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Abstract

The receptive fields of complex cells in the early visual cortex are economically
modeled by combining outputs of a quadrature pair of linear filters. For actual complex
cells, such a minimal model may be insufficient, since many more simple cells are
thought to make up a complex cell receptive field. To examine the minimalist model, |
analyzed spatial relationships between the internal structure (subunits) and the overall
receptive fields of individual complex cells by a two-stimulus interaction technique. The
receptive fields of complex cells are more circular and only slightly larger than their
subunits in size. In addition, complex cell subunits occupy similar spatial extents to
simple cell receptive fields. Therefore, in these respects, the minimalist schema is a fair
approximation to actual complex cells. However, there are violations against the
minimal model. Simple cell receptive fields have significantly fewer subregions than
complex cell subunits. And simple cell receptive fields are elongated more horizontally
than vertically in general. This bias is absent in complex cell subunits and receptive
fields. Thus, simple cells cannot be equated to individual complex cell subunits, and
spatial pooling of simple cells may occur anisotropically to comprise a complex cell
subunit. Moreover, when linear filters for complex cell subunits are examined separately
for bright and dark responses, there are significant imbalances and
position-displacements between them. This suggests that actual complex cell receptive
fields are constructed by a richer combination of linear filters than proposed by the

minimalist model.



Chapter 1. Introduction

Vision is a crucial sense for survival in mammals such as carnivores and
primates. It is not only a necessity but also a luxury; we enjoy wonderful visual
experiences in daily life. Amazingly, these are mental phenomena, while they are caused
by physical reality. All of our percepts are attributable to the activities of myriads of
neurons in the brain. First of all, how are visual signals transformed and represented in
individual neurons in the brain?

Information processing in the visual cortex begins with cells known as simple
cells, and their outputs are considered to be passed onto complex cells. Intensive
endeavors have been devoted to elucidating how simple cells encode visual information
in the receptive fields. However, this is not the case for complex cells partly due to
technical difficulty. In this dissertation, | present a detailed analysis of internal spatial
organization of complex cells, and compare internal structure with receptive fields to
examine the possibility of spatial pooling and the hierarchical relationship between

simple cells and complex cells.

1.1 Simple cell and complex cell

When Hubel and Wiesel started single unit recordings in the primary visual
cortex, they first attempted to excite neurons by diffuse light and dark spot (Hubel and
Wiesel, 1998). Those stimuli are effective drivers for retinal and lateral geniculate
nucleus (LGN) cells (Figs. 1.1.1A and B; Kuffler, 1953), but turned out to be in vain for
cortical neurons. Hubel and Wiesel recollect that the first major break was thanks to the

edge of the glass slide. They discovered a neuron responding vigorously to the faint but



sharp line shadow cast on the retina by the moving edge of the glass, not by retinal
stimuli they prepared. Their collaboration made a series of discoveries concerning
information processing in the visual system, culminating in reception of the Nobel Prize
in Physiology or Medicine in 1981.

Neurons in the primary visual cortex are driven effectively by a bar and edge
stimulus having orientation optimal for them (Hubel and Wiesel, 1959). The
organization of their receptive fields was examined by using a bright spot and bar
stimulus, and classified into two categories (Hubel and Wiesel, 1962). If neurons
satisfied the following four criteria, they were termed as simple (1) the receptive fields
were subdivided into distinct ON and OFF subregions; (2) there was summation within
the separate ON and OFF subregions; (3) there was antagonism between ON and OFF
subregions; and (4) it was possible to predict responses to stationary and moving spots
of various shapes from a map of the ON and OFF subregions (Fig. 1.1.1C-G).
Otherwise, neurons were grouped as complex. They responded in a complex manner
that bore little obvious relationship to the receptive fields.

Therefore, simple cells and complex cells differ substantially in a manner how
they summate the distributions of light intensities in the receptive fields. To examine
spatial summation property quantitatively, stationary and drifting sinusoidal gratings
should be employed in addition to bar and edge stimuli. Prior to application to cortical
cells, such tests were already conducted to examine the properties of spatial summation
for retinal (Enroth-Cugell and Robson, 1966) and LGN cells (Shapley and Hochstein,

1975).



1.2 Simple cell

Effective stimuli for simple cells can be predicted by the organization of their
receptive fields (Hubel and Wiesel, 1959, 1962). This raised a possibility that simple
cells calculate a weighted linear sum for the distributions of light intensities impinged
on the receptive fields, although early studies by Hubel and Wiesel were qualitative
rather than quantitative. If linearity of spatial summation holds, responses measured in
the space and the frequency domains must be converted to each other via Fourier
analysis. Movshon et al. (1978a) measured line-weighting functions (space domain) for
simple cells by bar stimuli elongated along the axis of optimal orientation, and
compared them with contrast-sensitivity functions (frequency domain) measured with
the use of sinusoidal grating stimuli of variable spatial frequency. Close match between
the two measurements indicates that majority of simple cells were described fairly well
as linear spatial filters (see also Jones and Palmer, 1987).

Some simple cells exhibited a systematic shift in latencies for stationary grating
stimuli having different phases (Movshon et al. 1978a). This characteristic first emerges
in the cerebral cortex in cats and primates (Enroth-Cugell and Robson, 1966). This was
of particular interest with regard to the neuronal mechanism for selectivity to the
direction of motion because this suggests that the motion computation in the early visual
cortex does not rely on ‘AND’ operation (Adelson and Bergen, 1985; Watson and
Ahumada, 1983, 1985; Reichardt 1961). Now the temporal dimension must be taken
into account seriously for the receptive fields of simple cells. Since a monocular image
projected onto the retina can be fully specified by three dimensions (two dimensions of
space X, Yy, and one dimension of time t), the spatiotemporal characterization of receptive

field structure is a complete depiction for monocular visual information processing



performed in single neurons.

It is worth addressing an issue whether the temporal integration of visual
signals is also linear or not. DeAngelis et al. (1993) followed authentic linearity tests
(Enroth-Cugell and Robson, 1966; Movshon et al. 1978a), which, in their case,
compared the responses in the temporal domain with those in the temporal frequency
domain. The spatiotemoral receptive fields were measured for simple cells by a reverse
correlation technique, which is also known as a spike-triggered averaging (STA) method
(Jones and Palmer, 1987; Sutter 1975). In this technique, a simple cell was simulated
with a long, pseudorandom sequence of briefly flashed small bright and dark bars over a
region covering the spatial receptive field (imagine white and black *snowflakes’
presented on the display). To obtain the spatial receptive field structure with a latency of
T ms, votes were cast by all stimuli preceding spikes by t ms for contrast polarities and
locations. The temporal dimension was added by varying a parameter of t. Subtraction
of the votes to dark stimuli from those to bright stimuli produced the composite
receptive field map.

The temporal frequency tuning was estimated via Fourier analysis by the
spatiotemporal receptive fields. These predictions were compared with the temporal
frequency tuning measured by using drifting sinusoidal gratings. The optimal and
cut-off values of temporal frequency tuning curves were generally consistent between
the actual measurements and the predictions made by the spatiotemporal receptive fields.
Direction selectivity indices, however, tended to be underestimated in the linear
predictions compared with the actual measurements obtained by drifting grating stimuli.
This systematic discrepancy was readily reconciled by expansive nonlinearity that may

reflect nonlinear contrast response (Albrecht and Geisler, 1991; Albrecht and Hamilton



1982).

1.3 Complex cell

Complex cells exhibit gross nonlinear property of summation, while simple
cells show linearity of spatiotemporal summation. Complex cells exhibit elevated
maintained discharge for drifting sinusoidal gratings (Movshon et al. 1978b), while
simple cells show modulated responses to them (a half-wave rectified sinusoidal wave
in ideal cases; Movshon et al. 1978a). This is a major difference between the two cell
groups. A test by an optimal sinusoidal grating has been conventionally used to quantify
the degree of linearity of spatiotemporal summation performed by neurons (Li et al.
2003; Skottun et al. 1991).

The spatial extents of complex cell receptive fields are obtained by turning on
and off a single bar elongated along the axis of optimal orientation. However, this
simple experiment fails to uncover a manner in which complex cells summate light
intensities in the receptive fields to yield selectivities to stimulus features such as
orientation, spatial frequency, and so on. The functional internal structure, called
subunit, of complex cells can be unveiled by presenting two bars simultaneously. As
inferred from selectivity for spatial frequency, the relative positions and contrast
polarities (bright or dark) of two bars are critical parameters to elicit responses in
complex cells. Movshon et al. (1978b) first examined two-bar interaction profiles by
changing the relative position and contrast polarity of the second bar while presenting
the first bar somewhere in the receptive fields. The two-bar interaction profiles obtained
by this method could predict the contrast-sensitivity functions measured by grating

stimuli of variable spatial frequency. Therefore, these interaction profiles represent the



spatial structure of functional units acting as spatial linear filters internal to complex
cells.

In terms of nonlinear systems identification, two-bar interaction profiles
obtained by Movshon et al. (1978b) are intimately related to second-order Wiener
kernels (Marmarelis and Marmarelis, 1978). To account for various functional
characteristics of complex cells, second-order interaction analysis was extended to the
temporal domain (Emerson et al. 1987), and then along the parallel axis to optimal
orientation by using two-dots, rather than two-bar, stimuli (Gaska et al. 1994;
Livingstone and Conway, 2003). The interaction profiles were often obtained as a
variant of STA maps, in which spike votes were given to a combination of two stimuli.
The general consensus of the above studies is that selectivity to orientation, the
direction of motion, spatial and temporal frequency is explained well by the
second-order interaction maps for complex cells.

More sophisticated spike-triggered techniques have been developed recently to
estimate stimulus patterns that is associated with change in the spike statistics of
neurons by using principle component analysis and/or information theoretic approach
(Pillow and Simoncelli, 2006; Prenger et al. 2004; Rust et al. 2005; Sharpee et al. 2004;
Touryan et al. 2002). In these methods, dynamic dense noise stimuli are presented
during the recording of a spike train, and the distribution of spike-triggered stimulus
patterns is compared with that of all stimulus patterns actually presented. When a
certain stimulus pattern occurs more or less frequently in spike-triggered stimuli above
chance, it should be associated to the enhancement or the depression of the neuronal
activity, respectively. Such a pattern is related to the profile of an excitatory or a

suppressive filter. All filters may be recovered which influence the firing probabilities of
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neurons. This is a great advantage over traditional STA methods, which can find only a

single net excitatory filter.

1.4 Experimental paradigm

One goal of systems neuroscience is to understand neural codes. This may be
addressed bi-directionally: questions in the forward direction ask how individual
neurons fragment, transform, and represent sensory signals, while ones in the reverse
direction ask how neuronal ensembles reconstruct sensory signals presented to an
animal. Inquiries in the reverse direction are beyond the scope of this dissertation.

To characterize input-output relationships, a set of stimuli was often selected in
advance and/or customized during a recording session by investigators so that the
response properties of neurons of interest were measured for each of them. For instance,
grating stimuli having different orientations were prepared for early visual cortical
neurons to measure their orientation tuning curves. This approach is practical, but it
should be pointed out that it has essential fallacies.

Basically, the above experimental design aims at searching for an optimal
stimulus by making a list that maps a visual stimulus to a neuronal response for each
stimulus. This method can determine which stimulus produced the best response among
stimuli in the list. However, the result cannot predict how strong response would be
produced for an item that was not enlisted in the list. Therefore, it does not predict what
stimulus would produce the best response; the best stimulus in the present list may not
be the best any longer when a new stimulus is added to it. In the case of the above
example, measurements for optimal orientation predict nothing about tuning for other

stimulus parameters such as spatial frequency and size. Thus, a primary attempt to
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search for an optimal stimulus cannot be fulfilled with this method.

Moreover, vision is a multidimensional sense. Even when an artificial and
simple stimulus such as a sinusoidal grating is selected, many parameters may affect the
responses of visual neurons: retinal position, orientation, spatial frequency, size, etc.
Therefore, an ideal approach discovers dimensions actually exciting or suppressing
neurons by encompassing all dimensions that potentially influence the responses.
Spike-triggered analysis by using dense noise stimuli meets this requirement. Noise
stimuli have advantages over other visual stimuli in terms of generality. In other words,
dense noise stimuli are broadband in the frequency domain, and can represent (or
imitate) any pattern in the space domain. Physiological investigation may be conducted
under minimal assumption. A practical drawback of this strategy is that dense noise
stimuli cannot be very efficient drivers for visual cortical neurons, and might be totally

ineffective for neurons in the higher visual cortex in primates.

1.5 Functional model

Linear filters and other functional ingredients of early visual cortical neurons
can be discovered by spike-triggered techniques. How well do these components predict
their responses? Modern V1 neuroscientists are serious about building a model (or a
theory), and making predictions based on the model, and verifying the model (or
clarifying deviations from the current model for further elaboration). 1 am not
necessarily in tune with this fashion, but still believe that this is one rational method for
checking how much one understands the behavior of single neurons in the early visual
cortex.

Theoretical framework and analytical techniques, including linear filter theory

12



and STA approaches, contributed to the physiological elucidation of the neuronal
computation performed by single neurons in the early visual cortex. Now, almost 50
years have passed since early exploration by Hubel and Wiesel, and many have been
added to the inventories of the functional properties of early visual cortical neurons such
as adaptation (Carandini and Ferster, 1997; Movshon and Lennie, 1979; Ohzawa et al.,
1982), gain control (Carandini et al. 1997; Carandini and Heeger, 1994) and various
suppressive phenomena (Benevento et al. 1972; Bredfeldt and Ringach, 2002; Ringach
et al. 2002).

However, most of the response properties of early visual cortical neurons can
be captured concisely in functional models known as standard liner-nonlinear models
(Fig. 1.5.1). The functional models are phenomenological representations for the
computation preformed by single neurons. While the functional models do not intend to
resemble anatomical or biophysical substrates for the computation preformed by single
neurons, one can imagine parallelism between actual biology and the model. That is, the
linear component may correspond to the spatiotemporal integration of postsynaptic
potentials caused by synaptic transmissions. On the other hand, the nonlinear
component may correspond to transformation from the membrane potential to a firing
rate. The nonlinear component may be followed by a Poisson spike generator, which
converts the rate signal into spikes. Such extended models are called
linear-nonlinear-Poisson models.

For a simple cell, the liner-nonlinear model can be fully identified on the basis
of physiological measurements (Fig. 1.5.1A). The linear filter corresponds to the
receptive field mapped by the STA technique (DeAngelis et al. 1993; Jones and Palmer,

1987; Sutter 1975). For the output of the filter, a negative value is not observed (thus,
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half-wave rectification), and a positive value is converted expansively (typically,
squaring operation). The nonlinear function from physiological data can be estimated by
comparing the distribution of the filter outputs of spike-triggered stimuli to that of all
stimuli (Anzai et al., 1999).

By definition, complex cells show nonlinearity of spatiotemporal summation.
They are insensitive to precise positions and contrast polarities of a visual stimulus.
When complex cells are completely insensitive to these stimulus features, they measure
the magnitude, or energy, of local contrast without regard to the precise position or
polarity of stimulus. This computation can be economically performed by two linear
filters of which outputs are squared and summed (Fig. 1.5.1B; Adelson and Bergen,
1985; Fleet et al. 1996). Because the number of linear filters is minimized in this model,
this standard energy model will be referred as the minimalist energy model in this
dissertation. It should be noted that, in reality, four linear filters with half-squaring
operation are required for equivalent computation to account for the fact that spike
output cannot transmit a negative signal (Ohzawa et al. 1990; Pollen et al. 1989).

The minimalist energy model for the receptive fields of complex cells is rather
conceptual compared with the model characterization for simple cells. This is partly due
to the fact that currently available methods cannot reveal two (or more) biological linear
filters for the receptive fields of compel cells. Second-order interaction analysis can find
not more than one filter. Recent techniques including a spike-triggered covariance
(STC) cannot meet the condition, either. Although multiple filters may be recovered by
these methods, the recovered filters may not represent how light signals are actually
combined because of mutual orthogonality imposed on them.

However, it is still worth reviewing investigations conducted by the STC

14



method. Its first application for cortical neurons aimed at isolating linear filters internal
to a complex cell (Touryan et al. 2002). More than three-fourth of complex cells
recorded in this study had exactly two filters, as the standard energy model proposes
(Fig. 1.5.1B). On the other hand, Rust et al. (2005) reported that additional filters were
recovered in many complex cells by collecting many spikes (minimum of 50 spikes per
spatiotemporal dimension), because the number of recorded spikes can be a limiting
factor to the recovery of filters. Surprisingly, full-wave rectifying filters were
discovered for simple cells also. Moreover, not only excitatory but also suppressive
filters were recovered, and interestingly suppressive filters usually showed opposite
direction preference to excitatory ones. This indicates that neurons in the early visual
cortex can perform a very intricate computation to compare the strength of visual
features moving in opposite directions (Adelson and Bergen, 1985). Therefore, the
richness of neuronal computation remains to be unveiled in early visual cortical

neurons.

1.6 Subunit

Subunits refer to the internal functional structure revealed by second-order
interaction analysis for complex cells (Livingstone and Conway, 2003; Movshon et al.
1978b; Ohzawa and Freeman, 1986; Rust et al. 2005). Subunits are spatial (or
spatiotemporal) linear filters themselves, and resemble linear filters in the energy model
closely (Figs. 1.5.1B and C). However, subunits should be contributed by multiple
underlying linear filters in the neuronal circuitry in the brain. In this sense, subunits are
different from linear filters in the energy model, because linear filters in the energy

model do not have underlying component filters. Moreover, plausible contribution from
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many filters suggests that subunits are virtual entities and do not represent single

anatomically identifiable cells.

1.7 Hierarchical model

The nervous system is organized in a hierarchical fashion. Therefore, it is
natural to consider that the receptive field of a cortical simple cell is constructed by
afferent inputs from LGN neurons (Fig. 1.7.1A; Hubel and Wisel, 1962). More
specifically, Hubel and Wiesel (1962) proposed that an ON subregion in the receptive
field of a simple cell is generated by a group of ON-center LGN cells that are aligned
specifically in the simple cell ON subregion, while an OFF subregion is generated by
OFF-center LGN cells in such a manner. To examine this model, receptive field maps
were obtained simultaneously from cortical simple cells and LGN neurons, and rules to
govern their connectivity were investigated (Reid and Alonso, 1995; Alonso et al. 2001).
Between a monosynaptically connected pair of cells, the center of an LGN receptive
field tended to overlap a subregion with matched sign (ON or OFF) in a simple cell
receptive field. Moreover, opposite-sign overlap was rarely observed between such a
pair. This is consistent with the hierarchical model between cortical simple cells and
LGN cells (Hubel and Wiesel, 1962).

The hierarchical model was extended to a relationship between cortical cells.
Hubel and Wiesel (1962) suggested that a complex cell is constructed by collecting
inputs from simple cells for which receptive fields all have identical axis orientation,
but differ from one another in their exact retinal positions (Fig. 1.7.1B). This hypothesis
is consisted of three parts. (1) A complex cell is constructed by collecting inputs from

simple cells. (2) The receptive fields of simple cells all have identical axis orientation
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(identical orientation). (3) But they differ from one another in their exact retinal
positions (spatial pooling). These three components will be treated as separate
hypotheses for clarity in this dissertation. The identical orientation hypothesis appears
obvious, because haphazard convergence from cells that prefer various orientation
results in the deterioration of orientation tuning (see also Alonzo and Martinez, 1999).
In the remaining of this dissertation, the hierarchical model refers to the first part, which
proposes that a complex cell is constructed by collecting inputs from simple cells,
because a word ‘hierarchy’ is derived from a possible hierarchical relationship between
simple cells and complex cells. The possibility of spatial pooling is not considered in
this nomenclature.

Physiological evidence for the hierarchical model is scarce and rather
controversial. A pioneer cross-correlation study by Toyama et al. (1981) investigated
functional connectivity between many pairs of intracortical neurons, and found no
excitatory connections from a simple cell to a complex cell. On the other hand, such
connections were reported from a simple cell in layer IV to a complex cell in layer 11/111
(Alonso and Martinez, 1999; Martinez and Alonso, 2001). Direct and strong evidence
for the hierarchical model should discuss the filter structure internal to a complex cell in
terms of the organization of an antecedent simple cell receptive field. Unfortunately, the
above studies examined the overall spatial extent of complex cell receptive fields,
instead of internal functional filters of complex cells.

Recent theoretical (Chance et al. 1999; Mechler and Ringach, 2002) and
experimental (Priebe et al. 2004) investigations have questioned the rigid hierarchical
organization between simple cells and complex cells. As a matter of fact, both cell

groups may be generated in an ‘egalitarian’ network (Tao et al. 2004). The hierarchical
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relationship between simple cells and complex cells have been commonly believed
partially by the fact that the degree of modulated spike responses to optimal drifting
sinusoidal gratings shows a bimodal distribution for a population of early visual cortical
neurons (Li et al. 2003; Skottun et al. 1991). This bimodality, however, does not
necessarily imply two distinct classes of neurons, because the bimodal distribution may
be generated from a unimordal distribution by a nonlinear transformation rule which
converts membrane potentials into spike rates (Mechler and Ringach, 2002). When it is
measured based on membrane potentials instead of spike rates, the degree of the
modulation to optimal drifting sinusoidal gratings became a continuous distribution
(Priebe et al. 2004). Moreover, simple cells and complex cells form almost identical

distributions in this measure.

1.8 Spatial pooling

The spatial extents in which two visual stimuli can interact are limited to those
of biological substrates of linear filters. Therefore, the hierarchical model predicts that
the spatial properties of subunits, which are obtained by second-order interaction
analysis, resemble those of simple cell receptive fields closely. The minimalist energy
model has the smallest number of linear filters to achieve insensitivity to precise
positions and contrast polarities of visual stimuli, and the linear filters are located at
identical positions and occupy spatial extents between themselves (Fig. 1.5.1B; Adelson
and Bergen, 1985; Fleet et al. 1996). This proposes that the size of the subunit is
identical to that of a complex cell receptive field.

However, if simple cells are pooled extensively in space in order to generate a

complex cell (Fig. 1.5.1C), the spatial extents of the subunit must be limited to a small
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portion of the receptive field of a complex cell. The possible extensive spatial pooling
of simple cells to comprise a complex cell is inferred by at least three pieces of evidence.
(1) A hand-plotting mapping study for receptive fields reported that the receptive field
sizes of complex cells were on average three times larger than those of simple cells
(Hubel and Wisel, 1962). (2) The binocular interaction profiles of complex cells tend to
be elongated more than those of simple cells (Sanada and Ohzawa, 2005). Spatial
pooling of simple cells may explain the elongation of the binocular interaction profiles
for complex cells. (3) Connection between a pair of neurons is so weak that
simultaneous contributions from many cells are required to excite a postsynaptic cell
(~10% correlation strength on average for a pair of cells with identical orientation
preference (difference <22°); Alonso and Martinez, 1999).

The spatial properties of subunits will be characterized with the use of
second-order interaction analysis, and related to those of the receptive fields for
individual complex cells. What is the shape of the subunits and the overall receptive
fields of complex cells? Are subunits pooled spatially to comprise the receptive field of
a complex cell? Is the composition of linear filters consistent with that proposed by the
energy model? In addition, comparisons of properties of these subunits with those of
simple cell receptive fields are also presented in order to examine the details of the

hierarchical model of complex cell receptive fields.
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Chapter 2. Materials and Methods

| recorded single units in area 17 of 37 adult cats. All animal care and
experimental guidelines conformed to those established by the National Institute of
Health (Bethesda, MD) and were approved by the Osaka University Animal Care and

Use Committee.

2.1 Surgical procedure and animal maintenance

After initial preanesthetic doses of hydroxyzine (Atarax, 2.5 mg im) and
atropine (0.05 mg im), each cat was anesthetized with isoflurane (2-3.5% in O,) for the
remainder of the surgical preparation. Lidocaine was injected subcutaneously or applied
topically at all points of pressure and possible sources of pain. Electrocardiogram
(ECG) electrodes were secured, a rectal temperature probe was inserted, and a femoral
vein was catheterized. Body temperature was maintained near 38°C with the use of a
feedback-controlled heating pad for the remainder of the experiment. Subsequently, a
tracheostomy was performed, and a glass tracheal tube was inserted for artificial
respiration. The animal was then secured in a stereotaxic apparatus with the use of ear
and mouth bars and clamps on the orbital rim. Anesthesia was then switched to sodium
thiopental (Ravonal, 1.0 mg-kg™-h™* iv). After the stabilization of anesthesia, the animal
was paralyzed with a loading dose of gallamine triethiodide (Flaxedil, 10 mg-kg™*-h™ iv)
to minimize eye movements during single unit recording, and placed under artificial
ventilation with a gas mixture of 70% N,0O-30% O,. End-tidal CO, was maintained at a
constant level of 3.5-4.3% throughout the experiment. For the remainder of the

experiment, the infusion fluid was delivered, containing sodium thiopental (Ravonal,
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1.0 mg-kg™h™ iv), gallamine triethiodide (Flaxedil, 10 mg-kg™-h™ iv), and glucose (40
mg-kg™?-h™ iv) in lactated Ringer solution. In addition to body temperature and end-tidal
CO,, heart rate, ECG, and intratracheal pressure were monitored and maintained within
a normal range throughout the experiment. Pupils were dilated with atropine (1%), and
nictitating membranes were retracted with phenylephrine hydrochloride (Neosynesin,
5%). Contact lenses with 4-mm artificial pupils were then placed on each cornea.

A craniotomy was carried out above the central representation of the visual
field in visual area 17 approximately at the Horseley-Clarke coordinate, P4-L2.5. This
corresponds to < 10 degrees in retinal eccentricity. The dura was removed to permit the
insertion of tungsten microelectrodes for single unit recording. Setting the electrodes
close to the cortical surface, agar was applied over the cortex for protection, and melted
wax was applied over the agar to create a sealed chamber for stabilization. When the
electrodes were retracted, electrolytic lesions (5 pA, 5 s) were made at 700-1,500 um
intervals for each electrode track. Typically, recordings from an animal lasted four days.

At the end of an experiment, the animal was administered an overdose of
pentobarbital sodium (Nembutal), and perfused through the heart with formalin (4% in
buffered saline). The recorded areas were frozen, sectioned into 40-60 pum slices, and

stained with thionin. The locations of electrode tracks were identified.

2.2 Single unit recording

Lacquer-coated tungsten microelectrodes (1-5 MQ; A-M Systems, Sequim,
WA) were used to record single unit activities. Typically, two electrodes mounted in a
single protective guide tube were driven in parallel with a common microelectrode drive

to increase the chance of encountering neurons. The signals from the electrodes were
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amplified (10,000x), bandpass filtered (300-5,000 Hz), and fed into a custom-made data
acquisition computer system (Ohzawa et al. 1996). The data acquisition system
consisted of analog-to-digital converters and a spike waveform discriminator that sorted
signals from each electrode in real time. The time-stamped spike events (time resolution,
40 ps) were sent from the data acquisition system, along with their waveforms, to a
separate computer that controlled the experiment. This second computer saved to files
the spike data and other events, including the onset and the offset times of each trial and
stimulus presentations, parameters and conditions of the spike sorter, and the entire set
of experimental parameters. The stored data were analyzed on a third computer during

and after the experiment.

2.3 Visual stimulation

Generations of visual stimuli were performed using custom-built software on
yet another computer. At the request of the experiment control computer noted above,
visual stimuli were generated by the fourth computer controlling a graphics card
(Millenium G550; Matrox, Dorval, Quebec, Canada), and displayed on a cathode ray
tube monitor (76Hz frame rate, 1600 x 1024 pixels; GDM-FW900; Sony, Tokyo, Japan)
through the green channel only to avoid color misconvergence across channels. In each
experiment, the luminance nonlinearity of the display was measured using a photometer
(Minolta CS-100; Konica Minolta, Osaka, Japan), and linearized by gamma-corrected
lookup tables. The animal saw the display through a custom-built haploscope, which
allows visual stimuli to be presented to the left and right eyes separately (Sanada and
Ohzawa, 2006). A black separator was placed between the left and right visual fields to

preclude the projection of stimuli to unintended eyes. Distance (total length of light
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paths) between the screen and the eyes was set to 57 cm, subtending the visual field of

23° x 30° for each eye.

2.4 Recording procedure

When a single unit was isolated, preliminary observations were made to
determine its optimal orientation, spatial frequency, as well as the position and the size
of its receptive field. In this “search” procedure, the orientation, spatial frequency,
position, and size of a patch of drifting sinusoidal grating could be adjusted with the use
of a pointing device (mouse). Having completed the above procedure, tuning in the
orientation and spatial frequency domain was measured for the cell by presenting
flashed sinusoidal grating stimuli (Nishimoto et al. 2005) and/or drifting sinusoidal
grating stimuli. The degree of response modulation was assessed by presenting
sinusoidal grating with a combination of orientation and spatial frequency that elicited
the largest number of spikes. The cell was then classified into simple or complex on the
basis of the amplitude of the first harmonic component relative to the average firing rate
(F1/Fo ratio; Li et al. 2003; Skottun et al. 1991).

To evaluate the receptive field structure, | presented dynamic two-dimensional
noise stimuli with 51 x 51 small dots. The noise stimuli covered an area typically two to
three times larger than the receptive field of the neuron in both the horizontal and the
vertical directions. Each dot was assigned with dark (~3 cd-m™), bright (~90 cd-m™), or
gray luminance (~47 cd-m™) at equal probability. The gray dots had the same luminance
value as the mean luminance of the display. The dot size was determined for each cell
primarily based on optimal spatial frequency to achieve both sufficient spatial resolution

and signal-to-noise ratio (0.12° x 0.12° to 0.67° x 0.67° for individual dots; 5.3 dots per
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subregion width on average). The noise pattern was refreshed at every 26 or 13 ms,
which corresponded to two or one video frame, respectively. The presentation of the
dynamic noise stimuli lasted about 30 min for collecting a sufficient number of spikes

for the following data analysis.

2.5 First-order map and second-order interaction map

Monocular visual stimuli, S, can be fully characterized by two dimensions of
space (x, y) and one of time (t), S(x, y, t). The two-dimensional dynamic noise stimuli
used in this study consisted of three luminance values, 0, -1, 1, which corresponded to
gray, dark, bright dots, respectively. Spike-triggered stimuli were of particular interest
among S(x, y, t).

For simple cells, the first-order maps were calculated to analyze the receptive
field structure.

The first-order map, hi(x, y, 7), represents the linear component of neuronal

responses, and was obtained by the spike-triggered averaging of S(x, y, ti — 7)
N
hi(x,y,0)=) Syt — 7)
i=1

where N is the total number of spikes collected during the stimulus presentation, and i is
an index for the i-th spike, which was produced at time ti. The first-order map was
obtained for correlation delays ranging from 0 to 289 ms in 13 ms (one video frame
duration) intervals.

For complex cells, the second-order interaction maps were computed to
examine the internal structure of their receptive fields. This procedure is schematically
illustrated in Fig. 2.5.1,

The second-order interaction map, ha(x1, X2, Y1, Y2, 71, %), was calculated by
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accumulating the product of two spike-triggered stimuli, namely S(xi, yi1, ti — z1) and

S(X2, Y2, ti — ) for the i-th spike

N
hz(xl’XZ’yl’yZ’T17T2):zS(Xl’yl’ti —71) - S(X, Yot —75)
i1

N
:Z S Yot —7,) - S(x+dx,y; +dy.t; —z, —d7)
i1

where dx and dy represent spatial displacements between the two stimuli, and dr
corresponds to a temporal offset between them. Thus, the second-order interactions are
described by the six-dimensional function.

This computation casts a positive vote for an interaction between the stimuli
with the same contrast polarity (dark-dark and bright-bright), and a negative vote for an
interaction between those with the opposite contrast polarity (dark-bright, bright-dark).
When at least one member of a pair of stimuli is a gray dot, no vote is presented. This
calculation is, therefore, essentially identical to one used for sparse noise stimuli in
previous studies (Gaska et al. 1994; Livingstone and Conway, 2003).

To obtain a second-order interaction map, one stimulus location was selected as
the reference and fixed at a particular spatial coordinate (x;, y1) and a particular
correlation delay 7 as shown in Fig. 2.5.1B. Then, the second-order interaction map for
the reference (xi1, y1, 71) was calculated within the local neighborhood of this reference,
as indicated by the dashed square in Fig. 2.5.1B. The spatial displacements for dx and dy
ranged from -10 to 10 stimulus dots. Empirically, this extent for the second-order
analysis was sufficiently wide for containing significant interactions. The second-order
interaction with itself (i.e. dx = 0, dy = 0, and dz = 0) cannot be measured with ternary
dense noise stimuli, since overlapping stimuli cannot be represented. For further

analysis, the value at zero displacement was filled in by a spline interpolation from
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neighboring pixels in the interaction map. Since the two-stimulus interaction profiles
are strongest and occupy the largest spatial extent between simultaneously presented
stimuli in general (Anzai et al. 2001; Gaska et al. 1994), the temporal offset dz was
always set to 0 ms to evaluate the spatial structure and extent of second-order
interaction maps. Accumulation of votes for all spikes produced the second-order
interaction map for the reference (xi, y1, @). By changing the values of xi, yi1, and =,
second-order interaction maps were obtained for references at every dot locations in
visual stimuli for correlation delays from 0 to 197 ms in 13 ms (one video frame

duration) steps.

2.6 Second-order interaction map and subunit

The term subunit has been used extensively for referring to a functional or
virtual unit that operates as a linear spatial (or spatiotemporal) filter internal to a
complex cell (Livingstone and Conway, 2003; Movshon et al. 1978b; Ohzawa and
Freeman, 1986; Rust et al. 2005). In this report, | define a subunit as a functional unit
that is described by a second-order interaction profile as explained above. A subunit is
closely related to, but is not identical to linear filters depicted in models for complex
cells (Figs. 1.5.1B and C). As mentioned in the previous reports, a subunit contains
contributions from multiple linear filters, presumably simple cells according to the
hierarchical model (Hubel and Wiesel, 1962), and therefore does not represent a single

anatomically identifiable cell.

2.7 Data analysis

First-order receptive fields and subunits in second-order maps are usually
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modulated along an axis perpendicular to the optimal orientation. | obtained their spatial
extents by using a partial Hilbert transform (Hahn, 1992). This method for obtaining an
envelope is applicable for any multi-dimensional data modulated along a single axis,
because it does not assume a specific functional form. Alternatively, my maps could
have been fitted by a model function selected a prioi, and its envelopes may have been
extracted for subsequent analyses. A reasonable candidate for such a model function is a
Gabor function, as employed by most recent studies dealing with simple cell receptive
fields. However, some second-order maps of complex cells may have broader flanking
subregions than a central one (Szulborski and Palmer, 1989). This characteristic is not
captured well by a Gabor function, thus I avoided fitting second-order maps by it.

Here, the partial Hilbert transform was carried out in the two-dimensional
spatial frequency domain along an axis perpendicular to the optimal orientation. First,
the two-dimensional Fourier transform of the map was computed. Then, the spatial
frequency domain was divided into two mirror symmetrical halves about the axis
perpendicular to a vector pointing to the optimal orientation and spatial frequency from
the origin. As a result, each half of the spatial frequency domain had spectral
components that are identical in amplitude and are different in the sign of imaginary
parts. The spatial frequency components in one half were shifted by 90° in phase. For
the other half, they were shifted by -90° in phase. The inverse Fourier transform of the
result yielded a complex signal where the real parts retained the original signal (Fig.
2.5.1E) and formed a quadrature pair with the imaginary parts (Fig. 2.5.1F). The
envelope of the map (Fig. 2.5.1G) was obtained by calculating the absolute value
(amplitude) of the complex signal. Since the second-order interaction maps were

obtained for all dot locations in visual stimuli, some of maps were outside the complex
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cell receptive field and contained no signal. For these maps, the axis for the partial
Hilbert transform could not be determined. Likewise, for cells without significant
orientation tuning or spatial antagonism, the axis could not be determined either.
Therefore, for these cases, the absolute values of interaction maps themselves were used
as their envelopes.

In previous studies, the second-order interaction maps were often averaged
across all reference positions within the receptive field of a complex cell to enhance
signal-to-noise ratios for a single final map (Emerson et al. 1987; Gaska et al. 1994;
Livingstone and Conway, 2003). This means that the six dimensional interaction maps,
ha(X1, X1 +dX, y1, y1+dy, z1, nn+dz), were reduced to just three dimensions of dx, dy, and
dz. In this approach, the original maps were assumed to be spatially homogeneous. This
assumption is justified for some complex cells (Emerson et al. 1987), but not for others
(Szulborski and Palmer, 1990). Therefore, | have examined second-order interaction
maps and their envelopes for all individual reference positions separately. | assume that
the strength of a second-order subunit is proportional to the collective responses of
underlying linear filters contributing to that subunit. With this assumption, the overall
receptive field of a complex cell may be obtained by collecting the envelopes of the
second-order interaction maps. A complex cell receptive field at a correlation delay of =
was obtained as follows. First, | squared the envelopes of second-order interaction maps
at a delay z at all reference locations. The squaring operation was incorporated to
approximate the effects of power-law static nonlinearities at the outputs of subunits
(Gaska et al. 1994). Then, the squared envelopes were summed into a larger map (Fig.
2.5.1H) at their respective positions. Finally, its square root was computed. For further

analysis, an optimal correlation delay was determined at which the amplitude of the
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receptive field was at maximum. | found that >95% interaction maps exhibited the
strongest interactions at the optimal correlation delay. This supports that the receptive
field size was estimated appropriately because of constancy in timing across interaction
maps.

As describe above, the receptive field envelopes of a simple cell were obtained
in 13-ms intervals. These were then spline-interpolated along the time axis in 1-ms steps.
For a correlation delay where the interpolated envelope had the maximum response, the
receptive field and its envelope were computed for further analysis.

| evaluated the spatial shape for the second-order interaction envelopes and the
receptive fields of complex cells, and the receptive field envelopes of simple cells. To
extract parameters for characterizing them, each of them was fitted by a

two-dimensional Gaussian function having the form

12 12
G(x,y):B+Kexp[— x Y J

20" 20'y.2
X'=(X—X,)sin@—(y—y,)coséd
y'=(X—X,)c0s0+(y—Y,)sing

where B, K, Xo, Yo, ox, oy, and 6 are free parameters. Specifically, the spatial coordinate
(Xo, Yo) corresponds to the center position, and @ rotates the translated coordinate system
to align x and y axes with the major and minor axes of the Gaussian function. oy and oy
are measures of the spatial extent. B is a baseline parameter, and K is simply a scaling
factor. The Gaussian fit accounted for 70% of variance in data on average.

Spatial properties for the subunits and receptive fields were quantified on the
basis of the parameters of the best fitted Gaussian function. To evaluate size parameters
such as length, width, and area, a bound was drawn at a criterion level that is 5% of the

peak amplitude of the fitted Gaussian function. For this boundary, length and width

29



were measured along the parallel and perpendicular axes to the optimal orientation,
respectively. Fig. 2.7.1 schematically shows the length and the width for the subunits
and the receptive fields of complex cells. The length and the width for the receptive
fields of complex cells were defined with respect to the optimal orientation of the
subunits with the highest amplitude. For the receptive fields of simple cells, the length
and the width were obtained for the optimal orientation. Optimal orientation was
obtained via Fourier analysis, and is a parameter independent of the major axis of the

fitted Gaussian function.
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Chapter 3. Results

| analyzed data from 86 complex cells in area 17 of adult cats. Of these, three
neurons were recorded in penetrations in the area 17/18 border zones, but their tuning
properties such as the receptive field size and optimal spatial frequency were close to
those of average area-17 cells. Therefore, these cells are included in the rest of the
analyses. To compare spatial properties between complex cell subunits and simple cell
receptive fields, | also analyzed data from 152 simple cells in area 17. Simple and
complex cells were classified based on the ratio of the first harmonic amplitude to the
mean discharge rate for responses to drifting sinusoidal gratings (Li et al. 2003; Skottun
et al. 1991). For complex cells, the spatial structure of subunits and receptive fields
were computed through the second-order interaction analysis. As described in the
previous section, second-order interaction maps were calculated at a temporal offset = 0
between the reference and neighboring stimuli, i.e., between two simultaneously
presented stimuli. To obtain second-order interaction maps with sufficient
signal-to-noise ratios, the analysis requires more spikes than the first-order analysis.
Thus, our sample contained fewer complex cells than simple cells, for which receptive
fields were calculated through the first-order analysis. The average numbers of spikes
collected during one measurement with the dynamic noise stimuli were 9867.7 + 9221.8
for complex cells and 4454.2 + 3935.0 for simple cells (mean = SD). The minimum
numbers of spikes were 649 and 180 for complex and simple cells, respectively.
Likewise, the maxima were 47115 and 20017.

One of the major purposes of this study is to examine spatial pooling of
subunits that collectively comprise the receptive fields of single complex cells. To

achieve this goal, spatial characteristics are compared between the subunits and the
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overall receptive fields for individual complex cells. If the hierarchical model of Hubel
and Wiesel (1962) is correct (Alonso and Martinez, 1998; Martinez and Alonso, 2001;
but see also Toyama et al. 1981), subunits of a complex cell should closely reflect
properties of simple cells contributing inputs to it. Although simple cells in my
population were recorded separately from complex cells and do not have direct
connection to the complex cells, | am able to compare the two cell types as groups.
Specifically, it is worth comparing corresponding parameters between the subunits of
complex cells and the receptive fields of simple cells. The simple and complex cells
were recorded from the same set of electrode tracks in the same animals using 2-d
dynamic noise stimuli, although the proportions of cell types varied from one track to

another.

3.1 Second-order interaction maps

Fig. 3.1.1 shows a representative example of the second-order interaction
analysis for a complex cell. In A, interaction maps are tiled to reflect the spatial
locations of their references. Although the references may be at every dot location of the
stimuli, the results are displayed here for reference positions at every two stimulus dots.
The interaction maps at the top-left and center in A are partially overlapping in the
actual stimulus domain as indicated on a noise stimulus frame (Fig. 3.1.1B), and
outlined by dashed and thick lines, respectively. The interaction maps vary in shape
depending on reference positions (Szulborski and Palmer, 1990). The central interaction
map in A is also shown magnified in panel C. To determine the spatial extent of a
subunit in the map, the partial Hilbert transform (Hahn, 1992) was performed as shown

in D, and then the envelope was obtained as shown in E. Note that C and D differ in
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spatial phase by 90° and hence form a quadrature pair. To illustrate the bounds of the
interaction map, dashed line is drawn in C and E at a criterion level that is 5% of the
peak height of the two-dimensional Gaussian function fitted to the envelope of the
interaction map. By taking the square root of the sum of the squared envelope maps for
all reference positions, the receptive field of the complex cell was obtained as shown in
F.

In principle, the size of the overall receptive field of a complex cell may be
much larger than those of individual interaction envelopes if there is extensive spatial
pooling. However, there was little spatial pooling for this cell. Therefore, the region
depicted in F is cropped to match the spatial position and scale of C, D, and E for ease
of comparison. The bounds for the overall receptive field were again determined using a
criterion amplitude that was 5% of the peak height of the Gaussian function fitted to the
receptive field. This area is marked by a solid contour in F, and also shown in C and E
for size comparison with the size of the subunit. Note that the solid and dashed contours
in C and E are nearly superimposed exactly, indicating that the subunit size was nearly
the same as that of the overall receptive field for this complex cell. The reference
position of the interaction map in C was at the center of the receptive field, and
therefore showed the strongest interactions among all reference locations.

The degree of spatial pooling of subunits may be quantified by the difference in
spatial extent between the subunits and the overall receptive field. When the outputs of
many subunits are pooled across different spatial positions to generate an overall
receptive field, its size should occupy a much larger spatial extent than those of
individual subunit envelopes. However, when pooling is absent, the size of a receptive

field is expected to be identical to those of subunit envelopes. Therefore, the complex
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cell depicted in Fig. 3.1.1 exhibited hardly any spatial pooling. The absence of spatial
pooling is in fact what is predicted by the minimalist energy model. Therefore, the
energy model is an accurate representation of the cell in Fig. 3.1.1.

Fig. 3.1.2 shows data from another complex cell in the same format as that for
Fig. 3.1.1. For this cell, the size of the overall receptive field (solid ellipse in Fig. 3.1.2C,
E, and F) was significantly larger than that of the subunit envelope (dashed ellipse;
169% in terms of area; P < 0.05, resampling). Therefore, spatial pooling of subunits did
take place for this neuron.

Are there complex cells with concentric second-order interaction maps
showing poor orientation selectivity (Szulborski and Palmer, 1990)? Among 86 complex
cells, | found only one neuron that exhibited such characteristics as shown in Fig. 3.1.3.
The subunits were round, and appeared to have a weak antagonistic surround (Fig.
3.1.3C). However, due to its weak contribution, the subunit envelope was essentially
determined by the central region alone (Fig. 3.1.3D). Since the optimal axis of the
partial Hilbert transform could not be determined for this neuron, the envelopes of the
interaction maps were obtained by taking the absolute values of them. The size of the
receptive field (solid ellipse in Fig. 3.1.3C, D, and E) is much larger than that of the
subunit envelope (dashed ellipse; 473% in terms of area; P < 0.05, resampling). This
complex cell showed the largest degree of spatial pooling in my sample.

For five other complex cells, Fig. 3.1.4 shows the second-order interaction
maps, their envelopes, and the overall receptive fields. For each example in this figure,
the interaction map illustrated was obtained with the reference position at the center of
the Gaussian function fitted to the receptive field of the cell. Using the same criteria as

used in Figs. 3.1.1-3, solid and dashed contours are drawn to demarcate the bounds of
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receptive fields and second-order interactions, respectively. Fig. 3.1.4C illustrates a cell
that had the largest number of subregions within a subunit among all the complex cells |
analyzed. Fig. 3.1.4D depicts a complex cell that exhibited a substantial spatial
pooling of subunits along the axis of the optimal orientation, but not along the width
dimension.

For the vast majority of complex cells, the neuronal activities were recorded
with dynamic noise stimulation to their dominant eye alone. However, responses to
dynamic noise stimuli were measured for both eyes separately in a few binocular
neurons. Figs. 3.1.4E and F show results for the second-order interaction analysis for a
single complex cell in the right and the left eyes, respectively. Interaction maps as well

as the receptive field profiles were highly similar for the two eyes.

3.2 Length and width

Having examined interaction maps and the extent of pooling for representative
complex cells, I now analyze these properties for the population of cells | have recorded.
In the population analyses, complex cell subunits were sampled at the center of the
receptive fields. First, what relationships are found between the length and the width for
complex cell subunits, receptive fields, and simple cell receptive fields? Fig. 3.2.1A
shows a relationship between the length and the width for the subunits of complex cells.
The length and the width were defined with respect to the optimal orientation (obtained
via Fourier analysis) for the subunits (Fig. 2.7.1). To make a cell-by-cell comparison of
the two values possible, subunit length is plotted against subunit width. Each circle in
the scatter plot represents a datum from one complex cell. Note that the majority (63%)

of circles lie above the identity line. The histograms show the distributions of the length
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(right) and the width (upper) for subunits, with median values of 4.05° and 3.63°,
respectively, as indicated by arrows. The subunit length was generally longer than the
subunit width (P = 0.0042, Wilcoxon sign rank test).

Are complex cell receptive fields circular in shape or are they elongated along
a specific direction? Fig. 3.2.1B shows a relationship between the length and the width
for the receptive fields of complex cells. Again, the length and the width of receptive
fields were measured with respect to the optimal orientation of their subunits (Fig.
2.7.1). On average, the receptive fields of complex cells were longer along the length
axis than the width axis (P = 0.015, Wilcoxon sign rank test). However, the degree of
elongation was not as significant as that for subunits. The median values of the
receptive field length and the width were 4.72° and 4.40° (arrows), respectively.

Fig. 3.2.1C illustrates a relationship between the length and the width for the
receptive fields of simple cells. Each circle in the scatter plot denotes a datum from a
simple cell. The histograms show the distributions of the length (right) and the width
(upper) for the receptive fields of simple cells, respectively. The majority (65%) of
symbols are above the identity line. The median length was 4.40°, and the median width
was 4.00°. This difference was statistically significant (P < 0.001, Wilcoxon sign rank
test). This was exactly the same trend as observed for the subunits of complex cells as
shown in Fig. 3.2.1A. Are the distributions of subunit length and width similar to those
of receptive fields of simple cells? The answer is yes, and there was not a significant

difference in either the length or the width (P > 0.05, Mann-Whitney U test).

3.3 Number of subregions

A chief functional characteristic of the early visual cortical neurons is
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selectivity for orientation and spatial frequency (Hubel and Wiesel, 1959, 1962;
Movshon et al. 1978a, b). Among various mechanisms contributing to the determination
of tuning parameters (Benevento et al. 1972; Bredfeldt and Ringach, 2002; Ringach et
al. 2002), the number of subregions in complex cell subunits is inversely related to
tuning bandwidths for orientation and spatial frequency (Gaska et al., 1994; Movshon et
al. 1978b). The number of subregions for a subunit was calculated as follows

Number of subregions=widthx SFoptx2
where width is the subunit width (see Fig. 2.7.1) and SFopt is the optimal spatial
frequency obtained from the Fourier analysis of the second-order interaction map at the
center of the complex cell receptive field. The product of the subunit width and the
optimal frequency gives the number of cycles within the subunit. Therefore, this value
is doubled to convert it into number of subregions because one cycle of modulation
contains two subregions. Fig. 3.3.1A shows the distribution of the number of subregions
in the subunits of complex cells. The mean of this distribution was 3.21, and the SD was
1.08. These values are roughly comparable to those reported by Movshon et al. (1978b).

Does the number of subregions match between the subunits of complex cells
and the receptive fields of simple cells? Fig. 3.3.1B shows the distribution of the
number of subregions within the receptive fields of simple cells. The number of
subregions for simple cell receptive fields was calculated in the same manner as that for
complex cell subunits. The median number of subregions within the receptive fields of
simple cells was 2.53, which was significantly different from 3.00, the median number
of subregions within the subunits of complex cells (P < 0.001, Mann-Whitney U test;
see also Fig. 3.3.1A). Therefore, the subunits of complex cells tended to have

significantly more subregions than simple cells. This difference may be related to the
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fact that subunits are functionally defined units and cannot be equated to individual

simple cells (Movshon et al. 1978b; Rust et al. 2005).

3.4 Length-to-width ratios and aspect ratios

Fig. 3.4.1A compares length-to-width ratios between subunits and receptive
fields. Note that length-to-width ratios are aspect ratios defined with respect to the
preferred orientation. However, | reserve the term, aspect ratios, to refer only to those
related to the elliptic elongation of subunit envelopes and complex cell receptive fields
(see below). There was a strong correlation between the two ratios (r = 0.81). The two
distributions also had indistinguishable medians (1.12 and 1.04 for the length-to-width
ratios of subunits and receptive fields, respectively, as indicated by arrows; P > 0.05,
Wilcoxon sign rank test). These results appear to indicate that shapes of subunits are
reflected directly to those of the overall receptive fields of complex cells.

With respect to length-to-width ratios, do simple cell receptive fields have
indistinguishable distributions from those for complex cell subunits? Fig. 3.4.1B shows
the distribution of length-to-width ratios for the receptive fields of simple cells. The
median of the distribution was 1.08. There was not a significant difference in the
median values of length-to-width ratios between the receptive fields of simple cells (Fig.
3.4.1B) and the subunits of complex cells (Fig. 2.10A top; P > 0.05, Mann-Whitney U
test).

The direction of receptive field elongation, if any, can be different and may be
independent of the preferred orientation of a neuron in general (Fig. 2.7.1). A similar
distinction also applies for properties of subunits. Are complex cell receptive fields

more elongated in a particular direction than their subunits? Is there any relationship
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between the direction and degree of subunit elongation and pooling? To address these
questions, | quantified the degree of elongation by aspect ratios, which were defined by
the length ratios of major and minor axes for subunit envelopes or complex cell
receptive fields.

Fig. 3.4.2A compares aspect ratios between the subunit envelopes and the
receptive fields of complex cells. The two ratios were correlated (r = 0.68). The median
value of the distribution of aspect ratios for receptive fields, 1.28, was significantly
smaller than that for subunits, 1.32 (P < 0.001, Wilcoxon sign rank test). This indicates
that the receptive fields of complex cells are more circular in shape than the subunits.
The reduction of aspect ratios may be caused by the spatial pooling of subunits, which
will be examined in the section below entitled as Pooling of subunits.

Fig. 3.4.2B shows the distribution of aspect ratios for the receptive fields of
simple cells. The median of the distribution was 1.34, which was not significantly
different from that for the subunits of complex cells, 1.32 (P > 0.05, Mann-Whitney U
test; see also the upper histogram in Fig. 3.4.2A). Therefore, both the length-to-width
ratios and the aspect ratios were consistent between the receptive fields of simple and

the subunits of complex cells, as a population.

3.5 Orientation of elongation

There may be a bias in the elongation of the subunit envelopes and the
receptive fields of complex cells with respect to the absolute horizontal and vertical.
Scatter plots in Fig. 3.5.1 show aspect ratios against the orientation of the major axis for
subunit envelopes (left) and receptive fields (right). These two quantities show no

systematic relationship for respective panels. The horizontal solid line is drawn at an
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arbitrary criterion level (aspect ratio = 1.2) to determine whether subunit envelopes and
receptive fields are sufficiently elliptic for the subsequent analysis. For subunit
envelopes and receptive fields with small aspect ratios (< 1.2; open symbols), their
major axis cannot be determined reliably. On the other hand, those with large values (>
1.2; filled symbols) were judged as sufficiently elliptic, and were counted in histograms
to examine the distributions of the orientation of the major axis (n = 66 for subunit
envelopes, n = 56 for receptive fields). These distributions were not different from
uniform distributions (P > 0.05, Kolmogorov-Smirnov test). Therefore, the results show
no special orientation bias in the aspect ratios for both subunits and overall receptive
fields of complex cells.

The prominent ‘oblique effect’ is reported for the distribution of preferred
orientations of simple cells (Li et al. 2003). Does the orientation of receptive field
envelopes of simple cells exhibit any biases? Fig. 3.5.2 shows a relationship between
the orientation of the major axis for the receptive field envelopes for simple cells, and
their optimal orientation. These values were measured counterclockwise from the
horizontal axis in visual scene (0°). Based on the same criterion as that used in Fig.
3.5.1, the receptive field envelopes were classified as elongated (aspect ratio > 1.2;
filled symbols; n = 114) or circular (aspect ratio < 1.2; open symbols; n = 38). Simple
cells that prefer horizontal orientation (0° and 180°) appear less likely to have vertically
elongated receptive field envelopes (90°). To investigate the biased elongation of
receptive field envelopes regardless of optimal orientation, the number of simple cells
was counted in the top histogram (for cells with sufficiently elongated envelopes). Its
striking U shape demonstrates a general tendency in which there were more simple cells

with horizontally elongated envelopes than those elongated vertically (P < 0.05,
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Kolmogorov-Smirnov test for uniform distribution).

Since optimal orientation seems related to the elongation angle of receptive
field envelopes for simple cells, length-to-width ratios are evaluated in terms of optimal
orientation in Fig. 3.5.3A. Circles, triangles, and square symbols denote neurons that
prefer low, middle, and high spatial frequency, respectively. Most of cells that prefer
horizontal orientation (0° and 180°) appear to have length-to-width ratios above one.
This means that these cells tended to be elongated along the length, or the horizontal,
axis, which is consistent with the biased distribution in Fig. 3.5.2. A solid curve and
error bars indicate the geometric mean and SD values of the length-to-width ratios for
simple cells grouped based on the optimal orientation in 30° steps. The variances of the
length-to-width ratios were significantly different across these groups (P < 0.05, Bartlett
test). The receptive fields of simple cells pointed to by arrows in Fig. 3.5.3A are
illustrated as representative examples in Figs. 3.5.3C-J.

Optimal spatial frequency was also related to length-to-width ratios (Fig.
3.5.3B). Circles, triangles, and square symbols denote simple cells that prefer horizontal,
oblique, and vertical orientations, respectively. Neurons that prefer low spatial
frequency tended to exhibit low length-to-width ratios, i.e. elongated along the width
axis, while those that prefer high spatial frequency were elongated along the length axis
in general. A positive correlation is evident between optimal spatial frequency and
length-to-width ratios (r = 0.31). The median values of the length-to-width ratios were
significantly different across different spatial frequency groups (P < 0.01,

Kruskal-Wallis test).
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3.6 Pooling of subunits
To evaluate the degree of the spatial pooling of subunits that make up complex

cells, a pooling ratio in terms of area was calculated for each neuron

Areal pooling ratio= the area of the receptive field

the areaof the subunit envelope

The areas were those enclosed within the 5% contours defined previously (see Figs.
3.1.1-4). To achieve response invariance to contrast polarity, the simplest version of the
energy model for complex cells posits a minimal number of linear filters, which forms a
quadrature pair, and their outputs are squared and combined. In this model, there is no
spatial pooling as defined in Fig. 1.5.1C because the subunit size matches the receptive
field size of a complex cell. Therefore, the areal pooling ratio is predicted to be close to
one. On the other hand, much larger values for the areal pooling ratio are expected when
subunits are pooled spatially. The histogram of Fig. 3.6.1A shows the distribution of the
areal pooling ratios observed for 86 complex cells. The median of the areal pooling
ratios was 1.21. In length or width terms, this amounts to a 10% difference on average.
These values indicate that, if anything, the spatial extents of receptive fields of complex
cells were only slightly larger than those of the subunits. For each complex cell, a
bootstrap test was performed to assess whether the areal pooling ratio was significantly
different from one. For 32 out of 86 cells (37%), the areal pooling ratio was
significantly larger than one (P < 0.05, resampling; black bars).

Deep layers are thought to have neurons with large receptive fields (Gilbert,
1977). Thus, the laminar dependence of the areal pooling ratios was examined for
complex cells having areal pooling ratios more than 1.5. Based on limited laminar
analyses for tracks for which histological determinations of layers were carried out with

confidence (29% of cells), cells with the large areal pooling ratios were present in both
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deep layers and supra-granular layers. For example, the cell with a circular subunit
profile and the largest areal pooling ratio (4.73; Fig. 3.1.3) among my sample was
recorded at the cortical depth of 180um, which must be in layer 2. This neuron was not
likely to be a special complex cell, because it had a receptive field size of less than two
degrees and had almost no spontaneous discharge. Therefore, unfortunately, I did not
have a neuron in my sample, which was positively identified as a special complex cell
(Gilbert, 1977). A complete picture on the laminar distribution of cells with large
pooling ratios requires further investigation.

It is possible that my analyses might underestimate the receptive field sizes of
complex cells, if weak subregions of subunits were to be missed in noisy maps. This
could lead to incorrect estimation of the degree of spatial pooling. If this were the case,
quality of data would have influenced the number of subregions in subunits and the
areal pooling ratios. Thus, a signal-to-noise ratio was calculated for each subunit. Signal
can be considered as an amplitude parameter obtained by the Gaussian function fitted to
the subunit envelope. Noise level was estimated as the SD of amplitudes of envelopes
that were obtained by correlating spike sequence | actually recorded to stimulus noise
patterns I did not present but with otherwise identical statistical properties. Examination
of the signal-to-noise ratios of subunits revealed no systematic relationships with the
number of subregions in subunits or the areal pooling ratios.

Figs. 3.6.1B and C compare the sizes of complex cell subunits, receptive fields,
and simple cell receptive fields. By using hand-plotting mapping protocol for the
minimum response fields, Hubel and Wiesel (1962) reported that the receptive fields of
complex cells were, on average, three times larger than those of simple cells. The

median of the receptive field areas of simple cells | recorded was 2.42 degree?. And
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those of the subunit areas and the receptive field areas of complex cells were 1.93 and
2.89 degree?, respectively. | found that the receptive fields of simple cells have the equal
spatial extents to the subunits and the receptive fields of complex cells (P > 0.05,
Mann-Whitney U test).

Is there any particular axis along which pooling of subunits tends to occur? As
shown in Fig. 3.4.2A, aspect ratios are smaller for the receptive fields of complex cells
than for the subunits. Decrease in the aspect ratios can be readily explained, if subunits
are pooled more extensively along the minor axis of their envelopes. To examine the
possible radial anisotropy of spatial pooling, the degree of pooling was evaluated
directionally along radial axes that were at various angles with the major axis of subunit
envelope, as illustrated in Fig. 3.6.2C. Specifically, the sizes were measured along each
radial axis for the subunit envelope and the receptive field. The directional pooling ratio
was defined as the receptive field size divided by the subunit envelope size. Directions
were then searched for which the directional pooling ratios are maximal and minimal.

Fig. 3.6.2A shows the distributions of the directional angle at which the
maximal directional pooling occurs (left), and those for the minimal pooling (right). The
directions for maximal and minimal pooling are not necessarily orthogonal to each other.
The subunit envelopes of complex cells were grouped as sufficiently elliptic (aspect
ratio > 1.2; filled symbols) or not (open symbols) in the scatter plots. Only complex
cells with sufficiently elliptic subunit envelopes were accumulated in the histograms
above. For neurons for which the areal pooling ratio was significantly larger than one (P
< 0.05, resampling), the data are represented by black circles in the scatter plots and by
black bars in the histograms. For cells without pooling, the data are shown by gray

circles and by gray bars. Remarkably, the directional angle is clustered around 90° and
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—90° for the maximal directional pooling ratios, and 0° for the minimal pooling ratios.
This means that pooling tended to occur along the direction for which the subunits were
skinnier. Therefore, the result is consistent with the above hypothesis for reconciling the
discrepancy of aspect ratios between subunit envelopes and receptive fields. The
distributions of the directional angle for both the maximal and the minimal directional
pooling ratios were significantly different from a uniform distribution (P < 0.001,
Kolmogorov-Smirnov test for uniform distribution).

Fig. 3.6.2B depicts the average + SE values of the directional pooling ratios as
a function of the angle from the subunit major axis. The difference in the pooling ratios
across different directional angles was statistically significant (P < 0.001, Friedman

test).

3.7 Subunit organizations of complex cells underlying contrast-sign invariance

How do complex cells acquire response invariance to the sign or polarity of
contrast of visual stimuli? The minimalist scheme, often used in modeling, for response
invariance to contrast polarity is a full-wave rectification of the outputs of two linear
filters that differ in spatial phase by 90° (Adelson and Bergen, 1985; Fleet et al. 1996).
In reality, biological substrates for the linear filters feeding into a complex cell are
selective for the contrast polarity, and their outputs are half-wave rectified. Functionally,
therefore, linear filters must be organized as a push-pull pair (Ohzawa et al. 1990;
Pollen et al. 1989; Troyer et al. 1998). In theory, members of such push-pull pairs
should have receptive fields that are inverted versions of each other, as assumed by
various energy model schemes (Adelson and Bergen, 1985; Emerson et al. 1992;

Ohzawa et al. 1990). However, there is no guarantee that this is actually the case for real
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complex cells. Therefore, | will examine positive and negative halves of subunit
organizations by sorting separately the second-order response maps according to the
contrast polarity of reference stimuli (Emerson et al. 1987; Livingstone and Conway,
2003).

Together with second-order interaction maps, Fig. 3.7.1 depicts
bright-minus-dark maps for dark and bright reference stimuli separately for four
complex cells. These maps in a given row were obtained at the identical location at
which the strongest second-order interactions were observed for each cell. The left
panel shows a bright-minus-dark map when a dark stimulus was presented as the
reference, and the center panel shows a bright-minus-dark map when a bright stimulus
was presented as the reference. The gray scale is matched between the two maps. As
described in Materials and Methods, the subtraction of these bright-minus-dark maps
yielded a second-order interaction map as shown in the right panel. (Multiplication by a
negative (dark) reference corresponds to subtraction.) The reference location is denoted
by the cross hairs in each map. Different biological substrates are recruited by visual
stimuli having opposite contrast polarities as the reference, and, in ideal complex cells,
the two bright-minus-dark maps should be an inverted version of each other. This
appears to be the case for cells illustrated in Figs. 3.7.1A and B.

However, in general, the two bright-minus-dark maps could not be related by
simply inverting the sign for other complex cells. For a cell shown in Fig. 3.7.1C, the
center positions of the envelopes are different between the bright-minus-dark maps.
Although these maps cannot be equated to the receptive fields of simple cells, it is
tempting to consider that these responses are contributed by separate populations of

antecedent simple cells for which receptive fields are displaced along the width
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direction (e.g. Rust et al. (2005)). Another cell depicted in Fig. 3.7.1D shows imbalance
in amplitude as well as the displacement of the center positions between the two
bright-minus-dark maps.

All four complex cells presented here exhibit even-symmetric second-order
interaction maps (the right-most column) as reported previously (Emerson et al. 1987,
Gaska et al. 1994; Livingstone and Conway, 2003). However, a distinction must be
made between my second-order maps and those of previous studies. For previous results,
due to simple methodological reasons, the interaction maps were guaranteed to be
even-symmetric because the maps were averaged for all reference positions. Since each
of my maps is for a single reference position, there is no such methodological basis for
the symmetry. Therefore, the even symmetry in my maps represents the true nature of
the two-stimulus interaction sampled near the center of the complex cell receptive fields.
In fact, examinations of interaction maps near the fringes of complex cell receptive
fields often revealed asymmetric interaction maps (see maps in the fifth row in Fig.
3.1.1A).

In contrast to the second-order interaction maps, however, internal
organizations of subunits exhibited various response patterns to dark and bright
reference stimuli. The bright-minus-dark maps can show different center positions and
unequal strength between dark and bright references.

The minimalist energy model predicts that, when the reference is located at the
center of a complex cell receptive field, the bright-minus-dark maps for dark and bright
references have (1) centers at the reference location and (2) identical amplitude. These
predictions are obviously violated in some complex cells as shown in Figs. 3.7.1C and

D. Thus, | evaluated deviations from the model predictions for a population of complex
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cells actually recorded. First, the envelope for a bright-minus-dark map was computed
by partial Hilbert transform. Then, a Gaussian function was fitted to the envelope, and
the parameters for center position and amplitude were examined. The center position
was measured from the reference location and converted into spatial phase angle with
respect to the optimal spatial frequency when the center was projected onto the width
axis (the axis orthogonal to the optimal orientation for the subunit).

Fig. 3.7.2 illustrates the distributions of center position and amplitude for the
envelopes of bright-minus-dark maps for dark (left) and bright (right) references.
Neurons shown in Fig. 3.7.1 are indicated by the corresponding labels. The center
position expressed as a phase angle represents a spatial offset, thus it was not artificially
wrapped into a range from -180° to 180°. However, the actual data points were
scattered within the range. The amplitude was normalized by the SD of the amplitude
values on the edges of the bright-minus-dark map envelope, which is considered to
represent the noise level. Therefore, the normalized amplitude may be thought of as a
signal-to-noise ratio. Both of the distributions show an inverted-V shape centered about
zero, indicating that maps with high amplitudes tended to have its center at the reference
location. This is consistent with the minimalist energy model. However, the center
position could be distant from the reference location as the amplitude decreased.

It is still possible that centers are at an identical position between the dark- and
bright-reference maps if their centers are shifted in the same direction to the same
amount. Fig. 3.7.3 shows the ratio of amplitudes against the difference in center
positions between the two maps. For this analysis, 78 complex cells were selected for
which the normalized amplitude exceeded three for both dark- and bright-reference

maps. As noted above, the minimalist energy model predicts no difference in center
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positions and identical amplitudes between the two maps, as marked by the cross hairs.
In contrast, actual complex cells exhibited a variety of combinations between these two
parameters. The two bright-minus-dark map envelopes differ in center positions by
48.2° + 41.7° (mean + SD). And the stronger of the bright-minus-dark maps had an
amplitude 1.53 + 1.38 times larger than that of the weaker one (mean + SD). Therefore,
although the minimalist energy model is generally capable of explaining various
properties of complex cells, subunits comprising actual complex cells do not necessarily

follow the "ideal™ scheme, e.g., often showing amplitude differences greater than 50%.
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Chapter 4. Discussion

| have studied the internal spatial organization of complex cells in the early
visual cortex with the use of the second-order interaction analysis. Previous studies
examined the spatiotemporal characteristics of the second-order interaction maps of
complex cells in an attempt to account for selectivity to orientation, direction, and
spatial and temporal frequency (Emerson et al. 1987; Gaska et al. 1994; Livingstone and
Conway, 2003; Movshon et al. 1978b). Instead of focusing on tuning for these stimulus
parameters, | have examined the spatial and structural relationships between the
receptive field of a complex cell and their subunits as revealed through the second-order

interaction maps. The results are summarized in Table 4.1.

4.1 Comparison of spatial properties between subunit envelopes and receptive fields for
complex cells

A notion often held regarding complex cells is that their receptive fields tend to
be large compared with simple cells, occupying an area three times as large on average
(Hubel and Wiesel, 1962). A prediction based on this idea is that a large number of
simple cells must be combined hierarchically for constructing a complex cell receptive
field. To my surprise, this initial expectation was not fulfilled in general. When
examined quantitatively, the sizes of receptive fields of complex cells on average were
only slightly larger (1.21 times in area) than those of their subunit envelopes (Fig.
3.6.1A). The sizes of receptive fields for simple cells were also comparable to those of
subunits for complex cells. Therefore, the casually held notion is not correct for typical

complex cells.
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What could be the sources of the discrepancy between the Hubel and Wiesel's result
and mine? Sampling biases between the cell types are unlikely to be the cause because
my simple and complex cells were from the same set of electrode penetrations.
Although individual tracks varied in their eccentricity and ratio of cell types, these
factors should not influence the overall distributions for the entire population of cells.
Furthermore, | have obtained about 10 pairs of simultaneously recorded simple and
complex cells. The receptive field sizes of simple and complex cells within a given pair
were always closely similar. Essentially the same results, obtained for the relationships
between the complex cells and their subunits, and those between the simple and
complex cells, also strengthen my results.

It is possible that the "minimum response field" plotting (Bishop and Henry,
1972) used in typical hand mapping of receptive fields may miss weak subregions of
simple cells, thereby underestimating the receptive field size. This problem would be
more acute if only a bright bar is used in mapping (which is true for nearly all early
studies including those by Hubel and Wiesel), because a dark-excitatory subregion of a
simple cell may not generate any OFF response if the temporal response is monophasic
(Fig. 5B of DeAngelis et al. 1995). In such cases, even a very strong dark-excitatory
subregion would be missed, leading to an underestimation of receptive field area in
excess of a factor of two or more. On the other hand, however, complex cells are not
likely to be affected by this problem because, by definition, ON and OFF subregions are
overlapping for these cells and the use of a bright bar only is not an obstacle for

estimating the receptive field size correctly.
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4.2 Spatial pooling of subunits

In theory, if there is a substantial degree of spatial pooling, the second-order
interaction for a particular reference location can be limited to a portion of the receptive
field, and do not necessarily cover the entire spatial extent of the receptive field of a
complex cell. However, in the cat early visual cortex, | have demonstrated that subunits
obtained by the second-order interaction analysis are pooled spatially only to a small
degree for most cells. In other cortical areas, such a pooling does take place. For
example, Pack et al. (2006) measured second-order interaction maps for MT neurons in
the spatiotemporal domain, to study the direction selectivity, and found that the spatial
extent of two-stimulus interaction is limited to a small portion in the receptive field.
Since neurons projecting from the primary visual cortex to MT are predominantly
direction-selective complex cells (Movshon and Newsome, 1996), complex cells having
the receptive fields in various positions might serve as subunits that are pooled spatially
to comprise the receptive field of a MT cell. Note that my results do not prove or
disprove pooling of simple cells in making up spatially larger subunits. This is because
summation of multiple linear receptive fields cannot be distinguished from a single

large linear receptive field.

4.3 Subunit organizations of complex cells underlying contrast-sign invariance

The seminal characteristic of complex cells is that ON and OFF responses may
be elicited everywhere within the receptive field (Hubel and Wiesel, 1959, 1962). Such
insensitivity to the contrast polarity is thought to be achieved by combining the outputs
of multiple simple cells that are sensitive to the contrast sign. Internal structures of these

complex cells have been studied with various nonlinear systems analysis techniques,
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most of which have assumed symmetrical structures for the contrast sign (e.g.
Marmarelis and Marmarelis, 1978). However, actual complex cells do not necessarily
respond identically to dark and bright stimuli (e.g., Fig. 1B of Ohzawa et al. 1990).
Therefore, | have examined second-order interaction maps separately for the bright and
dark reference stimuli. This analysis demonstrated that, contrary to the energy model
assumption, the two maps could not be related to each other simply by inverting signs.
The unmatched positions of bright-minus-dark maps could account for the fact that
complex cell subunits have more subregions than simple cells. Together with the
position-displacement, the imbalanced amplitudes between these maps might contribute
to produce "imperfect” complex cells, which exhibit a minor degree of response

modulation (e.g. 0.2 < F1/Fy ratio < 0.8) when a drifting sinusoidal grating is presented.

4.4 Relationship to other studies on internal organizations of complex cell receptive
fields

Second-order interaction maps represent how two visual stimuli interact to
elicit the responses of complex cells. Thus, they may be interpreted as one possible set
of linear filters for explaining complex cell responses, although they do not necessarily
correspond to biological entities such as the receptive fields of simple cells that feed
into complex cells.

Several spike-triggered techniques are also suited for revealing the filter
structure of complex cells. Recently developed STC techniques discover
multidimensional axes, or filters, relevant for explaining the variance structure of
spike-triggered stimuli in the multidimensional space (Rust et al. 2005; Touryan et al.

2002). These methods rely on principal component analysis to minimize the number of
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filters by imposing mutually orthogonal relationships on them. Therefore, a set of
recovered filters can economically span the entire subspace in which neuronal responses
are increased (excitatory filters) and decreased (suppressive filters). This has an
advantage over second-order interaction analysis, which reveals only a single net
excitatory filter for each reference position. However, filters recovered by the STC can
be too large in spatial extent, in the sense that visual stimuli may not interact in the
entire spatial extents of recovered filters to elicit neuronal responses and shape tuning
for stimulus features (Rust et al. 2005). Therefore, even though neither the map obtained
from the second-order interaction analysis nor that from the STC technique represents
responses of a single biological entity, the second-order interaction maps are closer to
the biological reality, in that they accurately reflect the spatial limits within which linear
summation of stimuli takes place.

Other promising methods examine the net excitatory and inhibitory responses
of complex cells in the spatial frequency domain. With these techniques, spike-triggered
stimuli are first converted to their spectra in the spatial frequency domain by the Fourier
transform, and then they are averaged in the frequency domain separately for different
phases (David et al. 2004) or without regard to phase (Nishimoto et al. 2006; Ringach et
al. 1997). Spectral representation potentially enables suppressive responses, such as
suppression at low spatial frequency and cross-orientation suppression, to be dissociated
from excitatory responses (Bredfeldt and Ringach, 2002; Nishimoto et al. 2006;
Ringach et al. 2002). These suppressive responses are masked by excitatory responses
in second-order interaction analysis, because they are usually overlapped in the space

domain.
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4.5 Comparison of spatial properties between complex cell subunits and simple cell
receptive fields

As a population, the receptive fields of simple cells were comparable to
complex cell subunits in width, length, width-to-length ratios, and aspect ratios.
However, complex cell subunits contain more subregions than simple cell receptive
fields. This is consistent with my findings that bright-minus-dark maps for dark and
bright reference stimuli are often displaced, and therefore underlying linear filters for
complex cells do not necessarily form a push-pull pair. Another interesting fact is that
the receptive field envelopes of simple cells tended to be elongated horizontally rather
than vertically. Complex cells, on the other hand, exhibited no such bias either for the
subunits or for the receptive fields. Therefore, multiple simple cells could feed into a
complex cell in an anisotropic manner such that the bias toward the horizontal
elongation of their receptive fields is weakened.

In this dissertation, | have examined spatial relationships between the subunits
and receptive fields for individual complex cells. My strategy is a logical practical step
toward understanding how the receptive fields of complex cells are built up from simple
cells, as modeled by Hubel and Wiesel (1962). In order to obtain the unequivocal
answer, future studies must compare subunit properties of complex cells to those of
antecedent simple cells that are directly connected to them (Alonso and Martinez,

1998).
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Figure 1.1.1. Receptive fields of LGN neurons (A and B) and cortical simple cells in the
primary visual cortex (C-G). Cross symbols indicate areas giving ON responses, while
triangle symbols represent areas giving OFF responses. A: ON-center LGN cell. B:
OFF-center LGN cell. For cells shown in C-G, optimal orientations are shown by
continuous lines through receptive field centers. Note that optimal orientations are
oblique for all simple cells in the figure, although each arrangement of subregions were

observed in all orientations. After Hubel and Wiesel (1962).
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Figure 1.5.1. Schematic illustration of functional models for early visual cortical
neurons. A shows a functional model for simple cells. The response of a simple cell is
described by a linear filter whose output is half-wave rectified and squared. B depicts a
minimalist energy model for complex cells, which respond to the visual stimuli of both
contrast polarities in the receptive fields. The response invariance to contrast polarity is
parsimoniously explained by a quadrature pair (i.e. different in spatial phase by 90°) of
linear filters whose outputs are squared and summed. This operation calculates the
energy of the preferred spatial frequency components of visual scene in the receptive
fields. Since the number of linear filters is minimized in the parsimonious energy model,
the receptive field of a complex cell has the same spatial extent as the preceding linear
filters. In model C, however, spatial pooling as well as energy computation is an
important component to generate the receptive fields of complex cells. In this case, the
receptive field of a complex cell is substantially larger than those of the individual linear

filters.
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Figure 1.7.1. Hierarchical models proposed by Hubel and Wiesel (1962). A and B
illustrates a possible schema for explaining the organization of the receptive fields of

simple cells and complex cells, respectively. After Hubel and Wiesel (1962).

67



™

ok Il

L

v L

= d

B my |

" |

Il EEE ! II

reference

E*+ F?
for all the other
reference locations

N2
L}

{O>RF

L G
m*n

68



Figure 2.5.1. Analysis of second-order interaction to uncover the internal spatial
structure of receptive fields for complex cells. A: A spike train was recorded during the
presentation of a sequence of two-dimensional dynamic noise stimuli. B:
Spike-triggered stimuli were picked up for a particular correlation delay for each spike.
C, D: Second-order interaction was analyzed as follows. Reference was fixed at a
particular position, and the local stimulus patch was selected for the second-order
interaction analysis (C). For a dark reference, the contrast of all dots in the patch was
reversed (D, left). For a bright reference, the contrast of all dots in the patch was
retained (D, center). In the case of a gray reference, the contrast of all dots in the patch
was nullified (D, right). These operations correspond to multiplication by -1, 1, and 0
for dark, bright, and gray reference stimuli, respectively. E: A second-order interaction
map for the reference location was obtained by accumulating all spike-triggered local
stimulus patches that were modified on the basis of the contrast polarity of reference
stimuli. The second-order interaction at the reference location cannot be measured, but
is required for subsequent analyses such as Fourier transform. Thus, interaction strength
at the reference location was interpolated from neighboring values (spline interpolation).
F: Partial Hilbert transform (HT) of E was obtained via Fourier analysis. G: The
envelope of the second-order interaction map was computed as the root-mean-square
sum of E and F. Second-order interaction maps and their envelopes were obtained for
all reference locations in visual stimuli. H: The overall receptive field of the complex
cell was obtained by taking sum of E*>+F? of all reference locations and then computing

1/2

its square root. (.)? denotes a squaring operation for each matrix element. () indicates

taking square root for each matrix element.
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Figure 2.7.1. Definition of length and width for the subunits and receptive fields of
complex cells. First, the bounds of second-order interaction map envelopes (gray dashed
ellipse enclosing subregions) and receptive fields (black solid ellipse) were defined by
the level that was 5% of the peak of the two-dimensional Gaussian function fitted to
them. Then, the length and the width were evaluated for the elliptic region along the
parallel and orthogonal axes to the optimal orientation, respectively. Note that the length
and the width are independent of the axis of the elliptic elongation for subunit envelopes

and receptive fields.
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Figure 3.1.1. A representative example is shown of the second-order interaction analysis
for a complex cell. A second-order interaction map indicates contributions to responses
of a second-dot placed near the reference stimulus. This may be calculated from
responses to dynamic dense noise stimuli (see Materials and Methods for details). A
shows a matrix of second-order interaction maps obtained by selecting a reference
position within the stimulated area at two-dot intervals, and arranged according to the
relative order of reference positions. Each map consists of 21 x 21 pixels, and the
position of the reference stimulus is at the center. Bright pixels represent excitatory
responses to stimuli with the same contrast polarity as stimulus at reference
(bright-bright or dark-dark), and dark pixels indicate excitatory responses to stimuli
with the opposite contrast polarity to stimulus at reference (bright-dark or dark-bright).
The interaction map in the center of A, outlined by a solid frame, had the strongest
interactions among the maps for all reference locations. This interaction map covered a
portion of the stimulus area shown by the solid square in B. (The contrast of noise
stimuli in this illustration is reduced for clarity.) The position of the top-left interaction
map in A is also shown by the dashed square in B. A scale bar in B corresponds to 5°. C
illustrates the bounds of interactions (dashed white ellipse) for the central interaction
map in A (solid frame). Solid white ellipse indicates the bounds of the complex cell
receptive field determined from F. D represents the partial Hilbert transform of the
interaction map shown in C. C and D form a quadrature pair, and were used to obtain
the envelope of the interaction map. E shows the envelope of the interaction map shown
in C. F shows the overall receptive field for the complex cell. Although the map in F is
defined over the area covered by the dynamic noise stimuli, it is truncated to the same

spatial extent as that of C, D, and E for ease of comparison. The center of the receptive
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field is defined as the origin in F, and also corresponds to the origin in C, D, and E. The
correlation delay was 53 ms. The optimal spatial frequency, orientation, and areal

pooling ratio were 0.25 cycles/degree, 72° and 1.08, respectively.
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Figure 3.1.2. Another example of the second-order interaction analysis. The format is
identical to that of Fig. 3.1.1. See the legend of Fig. 3.1.1. For this complex cell, the
strongest second-order interaction was observed at a correlation delay of 39 ms. The
optimal spatial frequency and orientation were 0.53 cycles/degree and 22°, respectively.

The areal pooling ratio was 1.69, which was significantly larger than one (P < 0.05,

resampling).
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Figure 3.1.3. Another example of the second-order interaction analysis. The format is
basically the same as that of Fig. 3.1.1. See the legend of Fig. 3.1.1. However, the
quadrature counterpart of the interaction map shown in C is omitted for this example
cell, because the orientation tuning of the subunit is not sufficiently strong to define the
axis of the partial Hilbert transform. D shows the envelope of the interaction map shown
in C, and E shows the overall receptive field. The strongest second-order interaction
was observed at a correlation delay of 39 ms. The optimal spatial frequency and
orientation were 0.86 cycles/degree and 14°, respectively. The areal pooling ratio was

4.73, which was significantly larger than one (P < 0.05, resampling).
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Figure 3.1.4. Examples of the second-order interaction analysis for five additional
complex cells. For each analysis, the left panel shows the second-order interaction map
that exhibited the strongest interactions, the center panel shows its envelope, and the
right panel shows the envelope of the receptive field. Dashed ellipse represents the
bounds of the interactions, and solid ellipse delineates those of the receptive field. The
origin of the receptive field map corresponds to its center. The optimal correlation delay,
spatial frequency (SF), orientation (OR), and areal pooling ratio (PR; *P < 0.05,
different from one, resampling) are shown to the right of the receptive field for each
analysis. E and F show the responses of a single complex cell measured for the right

and left eye, respectively.
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Figure 3.2.1. Relationships between length and width. A: complex cell subunits. B:
complex cell receptive fields. C: simple cell receptive fields. In the scatter plots, the
width is plotted along the horizontal axis, and the length is plotted along the vertical
axis. The diagonal line of unity slope indicates a perfect correspondence between the
two values. The histograms depict the distributions of the length (right) and the width

(upper). Arrows in the histograms indicate the median values for each distribution.
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Figure 3.3.1. Distribution of number of subregions. A: within complex cell subunits. B:
within simple cell receptive fields. The number of subregions was computed from the
width and optimal spatial frequency parameters as described in the section Number of

subregions. Arrows indicates the medians of each distribution.
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Figure 3.4.1. Comparison of length-to-width ratios. A shows a comparison of the
length-to-width ratios on a log-log axis between the subunits and the receptive fields of
complex cells. The length-to-width ratios of subunits are plotted along the horizontal
axis, and the length-to-width ratios of receptive fields are plotted along the vertical axis.
The histograms depict the distributions of the length-to-width ratios of subunits (upper)
and receptive fields (right). B shows the distribution of the length-to-with ratios for
simple cell receptive fields. Arrows in the histograms indicate the medians for each

distribution.
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Figure 3.4.2. Comparison of aspect ratios. A compares the aspect ratios between the
subunit envelopes and the receptive fields. The aspect ratios for the subunit envelopes
are plotted along the horizontal axis, and those for the receptive fields are plotted along
the vertical axis. The comparison is depicted on a log-log coordinate. The histograms
illustrate the distributions of the aspect ratios for the subunit envelopes (upper) and the
receptive fields (right). B shows the distribution of the aspect ratios for the receptive
field envelopes of simple cells. Arrows in the histograms indicate the medians for each

distribution.
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Figure 3.5.1. Analysis of anisotropic elongation for the subunit envelopes and the
receptive fields of complex cells. The orientation of elongation was measured from the
absolute horizontal axis, and clockwise and counter-clockwise rotation was not
discriminated. The left panel shows the results of analysis for the subunit envelopes, and
the right panel shows those for the receptive fields of complex cells. In the scatter plots,
the aspect ratios are plotted against the orientation of the major axis. Filled symbols
denote data from cells for which subunit envelopes and receptive fields were
sufficiently elliptic (aspect ratio > 1.2; n = 59 for subunit envelopes in the left panel; n =
46 for receptive fields in the right panel). Open symbols are used for complex cells with
nearly circular (aspect ratio < 1.2) subunit envelopes (n = 27) and receptive fields (n =
40). The histograms depict the distributions of the orientation of the major axis for
complex cells with sufficiently elliptic subunit envelopes and receptive fields. The

criterion ratio is denoted by a solid horizontal line in the scatter plots.
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Figure 3.5.2. Analysis is shown of a possible relationship between the axis of receptive
field elongation and the optimal orientation for simple cells. The scatter plot compares
the optimal orientation and the orientation of the major axis of receptive field envelopes
for simple cells. Angle was gauged counterclockwise from the horizontal axis
(horizontal orientation and elongation correspond to 0°, whereas vertical correspond to
90°). In the scatter plot, filled symbols denote data from cells for which receptive field
envelopes were sufficiently elliptic (aspect ratio > 1.2; n = 114), and open symbols
represent data from neurons of which receptive field envelopes were not elongated, i.e.,
nearly circular (aspect ratio < 1.2; n = 38). The histograms depict the distributions of
optimal orientation (right) and the orientation of the major axis for the receptive field
envelopes (top). Only cells with sufficiently elliptic receptive field envelopes were

counted for the histogram at top.
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Figure 3.5.3. Relationship with the length-to-width ratio is examined for the optimal
orientation and spatial frequency for simple cells. A depicts the length-to-width ratio
against the optimal orientation as a scatter plot. Circles, triangles, and square symbols
indicate neurons which prefer low (< 0.25 cpd), middle (= 0.25 cpd and < 0.5 cpd), and
high (> 0.5 cpd) spatial frequencies, respectively. The cut-off values are arbitrary. The
mean length-to-width ratios were calculated for each group of cells categorized based
on the optimal orientation, and were superimposed in the scatter plot by a solid curve.
Error bars indicate the SDs. The receptive fields of cells pointed to by arrows (C-J) are
shown in the bottom corresponding panels. B plots the length-to-width ratio against the
optimal spatial frequency. Circles, triangles, and square symbols represent neurons
tuned to horizontal (within 30° of horizontal), oblique, and vertical (within 30° of
vertical), respectively. A solid curve and bars indicate the mean = SD values of the
length-to-width ratios for each population of neurons grouped on the basis of the
optimal spatial frequency. The cut-off values are the same as in A. The neurons labeled
in A are also indicated by arrows in B except for cells D and E, which are located in the
dense cluster of symbols near (0.2, 1). C-J illustrate the receptive fields of simple cells
which are indicated by arrows in A and B. Bright regions indicate ON subregions,
whereas dark regions denote OFF subregions. Solid ellipses indicate the extents of
receptive fields determined as 5% of the peak of the fitted Gaussian envelopes. The
center of each receptive field is defined as the origin. The optimal correlation delay,
spatial frequency (SF), orientation (OR), and length-to-width ratio (LWR) for C-J were
as follows, respectively: T =55, 42, 43, 54, 52, 51, 46, and 49 ms; SF = 0.32, 0.17, 0.25,
0.17, 0.98, 1.00, 0.33, and 0.50 cycles/deg; OR = 5°, 38°, 54°, 82°, 86°, 135°, 158° and

178°; LWR =2.43,1.03, 1.01, 0.73, 1.92, 1.15, 0.93, and 1.24.
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Figure 3.6.1. Analysis of spatial pooling for subunits in complex cells and the receptive
field size of simple cells. A shows the distribution of pooling ratios used to evaluate the
degree of the spatial pooling of subunits. An areal pooling ratio was defined as the
receptive field area divided by the subunit envelope area. Black bars highlight neurons
for which the areal pooling ratios exhibit statistically significant deviation from one (P
< 0.05, resampling). The minimalist energy model for complex cells predicts the areal
pooling ratios close to one. The median of the distribution is indicated by an arrow. B
shows the distributions of the areas of complex cell subunits (upper) and receptive fields
(lower). Black and gray bars indicate complex cells with and without significant spatial
pooling, respectively (P value = 0.05, resampling). C depicts the distribution of the
areas of simple cell receptive fields. Arrows in the histograms indicate the medians for

each distribution.
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Figure 3.6.2. Analysis of radial anisotropy of spatial pooling for subunits in complex
cells. The degree of spatial pooling was evaluated directionally along radial axes that
were at various angles with the major axis of the subunit envelope. A directional pooling
ratio was defined as the receptive field size divided by the subunit size, measured along
a particular radial axis, as schematically illustrated in C. A: The scatter plots show
relationships between the maximal (left) or the minimal (right) pooling ratios, and
directional angles at which they were obtained. Black symbols represent complex cells
for which areal pooling ratios were significantly larger than one (P < 0.05, resampling).
Gray symbols denote neurons without significant pooling. Filled circles indicate
neurons with sufficiently elliptic subunit envelopes, which ensure reliable determination
of their major axes (aspect ratio > 1.2). The remaining cells are shown by open symbols.
The histograms in A illustrate the distributions of directional angles to obtain the
maximal and the minimal directional pooling ratios. To examine the distributions,
complex cells with sufficiently elliptic subunit envelopes were selected. Following the
convention used in the scatter plots, black bars indicate neurons with significant spatial
pooling, and gray bars represent neurons without significant pooling. B plots the
geometric mean values of directional pooling ratios across neurons against angle from
the subunit major axis. Error bars indicate SEs. C illustrates definition of directional
pooling ratio, which was measured at an angle with the major axis of the subunit
envelope. By changing the angle parameter, the maximal and minimal size ratios were

searched between the subunit and the receptive field.
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Figure 3.7.1. Examples of bright-minus-dark maps for four complex cells. The
bright-minus-dark maps were calculated separately for dark and bright reference stimuli.
For each cell, the left panel shows the map for a dark reference, the center panel shows
that for a bright reference, and the right panel shows the second-order interaction map,
which is the difference between the center and left maps. These maps were obtained at
the same reference location at which the strongest second-order interaction was
observed. The reference location is indicated by the cross hairs. The optimal correlation
delay, spatial frequency (SF), orientation (OR), and areal pooling ratio (PR) for
second-order interaction maps are indicated to the right of the interaction maps for each
cell. Cells shown in B and C are identical to those in Figs. 3.1.4C and 3.1.2,

respectively.
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Figure 3.7.2. Analysis of center position for the envelopes of bright-minus-dark maps
for dark (left) and bright (right) reference stimuli. The center position was defined with
respect to the reference location, and plotted along the horizontal axis as spatial phase
angle for the optimal spatial frequency. The envelope and the center were computed for
each two-dimensional map, but only the offset perpendicular to the optimal orientation
(obtained by projecting the center onto the width axis) is shown in these figures. The
optimal spatial frequency and orientation were extracted via the Fourier analysis from
the second-order interaction map. The amplitude was divided by the SD of values on the
edges (1-pixel wide) of the bright-minus dark map envelope, and plotted along the
vertical axis. The maps for complex cells pointed to by arrows (A-D) are shown in the

corresponding rows in Fig. 3.7.1.
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Figure 3.7.3. Distributions of center position difference and amplitude ratio between the
maps for dark and bright references. The position difference is expressed in terms of a
phase angle for the spatial frequency of the subunit. The values were computed relative
to the parameters for the dark reference map. Therefore, the amplitude ratios greater
than one indicate that the bright-reference maps are stronger than the dark-reference
map, while those smaller than one indicate the opposite. For this analysis, only those
cells were selected for which normalized amplitudes exceeded three for both dark and

bright reference stimuli (n = 78). See also the legend of Fig. 3.7.2.
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Table 4.1. Summary of results. The upper part summarizes comparisons between

subunits and receptive fields to examine the minimal model for complex cells. The

lower part summarizes comparisons between complex cell subunits and simple cell

receptive fields to examine whether they are equivalent to each other. The comparison

of spatial extents is based on length, width, and areal size, whereas the comparison of

spatial shape is based on aspect ratios, length-to-width ratios, and the orientation of

elongation. Brief comments and relevant examples are given in the rightmost column.

Comparisons of complex cell receptive fields and their subunits

Spatial extents v' | Receptive fields are slightly larger (mean areal ratio =
1.2)
Spatial shape v" | Receptive fields are slightly more circular than
subunits.
X

Response maps for
bright and dark
references

Response strengths can be imbalanced (e.g. Figs.
3.7.1C and D).
Center positions can be different (e.g. Fig. 3.7.1D).

Comparisons of complex cell subunits and simple cell receptive fields

Spatial extents v | Similar

Number of subregions | x | Complex cell subunits have more subregions than
simple cells.

Spatial shape X

Envelopes of simple cell receptive fields tend to be
elongated more horizontally than vertically (e.g. Figs.
3.5.3C-F, and J).
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