simple cells in the 

primary visual cortex (C-G). Cross symbols indicate areas giving ON responses, while 

triangle symbols represent areas giving OFF responses. A: ON-center LGN cell. B: 

OFF-center LGN cell. For cells shown in C-G, optimal orientations are shown by 

continuous lines through receptive field centers. Note that optimal orientations are 

oblique for all simple cells in the figure, although each arrangement of subregions were 

observed in all orientations. After Hubel and Wiesel (1962). 
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Figure 1.5.1. Schematic illustration of functional models for early visual cortical 

neurons. A shows a functional model for simple cells. The response of a simple cell is 

described by a linear filter whose output is half-wave rectified and squared. B depicts a 

minimalist energy model for complex cells, which respond to the visual stimuli of both 

contrast polarities in the receptive fields. The response invariance to contrast polarity is 

parsimoniously explained by a quadrature pair (i.e. different in spatial phase by 90) of 

linear filters whose outputs are squared and summed. This operation calculates the 

energy of the preferred spatial frequency components of visual scene in the receptive 

fields. Since the number of linear filters is minimized in the parsimonious energy model, 

the receptive field of a complex cell has the same spatial extent as the preceding linear 

filters. In model C, however, spatial pooling as well as energy computation is an 

important component to generate the receptive fields of complex cells. In this case, the 

receptive field of a complex cell is substantially larger than those of the individual linear 

filters. 
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Figure 1.7.1. Hierarchical models proposed by Hubel and Wiesel (1962). A and B 

illustrates a possible schema for explaining the organization of the receptive fields of 

simple cells and complex cells, respectively. After Hubel and Wiesel (1962). 
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Figure 2.5.1. Analysis of second-order interaction to uncover the internal spatial 

structure of receptive fields for complex cells. A: A spike train was recorded during the 

presentation of a sequence of two-dimensional dynamic noise stimuli. B: 

Spike-triggered stimuli were picked up for a particular correlation delay for each spike. 

C, D: Second-order interaction was analyzed as follows. Reference was fixed at a 

particular position, and the local stimulus patch was selected for the second-order 

interaction analysis (C). For a dark reference, the contrast of all dots in the patch was 

reversed (D, left). For a bright reference, the contrast of all dots in the patch was 

retained (D, center). In the case of a gray reference, the contrast of all dots in the patch 

was nullified (D, right). These operations correspond to multiplication by –1, 1, and 0 

for dark, bright, and gray reference stimuli, respectively. E: A second-order interaction 

map for the reference location was obtained by accumulating all spike-triggered local 

stimulus patches that were modified on the basis of the contrast polarity of reference 

stimuli. The second-order interaction at the reference location cannot be measured, but 

is required for subsequent analyses such as Fourier transform. Thus, interaction strength 

at the reference location was interpolated from neighboring values (spline interpolation). 

F: Partial Hilbert transform (HT) of E was obtained via Fourier analysis. G: The 

envelope of the second-order interaction map was computed as the root-mean-square 

sum of E and F. Second-order interaction maps and their envelopes were obtained for 

all reference locations in visual stimuli. H: The overall receptive field of the complex 

cell was obtained by taking sum of E2+F2 of all reference locations and then computing 

its square root. (.)2 denotes a squaring operation for each matrix element. (.)1/2 indicates 

taking square root for each matrix element. 

 

 69



Major axis of
subunit envelope

Receptive fie
ld length

length

width

R
eceptive field w

idth
 

 

 70



Figure 2.7.1. Definition of length and width for the subunits and receptive fields of 

complex cells. First, the bounds of second-order interaction map envelopes (gray dashed 

ellipse enclosing subregions) and receptive fields (black solid ellipse) were defined by 

the level that was 5% of the peak of the two-dimensional Gaussian function fitted to 

them. Then, the length and the width were evaluated for the elliptic region along the 

parallel and orthogonal axes to the optimal orientation, respectively. Note that the length 

and the width are independent of the axis of the elliptic elongation for subunit envelopes 

and receptive fields. 
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Figure 3.1.1. A representative example is shown of the second-order interaction analysis 

for a complex cell. A second-order interaction map indicates contributions to responses 

of a second-dot placed near the reference stimulus. This may be calculated from 

responses to dynamic dense noise stimuli (see Materials and Methods for details). A 

shows a matrix of second-order interaction maps obtained by selecting a reference 

position within the stimulated area at two-dot intervals, and arranged according to the 

relative order of reference positions. Each map consists of 21  21 pixels, and the 

position of the reference stimulus is at the center. Bright pixels represent excitatory 

responses to stimuli with the same contrast polarity as stimulus at reference 

(bright-bright or dark-dark), and dark pixels indicate excitatory responses to stimuli 

with the opposite contrast polarity to stimulus at reference (bright-dark or dark-bright). 

The interaction map in the center of A, outlined by a solid frame, had the strongest 

interactions among the maps for all reference locations. This interaction map covered a 

portion of the stimulus area shown by the solid square in B. (The contrast of noise 

stimuli in this illustration is reduced for clarity.) The position of the top-left interaction 

map in A is also shown by the dashed square in B. A scale bar in B corresponds to 5. C 

illustrates the bounds of interactions (dashed white ellipse) for the central interaction 

map in A (solid frame). Solid white ellipse indicates the bounds of the complex cell 

receptive field determined from F. D represents the partial Hilbert transform of the 

interaction map shown in C. C and D form a quadrature pair, and were used to obtain 

the envelope of the interaction map. E shows the envelope of the interaction map shown 

in C. F shows the overall receptive field for the complex cell. Although the map in F is 

defined over the area covered by the dynamic noise stimuli, it is truncated to the same 

spatial extent as that of C, D, and E for ease of comparison. The center of the receptive 
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field is defined as the origin in F, and also corresponds to the origin in C, D, and E. The 

correlation delay was 53 ms. The optimal spatial frequency, orientation, and areal 

pooling ratio were 0.25 cycles/degree, 72 and 1.08, respectively. 
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Figure 3.1.2. Another example of the second-order interaction analysis. The format is 

identical to that of Fig. 3.1.1. See the legend of Fig. 3.1.1. For this complex cell, the 

strongest second-order interaction was observed at a correlation delay of 39 ms. The 

optimal spatial frequency and orientation were 0.53 cycles/degree and 22, respectively. 

The areal pooling ratio was 1.69, which was significantly larger than one (P < 0.05, 

resampling). 
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Figure 3.1.3. Another example of the second-order interaction analysis. The format is 

basically the same as that of Fig. 3.1.1. See the legend of Fig. 3.1.1. However, the 

quadrature counterpart of the interaction map shown in C is omitted for this example 

cell, because the orientation tuning of the subunit is not sufficiently strong to define the 

axis of the partial Hilbert transform. D shows the envelope of the interaction map shown 

in C, and E shows the overall receptive field. The strongest second-order interaction 

was observed at a correlation delay of 39 ms. The optimal spatial frequency and 

orientation were 0.86 cycles/degree and 14, respectively. The areal pooling ratio was 

4.73, which was significantly larger than one (P < 0.05, resampling). 
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Figure 3.1.4. Examples of the second-order interaction analysis for five additional 

complex cells. For each analysis, the left panel shows the second-order interaction map 

that exhibited the strongest interactions, the center panel shows its envelope, and the 

right panel shows the envelope of the receptive field. Dashed ellipse represents the 

bounds of the interactions, and solid ellipse delineates those of the receptive field. The 

origin of the receptive field map corresponds to its center. The optimal correlation delay, 

spatial frequency (SF), orientation (OR), and areal pooling ratio (PR; *P < 0.05, 

different from one, resampling) are shown to the right of the receptive field for each 

analysis. E and F show the responses of a single complex cell measured for the right 

and left eye, respectively. 
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Figure 3.2.1. Relationships between length and width. A: complex cell subunits. B: 

complex cell receptive fields. C: simple cell receptive fields. In the scatter plots, the 

width is plotted along the horizontal axis, and the length is plotted along the vertical 

axis. The diagonal line of unity slope indicates a perfect correspondence between the 

two values. The histograms depict the distributions of the length (right) and the width 

(upper). Arrows in the histograms indicate the median values for each distribution. 
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Figure 3.3.1. Distribution of number of subregions. A: within complex cell subunits. B: 

within simple cell receptive fields. The number of subregions was computed from the 

width and optimal spatial frequency parameters as described in the section Number of 

subregions. Arrows indicates the medians of each distribution. 
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Figure 3.4.1. Comparison of length-to-width ratios. A shows a comparison of the 

length-to-width ratios on a log-log axis between the subunits and the receptive fields of 

complex cells. The length-to-width ratios of subunits are plotted along the horizontal 

axis, and the length-to-width ratios of receptive fields are plotted along the vertical axis. 

The histograms depict the distributions of the length-to-width ratios of subunits (upper) 

and receptive fields (right). B shows the distribution of the length-to-with ratios for 

simple cell receptive fields. Arrows in the histograms indicate the medians for each 

distribution. 

 

 86



0

10

20

30

#
 C

e
lls

1 2 3

1

2

3

Subunit aspect ratio

R
F

 a
sp

e
ct

 r
a
tio

0 10 20 30
# Cells

A Complex cells

1 2 3
0

10
20
30
40

RF aspect ratio

#
 C

e
lls

B Simple cells

 

 87



Figure 3.4.2. Comparison of aspect ratios. A compares the aspect ratios between the 

subunit envelopes and the receptive fields. The aspect ratios for the subunit envelopes 

are plotted along the horizontal axis, and those for the receptive fields are plotted along 

the vertical axis. The comparison is depicted on a log-log coordinate. The histograms 

illustrate the distributions of the aspect ratios for the subunit envelopes (upper) and the 

receptive fields (right). B shows the distribution of the aspect ratios for the receptive 

field envelopes of simple cells. Arrows in the histograms indicate the medians for each 

distribution. 
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Figure 3.5.1. Analysis of anisotropic elongation for the subunit envelopes and the 

receptive fields of complex cells. The orientation of elongation was measured from the 

absolute horizontal axis, and clockwise and counter-clockwise rotation was not 

discriminated. The left panel shows the results of analysis for the subunit envelopes, and 

the right panel shows those for the receptive fields of complex cells. In the scatter plots, 

the aspect ratios are plotted against the orientation of the major axis. Filled symbols 

denote data from cells for which subunit envelopes and receptive fields were 

sufficiently elliptic (aspect ratio > 1.2; n = 59 for subunit envelopes in the left panel; n = 

46 for receptive fields in the right panel). Open symbols are used for complex cells with 

nearly circular (aspect ratio  1.2) subunit envelopes (n = 27) and receptive fields (n = 

40). The histograms depict the distributions of the orientation of the major axis for 

complex cells with sufficiently elliptic subunit envelopes and receptive fields. The 

criterion ratio is denoted by a solid horizontal line in the scatter plots. 
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Figure 3.5.2. Analysis is shown of a possible relationship between the axis of receptive 

field elongation and the optimal orientation for simple cells. The scatter plot compares 

the optimal orientation and the orientation of the major axis of receptive field envelopes 

for simple cells. Angle was gauged counterclockwise from the horizontal axis 

(horizontal orientation and elongation correspond to 0, whereas vertical correspond to 

90). In the scatter plot, filled symbols denote data from cells for which receptive field 

envelopes were sufficiently elliptic (aspect ratio > 1.2; n = 114), and open symbols 

represent data from neurons of which receptive field envelopes were not elongated, i.e., 

nearly circular (aspect ratio  1.2; n = 38). The histograms depict the distributions of 

optimal orientation (right) and the orientation of the major axis for the receptive field 

envelopes (top). Only cells with sufficiently elliptic receptive field envelopes were 

counted for the histogram at top. 
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Figure 3.5.3. Relationship with the length-to-width ratio is examined for the optimal 

orientation and spatial frequency for simple cells. A depicts the length-to-width ratio 

against the optimal orientation as a scatter plot. Circles, triangles, and square symbols 

indicate neurons which prefer low (< 0.25 cpd), middle ( 0.25 cpd and < 0.5 cpd), and 

high ( 0.5 cpd) spatial frequencies, respectively. The cut-off values are arbitrary. The 

mean length-to-width ratios were calculated for each group of cells categorized based 

on the optimal orientation, and were superimposed in the scatter plot by a solid curve. 

Error bars indicate the SDs. The receptive fields of cells pointed to by arrows (C-J) are 

shown in the bottom corresponding panels. B plots the length-to-width ratio against the 

optimal spatial frequency. Circles, triangles, and square symbols represent neurons 

tuned to horizontal (within 30 of horizontal), oblique, and vertical (within 30 of 

vertical), respectively. A solid curve and bars indicate the mean  SD values of the 

length-to-width ratios for each population of neurons grouped on the basis of the 

optimal spatial frequency. The cut-off values are the same as in A. The neurons labeled 

in A are also indicated by arrows in B except for cells D and E, which are located in the 

dense cluster of symbols near (0.2, 1). C-J illustrate the receptive fields of simple cells 

which are indicated by arrows in A and B. Bright regions indicate ON subregions, 

whereas dark regions denote OFF subregions. Solid ellipses indicate the extents of 

receptive fields determined as 5% of the peak of the fitted Gaussian envelopes. The 

center of each receptive field is defined as the origin. The optimal correlation delay, 

spatial frequency (SF), orientation (OR), and length-to-width ratio (LWR) for C-J were 

as follows, respectively:  = 55, 42, 43, 54, 52, 51, 46, and 49 ms; SF = 0.32, 0.17, 0.25, 

0.17, 0.98, 1.00, 0.33, and 0.50 cycles/deg; OR = 5, 38, 54, 82, 86, 135, 158 and 

178; LWR = 2.43, 1.03, 1.01, 0.73, 1.92, 1.15, 0.93, and 1.24. 
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Figure 3.6.1. Analysis of spatial pooling for subunits in complex cells and the receptive 

field size of simple cells. A shows the distribution of pooling ratios used to evaluate the 

degree of the spatial pooling of subunits. An areal pooling ratio was defined as the 

receptive field area divided by the subunit envelope area. Black bars highlight neurons 

for which the areal pooling ratios exhibit statistically significant deviation from one (P 

< 0.05, resampling). The minimalist energy model for complex cells predicts the areal 

pooling ratios close to one. The median of the distribution is indicated by an arrow. B 

shows the distributions of the areas of complex cell subunits (upper) and receptive fields 

(lower). Black and gray bars indicate complex cells with and without significant spatial 

pooling, respectively (P value = 0.05, resampling). C depicts the distribution of the 

areas of simple cell receptive fields. Arrows in the histograms indicate the medians for 

each distribution. 
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Figure 3.6.2. Analysis of radial anisotropy of spatial pooling for subunits in complex 

cells. The degree of spatial pooling was evaluated directionally along radial axes that 

were at various angles with the major axis of the subunit envelope. A directional pooling 

ratio was defined as the receptive field size divided by the subunit size, measured along 

a particular radial axis, as schematically illustrated in C. A: The scatter plots show 

relationships between the maximal (left) or the minimal (right) pooling ratios, and 

directional angles at which they were obtained. Black symbols represent complex cells 

for which areal pooling ratios were significantly larger than one (P < 0.05, resampling). 

Gray symbols denote neurons without significant pooling. Filled circles indicate 

neurons with sufficiently elliptic subunit envelopes, which ensure reliable determination 

of their major axes (aspect ratio > 1.2). The remaining cells are shown by open symbols. 

The histograms in A illustrate the distributions of directional angles to obtain the 

maximal and the minimal directional pooling ratios. To examine the distributions, 

complex cells with sufficiently elliptic subunit envelopes were selected. Following the 

convention used in the scatter plots, black bars indicate neurons with significant spatial 

pooling, and gray bars represent neurons without significant pooling. B plots the 

geometric mean values of directional pooling ratios across neurons against angle from 

the subunit major axis. Error bars indicate SEs. C illustrates definition of directional 

pooling ratio, which was measured at an angle with the major axis of the subunit 

envelope. By changing the angle parameter, the maximal and minimal size ratios were 

searched between the subunit and the receptive field. 
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Figure 3.7.1. Examples of bright-minus-dark maps for four complex cells. The 

bright-minus-dark maps were calculated separately for dark and bright reference stimuli. 

For each cell, the left panel shows the map for a dark reference, the center panel shows 

that for a bright reference, and the right panel shows the second-order interaction map, 

which is the difference between the center and left maps. These maps were obtained at 

the same reference location at which the strongest second-order interaction was 

observed. The reference location is indicated by the cross hairs. The optimal correlation 

delay, spatial frequency (SF), orientation (OR), and areal pooling ratio (PR) for 

second-order interaction maps are indicated to the right of the interaction maps for each 

cell. Cells shown in B and C are identical to those in Figs. 3.1.4C and 3.1.2, 

respectively. 
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Figure 3.7.2. Analysis of center position for the envelopes of bright-minus-dark maps 

for dark (left) and bright (right) reference stimuli. The center position was defined with 

respect to the reference location, and plotted along the horizontal axis as spatial phase 

angle for the optimal spatial frequency. The envelope and the center were computed for 

each two-dimensional map, but only the offset perpendicular to the optimal orientation 

(obtained by projecting the center onto the width axis) is shown in these figures. The 

optimal spatial frequency and orientation were extracted via the Fourier analysis from 

the second-order interaction map. The amplitude was divided by the SD of values on the 

edges (1-pixel wide) of the bright-minus dark map envelope, and plotted along the 

vertical axis. The maps for complex cells pointed to by arrows (A-D) are shown in the 

corresponding rows in Fig. 3.7.1. 
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Figure 3.7.3. Distributions of center position difference and amplitude ratio between the 

maps for dark and bright references. The position difference is expressed in terms of a 

phase angle for the spatial frequency of the subunit. The values were computed relative 

to the parameters for the dark reference map. Therefore, the amplitude ratios greater 

than one indicate that the bright-reference maps are stronger than the dark-reference 

map, while those smaller than one indicate the opposite. For this analysis, only those 

cells were selected for which normalized amplitudes exceeded three for both dark and 

bright reference stimuli (n = 78). See also the legend of Fig. 3.7.2. 
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Table 4.1. Summary of results. The upper part summarizes comparisons between 

subunits and receptive fields to examine the minimal model for complex cells. The 

lower part summarizes comparisons between complex cell subunits and simple cell 

receptive fields to examine whether they are equivalent to each other. The comparison 

of spatial extents is based on length, width, and areal size, whereas the comparison of 

spatial shape is based on aspect ratios, length-to-width ratios, and the orientation of 

elongation. Brief comments and relevant examples are given in the rightmost column. 

 

Comparisons of complex cell receptive fields and their subunits 

 Spatial extents  Receptive fields are slightly larger (mean areal ratio = 

1.2) 

 Spatial shape  Receptive fields are slightly more circular than 

subunits. 

 Response maps for 

bright and dark 

references 

 Response strengths can be imbalanced (e.g. Figs. 

3.7.1C and D). 

Center positions can be different (e.g. Fig. 3.7.1D). 

 

Comparisons of complex cell subunits and simple cell receptive fields 

 Spatial extents  Similar 

 Number of subregions  Complex cell subunits have more subregions than 

simple cells. 

 Spatial shape  Envelopes of simple cell receptive fields tend to be 

elongated more horizontally than vertically (e.g. Figs. 

3.5.3C-F, and J). 
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