Osaka University Knowledg

Title The Equipartition Method for Parallel Generation
of Random Numbers

Author(s) |4X%F, &

Citation

Issue Date

Text Version|ETD

URL https://doi.org/10.11501/3110133

DOI 10.11501/3110133

rights

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/repo/ouka/all/

Osaka University

The Equipartition Method for Parallel
Generation of Random Numbers

Jun Makino

Department of Management Information,

Fukuyama Heisei University, Fukuyama 720, Japan

Abstract

Random numbers in a typical parallel computation can be considered to form a two di-
mensional array whose rows are generated in parallel. A simple and general method of
constructing such an array is the equipartition method. In this method, a period of a ran-
dom number sequence is divided into segments of equal length which are then arranged
in rows or in columns to form an array. The row-wise arrangement is called a horizontal
configuration and the column-wise one a vertical configuration.

Parallelization in the equipartition method is useful only if both the initialization and the
generation procedures can be executed efficiently. We show that generators of the lagged-
Fibonacci type — additive, subtractive, multiplicative generators as well as shift register
generators — can be parallelized in horizontal configurations. For the shift register method,
parallelization in vertical configurations is also available.

In order to apply the equipartition method in a horizontal configuration, one must eval-
uate terms hugely separated from the initial terms in the original sequence. For lagged-
Fibonacci generators, algorithms based on a single prescription permit to compute remote
terms. Assuming that the degree of the recurrence is p, the complexity of the algorithms
to fix the nth term is O(plog n) for shift register generators, and is O(p*log n) for additive,
subtractive and multiplicative generators.

In many parallel Monte Carlo computations, randomness of the array both in the row and
in the column directions plays important roles. In the equipartition method, the array has
a rather trivial structure when it is viewed as an arrangement of the equipartitioned strings.
The structure in the orthogonal direction is, however, not trivial at all. Our discussion shows
that we can tune the equipartitioning so that all the orthogonal strings as a whole form a
periodical sequence with the same period as the original sequence.

For shift register generators, the parallel structure can be analyzed in more detail. For
this purpose, we introduce a formalism named the PFSR. In designing a parallel shift register
generator, one must take care that no duplication occurs not only in the sequences of random
numbers but also in the shift register sequences generated in parallel bit positions. The PFSR

formalism gives simple criteria for judging whether these conditions are satisfied or not.

Contents

1 Introduction 3

2 Generation of Shift Register Random Numbers on Vector Processors 7

2.1 Equipartition method on vector processors - - « - -« - oo

2.2 Vectorial generation of shift register random numbers - - - - - - - 8
2.3 Initialization of random vectors - - - - - - - - oo 11
2.4 Some comments on the vectorial generator - - - - - - - oo 14

3 Generation of Shift Register Random Numbers on Distributed Memory

Multiprocessors 16
3.1 Programming style of distributed memory multiprocessors - - -« - - - - - - 16
3.2 Random number generation on multiprocessors - =+« <+« ool 17
3.3 Sample generator - - - - e e e e e 20

4 Lagged-Fibonacci Random Number Generators on Parallel Computers 24

4.1 Equipartition method for lagged-Fibonacci sequences - - -« - = -« - -+ .. 24
4.2 Lagged-Fibonacci generators -« « =+« = =+« v oo 25
4.3 Parallelization - - - - « « « « e e e e e e e e e 2%
4.4 Large delay for Fi(p,q,)« -+« « « oo oo 97
4.5 Large delay for Fi(p,q, %) - =+« « oo o oo 30
4.6 Tmplementation - « =« = e e e 31
5 Binary Method of Evaluating Remote Terms in a Recurrent Sequence 36
5.1 General prescription - « « e e 36
5.2 Shift register generators « « - -+« ¢ o oo e e 38

5.3
5.4
3.5

Additive and subtractive generators - - - - o oo oo
Multiplicative generators -----------------------------

Comparison to existing algorithms - - -+ -« - -« v v v v v v

6 Structure of Parallelized Random Number Sources

6.1
6.2
6.3

Parallelized random number source - - - « -« « o oo oL
General theory ----------------------------------
Applications ------------------------------------

7 Parallelized Feedback Shift Register Generators

7.1
7.2
7.3
74
7.5

FSR SEQUENCES -+ « « « « « « o o o e e e
GEFSR Generators « « « « « « « + o oot
PFSR @enerators - - - -+« « « o o oo e e
Phase shift analysis of the PFSR generators - - - - -+« -« v oo oo

Examples

8 Conclusion

45
45
46
52

55
35
57
38
60
62

69

Chapter 1

Introduction

The Monte Carlo method has become a powerful and indispensable approach in many
branches of science. It is characterized by the use of random numbers generated on comput-
ers. Study of pseudorandom number generation has a long history tracing back almost to
the birth of electronic computers [14]. The main purpose is of course to get a good source
of random numbers. Here a random number generator may be said to be good if it fulfils
three criteria: a long period, high speed and randomness. The congruential method and the
lagged-Fibonacci method have been used as good generators which satisfy these criteria to
some extent. But the advent of supercomputers added new aspects to each of these three
conditions.

First, a random number generator is now required to have a period much longer than
ever: Large scale Monte Carlo simulations are the main task of supercomputers, and they

230 random numbers, which constitute the

use a huge amount of random numbers. In fact,
whole period of a typical congruential sequence, can be generated within a few seconds on
many of these machines.

Secondly, high speed generation of random numbers on a supercomputer requires an
algorithm especially suited to the machine. The high performance of a supercomputer is
based on parallel processing in which multiple parts of a computation are concurrently
executed. The parallelism exploited by a supercomputer is deeply related to the architecture
of the machine, and a programer must carefully select algorithms to extract full performance
of the machine. A parallel algorithm of random numbers is hoped to achieve efficiency not

only of the generation itself but also of the total computation in which random numbers are

consumed.

Lastly, randomness is required in an extended meaning on supercomputers [16]. Random
numbers generated on computers are not random in the strict sense, because they are gener-
ated by a definite algorithm. They merely seem to be random for most applications, if they
are produced by a good generator which would pass a series of standard statistical tests [14].
For parallel computations, the situation is much more complex. Though random numbers
form a single sequence in a traditional computation, random vectors are produced serially on
vector processors and multiple sequences are generated in parallel on multiprocessors. Thus
random numbers form a two dimensional array of numbers in a typical parallel computation.
The new feature is that randomness is required not only for each vector or each sequence but
also for the two dimensional array of random numbers. We have little knowledge about such
randomness, and randomness is presumably the most serious problem for parallel generation.

The purpose of the present work is to develop a parallel method of generating random
numbers taking into account the three criteria described above. We call the method the
equipartition method because it is based on equipartitioning of a single random number
sequence. We apply the method to parallelize lagged-Fibonacci sequences, whose periods
are so long that sufficient amount of numbers can be generated for any conceivable scale
of computation. In this method, random numbers are produced quite efficiently: maximum
improvement of speed is acquired by the parallelism. Furthermore, the equipartition method
gives the two dimensional array a definite structure which enables us to analyze the parallel
generator theoretically.

The importance of theoretical analyzability is indicated by the prevailing confidence
in the congruential method. Though a lot of methods have been proposed for producing
random numbers on computers, the congruential method has been the most popular one all
the time. Indeed the congruential method may be quite simple and very efficient, but it has
a well-known drawback: Points in a high-dimensional space concentrate in a small number
of parallel hyperplanes [22]. The very reason for the popularity of congruential generators
seems to be that their theoretical properties are well understood including such a defect.
The shift register method, which is increasing its popularity in recent years, is the method
whose theoretical analysis is most advanced next to the congruential method. In designing a
parallel generator, we have to fulfil the criterion that theoretical analysis of its properties is

feasible. When sequences are generated in parallel, randomness is required not only within

each sequence but over whole the construct made up by the sequences. If generators of quite
different types were used in parallel, the analysis of such a construct would be very difficult.
In this respect, parallelization based on equipartitioning of a single sequence seems to be
especially favorable.

In the equipartition method, a string of random numbers which forms a period of a
pseudorandom sequence is divided into segments with equal length. These segments are
then arranged to form a two-dimensional array, the rows of which can be generated and
utilized in parallel. (The direction in which random numbers are sequentially generated will
be taken to be the row direction.) On a vector processor, for example, column-vectors of
such an array are generated sequentially on a vector register. On multiprocessors, each row
can be assigned to each node processor. Such an array will be denoted as (v; ;) and will be
called a parallelized random number source or a parallelized source for short. In utilizing a
pseudorandom sequence, one should not generate more than a small part of the total period.
In this respect, a string of random numbers which forms a period in the sequence may be
called a random number source. In applying a parallelized source, which is a two-dimensional
arrangement of such a source, one must take care that the generated numbers are only a small
portion of the parallelized source. Two different types of arrangement are used to construct
a parallelized source from a given sequence. One of these is a horizontal configuration in
which a random number source from the original sequence is divided into segments of equal
length which are then arranged row by row to construct a parallelized source. The other
is a vertical configuration where segments are arranged column by column. Both of these
configurations are widely applied in parallel computations.

The work consists of two parts. From chapter 2 to chapter 5, we describe how to par-
allelize lagged-Fibonacci generators, presenting various algorithms necessary for the paral-
lelization. In chapters 6 and 7, we discuss properties of the parallelized random numbers
through theoretical analysis of the structure of parallelized sources.

Among the lagged-Fibonacci generators, shift register generators have much simpler
structure than the other generators. Because we can derive more results for shift regis-
ter generators, we treat these generators separately from the other generators. For example,
a shift register generator is easily parallelized not only in a horizontal configuration but in

a vertical configuration. Furthermore, parallelization of a shift register generator involves

many interesting features specific to vectorial computers. Therefore, we discuss generation
of shift register random numbers on vector processors in the next chapter. Chapter 3 deals
with the parallelization of the shift register method on distributed memory multiprocessors.
Other types of the lagged-Fibonacci generators with +, — or * are parallelized in chapter
4. In chapter 5, we propose a general prescription to evaluate remote terms in a recurrent
sequence. Chapter 6 is devoted for the analysis of the structure of the parallelized random
number source when it is viewed in the row direction or in the column direction. The anal-
ysis of the structure is performed in more depth for parallelized shift register generators in
chapter 7. Chapters 2, 3, 4, 6 and 7 are based on the author’s published papers [17], [18],
[20], [19] and [21] respectively.

Chapter 2

Generation of Shift Register Random
Numbers on Vector Processors

2.1 Equipartition method on vector processors

A set of random numbers, which are generated vectorially with a vector length [, may be
denoted by a column vector with [components. Typically, such a generation is repeated a
large number of times m, resulting in a matrix of random numbers v;; (0 < <[—1,0 <
Jj < m —1). The problem is that no general method is known to define and check the
randomness of such a two dimensional array of numbers. To circumvent this problem, a
single sequence (x;) with established randomness can be used to construct (v; ;) in such a
way that the randomness most important for (v; ;) is assured by the randomness of ().
Typically, there are two types of configurations in which (z;) is arranged into (v; ;) . One

is to arrange (x;) in the column direction with a constant spacing L between columns:
Vijj = TigjL-

Such an arrangement will be called a vertical configuration. The other possibility is a

horizontal configuration in which (a;) is arranged in the row direction as
Vi = il

Vectorization of a single random sequence in either of these two configurations is called
the equipartition method. Since randomness of the original sequence is assured only in a
restricted sense, the configuration of vectorial generation must be chosen carefully to fit the

randomness required in the program.

2.2 Vectorial generation of shift register random
numbers

High speed generation on vector processors requires an algorithm especially suitable to
these machines. Above all, the generation algorithm must be vectorizable. Furthermore, it
is hoped to be used inline in the application program in which random number generation
is involved. The advantage of inline random number generation was once advocated by
Marsaglia and Bray [23]. But it becomes more important on vector processors, because
CALL statements are not vectorized by vectorizing compilers. Thus a call for a subroutine
may interrupt the total performance of a vectorized program, even if the subroutine itself
has a satisfactory efficiency.

The shift register method of random number generation has attracted many researchers
since it was first introduced by Tausworthe in 1965 [29]. The main interest has been the
possibility to prevent multidimensional lattice structure found in congruential sequences
[22]. In this method, a sequence of random numbers (z;) is generated in terms of a linear
recurrence of degree p,

Ti = Ti—p D Li—gq- (21)

Here p and ¢ are integers which satisfy 0 < ¢ < p, and & denotes bitwise exclusive-or
operation [15]. As is easily seen from (2.1), the reciprocal recurrence x; = x;_p, © i_(p—q)
generates the same sequence in reverse order. If we define an operator D by x; = Dz;_4, the

recurrence (2.1) is written as a trinomial over G'F'(2):
DP D744 1 =0.

In terms of another operator X defined by x; = Xy, the recurrence relation is expressed
as X? + X9+ 1 = 0. If the characteristic trinomial «¥ 4+ 2% 4+ 1 is primitive over G'F(2),
the period of the sequence is 27 — 1. Lists of primitive trinomials are found in references
[31, 32, 33], and one can choose p appropriately so that the period is long enough for any
application.

As is seen from logical independence, the recurrence (2.1) can generate up to g consecutive

terms in parallel. This parallelism is extended to ¢ - 2* terms, if one uses a relation
Ti = Tj_p.ok S5 Ti_g.ok (2'2)

8

to generate random numbers. (2.2) is an immediate consequence of (2.1) because
pr2t 4 pl—a2t 4 — (D? + DP9 4 1)2k

by the squaring property of polynomials over GF'(2). It is possible to vectorize generation
of shift register random numbers based on this parallelism. But such a generator is not
appropriate for inline use, because the vectorized loop will be complicated by instructions
to control the table keeping the latest series of random numbers for the next generation.
The vectorization method adopted in this chapter is to generate a sequence of random

vectors by a vectorial recurrence
Vij = Vijp B Vijg. (2.3)

Thus each row of (v;;) is generated by itself in terms of the original recurrence (2.1). In
this method, the logical independence required for the vectorization is obvious. If the phase
of generation j is allowed to depend on 7, generation of each row sequence may be made
asynchronously. But hereafter j is assumed to be independent of 1.

At first sight, (2.3) may seem to be applicable only to horizontal configurations. However,
it can also generate a vertical configuration if the spacing between columns is of a special
value. To see this, notice that each row of a vertical configuration is a subsequence consisting
of every Lth term of the original sequence (x;). If L is relatively prime to 22 — 1, such a
subsequence is also a shift register sequence generated by a primitive polynomial of degree
p. Thus the row sequences can be generated by applying a single recurrence of degree p in
parallel. For general L, the recurrence includes exclusive-or of many terms so that generation
of (v; ;) will be time consuming. But if L is chosen to be an integer power of 2, the recurrence

coincides with (2.3): In a vertical configuration
Ui,5 = Tiqj.20, (24)

the vectorial recurrence (2.3) is an immediate consequence of (2.2). In this configuration,
every rows as well as columns of (v, ;) constitute consecutive parts of the original sequence
(x;). But the assured randomness of the original sequence is reflected only in column se-
quences, because randomness of (x;) is usually examined for only a small part of the long

period in the neighborhood of zq.

The great advantage of (2.3) is that it can be used inline in FORTRAN programs. In
actual codes, a two dimensional array of integers, say IRAND, is used rotationally to store p
consecutive vectors. First of all, initial values have to be given to all [x p elements of TRAND.
(A simple method to do this will be given in the next section.) Then, initializing J1 and K1
to —1 and p— ¢ — 1 respectively, one can generate vectors of random numbers in such a code
as

DO 200 N=0,m —1
J1=MOD(J1+1,p)
K1=MOD(K1+1,p)
DO 100 I=0,/—1
IRAND(I,J1)=IEOR(IRAND(I,J1),IRAND(I,K1))
100 CONTINUE
200 CONTINUE

where IEOR denotes bitwise exclusive-or. The deepest loop is vectorized, and it actually
contains many instructions which may form the main step of a Monte Carlo simulation.
Practically, several random vectors may be generated in a vectorized loop. It is quite
easy to generalize the above code to these cases. For example, in order to generate random
vectors twice in the vectorized loop, introduce a set of new variables J2 and K2 with initial

values 0 and ¢ respectively, and insert a new line
IRAND(I,J2)=IEOR(IRAND(I,J2),IRAND(I,K2))

in the deepest vectorized loop. In the outer loop, J1,K1,J2,K2 should be added by two
modulo p.

The performance of the algorithm would be appreciated when it is applied inline in
simulation programs. But for reference, the speed of generation was tested by the code
described above with p = 250 and ¢ = 103. On SX-2N, the time per one number generation
was 5.5 nsec when [= 256 which is the saturation length of this machine. The corresponding
value on S820/80 was 3.6 nsec, but the speed on this machine was higher for a larger vector

length. For example, it was 1.7 nsec for [= 16384.

10

2.3 Initialization of random vectors

For a recurrence of degree p to define a sequence, p initial values must be given for the
sequence. Thus the shift register recurrence (2.1) needs values of xq,21,..., 2,1 to define
the whole sequence (x;). Analogously, the vectorial recurrence (2.3) requires p initial vectors
to be specified: All [x p values of IRAND or equivalently v;; (0 < <[—-1,0<j5<p-—1)
must be initialized. To construct (v; ;) from (x;), two initialization procedures are necessary
to define (x;) and then to define (v, ;). Various methods to initialize (x;) are seen in the
literature [15, 13, 6]. In this section, a simple procedure is given to initialize (v; ;) assuming
that (;) has been initialized by an appropriate method. One of the problems in initializing
(v; ;) is that the number of values to be fixed will be considerably large. But this will not
be a point if the initialization procedure is vectorizable. Another problem is quite serious
for a horizontal configuration. Because the spacing M between rows are generally very
large, the set of initial values for (v;;) involves numbers distantly separated in (x;). As
it is impracticable to calculate all the numbers up to x_1)ar4p—1 recursively, an especially
efficient algorithm is needed to initialize a horizontal configuration.

To get a simple initialization procedure for a horizontal configuration, let the spacing be

restricted to be a power of 2 so that
Ui,5 = L2845 (25)

A large delay can be evaluated by dividing operators such as D"*" by DP 4+ DP~7 4+ 1 to
obtain the remainder polynomial [2]. In fact, if all the coefficients ¢; ; are fixed (to be 0 or
1) in

D" = ciotcaD+ e, DT (2.6)

each v;; in (2.5) is given by
Vij = Cio%; B CiaTiyn B B Cipo1Tigp-1. (2.7)

Thus each of the values to be initialized for (v; ;) can be evaluated as a linear combination
of p consecutive terms in (x;) near the origin of the sequence xy.

The computation of (¢; ;) can be performed efficiently by using the squaring property of
polynomials over GGF'(2) [30]. First let l[p = min(/, p), and set ¢;; = &, ; (0 <i <[y —1,0<
J < p—1). Then the following code rewrites C(I,J) to the coefficients in (2.6).

11

DO 500 K=p —1,0,-1
DO 310 J=p—1,0,-1
DO 300 I=0,lp—1
C(I,2%xJ+1)=0
C(I,2%J)=C(1,J)
300 CONTINUE
310 CONTINUE
DO 410 J=2p —2,p,-1
DO 400 I=0,lp—1
C(I,J—p)=IEOR(C(I,J—p),C(I,I))
C(I,J—¢)=IEOR(C(I,J—q),C(I,))
400 CONTINUE
410 CONTINUE
500 CONTINUE

The innermost DO loops with terminals 300 and 400 do the work vectorially for all i’s. To
see the idea behind the above code, ignore these loops and consider a fixed ¢ for a moment.

When the DO loop 310 starts, D"?" is expressed as

k41

1.2k+1 -1
cio+eaD +o 4t ci,p—lD(p))

which is the expansion in the basis {1, D1'2k+1, RN D(p_l)'ZkH}. Observing that the basis
can be written as {1,D2'2k, = ‘7D(2p—2)~2k}7 the loop 310 shifts the coefficients to give an
extended expression

125 7.2k
cioteaD + ot D

with 7 = 2p — 2. The length j 4+ 1 in this expression can be reduced by one, by rewriting the
last term using a relation Di?t = pli-p)2* + DU=92% which is equivalent to (2.2). The DO

loop with terminal 410 repeats this until the expression becomes
cio+ ciaDYY 4 iy DTV

which is the expansion in the basis {1, Dl'zk, R D(p_l)'zk}. In this way, the loop 500 rewrites
the coefficients (¢; ;) repeatedly as the basis changes down to the canonical one. Notice that

the simplicity of the algorithm is a result of the restricted spacing in (2.5).

12

Now the whole procedure to initialize a horizontal configuration (2.5) can be described.
Assume that xq,..., 2,1 are initialized by an appropriate method so that (z;) has good

randomness. Then the following steps initialize (v; ;) properly for (2.5).

Step 1. Compute x,,..., T3y 2.

Step 2. Compute ¢;; (0 <i<l[y—1,0 <7 <p—1) by the algorithm described above.
Step 3. Compute v;; (0< 1<l —1,0<j<p—1) by (2.7)

Step 4. If p <[, compute v;; (p <i<[—1,0 <7 <p—1) recursively by
Ui5 = Ui—p,j D Vi—q,5- (28)

The main steps 2 and 3 are necessary only in initializing the first p rows of (v, ;), because the
other rows are then simply given by (2.8) which is also a result of the restricted horizontal
configuration (2.5).

The initialization procedure described above is very effective, and it is desirable that the
same algorithm can be applied also to vertical configurations. For a vertical configuration,
the necessary and sufficient condition for the vectorial recurrence (2.3) to be applied is that
it is in the special form (2.4). And in this case, almost the same procedure can be applied

as in the case of horizontal configurations:

Step 1. Compute x,,..., Tp41,—2.

Step 2. Compute¢;; (0<i<p—1,0<j5<p—1).
Step 3. Compute v;; (0<i<lp—1,0<j<p—1)by

Ui; = G50, S Ci1Ti41 DD Cip—1Ti4p—1-

Step 4. If p <[, compute v, ; (p <i<[—1,0<7<p—1) by (2.8).

For vertical configurations, (2.8) is a trivial relation. Notice that each step except Step 4 has
a slight difference from the corresponding step for horizontal configurations. Step 2 can be

coded as in the horizontal case but with the loops 300 and 400 ranging from I=0 to p — 1.

13

The vectorizability of Step 2 has already been discussed. It is easy to see that Step 3,
which is another important step, is also vectorizable. Step 4 can be vectorized with respect
to 7. Step 1 is also vectorizable via the inherent parallelism of the recurrence described at
the top of §2, but it is generally not important because the step is only a small part of the
whole procedure.

The initialization procedure described in this section was coded into two FORTRAN sub-
routines, one for horizontal configurations and the other for vertical configurations. The
execution times of these subroutines were short enough so that they would be negligible
for large scale computations. For example, a call for a subroutine to initialize a horizontal
configuration with p = 250, ¢ = 103, | = 256, ¢ = 32 needed only 0.15 sec on SX-2N and
0.066 sec on S820/80.

2.4 Some comments on the vectorial generator

The congruential method has been the most common random number generator even on
vector processors. Though its period is relatively short, the simplicity and the versatility
of the algorithm are the very characters required for a generator on vector processors. In
this chapter, it has been shown that these properties can be shared by the shift register
method: Inline generation is possible by vectorial application of the recurrence, leading to
either vertical or horizontal configuration at one’s disposal. Initialization for the vectorial
recurrence may have been an obstacle in applying such a method, but a simple procedure is
shown to do this quite efficiently for either of the configurations.

One of the penalties of the shift register method is the necessity for a large table to
keep consecutive random numbers for its recurrence. The generation method discussed in
this chapter prefers the vector length to be not very large. When the vector length is
extraordinarily large, it may cause some trouble in allocating a large memory space for the
rotation table IRAND. In such a case, use of a subroutine based on the parallelism inherent
in the recurrence may be more appropriate [11].

Randomness of (v; ;) as a two dimensional array has not been discussed. In fact, there
seems to be no general way to check such randomness. In this chapter, instead, the generator
is required to cover two types of configurations. For a simulation in which randomness within

a row is respected, generation in a horizontal configuration may be desirable. If randomness

14

within columns is more important, a vertical configuration will be preferred. For many
computations, however, randomness in both directions would be important. In such a case,
repeated computations in both configurations will be helpful to see if the results do not
depend on the sources of random numbers. It is very easy to do this because one must only

change to call another subroutine to initialize (v, ;).

15

Chapter 3

Generation of Shift Register Random
Numbers on Distributed Memory
Multiprocessors

3.1 Programming style of distributed memory multi-
processors

The high performance of supercomputers is based on parallel processing in which multiple
parts of a computation are concurrently executed. The parallelism exploited by a supercom-
puter is deeply related to the architecture of the machine, and a programer must carefully
select algorithms to extract full performance of the machine. Among several different ar-
chitectures used on supercomputers, distributed memory multiprocessors often need specific
algorithms. On these machines, a separate program runs on each processor communicating
by message-passing operations. Typically, these programs are copies of a single program, and
this style of programming is referred to as single code multiple data (SCMD) or single pro-
gram multiple data (SPMD) [10]. In this chapter, random number generation on distributed
memory multiprocessors is discussed on the assumption of this programming style.

There exist vast class of problems which are intrinsically suited to be concurrently pro-
cessed. Existing random number generators, however, seem to be not of this type: A random
number generator is usually defined in terms of a recurrence relation, which seems to char-
acterize the sequential nature of the algorithm. This is not true, however, because each
processor can generate random numbers by itself if the processor is given a generator for

its use. Generators distributed to the processors can be based on a single algorithm with

16

some of the parameters different from generator to generator so that they work in paral-
lel on multiprocessors. Today, random number generation on multiprocessors seems to be
realized usually in this style. However, if the parameters are distributed to the generators
carelessly, strong correlations may well occur among the generated sequences. To avoid
this, a consistent method must be investigated to insure independence among the multiple
sequences.

In this context, we discussed generation of shift register random numbers on vector
processors in chapter 2. The method proposed there was typically to generate multiple
regularly delayed versions of a single shift register random number sequence. By introducing
a definite mathematical structure in the totality of multiple sequences, the method permits
arranging various parameters to give the structure some desirable properties. Especially, if
the delay between the neighboring sequences is taken to be a power of two, numbers generated
within a random vector form a part of a shift register random number sequence that obeys the
same recurrence as the original sequence. In this case, the initialization procedure necessary
for the vectorial generator can be accomplished quite efficiently in vectorial fashion.

The main purpose of the present chapter is to show that the method is also available on
distributed memory multiprocessors in a quite natural and efficient fashion. Note that the
programming style of these computers is quite different from that of vector processors, and
a vectorial generator of random numbers is not always applicable to such machines. For ex-
ample, there is another way to generate shift register random numbers on a vector processor:
Because a shift register recurrence usually involves only a few terms, many consecutive num-
bers in the sequence can be generated concurrently. (See for example [11].) But this kind of

vectorial generator would be hard to implement on distributed memory multiprocessors.

3.2 Random number generation on multiprocessors

A random number generator which is extensively used on customary processors does not
necessarily work well on machines of a newer type. Like many other algorithms, a generator
on such a computer have to satisfy many conditions which are intimately related to the
architecture and the programming style employed by the machine. So it would be appropriate
to start the discussion enumerating some of these conditions required for a random number

generator on distributed memory multiprocessors: (a) According to the SCMD programming

17

style on distributed memory multiprocessors, a single algorithm should generate multiple
sequences on multiprocessors in parallel. (b) The generator is desired to work independently
within each processor and to be free from communication with other processors. Then it
can be applied to a parallel computation without interrupting the parallelism of the whole
program. (c) Multiple sequences generated on multiprocessors are hoped to be reproducible
on a traditional computer as well as on multiprocessors. This condition, together with the
above one, will be helpful in debugging parallel computations which involve random number
generation. (d) The multiple sequences generated on multiprocessors must be ‘independent’
of each other in some sense, though they could not be truly independent as they are generated
by a definite algorithm.

It would be very difficult to devise a genuine parallel generator which satisfies all of these
conditions. Instead, a simple approach is used where multiple parts of a single sequence
separated by a long enough distance is used as multiple sequences. Thus let (x;) be a
pseudorandom sequence generated by a definite recurrence relation. The multiple sequences
used on multiprocessors may be denoted as a matrix (v; ;) where the i-th row is the i-th
sequence. The idea is simply to let v; ; = z;p74;. The phase difference M between neighboring
sequences is a constant which is chosen to be greater than the number of random numbers
used in a sequence. It is evident that each row sequence is generated by the same algorithm
that generates the original sequence (x;), provided initial value(s) for each row sequence have
been calculated. One advantage of this approach is that the two dimensional structure of
the multiple sequences can be analyzed to some extent which may give insights to the study
of ‘independence” among the sequences. For example, columns of (v; ;) are M-th decimation
of (x;) and would obey a definite recurrence. By examining this recurrence, it is possible to
investigate properties of column sequences which are crucial for many parallel computations.

The congruential method is an example of the generator which is widely used on multi-
processors in the style discussed above. Typically, it generates a sequence of integers (x;) by

a recurrence r; = ax;_; mod m. On multiprocessors, each sequence is generated by
Ui = aU; 51 mod m, (31)
provided the initial value is properly set to be

Vio = TiM-

18

A column sequence is also a congruential sequence generated by v; ; = bv;_; ; mod m, where
b = @™ mod m. One of the defects of the congruential method is that its period is too
short: The period of a typical multiplicative congruential generator on 32-bit computers
is 2%° which is generated within a few seconds on many modern supercomputers. Another
problem is that the period of a decimation of the original sequence is sometimes very short.
This is especially troublesome when the modulus m is a power of 2. For example, if (a;) is a
congruential sequence with m = 232 and a period of 2%°, the period of the 2°-th decimation
(a;5s) is only 2078, This is really a problem, because Monte Carlo computations on highly
parallel multiprocessors are often effected by such decimations with no small values of § and
a congruential sequence of a shorter period is generally less random [12].

Generators based on a shift register sequence have fascinating properties in these respects.
To see this, let the characteristic polynomial be f(z) = cot+cia+cza®+- - +caf (g = ¢, = 1)
which is primitive on GF(2). The sequence in the i-th row is generated by

Vi = C1vi -1 D Vg B D Uiy, (3.2)
if initial values are set to be
Ui5 = TiM+j jZO,l,...,p—l. (33)

First, its period 22 — 1 can be very long, which by itself justifies use of shift register random
numbers in large scale simulations. Furthermore, the period is easily handled to be a prime
number by taking the degree of the characteristic polynomial p to be a Mersenne exponent.
Then a decimation of the original sequence is always a shift register sequence of the same
period. Particularly, the columns of (v; ;) are also a shift register random sequence whose
fundamental features can be analyzed. For example, k-distribution can be established not
only for the original sequence but also for the sequence generated in columns. Even if the
period is not a prime number, the situation would be much more optimistic than in the
congruential case because the period is very long.

Generation of random numbers in the shift register method can be faster than in the con-
gruential method, because the recurrence (3.2) usually involves only one exclusive-or which
is faster than a multiplication in (3.1). The main problem in applying a shift register gener-
ator to parallel computations is the initialization procedure preparing proper initial values

as in (3.3) for each row sequence. When the delay M is a power of two, the initialization is

19

known to be executed quite efficiently using the squaring property of shift register sequences
[17,30]. On vector processors, the procedure can be executed in full performance of machines
because it is almost completely vectorizable [17]. In the next section, the method is shown to
apply equally well to multiprocessors by describing all programs including the initialization

procedure in accordance with the conditions described at the beginning of this section.

3.3 Sample generator

An example of random number generator package is given in this section to show how the
general idea described in the preceding section can be realized. Figure 3.1 is the sample
package for initializing and generating a specified subsequence. It is coded in the standard
FORTRANTYT7 language except it contains some bit operation functions. Though bit opera-
tions are served by many modern FORTRAN compilers, their expression varies from system
to system. The code described here is intended to be used on a Fujitsu AP1000 multi-
processor system. Integers are assumed to be represented in 32 bits with 2’s complement
notation.

The program package given here is meant as a sample because the method described
in the preceding section contains much arbitrariness. In fact, no definite idea was given to
fix the characteristic polynomial f(x), the initialization method for the original sequence
(x;), and the phase difference between neighboring sequences M. How to get a generator
with good randomness by fixing the arbitrariness is a subject for future study. Here a single
generator was chosen simply to make the description concrete. The generator of the original
sequence adopted here is that of Fushimi and Tezuka [6, 4]. It is essentially a Tausworthe
generator [29] based on a primitive trinomial f(z) = 2*?'+2*241 with 31-bit word length and
32-bit delay between consecutive words. The delay between two neighboring subsequences
was chosen to be M = 2%61,

URAND is a subroutine which gives a uniform random integer between 0 and 23! — 1 in its
argument IRND. A random number uniformly distributed in [0,1) can be provided if IRND is
divided by 2.0%*31. This subroutine is a description of the popular GFSR algorithm [15].
The common block stores two integers JR and KR and an array of integers IW which is a table
of p consecutive numbers in the sequence. JR and KR remember relevant addresses in the

table IW to extract a random number from the table and to replenish the table with a newly

20

SUBROUTINE URAND (IRND)

PARAMETER (IP=521,1Q=32)
COMMON // JR,KR,IW(0:IP-1)
IRND=IW(JR)
IW(JR)=XOR(IW(JR),IW(KR))
JR=JR+1

IF (JR.EQ.IP) JR=0
KR=KR+1

IF (KR.EQ.IP) KR=0

END

SUBROUTINE CINIT (NSEQ)

CALL INIT
CALL DELAY(NSEQ,261)
END

SUBROUTINE INIT

PARAMETER(IP=521,1Q=32,ISEED=1)
COMMON // JR,KR,IW(0:IP-1)
INTEGER IB(0:IP-1)
IX=ISEED
DO 10 I=0,IP-1
IX=IX*69069
IB(I)=ISHFT(IX,-31)
10 CONTINUE
JR=0
KR=IP-IQ
DO 30 J=0,IP-1
IWORK=0
DO 20 I=0,31
IWORK=ISHFT(IWORK,1)+IB(JR)
IB(JR)=XOR(IB(JR),IB(KR))
JR=JR+1
IF (JR.EQ.IP) JR=0
KR=KR+1
IF (KR.EQ.IP) KR=0
20 CONTINUE
IW(J)=ISHFT(IWORK,-1)
30 CONTINUE
END
C

110

120

210

220

300

310

320

330
340

410

420

SUBROUTINE DELAY (LAMBDA,MU)

PARAMETER (IP=521,1Q=32)
COMMON // JR,KR,IW(0:IP-1)
INTEGER IWK(0:2%IP-2),C(0:2%IP-1),IB(0:IP+31)
DO 110 I=0,IP-1
IWK(I)=IW(I)
CONTINUE
DO 120 I=IP,2%IP-2
IWK(I)=XOR(IWK(I-IP),IWK(I-IQ))
CONTINUE
DO 210 I=0,MU-1
IB(I)=0
CONTINUE
M=LAMBDA
NB=MU-1
CONTINUE
IF ((M.GE.O).AND.(M.LE.IP-1)) GOTO 300
NB=NB+1
IB(NB)=AND(M, 1)
M=ISHFT(M,-1)
GOTO 220
DO 310 I=0,IP-1
¢(I)=0
CONTINUE
c(M)=1
DO 340 J=NB,0,-1
DO 320 I=IP-1,0,-1
C(2*I+IB(J))=C(I)
C(2*I+1-IB(J))=0
CONTINUE
DO 330 I=2#IP-1,IP,-1
C(I-IP)=XOR(C(I-IP),C(I))
C(I-IQ)=XO0R(C(I-IQ),Cc(I))
CONTINUE
CONTINUE
DO 420 J=0,IP-1
IWORK=0
DO 410 I=0,IP-1
IWORK=XOR (IWORK,C(I)*IWK(J+I))
CONTINUE
IW(J)=IWORK
CONTINUE
END

Figure 3.1: Sample programs in SCMD programming style to initialize and generate shift
register random numbers on distributed memory multiprocessors. Random integers between
0 and 2°' — 1 are generated by URAND. Preceding to the generation, CINIT must be called

once for all.

21

generated random number.

Before URAND is called, subroutine CINIT must be called once for all, to initialize IW as
well as JR and KR. It prepares in IW the p initial values (3.3) for the subsequence to be
generated. The argument NSEQ is roughly the number for the subsequence (i in (3.2) and
(3.3)) to be generated on the processor. CINIT is composed of two steps: to call INIT and
then to call DELAY.

Subroutine INIT initializes p elements of the table IW so that they form initial values for
the original shift register random number sequence. It also gives initial values for JR and KR.
The algorithm adopted here is essentially the same as that described in [4] except the value
for ISEED. It is automatically assured that the sequence is k-distributed up to [521/32] = 16
dimension.

Subroutine DELAY delays the phase of the shift register random number sequence stored
in IW. Calling DELAY (A, u) effects each element of IW to be replaced by the number in the
random sequence delayed by A2* terms from the original phase. (Strictly, the delay is 2
times the unsigned integer given by the internal 2’s complement representation of A.) The

loops with labels 210 and 220 decompose the delay in a binary form
A2 = b, 2% + b 2" b, 2 m2m

bit by bit until 0 < m < p — 1 is reached. (As n, depends on A, such decomposition
would be an obstacle in vectorizing the initialization procedure on vector processors. In fact,
the vectorial algorithm given in reference [17] does not include such decomposition.) Then
through label 300 to label 340, the squaring property of shift register sequences is applied
to expand the delay operator D*?" in the canonical basis {1, D, D?,..., D7}, Details of
the algorithm has been described in [17, 30].

The program works in parallel on multiprocessors if its copies are distributed to all
processors. It could be possible to call INIT on host processor and to broadcast IW to nodes.
Then each node could call DELAY to get its proper initial values. But CINIT assigns INIT on
each node processor. This makes the whole package free from communication programs, the
virtue of which was discussed in the preceding section.

The pair of subroutines CINIT and URAND can be served as application package of random
numbers on parallel processors. Users of the package must only manage to call CINIT with

different arguments on different processors, in order to generate different sequences on dif-

22

ferent processors. For this purpose, a processor identifier ID given by a ‘whoami’ operation
would be useful. For example, if NCELL node processors are used and each node knows its
ID (0 < ID < NCELL), the initialization procedure can be systematically executed by a
statement

CALL CINIT(IBx*NCELL + ID)

with a definite value of IB. By giving various values to IB, one can repeat different Monte
Carlo trials using non-overlapping source of random numbers.

As columns of (v; ;) are 2?%'-th decimation of (x;), they form elements of a shift register
sequence. Though the characteristic polynomial of this sequence is the same as that of the
row sequence, the two sequences do not coincide by any phase-shifting. The k-distributivity
of the column sequence, however, is easily checked for 1 < k < 16 using the method described
in [6].

A defect of the shift register method is that one has to keep a rather large table of
consecutive random numbers. This sometimes causes problem when the present method is
applied to vector processors. In fact, tables for all sequences generated in vector components
must be stored in a single memory unit of definite size, and the size of the table expands
in proportion to the vector length which may be specified to be very large. For distributed
memory multiprocessors, the size of the local memory is usually large enough to store the
table for a single sequence. It is also independent of how many nodes the system is composed
of. So there seems to be little problem in memory allocation, if only a single sequence is

assigned to a single processor.

23

Chapter 4

Lagged-Fibonacci Random Number
Generators on Parallel Computers

4.1 Equipartition method for lagged-Fibonacci se-
quences

The random number generators that have been used conveniently on parallel machines are the
linear congruential generators and the GFSR generators. Especially, the GFSR generators
have been the only source for applications that use a huge amount of random numbers. But
little is known about the nature of parallelized random numbers, and unexpected behaviors
in parallel Monte Carlo computations might well cause suspicion that the random numbers
were not very good [3]. In such a case, it is hoped to repeat the same computation replacing
the generator by another one. This explains why there exists a strong request for a parallel
generator which is not based on the GFSR method. D.E. Knuth, summarizing the chapter
of random numbers in his famous book [14], recommended to run each Monte Carlo program
twice using different sources of random numbers.

In the previous two chapters, we have developed a method to parallelize a GFSR sequence
by partitioning it into many segments of equal lengths. The point of the method is an efficient
algorithm to compute terms of the sequence separated far away from known terms. For a
GFSR sequence based on a primitive polynomial of degree p, the nth term is known by
computation of O(plogn + p?) steps. The extraordinary efficiency is due to the squaring
property of polynomials on G'F(2), but this property does not help the computation of
separated terms for a lagged-Fibonacci sequence using 4, — or *.

In this chapter, Miller-Brown’s algorithm [27] is applied to parallelize lagged-Fibonacci

24

generators using +, — or *. The algorithm was cited in the Knuth’s book in the answer to an
exercise (see p.637 in reference [14]), where the complexity of the algorithm was erroneously
presented to be O(p®logn). As we will see later, the true complexity is only O(p*logn).
This computation is quite feasible, because the value of p need not be so large for a lagged-

Fibonacci generator using 4, — or * as for a GFSR generator.

4.2 Lagged-Fibonacci generators

A lagged-Fibonacci generator is characterized by a recurrence of the type
T = Thep O They (4.1)

where p > ¢ > 0 and o is some binary operation. The generator is symbolically denoted as
F(p,q,0). When & (bitwise exclusive-or) is used for o, it is called a GFSR generator. Other
binary operations in use are +, — and * (multiplication).

We assume that (x;) is a sequence of integers modulo 2¢. (We will take e = 31 in
our implementation on 32bit machines.) Then the maximum possible periods for lagged-

Fibonacci generators are

Ty = 2P —1 (4.2)
Ty = 2712 — 1) (4.3)
T. = 2°73(2F — 1) (4.4)

for F(p,q,®), F(p,q, %) and F(p,q,*), respectively [24]. The maximum period is achieved
when some conditions are satisfied by the pair (p,q) and by the starting values for the
sequence. As for the conditions on the pair (p, q), we refer the readers to reference [24]. The

conditions for the starting values are

F(p,q,®) : not all zero, (4.5)
F(p,q,£) : not all even. (4.6)

For F(p,q,*), we will describe the conditions in §4.5. Of course, the starting values should
be chosen carefully in order to get a random enough sequence.
As for randomness of these generators, we can quote Marsaglia’s result of several stringent

tests from reference [25]. He put lagged-Fibonacci generators F(17,5,0), F/(31,13,0) and

25

F(55,24,0) to these tests. The * generators passed all the tests, the + generators gave good
results except on one test, but & gave ‘almost uniformly terrible results’. He also tested
generators with long lags, say F(607,273,0) or F/(1279,418,0), and obtained good results
for every choice of binary operation: +, —, % and even &. The need for a large p in designing
a GFSR generator is also indicated by theoretical analysis of k-distribution [6].

We may summarize the above description as follows:
1. The periods of F'(p,q,+) and F(p, q,*) are much longer than that of F(p,q, D).

2. F(p,q,+t)and F(p,q,*) are random enough for moderate values of p while much larger
p is required to get a good F(p,q,®).

Thus it seems to be reasonable to adopt lags of moderate size, say (p,q) = (55,24), for

lagged-Fibonacci generators using +, — or *.

4.3 Parallelization

Random numbers used in parallel computations form a two dimensional array. The jth
number generated on the ith processor (or, more generally, the ith task) will be denoted as
v; ;. An easy way to parallelize a lagged-Fibonacci generator is to use the same recurrence

on each processor and generate the rows in parallel by
Vij = Vijop O Vijg (4.7)

with initial values (v;;, 0 < 7 < p) chosen arbitrarily for each row. However, if the
initial values are given in a random manner, properties of the parallel random numbers
will be unpredictable; for example, there may happen to exist pairs of rows with very large
correlation.

A consistent method of parallelizing a given sequence (xj) is to cut off segments of equal
lengths from the sequence and to arrange them in rows or in columns of v, ; [17]. We first
consider the possibility of arranging segments of length p in columns so that v;; = z;4;,.
This type of parallelization can be applied to the congruential method as well as the GFSR
method. If (xy) is a congruential sequence, the sequence in rows is also a congruential

sequence with a multiplier (and an adder) given by a simple computation. When the original

26

sequence is of GFSR type, one can choose i to be a power of 2 so that the sequence in rows is
a GFSR sequence which obeys the same recurrence as (). For lagged-Fibonacci generators
using 4, — or *, however, the recurrence for the sequence in rows is too complex to be
applied for rapid generation on parallel computers.

Thus we apply the other way of arrangement; cut off segments of length v from the

original sequence and use them as rows of v; ; so that
Vi = Tivgs- (4.8)

In such a configuration, it is obvious that v;; satisfies (4.7); each processor can generate
random numbers using the same recurrence as the original sequence. If v is large enough,
there is no overlap of sequences generated on any two processors. Furthermore, we choose
v to be relatively prime to T' so that the sequence appearing in the columns has also the
maximum period of T.

The central problem in this method is how to give initial values for each row; each
processor must prepare its initial values in a reasonable amount of time. The set of initial
values for a processor is a p-tuple in the original sequence separated far away from the
starting p-tuple. Efficient method is required to compute such delayed p-tuple even when
the delay is very large.

4.4 Large delay for F(p,q,+)

When n is very large, it is impractical to get the p-tuple x,, 2,11, . .., 2,4,-1 from the initial
values xq, 21, ..., 2,1 by applying the recurrence (4.1) n times. For a linear recurrence such

as F(p,q,=t), this problem can be solved using matrices. We introduce

T Ley1 - LTh4p-1
Tky1 Ly - Lhtp
X; = _ _ _ . (4.9)
Lhtp-1 LThtp " Thk42p-2

The sequence of matrices (X}) satisfies a recurrence relation

Xp = DXy, (4.10)

27

where the matrix D is independent of £ and is determined solely by the recurrence for the

sequence (). In this matrix description, we can write
X, =D"X,. (4.11)

Therefore, the problem is reduced to the computation of the matrix D™. To obtain this, let

the binary representation of the delay n be

n = (bp-1bm-2...b0)2, (bm_1=1). (4.12)
Then the matrix to be computed is decomposed as
D" = (- ((Dtm=1)2DPm=2)2 Dbm=s ..)2 Dbo, (4.13)
Thus introducing a notation
nj = (bp-1bm—2...bm_j)a, (4.14)

D™ can be obtained by repeating computation of D’ (8 = nj,) from D* (a = n;) for
j=1,2,...,m —1 in order. The complexity of this algorithm is O(p® log n).

A more efficient method to compute a delayed sequence was proposed by J.C.P. Miller
and D.J.S. Brown [27]. They introduced a sequence (uy) defined by initial values

Ug = UL = " = Up—2 = 0, Up—1 = 1 (415)

and by the same linear recurrence as (x). From this sequence, we can construct matrices
Uy in the same manner as X, were defined. We notice that Uy involves 2p — 1 consecutive
terms of (uy) and that Uy is a regular matrix as is seen from its triangular form. First, we
write down the binary representation of the delay as in (4.12). Then we can get the p-tuple

Ty, Tpgl, - -« Togp—1 Dy the following algorithm.

Step 1. Obtain all the 2p—1 terms that constitute U;. The first p—1 terms wy, ug, ..., up_1
are given in (4.15), while the other p terms w,, tpt1,...,us,—1 are determined by the

recurrernce.

Step 2. Compute the components of U,,. This can be done by repeating the following three
substeps, which compute components of Us (8 = nj41) from those of U, (a = n;), for

7=1,2,...,m—1 in order.

28

2.1 (When this substep is entered, all the components of U, are known.) Write down
the p components in the zeroth (i.e. the uppermost) row of the matrix D* =

U Ugt.

2.2 Compute the first p terms in Ug, 1.e. ug, ugt1,. .., Uspp—1. This is done as follows.
If b,,—; = 0, then obtain the zeroth row of Uz = D*U,; if b,,_; # 0, then after

applying the recurrence to get uy42,-1, compute the zeroth row of Ug = DU, 4;.

2.3 Apply the recurrence to get the remaining p — 1 terms in Up, i.e. ugyy, Ugipt1,

ooy UBy2p—2-

Step 3. Write down the zeroth row of the matrix D" = U, U;".
Step 4. Compute x,,Z,41,...,Zntp—1 as the zeroth row of the matrix X, = D" Xj.

The dominant part of this algorithm is Step 2. In particular, Step 2.2 involves calculation
of the zeroth row in a product of two matrices. The complexity of this part is O(p*logn)
which determines the complexity for the total computation.

Step 2.1 (as well as Step 3) also involves computation of the zeroth row in a product of two

matrices of the form U,U;". But for our additive or subtractive generator with recurrence
x = (Tp—p + T—y) mod 2°, (4.16)

Us! has an especially simple structure:

1 1 if ij=p—1
(Ui =< Fl if i+j=p—q—1 (4.17)

0 otherwise
where the index convention is 0 < 7,57 < p. This allows us to write down the required
quantities as

-1 p— uk—|—p—1_i :F uk-l—p—q—l—i lf 0 S Z S p—q— 1

Thus the complexity of Step 2.1 is only O(plogn).
In spite of the matrix notation, the algorithm can be coded using only linear arrays.
Especially, an array of size p is used for the zeroth row of D?, and an array of size 2p is

sufficient to describe components of U,, U,4; and Usg.

29

4.5 Large delay for F(p,q,*)

Miller-Brown’s algorithm does not apply directly to a multiplicative generator because the

recurrence

x = (Tpop * Tp—y) mod 2° (4.19)

for F'(p,q,*) is not linear. In fact, it would be impossible to compute remote terms in
the sequence if the initial values are given arbitrarily. The parallelization, however, can be
achieved by an appropriate initialization procedure based on Miller-Brown’s algorithm. In
order to explain this, we must review some basics of multiplicative generators [24].

If initial values xg, x1,...,2,_1 for F(p,q,*) contain an even number, the sequence (xy)
will soon converges to zero. Thus we must choose all initial values to be odd, and then ()
will be a sequence of odd numbers.

In order to find the period of an F'(p, ¢, %) generator, we express the group of odd numbers
(the group of residues which are relatively prime to the modulus) as a direct product of cyclic

groups. For example, an odd number modulo 2° is uniquely represented as

x = (—1)Y3" mod 2° (4.20)
ye {01}, ze{0,1,...,2o2 —1}. (4.21)

Therefore, if we write numbers in F(p, ¢, *) as
x = (—1)"3% mod 2°, (4.22)
the recurrence (4.19) is equivalent to

Yre = (Yr—p + Yr—q) mod 2 (4.23)
2t = (zp_p + 21_y) mod 2°72. (4.24)

This explains that the maximum possible period for (@) is given by equation (4.4) and that
the period is achieved when (z;) has the maximum period of 2°73(2F — 1).

The idea which enables parallelization of F(p, ¢, *) is to give initial values not for (xy) but
for (yx) and (zx); if Yo, y1,...,yp—1 and zq, 21,..., 2,01 are known, y,, Ynt1,. -, Yntp_1 are
given by the algorithm discussed in reference [18] while z,,, z,41, . . ., Zn4p—1 are computed by

Miller-Brown’s algorithm described in the previous section. In order to obtain the maximal

30

+ R . ®
SUBROUTINE | INITA(I) | INITS(I) | INITM(I) | INITX(I)
FUNCTION IRANDA() | IRANDS() | IRANDM() | IRANDX()
FUNCTION ARANDA() | ARANDS() | ARANDM() | ARANDX ()

Table 4.1: Program package of four lagged-Fibonacci generators using +, —, % and &. Each
generator is provided in three subprograms, a subroutine for initialization and two functions
to generate random numbers of integer and real types.

period, initial values for (z;) must be chosen not all even. But starting values of (y;) are

completely arbitrary. In particular, we can set y; = 0 for all £ so that
i = 3% mod 2°. (4.25)

A sequence of this type is convenient for our purpose of parallelization, because the initial-
ization procedure is rather simple. Probably, properties of (x1) as a pseudorandom sequence
will not depend on the choice of (yx). The choice of the generator for the circular group
(instead of the generator 3, one can adopt any number that is congruent to 3 or 5 modulo

8) will also be irrelevant for the properties of (xy).

4.6 Implementation

4.6.1 The program package

We have constructed a program package of lagged-Fibonacci generators on parallel com-
puters. The programs are written in Sun FORTRAN and are intended to work on each
processor, initializing and generating the sequence assigned to the processor.

The program package consists of four generators using four binary operations. It is
supplied in twelve subprograms, one subroutine and two functions for each generator, as
listed in Table 4.1. A generator must be initialized by calling the subroutine before generating
random numbers using the functions. The integer function returns an integer in [0, 2%!), while
the real function gives a floating point number normalized in [0, 1).

The functions for generation have no argument, while the subroutine for initialization has

one argument I which is used to specify the row number ¢ of v; ; to be used in the processor.

31

For example, if each processor has an identifying number 0 <1, < n, on a system consisting
of n, processors, one can set I to ¢ = 14, * n, + 1, in the 7;,,th Monte Carlo trial.

Three generators in the package are F'(55,24,4), F(55,24,—) and F(55,24, %), each of

which is parallelized as in equation (4.8) with
p=2 1, (4.26)

Because this is a prime number, it is evident that v is relatively prime to the periods of these
generators Ty = 2°°(2% — 1) and T, = 2*¥(2°® — 1). We can restrict the argument for the

initialization subroutine to the range

0 <I<?2* forthe + generators, (4.27)

0<1I<?2* forthe * generator, (4.28)

so that strings of random numbers generated with different values of I will never overlap in
a period of the original sequence.

The GFSR generator symboled by & in Table 4.1 is essentially the generator described in
reference [18], though some changes are made to give uniform style for the four generators.
It is an F'(521,32, @) generator parallelized with v = 2261

Each generator has its own named common block containing a circular list of p random
numbers and two pointers. The contents of the common block are kept throughout the
computation by SAVE statements specified in all the relevant programs in the package. The
initialization subroutine sets the circular list to the starting values v;; (7 = 0,1,...,p — 1)
for the sequence in the ith row.

All the functions for random number generation are given very similar codes. The differ-
ences are the common block assigned for each generator, the binary operation in a generation
line, and whether the random integer is normalized in [0,1) or not. The prototype of the

function IRANDX is given in reference [18].

4.6.2 Initialization for the additive generator

The subroutine INITA which initializes the additive generator on each processor is divided

into three parts each of which is described as a subroutine:

SUBROUTINE INITA(I)

32

INTEGER IB(92)

CALL OINITA

CALL BIREPA(I,NBIT,IB)
CALL DELAYA(NBIT,IB)
END

First, subroutine 0INITA fills the circular list in the common block with the initial values
T, %1,...,Ty—1 for the original sequence. These values were set by the sequence of the
most significant bit {¢;) for a congruential sequence defined by yx11 = 69069y, mod 2% and
yo = 1. Thus the binary representations are xo = (cocy...¢30)2, ¥1 = (€31€32...C61)2, - - ,
Ts4 = (C1674C1675 - - - C1704)2. OINITA also sets the two pointers in the common block to the
appropriate initial values. (See reference [18]).

Next, subroutine BIREPA gives binary representation of the delay n for the segment
assigned for the processor. The delay is given by the product of the row number : = I and
the delay v between two neighboring rows in v; ;. The value of v specified in equation (4.26)

is convenient because

n = v

= (1) 2 (20— 1) 2P (22), (4.29)

Thus for 0 < ¢ < 231, the delay can be represented in 92 bits with the significant 31 bits
being the representation of ¢+ — 1, with the middle 30 bits being all 1, and with the less
significant 31 bits representing 2*!' — 4. The bit contents are returned in the array IB with
the number of bits (m in equation (4.12)) given in the variable NBIT.

Lastly, subroutine DELAYA replaces the p-tuple in the common block with the p-tuple
delayed by n terms in the sequence. The binary representation of n is given in the argu-
ments for the subroutine, and the algorithm explained in §4.4 is applied. In the present

case, subroutine DELAYA replaces the values zg,x;,..., 2,1 in the circular list by values

TpyLpglye s Tngp—1-

4.6.3 Initialization for the subtractive generator

The subtractive generator is initialized on each processor by subroutine INITS which is given

as below.

33

SUBROUTINE INITS(I)
INTEGER IB(92)

CALL OINITS

CALL BIREPA(I,NBIT,IB)
CALL DELAYS(NBIT,IB)
END

Here OINITS is the same as OINITA except that it initializes the common block for the
subtractive generator. DELAYS is analogous to DELAYA except for the common block it rewrites

and for sign differences in several lines as seen in the algorithm described in §4.4.

4.6.4 Initialization for the multiplicative generator

The * generator which we implemented has the simple structure given in equation (4.25).

The following program initializes the multiplicative generator on each processor.

SUBROUTINE INITM(I)
INTEGER IB(92)

CALL OINITM

CALL BIREPA(I,NBIT,IB)
CALL DELAYM(NBIT,IB)
CALL POWERM

END

Subroutines OINITM and DELAYM are the same as OINITA and DELAYA respectively, except
that the common block for the multiplicative generator is written or rewritten. Thus the
circular list in the common block essentially contains z,,, 2,41, . . . , Z,4p—1 after the first three
subroutines are executed. Finally, subroutine POWERM replaces each item of the circular list

2 by x) = 3% mod 23!,

4.6.5 Timings

We measured speeds of the four generators on Fujitsu AP1000 both for initialization and
for generation. Fach item in Table 4.2 is the time needed to call the subprogram in the
corresponding item of Table 4.1. In the estimation of these timings, each routine was called

repeatedly in a DO loop, and the consumed time was divided by the repetition number to

34

+ — * D

Initialization 0.596 sec | 0.599 sec | 0.603 sec | 0.544 sec
Generation (Integer) | 0.882 usec | 0.882 usec | 3.34 usec | 0.841 usec
Generation (Real) 7.21 psec | 7.21 psec | 9.67 psec | 7.17 psec

Table 4.2: Timings, measured on Fujitsu AP1000, for a call to each subprogram listed in
Table 4.1.

get the average time for a call. Initialization routines were tested with the argument I set
to 1023. The initialization time will be slightly longer for larger values of I, because it is

proportional to the bit number NBIT of the delay.

35

Chapter 5

Binary Method of Evaluating
Remote Terms in a Recurrent
Sequence

Parallelization of a random number sequence in a horizontal configuration requires an efficient
algorithm of evaluating remote terms to initialize the parallel sequences. In the preceding
three chapters, we have shown that efficient initialization procedures do exist for lagged-
Fibonacci generators using +, —, * or 5. But each of these procedures seems to be somewhat
tricky or very specific to the corresponding recurrent sequence. In this chapter, we reconsider
the problem of evaluating remote terms on the basis of a prescription for a general recurrent

sequence.

5.1 General prescription

Let (x;) be a sequence generated by a recurrence of pth degree from the initial values of
Lo, T1,...,Tp—1. Our alm is to evaluate z,, 2,41, Tng2, ..., Togp—1 for very large n. We do

this in the following three steps.

Step 1 Apply the recurrence to enumerate the values of the p — 1 terms z,, xp41,. .., 22,2

which succeed the initial terms.

Step 2 Compute z,, as a function of zg, z1,...,2,_1:

Tn = fal®o, @1, .., Tpo1). (5.1)

36

Step 3 Evaluate z,,, 2,41, Znt2, ..., Tnip—1 by substituting the values of zg, z1,..., 22,2 to

the right hand sides of

t, = folxo,x1,...,2p-1)
LTnt1 — fn(xlvx%"'vxp)
Tpt2 = fn($2,$3,...,$p+1)
Tpgp—1 = fn(xp—la LTpyoo ,l’gp_g).

When we say that a function is known as in (5.1), we mean that the function has been
derived using only the recurrence. Thus (5.1) is assumed to be true for arbitrary values of

T, %1, ...,Tp—1, and in fact it is identical to

Topi = FolTis Tigts oo s Tigpo1) (5.2)

where 7 is an arbitrary nonnegative integer. Thus the equations in the third step of the
above prescription are immediate consequences of (5.1).

The problem is how to compute the function f, in the second step. We do this by means
of a binary method: Assuming that n is expressed just in m bits in binary notation, we can

write

n = (bm—lbm—Z ce e blbO)Z

where b,,_; = 1. Then we introduce
n; = (bm_lbm_g Ce bm—j)Q

for y =1,2,...,m, so that

l=ni1 < nyg <--- < ny, =n.

If z,; is known, we can compute z, ., by the prescription described below. Thus starting

from x,, = 1, one can obtain ,,,Tp,,...,%,, = &, in order, if the prescription is carried

out repeatedly for 7 =1,2,...,m — 1 in this order.
For simplicity, we denote n; = k. Then we are assuming that z; is known as a function

of xg,x1,..., 2,1t

TE = fk($0751?17 e 751/'p—1)-

37

If b,,—;—1 =0, then n;;; = 2k and we apply the above relation repeatedly to get

o = fu(@r, Thgrs- o) Thgppo1)
= felfu(@oy o yapo1)y fru(ar, .oy ap)s oy fo(apot, .oy 2op_2)).
The right hand side is a function of g, x1,..., 21,2, ..., T2p_3, T2p—2 and we write this as
Top = fNQk(l'o, Ty ooy Tty Tpyeeny Lopo3, Lopog)- (5.3)

Applying the recurrence for g, 5,29, 3,...,2, in this order, we can delete the explicit

dependence of the expression on these terms and arrive at the desired function

Top = f2k($07$17 .- '7xp—1)‘

If by—j—1 =1 so that n;4; =2k 4+ 1,

L2k+1 — f2k($17 L2y ey Tp—1yTpy---yT2p—2, 51?2p—1)-
We can apply the recurrence for x3,_1,23,_2,..., 2, in this order to derive the function
L2k+1 — f2k+1($07 Tlye - 751?p—1)-
Thus we can compute the function f, ,, which describes z,,,, in terms of xg,z1,...,2,_1.

5.2 Shift register generators

For a shift register sequence, we can write xj (k > 0) as a linear combination of initial terms
Tp = CoTo D C1T1 D Cox2 D -+ D Cpo1Tp_1 (5.4)

with the coefficients ¢;’s being 0 or 1. This expression is trivial for £ = 1, and the following
discussion gives its proof in mathematical induction.

If we assume (5.4) is correct, then it indicates that

Top = Coxk P C1Tk41 D 2Tk D -+ D Cpo1Thgp—1-

Applying (5.4) again to xg, Txt1,...,Trtp—1 in the right hand side, we can express xq; in
terms of xg, x1,..., 29,2 as
Tk = co (coro B crr B cry B B Cpo1Tpo1)
& a (ecr: B cary B crs B oo B oy)
& e (cor2 B crs B ocre B - B Cpo1Tprr)
@ ..
B o1 (e B oz, B Ty B oo B T2).

38

Since ¢;¢;xi4; and ¢je;x4; appear symmetrically for ¢ # 7,

Top = 0(2)51?0 & 2coci1 B (2¢002 B C%)l’z
@ 2(cocs @ cr1ea)ws @ (2(cocs B cre3) D 03)51?4 & D Ci_lilfzp—z-
Now for the shift register case, this expression is simplified as
Tog = CoTo D C1T2 D C284 D -+ D Cp_1T2p—2,

because ¢;¢; = ¢; and 2¢;¢; = 0 on GF(2). This is the function fNQk in (5.3) for a shift register
random number sequence. As described in the previous section, we apply the recurrence to

delete x9,_3, 3,_3, ..., 2, from this expression or to delete x3,_1,22y_2,..., 2, from
Topy1 = CoT1 D 123D x5 D -+ - D Cpo1T2p—1.

Then we arrive at an expression for xy), or 9541 containing only xg, 21,...,2,_1, which is a
linear combination like the right hand side of (5.4).

Now we can write down the algorithm to evaluate a remote p-tuple in a shift register
sequence. The following algorithm replaces the p-tuple in the array z; (0 < x < p—1) by the
p-tuple delayed by n = (by—1bm—2...bo)2 terms in the sequence. The algorithm utilizes two
more arrays, w; (0 <17 < 2p — 2) which stores the p initial values of #; and the succeeding

p— 1 numbers, and ¢; (0 < ¢ < 2p— 1) for the coefficients appearing in the above discussion.
Step 1 Set w; < a; (0 <i <p—1), then set w; < x,_, B a;i—y (p <i<2p—2).
Step 2.1 Set g+ 0, s« land ¢+ 0(2<:<p—1).

Step 2.2 For j =1,2,...,m — 1, perform the following loop:
If b,,—;—1 = 0 then,

2.2.al fori=p—1,p—2,...,1, set ¢3; < ¢; and c9;_1 + 0;

2.2.a2 fori1=2p—2,2p—3,...,p,set ¢;_p, & ¢;i_, D¢ and ¢;_y ¢ ¢y D ey
else

2.2.bl fore=p—1,p—2,...,0, set c9;41 < ¢; and ¢y; < 0;

2.2.b2 for1=2p—1,2p—2,...,p, set ¢;_, < ¢ci_p, D c; and ¢;_y < ¢i_y D ey

39

Step 3 Tor y =0,1,...,p—1, set x; Zf:_olciwiﬂ.

When 2.2.al or 2.2.bl is entered, x,, = x} is expressed as (5.4). If by—j—1 = 0, then

2.2.al is performed and after that, x, ,, = wa is expressed as

Top = CoTo D 121D -+ DB Cp1Tp—1 D €T D -+ D Cop—_3T2p_3 D Cop_2T2p_2.

In 2.2.a2, we eliminate the dependence of this expression on 3, 3, ¥9,_3,...,z, by applying
Top—g2 = Tp-2 @ Lop—g—2
Top—3 = Tp—3 @ Lop—g—3
Tp = ToD Tpyg

in this order. If b,,_;_; = 1, then 2.2.b1 and 2.2.b2 do much the same for z,,,, = zap41.

And we arrive at an expression
Ty = C0To D C1T1 D -+ D Cpo1Tp—1

after 2.2.a2 or 2.2.b2 is executed. The computational complexity of the second step is
O(plogn), which is also the complexity for the total algorithm.
Our algorithm described above is essentially the same as that considered in chapters 2

and 3 where the algorithm was derived from a different point of view.

5.3 Additive and subtractive generators
For additive and subtractive generators, an arbitrary term is expressed as
xr = (coxo + 121 + 222 + -+ + ¢p12,-1) mod 2° (5.5)

where the coefficients ¢;’s are appropriate integers. Repeated application of (5.5) leads to

Top = (corp 4+ 1Tpg1 + C2Tpga + -+ + Cpo1Tpgp—1) mod 2°
= co (coro + cx + ry + -+ Ty) (5.6)
+ a (cri + ary + crs + -+ i,)
+ e (cry + cars + crs + -+ CpoiTprr)
I
+ o1 (coxpor + oy, + Ty + o0+ Cpoiy—2)) mod 2°.

40

Since ¢;¢;xi4; and ¢je;x4; appear symmetrically for ¢ # 7,
Tor = (caro + 2coc1w1 + (2c0cy + 3wy + 2(cocs + crca)xs + -+ C;_1$2p_2) mod 2°. (5.7)

This is the function fay in (5.3) for the additive and the subtractive sequences. We can apply

the recurrence to this expression or
Tony1 = (coxy + 2cocima + (2c0cs + ¢})as + 2(cocs + creg) g + -+ C;_lfﬁzp_l) mod 2°. (5.8)

to get xgp or xg541 as a function of xg, x1,..., 2,-1.

The algorithm which replaces the initial p-tuple by the delayed p-tuple can be described
analogously as the algorithm given for shift register sequences in the last section. Figure 5.1
shows the algorithm for additive sequences written in FORTRANT7. We see that substeps
2.2.al and 2.2.bl in the second step are more complex than the shift register case. Indeed
the multiplication-addition pairs in loops 320, 322, 325, 327 are executed about mp?/2 times
in total, which determines the complexity of the algorithm to be O(p? logn).

For subtractive sequences, we can write down another subroutine DELAYS. We use another
common block CBRNDS for a subtractive generator, and the addition in loop 120 and the
addition in the second line of loop 331 should be replaced by subtractions.

5.4 Multiplicative generators
An arbitrary term in a multiplicative sequence is expressed as
xp = (xPafad - 2,25) mod 2° (5.9)

where the coefficients ¢;’s are appropriate nonnegative integers. Applying (5.9) repeatedly,

we can derive

_ €0 .C1 c2 Cp—1 e
Tor = (a) T T, l’k_l_p_l) mod 2
_ co c1 c2 Cp—1 c
= ((Lo T L o Ty) 0
Cp—
(@ xy @y e)
Cp—
(2 2 2P - 2T)
co c1 c2 .. Cp—1 Cp—1 e
(g)t wky Ty)=t) mod 2°.

41

SUBROUTINE DELAYA(M,IB)

¢ ¢
PARAMETER (IP=55,1Q=24)
COMMON /CBREDA/ JR,KR,IX(0:IP-1)
SAVE /CBREDA/
INTEGER IB(0O:M-1)
INTEGER IW(O0:2%IP-2) ,IC(0:2*IP-1)
IF (M.EQ.0) RETURN
C STEP 1.
DO 110 I=0,IP-1
IW(I)=IX(I)
110 CONTINUE
DO 120 I=IP,2%IP-2
IW(I)=IW(I-IP)+IW(I-IQ)
120 CONTINUE
C STEP 2.1.
DO 310 I=0,IP-1
I1C(I)=0
310 CONTINUE
Ic(1)=1
C STEP 2.2.
DO 340 J=1,M-1
IF (IB(M-J-1).EQ.0) THEN ¢
C 2.2.A1
DO 321 I=2%IP-2,IP,-1
18=0
DO 320 K=1,(2*IP-I-1)/2
IS=IS+IC(IP-K)*IC(I-IP+K)
320 CONTINUE
I1S=2%I8 c
IF (IAND(I,1).EQ.0) IS=IS+IC(I/2)*IC(I/2)
IC(I)=I8
321 CONTINUE
DO 323 I=IP-1,1,-1
18=0
DO 322 K=0,(I-1)/2
IS=IS+IC(K)*IC(I-K)
322 CONTINUE
I1S=2%I8
IF (IAND(I,1).EQ.0) IS=IS+IC(I/2)*IC(I/2)
IC(I)=I8
323 CONTINUE
IC(0)=IC(0)*IC(0)
C 2.2.A2
DO 330 I=2%IP-2,IP,-1
IC(I-IP)=IC(I-IP)+IC(I)
IC(I-1Q)=IC(I-IQ)+IC(I)
330 CONTINUE

ELSE
2.2.B1
DO 326 I=2%IP-2,IP,-1
18=0
DO 325 K=1,(2*IP-I-1)/2
IS=IS+IC(IP-K)*IC(I-IP+K)
325 CONTINUE
I1S=2%I8
IF (IAND(I,1).EQ.0) IS=IS+IC(I/2)*IC(I/2)
IC(I+1)=IS
326 CONTINUE
DO 328 I=IP-1,1,-1
18=0
DO 327 K=0,(I-1)/2
IS=IS+IC(K)*IC(I-K)
327 CONTINUE
I1S=2%I8
IF (IAND(I,1).EQ.0) IS=IS+IC(I/2)*IC(I/2)
IC(I+1)=IS
328 CONTINUE
IC(1)=IC(0)*IC(0)
1¢(0)=0
2.2.B2
DO 331 I=2%IP-1,IP,-1
IC(I-IP)=IC(I-IP)+IC(I)
IC(I-IQ)=IC(I-IQ)+IC(I)
331 CONTINUE
END IF
340 CONTINUE
STEP 3.
DO 420 J=0,IP-1
18=0

DO 410 I=0,IP-1
IS=IS+IC(I)*IW(J+I)
410 CONTINUE
IX(J)=IAND(IS,2%*31-1)
420 CONTINUE
END

Figure 5.1: Subroutine DELAYA replaces the p-tuple IX in the common block with the p-
tuple delayed by n terms in an additive sequence. The arguments are inputs to specify the
delay n, with M being the number of bits m and IB being the bit contents b;(0 <i < m —1).

42

Since xffl_c; and xffl_cj’ appear symmetrically for 7 # j,

2 9 2c0co+c2 2 2(cocatcic)—I—c2 c?
_ 0 .2¢coc1 0C2TC) (coca+tcicea) 0C4TC1C3 2 p—1 e
T = (2 277 s x5 T, -2y) mod 2°.

This is the function fa, in (5.3) for the multiplicative sequence. We can apply the recurrence

to this expression or

2 2 2 2
(... 2c0e1 ,200c2+c] 2(cocaterca) 2(cocaterca)tes p—1 e
Toppr = (122530 a5 T, o a0) mod 2°.
to get xgp or xg541 as a function of xg, x1,..., 2,-1.

From these expressions, we can conclude that the second step of the algorithm deals with
the exponents of xg,x1,...,22,-1 and that the manipulation is exactly the same as for the
additive or the subtractive case. The subroutine DELAYM for a multiplicative sequence is the
same as DELAYA in Figure 5.1 except for a few lines: The common block CBRNDA should be
replaced by CBRNDM, and the line in loop 410 must be replaced by

IS=IS*IPOWER(IW(J+I),IC(I))

where IPOWER(I, J) is a function programmed to compute ¢/ mod 232 correctly in the internal
32 bit expressions. On many computer systems, I**J does such a computation, and we can

simply replace the above expression by
IS=IS*IW(J+I)**IC(I)

on these systems.

5.5 Comparison to existing algorithms

In this chapter, a general prescription was proposed for the evaluation of remote terms in a
recurrent sequence. We have applied the prescription to lagged-Fibonacci sequences. The
algorithm for a shift register sequence coincides with the algorithm described in chapters 2
and 3. For additive and subtractive sequences, the algorithm given in this chapter is different
from that of Miller and Brown described in chapter 4. Our algorithm for multiplicative
sequences seems to be the only method that has been proposed for the evaluation of remote

terms of these sequences.

43

Our algorithm for additive or subtractive sequence is almost twice as fast as Miller-
Brown’s algorithm, though computational complexity is O(p*logn) for either of the algo-
rithms. For each bit positions of n, Miller-Brown’s algorithm computes the uppermost row
in a product of two matrices evaluating p? pairs of multiplication and addition. Our algo-
rithm, however, requires only about p*/2 pairs of multiplication and addition, because c;c;
and c;c¢; appear symmetrically in the coefficient of x,4; in (5.6). We measured the speeds
of these algorithms by executing the initialization procedures repeatedly. The initialization
using our algorithm was 43% faster compared to the initialization based on Miller-Brown’s
algorithm.

In chapter 4, we initialized the parallel multiplicative generator without evaluating remote
terms in the multiplicative sequence. Our algorithm given in this chapter provides a more
straightforward initialization procedure. The speed of the new initialization was faster than
that of chapter 4 by 7%.

Though the prescription is quite general and applies to any recurrent sequence, it does
not always serves an efficient algorithm for a computer. For example, consider a sequence

defined by a quadratic recurrence
T; = a:z:?_l 4+ bz, +c

and an initial value of (. It is easily seen that any term zj of this sequence is given in a
polynomial of z¢. By our prescription, we can derive such a polynomial for x9 or xor 41 from
the polynomial for x;. Evaluation of remote terms, however, is inefficient or even impossible

for this case, because the degree of the polynomial increases in proportion to 2".

44

Chapter 6

Structure of Parallelized Random
Number Sources

6.1 Parallelized random number source

In a horizontal configuration, properties of the original sequence is reflected in each row. And
a row is continued on the next row, so that the phase difference between two neighboring
rows is given by the row length. On the contrary, properties of this configuration is not
evident when it is seen in the column direction. Even if the original sequence passes a
series of tests for randommness, it does not always mean that randomness in columns is
guaranteed. Furthermore, it would be unclear whether there is no duplication of sequences
in columns. Similarly, in a vertical configuration, properties of columns as well as relations
between columns are evident, but few has been known about rows. For many parallel
computations, however, properties in both row and column directions are simultaneously
and equally important. In fact, random numbers in a row is usually used as a sequence
assigned to definite degrees of freedom, and random numbers in a column often simulate
quantities of a single physical meaning.

Two-dimensional properties of a parallelized source have been studied in various aspects.
One can examine correlations between every pair of rows [26]. More complete understanding
will be obtained, if enough is known about the sequence of column vectors [7]. As the number
of generators which work in parallel increases, however, it becomes difficult or impracticable
to study parallelized sources in these aspects. In such a case, it would be natural to start
examination of a parallelized source by considering its structure as a set of rows and as a

set of columns. The purpose of this chapter is to provide some basic analysis on the period

45

o [1 e e e e ry_1
Ty Tvt1 L 2,1
T2 Tou+1 Toud2 e e e e e T3p—-1
T(u=1)v T(p=Dv+1 T(p=1)v42 T'r—1 ‘

Figure 6.1: Parallelized random number source (v; ;) which is constructed from a sequence
(r;) in a horizontal configuration.

of the sequences appearing in the orthogonal strings (columns in a horizontal configuration,
rows in a vertical configuration) and on the way the parallelized source is composed of these

strings.

6.2 General theory

In this section, general consideration is given on the structure of a parallelized random
number source (v; ;). Discussion in this section includes only number theoretic argument,
and no assumption is made on the original generator except its period and the specification
of the configuration.

All the consideration will apply both to horizontal configurations and to vertical configu-
rations. Therefore discussion will be given only for horizontal configurations. As for vertical

configurations, only main results are summarized in the final subsection.

6.2.1 Parallelized source and its extension

Assume that a sequence of random numbers (r;) is given, and let its period be 7. (Throughout
the chapter, a period is meant for the fundamental period.) As stated in the preceding
section, a string of 7 numbers rg,ry,...,7,_1 is called a random number source. From
such a source, one can construct a parallelized random number source (v; ;) in a horizontal
configuration by partitioning it into segments of equal length v and arranging them row by

row as shown in Figure 6.1. Thus a horizontal configuration with row length v satisfies

Vi = Tivgj- (6.1)

46

The number of rows in such a parallelized source is given by

p=1I7/vl,
where [2] is the least integer greater than or equal to x. Since 7 is not always a multiple of

v, the last row is shorter than the other rows by
K=puy—r (6.2)

terms. These p rows are numbered from the top as 0,1,2,..., 4 — 1. When the parallelized
source constructed in such a way is seen as a set of columns, there are v columns which are
numbered from the left as 0,1,...,v — 1. The first v — & of these columns are of length g,
whereas the remaining « columns have length of © — 1.

Though each row involves a finite number of random numbers, the algorithm which
generates these numbers defines an infinite sequence beyond the row length. The infinite
sequence obtained by extending the ith row in this way is called the ith row sequence and
is designated as <r§2)> A row, which has a finite number of elements, should be strictly
distinguished from a row sequence. In the same manner, each column can be extended to
form an infinite sequence: If the original sequence continues to provide rows beyond its
period, each column becomes an infinite sequence which will be called a column sequence.
The column sequence which starts with r; will be designated as <c£j)> and will be called the
Jth column sequence. Such extension of a parallelized source (v; ;) can be generalized to

define a two-dimensional infinite sequence (v; ;) with elements given for all ¢ > 0 and j > 0

by equation (6.1). See Figure 6.2.

6.2.2 Period of a column sequence

Among various properties of a column sequence, its period can be discussed without speci-

fying precise definition of the original generator. A quantity of essential importance is

g = (I/,T),

the greatest common divisor g of v and 7. If v = gv/ and 7 = g7/, then (v/,7') = 1, that is,

v and 7" are relatively prime. Then for any j > 0 and any ¢ > 0,
() ()

— . . e — M
Civrr = T(i+mYv+; = Tivtrv'+5 = Tty — 6

so that

47

o ™ T2 s Ty—k—1 Tv—k Ty—k+1 e Ty Ty
Ty Tvt1 Tyt2 ot Toy—k—1 T2uv—k To2w—nt+1 *°° Top—1 T2u
T2y 2041 2042 Tt T3u—k—1 T3u—k T3v—s+1 " T3p-1 T3y
P(u=1)v T(p=Dv+1 T(p=Dp42 " Tr-1 To 1 T T T'x
Ty Tr+1 Trk42 e Ty Ty Tvt1 o Tudk—1 vtk

vtk Tutr+1 Tyt r+2 st Top—1 T2u T2u+1 ot Topdkr—1 T2u+sk

Figure 6.2: Two-dimensional sequence (v; ;) which is an extension of the parallelized source
(v; ;) in Figure 6.1.

Theorem hl . 7/ = 7/g is a multiple of the period of each column sequence.

Though this theorem is rather trivial, it would be noteworthy that 7’ is not always the

fundamental period of <c£j)>. For example, if the original sequence is (r;) = 0,1,0,2,0,3,...
with period length 6, and if it is parallelized in a horizontal configuration with v = 2, then
the period of the zeroth column sequence <c£0)> =0,0,0,...1is 1 and is not 7/ =6/2 = 3.
According to Theorem hl, the period of a column sequence cannot exceed 7, and the
period have a chance to take the maximum value 7 only when ¢ = 1. In fact, 7 is always
the fundamental period of column sequences when ¢ = 1. To prove the statement, let the
()

period of (¢;”’) be 0. Then by Theorem hl, 7 is a multiple of o. On the contrary, because

(v, 7) = 1 indicates the existence of A which satisfies vA =1 (mod 7),

Fite = T(i—jto)vr4+j — CEZ)_]‘_|_O-)/\ = CEZ)_]‘)/\ = Tl—fvr+; = T

so that o is a multiple of 7. These statements are summarized as ¢ = 7, and the next

theorem has been proved.

Theorem h2 . g =1 is a necessary and sufficient condition for the period of each column

sequence to be T.

Generally, a sequence of random numbers is required to have a long period. In fact, it is
well known that a long period is a necessary condition for a good generator, though certainly
not a sufficient one. The above two theorems indicate that the row length v of a horizontal
configuration should be chosen to be relatively prime to the period of the original sequence

7 in order for the period of column sequences to be of maximal length 7.

48

6.2.3 Connectivity of columns

In a parallelized source of a horizontal configuration, the ith row is followed by the (i41 mod
p)th row. Of course, this is a loose statement of the observation that the ith row sequence
is identical to the infinite sequence given by the ith row followed by the (i + 1 mod p)th
row sequence. It can be shown that there exists similar connectivity between columns. To
observe this, see Figure 6.2 which shows the extended array (v; ;). For example, inspection
of the zeroth column sequence in this figure leads to an observation that the zeroth column

T0sTys T2us - - T(u—1)v 18 followed by 7, 7410, 7eq2s,. .. that is the xth column. Generally,

Theorem h3 . In a parallelized source of a horizontal configuration, the jth column is

followed by the ((j +) mod v)th column.

According to this theorem, any column is followed by a column. Since the number of
columns in a parallelized source is finite, connection of columns started from a column must
return to that column after tracing some number of columns. Namely, a column sequence is
embedded in the parallel source as a link of columns. If the j;th column is followed by the

Jath column after tracing @ columns (0 < j; < 1,0 < jy < v),
J1+ak =jy (mod v).

Since k is expressed as in equation (6.2), (v,x) = (v,7) = g. Therefore if kK = &’g and

v =1'g, then (/,k’") = 1 and the above equation is equivalent to
9= jo— i (mod Vg).

This equation has a solution if and only if j; = j; (mod ¢), and in this case x is uniquely
determined modulo +/. Furthermore, since g divides both « and v — k, every sequence
involves equal number of columns with length 4 and equal number of columns with length

i — 1. These observations lead to the following theorem.

Theorem h4 . The v columns which constitute a parallelized source link to form g decou-
pled periodic sequences. Fach of these periodic sequences is a link of V' = v /g columns with
ordering numbers in the same residual class modulo g. 7" = 7/g is a multiple of the period

of these sequences.

49

6.2.4 Phase difference between column sequences

As was discussed in §2.2, ¢ = 1 is the most interesting case. In this case, Theorem h4
indicates that all the columns of a parallelized source link to form a single periodic sequence.
By Theorem h2, the period of this sequence is 7. All column sequences are equivalent to this
sequence but their phase. As theorem h3 indicates, the (i+#)th column sequence is advanced
in phase by p terms compared to the ith column sequence. A quantity of special interest
would be the phase difference between two neighboring column sequences. To examine it,
note that there exists A such that vA = 1 (mod 7). Since <c£0)> = (riy,) in a horizontal

configuration and the period of <c£0)> is 7 by Theorem h2,
(0) (0)

Vij = Tivtj = T(v+ivd = Clppin = Citjn

for any ¢ > 0,7 > 0. Thus the (5 + 1)th column sequence is advanced in phase by A terms
compared to the jth column sequence. All of these can be summarized in the following

theorem.

Theorem h5 . If ¢ = 1, all the v columns that constitute a parallelized source link to
form a periodic sequence with period 7. In this sequence, the (j 4+ 1)th column sequence
is advanced in phase by v~ terms compared to the jth column sequence, where v=! is the

inverse element of v modulo 7.

Such knowledge of phase difference will be useful in the analysis of correlations between

a pair of column sequences.

6.2.5 Vertical configurations

All the above consideration is applicable to vertical configurations if roles of rows and columns
are exchanged. Only main conclusions are summarized in this subsection for vertical config-
urations.

Assume that a sequence of random numbers (¢;) is given, and let its period be 7. From
a random number source co, ¢y, ...,¢—1, one can construct a parallelized source (v;;) in
a vertical configuration by partitioning the source into segments of equal length p and
arranging them column by column. Thus a vertical configuration with column length

satisfies
Vijj = Citpe

50

The number of rows in (v; ;) is u, whereas the number of columns is given by

v=[r/p].
Since 7 is not always divisible by p, the last column is shorter than the other columns by
K=y —rT (6.3)

terms. If
9=(u7),
the next two theorems apply on the period of the row sequences.

Theorem v1 . 7/ =7/g is a multiple of the period of each row sequence.

Theorem v2 . g = 1 is a necessary and sufficient condition for the period of each row

sequence to be T.
As for connectivity of rows, the following theorems can be proved.

Theorem v3 . In a parallelized source of a vertical configuration, the ith row is followed

by the ((i +) mod w)th row.

Theorem v4 . The u rows which constitute a parallelized source link to form g decoupled
periodic sequences. Fach of these periodic sequences is a link of ¢/ = p/g rows with ordering
numbers in the same residual class modulo g. 7/ = 7/g is a multiple of the period of these

sequences.

In case of g = 1, the following theorem gives the phase shift between two neighboring row

sequences.

Theorem v5 . If g =1, all the u rows that constitute a parallelized source link to form a
periodic sequence with period 7. In this sequence, the (i + 1)th row sequence is advanced in

1

phase by u=! terms compared to the ith row sequence, where u=! is the inverse element of

w1 modulo 7.

51

6.3 Applications

In this section, the general discussion given in the preceding section is applied to the con-
gruential method and the shift register method which are the most popular generators of
random numbers. Both of these parallelized methods are already in use on many vector

processors as well as multiprocessors.

6.3.1 Congruential method

In the multiplicative congruential method, random numbers are defined by a recurrence
Tiy1 = ax; mod m.

Parallelization of this generator is based on the fact that its arbitrary k-wise decimation
(y;) = (zpiy;) satisfies multiplicative congruential recurrence with multiplier b6 = ¢* mod m,
that is,

Yir1 = by; mod m. (6.4)

In order to construct a parallelized source in a vertical configuration from a given con-
gruential sequence (x;) so that v; ; = ;4,,, one calculates b = ¢ mod m and prepares initial
values v; o = x; for the rows. Then by equation (6.4), random numbers can be generated
by the recurrence v; ;41 = bv; ; mod m for all ¢ in parallel, since each row is a p-wise deci-
mation of (x;). On the other hand, if initial values for each row is prepared in accordance
with v410 = bv;g mod m where b = ¢” mod m, the source is parallelized in a horizontal
configuration so that v; ; = x;,4;. In this configuration, as is evident from the definition of
the configuration, the recurrence which generates a row is identical to the recurrence of the
original sequence (x;), that is, v; ;41 = av; ; mod m.

To improve the generation rate, the modulus of the congruence m is often chosen to be
a power of 2. In this case, the period of the congruential sequence is also a power of 2,
which will be denoted as 7 = 2°. On the other hand, the number of node processors in a
multiprocessor system is often a power of 2 and the saturation vector length for a vector
processor is also a power of 2. In such a situation, it is natural to parallelize a congruential
sequence of period 7 = 2¢ in a vertical configuration with u = 2/ (f < ¢). But a parallelized

source thus defined has k = 0, because 7 is a multiple of . Then by Theorem v3, each row

52

makes a sequence closed by itself. Though Theorem v1 states only that 7/ = 7/u = 2¢=/
is a multiple of the period of a row sequence, 7’ is the period itself because numbers in a
period of congruential sequence are all different from each other. It is generally recognized
that a congruential sequence with a short period has no good randomness. Actually, it is
pointed out that a choice of such a configuration may result in misleading effects to parallel
computations [26, 12].

A better design for the vertical configuration is to take pu = 2/ + 1. Since u is odd in
this case, g = (u,7) = 1. Therefore, by Theorem v5, all the rows as a whole form a single
sequence with period 7. For instance, let 7 = 2% and y = 257 = 2% + 1. In this case, there
are v = [7/p] = 4177984 columns and the last column is shorter than the other columns by
k = pr—1 = 64 terms. The phase difference between two neighboring row sequences is given
by A defined by (224 1)A =1 (mod 2%°), that is, A = 279 — 22 4216 28 1 1 = 1057029889.
Thus the 0th row sequence is reproduced by connecting to the 0th row, the 64th row, the
2 - 64th row, the 3 - 64th row, ... , in order.

It is interesting to search configurations with k = 1 for a congruential sequence. Since
equation (6.2) or (6.3) indicates that x = 1 is equivalent to 7 + 1 = uw, such a configuraion
can be constructed by choosing p or v to be a factor of 7 + 1. For example, consider again
the case of 7 = 2%°. Since 7 +1 =52 -13-41 - 61 - 1321, one can choose w=>5-61 =305, so
that v =5-13-41 - 1321 = 1047553 and k = 1. Configurations with x = 1 have especially

simple structure, as will be discussed in the following subsection.

6.3.2 Shift register method

In the shift register method, a sequence of random numbers is generated in terms of a

recurrence

Ti = Ti—p D LTi—q, (65)

where @& designates bitwise exclusive-or operation. The period of this sequence (z;) is 7 =
2P — 1 if and only if the characteristic polynomial f(x) = @? + 2?4 1 is primitive. The k-wise
decimation (y;) = (xgi4;) of (x;) has the maximal period 7 if and only if k is relatively prime
to 7, though its characteristic polynomial does not always agree with f(x). That k is a
power of 2 is a necessary and sufficient condition for these two polynomials to agree [§].

When (z;) given in equation (6.5) is used to construct a vertical configuration so that

33

V;j = Tipjpu, 1t 1s usual to take p to be a power of 2, because only in this case each row of

(v; ;) is generated by the recurrence
Vij = Vijp D Vij—g (6.6)

which includes only one exclusive-or. As for a horizontal configuration v;; = z;,4;, the
recurrence for each row is equation (6.6) for any value of v. However, it is convenient to take
v to be a power of 2, because the computation of initial values for each row is simplest for
such a value of v [17].

Since the period of a shift register generator is 7 = 27 — 1, the condition g =1 is clearly
satisfied by these configurations. Moreover, if the column length p of a vertical configuration
is a power of 2, the row length v is also a power of 2. Similarly, if the row length v of a
horizontal configuration is a power of 2, the column length p is also a power of 2. In either
configuration, the parallelized source has k = 1 which means that its form is a rectangle
with the single number at the lower right removed.

A parallelized source in this form is of particular interest because its structure is especially
simple. For example, consider a horizontal configuration constructed from (r;) = (x;). Since
k = 1, Theorem h3 states that each column is followed by the column just neighboring on
the right. By linking all the columns from the Oth column to the (v — 1)th column in order,
one gets a period for the 0th column sequence <c£0)> in accordance with Theorem h2 and
Theorem hb5. Thus this configuration is considered as a vertical configuration constructed
from (¢;) = <c£0)>. Note that (¢;) is a shift register random numbers that obeys the same
recurrence as the original sequence (r;). If a parallelized source is constructed in this form,
there is a chance to give enough randomness to both of (r;) and (¢;). For example, it is
possible to give the maximal k-distribution property [6] for the two sequences simultaneously.
Furthermore, various standard empirical tests can be performed to both of these sequences

to check their randomness.

54

Chapter 7
Parallelized Feedback Shift Register

(zenerators

Equipartitioning of a GFSR sequence has been discussed by some authors independently
[17, 18, 28, 1]. There are four types of equipartitioned GFSR generators, because the GFSR
sequence can be of Tausworthe type or of Lewis-Payne type and the configuration can be
horizontal or vertical. Furthermore, there is another method proposed by Fushimi [5, 7] which
is also based on a feedback shift register sequence. In this chapter, all of these generators are
discussed within the framework of the parallelized feedback shift register (PFSR) generators.
In terms of the PFSR description, a parallel generator of an arbitrary type can be interpreted
as a generator of any other type. As an application of such reinterpretation, we analyze the
bit structure of the PFSR generator which is intimately related to the correlation functions

of the random numbers.

7.1 FSR sequences

Assume that
flz) = 1—|—cl:1;—|—cz:1;2—|—---—|—cp:1;p (7.1)

is a primitive pth degree polynomial over GF'(2). Then a sequence of bits (a,) defined by a
linear recurrence

an = (C1ap—1 + C20p—9 + - -+ + ¢pp_p) mod 2 (7.2)

35

with initial values (ag,a1,...,a,-1) not all zero is called a feedback shift register (FSR)

sequence generated by f(x). Most often a FSR sequence generated by a primitive trinomial
fla)y=14 274 2F (0<qg<p) (7.3)

is used because of generation efficiency.
The following properties of FSR sequences are relevant to the following discussion. The
proofs of these properties and more detailed description of FSR sequences are found in

reference [9].

1. Period: The period of (a,) is

T=2—1. (7.4)
In a period, the p-tuple of p consecutive elements (ay,, @pi1, ..., Gngp—1) takes all pat-
terns except (0,0,...,0). Thus a period is composed of 2% — 1 zeros and 2°~! ones.

2. Cycle-and-add property: The sequence defined by adding some phase shifts of (a,)
modulo 2 is equivalent to a phase shift of (a,,), provided it is not identical to a sequence

of zeros.

3. Autocorrelation: Neglecting terms of O(1/T') and O(1/T?), the average and the auto-

correlation function of (a,) are given by

1= 1
and -
1 & _ N 1 ifs=0 (modT)
Fa(s) = 7 L (0n = @){anys —0) { 0 ifs#0 (modT). (7.6)

These are just the average and the autocorrelation expected from a sequence of truly

random bits.

4. Decimation: Let G be the Abelian group of residues which are relatively prime to
the modulus T. The number of elements in ¢ is known as Euler’s totient function
&(T). Because T is given by (7.4), the set Cy = {1,2,4,...,2°7'} is a subgroup of
G. Let the r = &(T)/p cosets of Cy be Cy,C1,...,Cr_1. The k-wise decimation

(a®y = ag, ag, agy, . . . is a FSR sequence with the same period as (a,), if and only if &

56

is relatively prime to 7. Two FSR sequences (¢®) and (%)) are phase shifts of each
other, if and only if £ mod T" and k&’ mod T' belong to the same coset. There exist r
distinct primitive polynomials of degree p, and they are in one to one correspondence
to the r cosets. Let the polynomial corresponding to C; be fi. Then (a(®) is generated
by f; if kmod T € ;.

7.2 GFSR generators

A generalized feedback shift register (GFSR) sequence is a pseudorandom sequence which is
based on a FSR sequence. There are two types of GFSR sequences, the Tausworthe type [29]
and the Lewis-Payne type [15], and the latter type is usually called the GFSR sequences. In
this section, however, we adopt a more general definition of GFSR sequences and show that
the two types are essentially equivalent. The general treatment of GFSR generators as given
here was once discussed by Fushimi [5]. It will be extended to the parallel cases to define
PFSR generators in the next section.

In a random sequence of [-bit fixed-point numbers, let the kth bit of the :th number be
bi, (0 <i,0 <k <1[). We define a GFSR sequence as a sequence whose bit contents are

given in terms of a FSR sequence (a{") as
b = al) 4 (7.7)
Here u, x and w are all assumed to be relatively prime to 7. We will designate the GFSR
sequence in (7.7) by G(u;x,w). When v is relatively prime to T,
aﬁ;‘lkw = Giugtkuw = Gigpy=! otkuvv=w = Clggf)lﬁkv_lw (7.8)
so that we have a formula
G(u; v, w) = Gluvyv e, v). (7.9)

Here v=! denotes the inverse element of v mod 7" in the group G.
Both the Tausworthe type and the Lewis-Payne type are special cases of our general
GFSR sequences. In fact, the Tausworthe sequence constructed from (a{*) with word-to-

n

word phase difference o is defined as b;, = agg:_k, so that
T(u;0) = G(u;o,1). (7.10)

57

And the Lewis-Payne sequence with phase difference between two neighboring bit positions

7 is defined by by, = agi)kﬂ so that
L(u;m) = G(u; 1, 7). (7.11)

Here o and 7 are assumed to be relatively prime to 7.
Conversely, any GFSR sequence G(u; x,w) can be interpreted as a Tausworthe sequence

and as a Lewis-Payne sequence. To see this, we use (7.9) to get
Gu;z,w) = Gluw;w 'z, 1) (7.12)
= Guzr;1,27'w). (7.13)

Applying (7.10) and (7.11) to the right-hand sides, we arrive at
Gujz,w) = T(uw;w ') (7.14)
= L(ux;z™'w). (7.15)

From the above discussion, we can conclude that 7', . and G are all equivalent to each
other in the sense that a generator of one type can be identified as a generator of any other

type. T is translated into L by equations (7.10) and (7.15) as
T(u;o) = L(uc; o). (7.16)
Similarly, the translation of L into T is given by equations (7.11) and (7.14) as

L(u;t) = T(ur;m™1). (7.17)

7.3 PFSR generators

As discussed previously, random numbers in a parallel environment form a two dimensional
array. Let the kth bit of the random number v;; be b3 (0 <4, 0 < 5,0 < k < [). Assuming
that u, x,y,w are relatively prime to T', we construct an array of random numbers from a
FSR sequence (a{(*)) as

bijk = Qi (7.18)
This generator will be denoted by P(u;x,y,w). In this generator, the bit sequence generated

in every bit position in every row is a phase shift of a single FSR sequence so that these bit

38

sequences can be generated by a single recurrence in parallel. Therefore, a parallel generator
of this type will be called a parallelized feedback shift register (PFSR) generator. In the

same way as we derived (7.9), we see that
P(u;z,y,w) = Pluv;v e, vy, 0™ w), (7.19)

where v is assumed to be relatively prime to 7.

Generally in the equipartition method, we cut off segments of equal length from a single
pseudorandom sequence X = (x,) and arrange them in rows or in columns to construct a two
dimensional array. If the original sequence is arranged in the row direction as v;; = 2;,4;, we
say the original sequence is parallelized in a horizontal configuration with row length v and
designate the array by H(X;v). If the segments are arranged in columns so that v;; = ;4,,
we call the parallelization a vertical configuration with column length ¢ and designate the
generator by V(X;u). In applying the equipartition method to GFSR sequences, we have
four possibilities because the original sequence can be either of the Tausworthe type (7) or
of the Lewis-Payne type (L) and the configuration can be horizontal (H) or vertical (V).

All of these possibilities are easily seen to be special cases of the PFSR generators:

H(T(w;0),v) = Pluo,ov,1) (7.20)
V(T(w;0),0) = Plujop,o,1) (7.21)
H(L(w;7),v) = Plu;l,v,7) (7.22)
VI(L(w;T), 1) = Pluyp,1,7) (7.23)

For example, the first equation (7.20) is derived from the observation that H(T(u;0),v)
arranges a Tausworthe sequence (w = 1) in the row direction (x = ¢) with a phase difference
v between two neighboring rows (so that y = 2 = ov).

Next we show that the PFSR generator P(u;x,y,w) can be interpreted as a special case
of any of the four equipartition method. By (7.19),

Plu;z,y,w) = Pluw;w'z,w e 27y, 1) (7.24)
= Pluw;w™ly -y te,wly, 1) (7.25)
= Pluz;l,z 'y, x 1w) (7.26)
= Pluy;y'a, w). (7.27)

Comparing the right-hand sides with (7.20), (7.21), (7.22) and (7.23), we can read these

equations as

P(usz,y,w) = H(T(ww;w™'2),2""y) (7.28)
= V(T(uw;w™'y),y"'z) (7.29)
— H(L(uz;2~"w), 2" 'y) (7.30)
= V(L(uy;y~'w),y™'z) (7.31)

Thus the four equipartition method and the PFSR method are equivalent to each other in
the sense that any one of them are reinterpreted as a special case of any other one.
Fushimi [5, 7] proposed a method of parallel random number generation based on a FSR
sequence which have no correlation between parallelized sequences. Consider a multipro-
cessor system composed of n, processors. Fushimi’s method is to consider a Tausworthe
sequence T'(u;0) with the word-to-word phase shift o (o > n,l), then to slice it into n,
sequences of [-bit word length, and finally to distribute them to the n, processors. The
merit of this method is that correlation functions between any two row sequences vanish up

to a huge lag provided o ~ n,l. Now, it is easy to see that
F(u;o,l) = P(u;o,1,1). (7.32)

Thus Fushimi’s method is also a special case of the PFSR method. The inverse translation,

though rather formal, is given by

1

Plu;x,y,2) = Fuz; 27 'e, 27 y). (7.33)

7.4 Phase shift analysis of the PFSR generators

All the parallel bit sequences appearing in the row direction or in the column direction
of a PFSR array are phase shifted versions of a single FSR sequence. In applying a PFSR
generator, one must take care not to use a FSR sequence duplicately. The aim of this section
is to derive conditions for the absence of such duplication. Before starting the discussion,
we must fix the range of the random number array to be used in a parallel computation. We
assume that consecutive n, rows are generated in parallel and that n, random numbers are

used in each row.

60

By (7.30), the PFSR array P(u;x,y, z) is a horizontal configuration of a Lewis-Payne se-
quence with row length 271y, and the phase difference between two neighboring bit positions
of the Lewis-Payne sequence is given by 2 !w. Therefore, the two bit sequences appearing
in the k;th bit position of the 7;th row and in the kyth bit position of the i5th row are phase
shifts of (a{*")) with the phase difference

s.(1,k)=(-2y + k-2 w) mod T, (7.34)

where ¢ = 15 — 77 and k = ky — ky. Let A, be the minimum of these phase differences taken

over all ¢ and k such that
il < K<L (k) # (0,0) (7.35)

We require that there is no duplication of bit sequence in the row direction in the used region

of the random number array. This condition is expressed as

A, > n.. (7.36)

In the same way, any duplication of bit sequence should be avoided in the column di-
rection. As is seen from (7.31), P(u;x,y,z) is a vertical configuration of a Lewis-Payne

1

sequence with column length y~" 2z, where the Lewis-Payne sequence is constructed with the

1

phase difference between neighboring bit positions of y~ w. Thus the phase difference be-

tween the two bit sequences appearing in the kth bit position of the j;th column and in the

koth bit position of the joth column is given by
s k)= -y e+ k-y'w)mod T, (7.37)

where j = j, — j; and k& = ky — k. Let A, be the minimum of these phase differences taken
over all j and k& such that

gl <ne. |kl <1, (5. k) # (0,0). (7.38)
Then a PFSR generator should satisfy the condition

A > n,. (7.39)

61

(7.36) and (7.39) are just the conditions for the PFSR generator to have good correlation
properties in the row direction and in the column direction. For example, the correlation

function with lag s between the i1th and the i5th row sequences is expressed as

-1 -1

Riiy(s) = 3. Y 2ntbet DR (s 45, (iy — i1, ky — k1)) (7.40)

k1=0 ko=0
Because the autocorrelation function R, of the FSR sequence (a,,) is two-valued as in (7.6),

the correlation function for |s| < A, is given by

11—2(1 — 272 if 13 =13 and s=0 (mod T

Riyip(5) { 0 otherwise, (7.41)

while the correlation function for |s| = A, differs from this expression for at least one pair
of i; and 5. Because (7.41) is the expected correlation function for truly random sequences
of [-bit numbers, we can interpret (7.36) as the condition for the PFSR generator to have

good correlation properties.

7.5 Examples

In this section, we apply the analysis given in the preceding section to four examples of
parallel generators which have appeared in the literature. It will be shown that two of them
violate the conditions so that they have difficulty in correlation properties.

In the condition (7.36), the amount of random numbers n. used in a row sequence varies
from application to application. For the examples we are examining, however, it suffices to
notice that n. is much larger than 2!° and never exceeds 2°°. Except for the generator in
Example 2, n, in the condition (7.39) is assumed to be equal to the number of processors

np.

Example 1. Fushimi’s method [5, 7] was proposed in the purpose of constructing multiple
sequences whose correlation functions vanish up to the largest possible lags. He did not give
any complete set of parameters to specify a parallel generator. We assume here that the
FSR sequence is generated by a primitive trinomial with (p,q) = (521,32), | = 32 = 2%,
n, = n, = 1024 = 2'° and o = n,l = 2'*. Thus our example is F'(u;2'%,2%). Applying
(7.32), we know that this is a PFSR generator with

r=2"y=2"w=1. (7.42)

62

Then by (7.34) and (7.35)
sp(i k) = (i-2°M 4 k- 2°%) mod (2°%' — 1), |i] < 2'°, |k| < 2°, (4, k) # (0,0), (7.43)
and by (7.37) and (7.38)
sc(4, k) = (52" + k- 22 mod (2°*' — 1), |j] < ne, [k| < 2°,(5, k) £ (0,0). (7.44)
The minima of these phase differences are
A =s,(=2041,-2541) =261 (7.45)

and

A, =5.(1,0) =2 = n,. (7.46)

These equations show that this generator satisfies the two conditions (7.36) and (7.39). In
particular, the minimum (7.45) is the largest possible value of A, for the 1024 x 32 = 2!
bit sequences appearing in the row direction.

The k-distributivity of a row sequence is not guaranteed even for k = 1 because |p/o| = 0.

It should be checked whether the row sequences are k-distributed up to k = |p/l] [6].

Example 2. In reference [18], a sample generator for multiprocessor systems is given in
FORTRAN. The generator equipartitions a Tausworthe sequence with ¢ = 32 and [= 31
into a horizontal configuration with v = 226!, The Tausworthe sequence is based on a FSR
sequence generated by a primitive trinomial (p,q) = (521,32). One of the merits of this
generator is that the array has a huge number of rows which can be used in parallel. In
the FORTRAN program given in the reference, each processor can specify any of the first
n, = 23! rows of the array for its use. Thus it is easy to repeat many independent Monte
Carlo experiments using separate parts of the array. Another merit of the generator is that

the maximal k-distributivity of the row sequences is evident from its construction. The

PFSR parameters for this generator H (T (u;2°),2%%) is given by (7.20) as
r =2y =2"w=1. (7.47)

Therefore
sp(i k) = (i- 2% + k- 2°%) mod (2°%' — 1), |i| < 2™, |k| < 31,(s,k) # (0,0), (7.48)

63

and
sc(4, k) = (5-2°° 4+ k-2 mod (2°%' — 1), |j] < n., |k] <31,(5,k) # (0,0). (7.49)
The minimum values are
A, = s,(1,0) = 2% (7.50)

and

A, = s,(0,1) = 2%, (7.51)

Both of these are extraordinarily large and the two conditions are safely satisfied.

Example 3. A VLSI implementation of a parallel random number generator with [= 16
was introduced in reference [28]. It equipartitions a Tausworthe sequence with p = 127 and
o = 16 into n, segments to make a horizontal configuration with v ~ 227 /n . The parallel
system involves three Monte Carlo computers each consisting of eight microprocessors. Be-
cause each Monte Carlo computer can perform its own task, the number of processors which
generate random numbers in parallel is n, = 8, 16 or 24.
Let n, = 8. Then the generator is H(7T(u;2%),2'**) so that the PFSR parameters are
given from (7.20) as
r=2 y=2w=1. (7.52)

Substituting these values into (7.34) and (7.35), we get
s.(i,k) = (-2 +k-27") mod (2" — 1), |i| < 2% |k| < 2*,(3,k) # (0,0). (7.53)
The minimum of these values is
A, =s,.(i,=2) =0 (0<i] <2%). (7.54)

For example, the bit sequence appearing in the second bit position of the ¢th row is identical
to the bit sequence appearing in the zeroth bit position of the (¢ + 1)th row. Thus there is
a large correlation between any two neighboring rows. By (7.37) and (7.38),

Sc(jvk) = (.] : 23 + k- 2_1) mod (2127 - 1)7 |.]| < N, |k| < 247 (.]7k) 7£ (070) (755)

The minimum of these is

A, = 5.(0,2) = 1. (7.56)

64

For example, the phase difference between two bit sequences in the zeroth and the second
bit positions in each column sequence is only one.

We can repeat similar analysis assuming n, = 16 or 24. The result is much the same as
in the case of n, = 8. In fact, row sequences assigned to eight of the processors are (almost)
the same for the three cases, because both 16 and 24 are multiples of 8.

As the authors of reference [28] checked by a series of statistical tests, each row sequence
seems to have no problem in randomness. But there exist strong correlations between some

pairs of row sequences, and the column sequences have large autocorrelations.

Example 4. In reference [1], a Lewis-Payne sequence with (p, ¢) = (607,334) is parallelized
in a vertical configuration with y = n, = n, = 8192 = 2'*. The phase difference between
two neighboring bit positions of the Lewis-Payne sequence was chosen to be pn, = 2%p

for the sake of initialization efficiency. Since this generator is V(L(u;2%p),2"), the PFSR

parameters are given by (7.23) as
x =28y =1w=2%p. (7.57)
Therefore
sp(isk) = (- 22" + k- p) mod (257 — 1), |i] < 2" |k| < 1, (i, k) # (0,0), (7.58)
and
se(5,k) = (5 -2 + k- 2%p) mod (2°°7 — 1), || < ne, K| <1, (J, k) # (0,0). (7.59)

The minima are
A, =5,.(0,1)=p (7.60)
and
A, =s.(—kp,k)y=0 (0<|k|l <. (7.61)

Thus neither of the conditions (7.36) and (7.39) is satisfied.

Lewis and Payne [15] argued that the phase difference between two neighboring bit posi-
tions 7 should be 100p or more. But the discussion in the preceding section, when applied

to the Lewis-Payne sequences, leads to a stronger requirement

T>n (7.62)

65

where n is the number of random numbers to be generated.

To illustrate the importance of the phase difference, we consider the simulation of iso-
tropic random walk on a square lattice. In each step of the simulation, one generates a
random number and moves the point to the nearest neighboring site on the right, above, on
the left or below according as the random number falls in [0, 1), [$.3), [},2) or [2,1). We
mark the final position (x,y) of a point which starts from the origin and suffers n., = 5000
steps of random walk.

Each part of Figure 7.1 shows the results of consecutive simulations of 100 points using
a row sequence of the PFSR generator in Example 2 (Part (a)) or in Example 4 (Part (b)).
If the row sequence is random enough, points will distribute isotropically around the origin.
Part (a) of the figure shows no singular behavior, but part (b) is obviously anomalous.

We can explain the anomaly caused by a row sequence of Example 4 as follows: The
random walk described above is determined by the most significant two bits of the random

numbers. In a PFSR generator, the two bits in the ¢th random number can be written as «a;

and a;4, where (a,) is a FSR sequence of pth degree. If we write o; = (—1)*, & 4+ y increases

by one when a; = 1 and decreases by one when «a; = —1 so that
Nstep
Tty=), a. (7.63)
=1

And = — y increases by one when «; and «;, are of the same sign while it decreases by one

when they are of the opposite signs. From this, we conclude

Nstep
T—y= Z e T (7.64)
=1

By the cycle-and-add property, we can write

Nstep

r—y= Z Qir (7.65)
=1

with an appropriate constant r. Therefore, by (7.63) and (7.65),
1 Nstep Nstep
r = 5 (Z o; -+ Z ozH_,,) , (7.66)
=1 =1
1 Nstep Nstep
y =3 Yo=Y aig . (7.67)
=1 =1

66

° ° 100 °
° o
o
o
o oo
© o
o ° °
o o
° o
o
o ° o % |0 e o
° o
o o|©
° o
o
o o
° o o%?-, o T
; ° e - ¢
5 5o T o S o
100 ; e 100
° 8
o o° o
o o o
o
od
o o °
° o
° o
o
o
o ©
° ®
o| o
o
o
o >+ —100
o
o o o °
8 o
o, To 2 ° .° o 2100
o o
I ,8,p°° ©o0o o o © o © o Z
3 % %5750 % to—o
o o o ® 9 OOOOd-, o ©Ow o
o — o ° °8o, 8§ ° o °
o S o °
0% © ° o)
o o
o
° o
o

(b)

Figure 7.1: Two simulations of isotropic random walk on a square lattice. Each small circle
indicates the final position of a point which started from the origin and experienced 5000
steps of random walk. Such a simulation was repeated for 100 points using (a) a sequence

in Example 2, and (b) a sequence in Example 4.

67

In a row sequence of Example 4, where 7 = p as shown in (7.60), the recurrence equation
indicates r = p — ¢ so that the two summations in the parentheses overlap largely when
Nstep > p—q. This shows why y values in Figure 7.1(b) are relatively small for most points.

The anomalous behavior of the simulation will be observed for arbitrary 7’s of the form
2¢p provided ngie, > 2°(p — q). In fact, we can show r = 2°(p — ¢) in these cases by applying
an = (Ap-2¢p + p—2ey) mod 2 to the right-hand side of (7.64). Thus 7 of order 100p is not
always sufficient to get a good Lewis-Payne sequence. Rather we should require (7.62) which

is the analogue of (7.36).

68

Chapter 8

Conclusion

Monte Carlo simulations have always been one of the main tasks for the most advanced
computers of the age. In these years, the advent of highly parallel machines with supreme
performances urges efforts to develop various techniques of handling Monte Carlo simulations
in parallel environments. Especially, the problem of parallel random number generation is
of fundamental importance, because random numbers form the basis for all Monte Carlo
simulations.

In this work, we discussed the equipartition method for generating random numbers
on parallel computers. We parallelized lagged-Fibonacci generators with 6, 4+, — or * in
horizontal configurations. The shift register generators were shown to be parallelizable in
vertical configurations as well. Algorithms for evaluating remote terms in lagged-Fibonacci
sequences were given to initialize the table of random numbers. The complexity of these
algorithms were O(plogn) for shift register sequences and O(p*logn) for other kinds of
lagged-Fibonacci sequences. The initialization procedures based on these algorithms are
very efficient, and our parallel generators can be served for general use.

One of the merits in the equipartition method is that it introduces a definite structure in
the array of random numbers. This is very important because the structure permits theoret-
ical analysis from which we can draw useful information in designing a good parallelization.
We performed such analysis for a general parallelized source assuming only that the original
sequence is periodic. It was shown that a parallelized source in a horizontal configuration
can also be a parallelized source of another periodic sequence in a vertical configuration. The
condition for such a configuration is that the length of the equipartitioned strings is prime

to the period of the original sequence.

69

For shift register generators, structure of the parallelized source was investigated in more
detail. We introduced the PFSR formalism to describe various parallelized shift register
random numbers from a unified point of view. In parallelizing a shift register generator,
we should avoid any duplicate use of shift register bit sequences generated in all parallel
bit positions in the row direction or in the column direction. Simple criteria judging the
absence of these duplication were derived in terms of the PFSR formalism. We have tested
four generators in the literature and have found that two of them violate the criteria. Because
a parallelized shift register generator has a very simple structure, there is a large chance that
it reveals some regularity. We cannot be too careful in parallelizing a shift register generator.

Parallelization of random numbers in terms of equipartitioning is not peculiar to parallel
computing. In many simulations on traditional serial computers, random numbers are dis-
tributed to definite degrees of freedom in a definite way so that they essentially form multiple
parallel sequences. Statistical simulations of queues and physical simulations on lattices are
good examples which may involve this problem. The results of our theoretical consideration
would also be useful for the study of random numbers in these applications.

There are various types of parallel computers, each of which requires programs in its own
style. We implemented the parallel generators on vector processors and distributed memory
multiprocessors. Recently, vector-parallel machines which are multiprocessor systems with
vectorial nodes have appeared. It is trivial that our generators are easily implemented on
these machines. Application to shared memory multiprocessors would also be possible, but
it may cause trouble in allocating a large memory space to the table of parallel random
numbers. As we discussed in chapter 2, the same problem will occur on vector processors if
the vector length is taken to be very long.

Throughout the work, we considered random numbers which behave as if they were
independently sampled from the uniform distribution. Many applications, however, require
random quantities simulating other kinds of distributions. For multiprocessors, there would
be no problem to be discussed on parallel generation of these specific random quantities.
In fact, these quantities are transformed from uniform random numbers, and conventional
programs for such transformations work on each node processor. As for vector processors,
however, some problems may be remained because these programs are also hoped to be

vectorized.

70

In this work, no description was given on statistical tests of parallel random numbers.
Presumably, testing of parallel random numbers may be the most important problem left for
the future. For a single sequence, a series of statistical tests are used on trust to judge if the
sequence is random enough for usual applications. We do not know what kind of statistical
tests can judge the properties of parallelized random numbers. Applications to individual

problems would take the place of these tests until powerful statistical tests are invented.

71

Acknowledgement

The author would like to express his sincerest thanks to Professor 5. Shirahata for his
warm support and encouragement given to the author. He is grateful to the members of
Department of Applied Mathematics, Faculty of Engineering Science, Osaka University, for
their warm hospitality at the department.

He wishes to acknowledge his grateful thanks to Professor K. Asai and Professor M. Sato
for their interest and encouragement.

He thanks Professor O. Miyamura and Dr. T. Takaishi for collaboration. He also thanks
Professor M. Fukui and Dr. S. Hioki for useful discussions.

Programs were tested on NEC SX-2N at the Computation Center of Osaka University,
HITAC S820/80 at the Computer Center, University of Tokyo, Fujitsu AP1000 at Fujitsu
Parallel Computing Research Facilities, and a personal computer DELL Latitude XP with
Microsoft FORTRAN POWERSTATION compiler.

72

Bibliography

1]

S. Aluru, G.M. Prabhu and J. Gustafson, A random number generator for parallel
computers, Parallel Comput. 18 (1992) 839-847.

A.C. Davies, Delayed versions of maximal-length linear binary sequences, Flectron.

Lett., 1 (1965) 61.

A .M. Ferrenberg, D.P. Landau and Y.J. Wong, Monte Carlo Simulations: Hidden Errors
from “Good” Random Number Generators, Phys. Rev. Lett. 69 (1992) 3382-3384.

M. Fushimi and S. Tezuka, Japanese J. Appl. Stat., 10 (1982) 151-163 (in Japanese).

M. Fushimi, A reciprocity theorem on the random number generation based on m-

sequences and its applications (in Japanese), Transactions of the Information Processing

Society of Japan 24 (1983) 576-579.

M. Fushimi and S. Tezuka, The k-distribution of generalized feedback shift register
pseudorandom numbers, Commun. ACM 26 (1983) 516-523.

M. Fushimi, Random number generation on parallel processors, in: E.A. MacNair,
K.J. Musselman, P. Heidelberger, eds., Proceedings of the 1989 Winter Simulation Con-
ference, (IEEE Press, New York, 1989) 459-461.

S.W. Golomb, Shift Register Sequences, (Holden-Day, San Francisco, 1967).

S.W. Golomb, Shift Register Sequences, revised ed. (Aegean Park Press, Laguna Hills,
CA, 1982).

J.P. Hayes and T. Mudge, Hypercube supercomputers, Proc. [EEFE, 77 (1989) 1829-
1841.

73

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[21]

[22]

N. Ito and Y. Kanada, Random number generation for the vector processor, Supercom-

puter, 7 (1990) 29-35.

C. Kalle and S. Wansleben, Problems with the random number generator RANF im-
plemented on the CDC Cyber 205, Comput. Phys. Commun., 33 (1984) 343-346.

S. Kirkpatrick and E.P. Stoll, A very fast shift-register sequence random number gen-
erator, J. Comput. Phys., 40 (1981) 517-526.

D.E. Knuth, The Art of Computer Programming, Vol.2: Seminumerical Algorithms, 2nd
ed. (Addison-Wesley, Reading, Mass., 1981).

T.G. Lewis and W.H. Payne, Generalized feedback shift register pseudorandom number
algorithm, J. ACM 20 (1973) 456-468.

N.M. Maclaren, The generation of multiple independent sequences of pseudorandom

numbers, Appl. Statist., 38 (1989) 351-359.

J. Makino and O. Miyamura, Generation of shift register random numbers on vector

processors, Comput. Phys. Commun. 64 (1991) 363-368.

J. Makino, T. Takaishi and O. Miyamura, Generation of shift register random numbers

on distributed memory multiprocessors, Comput. Phys. Commun. 70 (1992) 495-500.

J. Makino, On the structure of parallelized random number sources, Comput. Phys.

Commun. 78 (1993) 105-112.

J. Makino, Lagged-Fibonacci random number generators on parallel computers, Parallel

Comput. 20 (1994) 1357-1367.

J. Makino and O. Miyamura, Parallelized feedback shift register generators of pseudo-
random numbers, Parallel Comput. 21 (1995) 1015-1028.

. Marsaglia, Random numbers fall mainly in the planes, Proc. Nat. Acad. Seci., 61
(1968) 25-28.

G. Marsaglia and T.A. Bray, One-line random number generators and their use in

combinations, Commun. ACM, 11 (1968) 757-759.

74

[24]

[25]

[26]

[27]

28]

32]

33]

G. Marsaglia and L.H. Tsay, Matrices and the Structure of Random Number Sequences,
Linear Algebra and Its Applications 67 (1985) 147-156.

G. Marsaglia, A Current View of Random Number Generators, in: L. Billard, ed., Com-
puter Science and Statistics: Proc. 16th Symposium on the Interface (North-Holland,
Amsterdam, New York, 1985) 3-10.

A. De Matteis and S. Pagnutti, Parallelization of random number generators and long-

range correlations, Numer. Math., 53 (1988) 595-608.

J.C.P. Miller and D.J.5. Brown, An Algorithm for Evaluation of Remote Terms in a
Linear Recurrence Sequence, Comp. J. 9 (1966) 188-190.

J. Saarinen, J. Tomberg, L.. Vehmanen and K. Kaski, VLSI implementation of Taus-
worthe random number generator for parallel processing environment, IEFE Proceedings-

F 138 (1991) 138-146.

R.C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math.

Comput. 19 (1965) 201-209.

A.N. van Luyn, Shift-register connections for delayed versions of m-sequences, Flectron.

Lett., 14 (1978) 713.

N. Zierler and J. Brillhart, On primitive trinomials (Mod 2), Inform. Control, 13 (1968)
541-554.

N. Zierler and J. Brillhart, On primitive trinomials (Mod 2), 11, Inform. Control, 14
(1969) 566-569.

N. Zierler, Primitive trinomials whose degree is a Mersenne exponent, Inform. Control,

15 (1969) 67-69.

75

