
Title STUDIES ON REVISED GMDH ALGORITHMS WITH
APPLICATIONS

Author(s) 近藤, 正

Citation 大阪大学, 1979, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2847

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



< il3<. k

                   STUDIES

                     ON

 REVISED GMDH ALGORrTHMS WITH APPLrCATrONS

tri/i G M D H t 1 o Jrg lg 1; ff<fi l 6 Jeit

                    by

               Tadashi Kondo

           Doctoral Dissertation

    Department of Precision Engineering

              Osaka University

              December 1978

d%? )



                          ACKNOWLEDGEtyfENTS

                      '
     The author would like to express his sincere appreciation to

Professor S. Makinouchi and Dr. H. Tamura for their guidance and

encouragernent during the course of the author's graduate works and

the thesis researches. The author also expresses his gratitude to

Professors K. Nakagawa and Y. Suzuki of Osaka University for their

valuable advices and comments for improving the manuscript. The
                                                           '
author wishes to thank Professors H. Kawabe, H. Tsuwa, T. Yamada,
                  '
T. Tsukizoe and N. Zkawa of esaka University for their valuable

discussions. The author is also greatly indebted to Professor .

T. Soeda of Tokushima University for his valuable discussions and

for offering real air pollution data in Tokushima. The author's many
                                                   '
thanks should be extended to Mr. K. Yamagata and other members of

Professor Makinouchi's laboratory for their stimulating diseussions
                                                          'and kind assistances. - '
                                       tt
     All the numerical computations are carried out at the Computation

Center of Osaka University. .                                                       '                                                                '                                                               '

- iii -



AIBSTRACT

 /

CHAPTER

     1.i

     1.2

     i.3

     le4

     1.5

CHAIPTER

     2.1

     2.2

     2.3

     2.4

     2.5

     2.6

                   TABLE OF CONTENTS

                           '                               '            '                                     '
 --""""-"e"e"-"- ". e-eeee"-----e
      '
                         '
            '
1 FUNDAMENTAL PRINCurPLES OF GIY[DH . . . - . • . . . . . `

 rntroduction . . . . . . . . . . . . . . . . . . . . . .

                                      '      tt Principle of Heuristic Self-Organization . . . . . . . .

 Basic'GMDH AIgorithm . . , . . . . . . . . . . . . . . ,

 rmprovements of the Basic GmoH . . , . . . . . . . - . .

 Concluding Remarks and Motivation to This Research . . .

                                   t tt
2 REVXSED GIylDH OF GENERATrNG OPTrMAL PARTXAL POLYNOMrALS
     '                                                '   UNDER THE PREDTCUON ERROR CRrTERXON . . . . . . • • ,
         '
 rntroduction . . . . . . , . . . . . . , . . . . . . . .

 Partial Poiynomials Used in the Previous GMDH AIgorithms.
           '       ' Prediction Sum of Squares (PSS> and Akaike's Tnformation

                              '                                                   ' Criterion (AIC) . . . . . .•e .. . . . . . ... . . . . • ,
                                                 '                      '
 Revised GMDH AIgorithm Using PSS or ArC as a Criterion

 for Model Selection . . . , . . . . . . . . . . . . . . .

 Numerical Example . . . . , . . . . . . . . . . . . . . .

 Concluding Remarks . . . , . . . . , . . . . . . . . . ,

  .--  IV -

.

.

.

.

.

.

.

.

.

--

.

.

.

.

.

.

.

.

.

.

.

-

,

.

.

.

.

.

Page

 xi

  1

  1

  2

  5

 10

 17

22

22

24

28

31

36

44



CHAPTER

     3.1

     3.2

     3.3

     3.4

    '
CHAPTER

     4.1

     4.2

       4

       4

       4

       4

     4.3

       4

       4

       4

     4.4

3 REVISED enDH ALGORITHIY[ OF GENERATXNG OPTpmL XNTER]vrEDXATE

   POLYNOMIALS UNDER AKAIKE'S XNFORItyIATXON CR!TERION . . . . .
       '
 Introduction . . . . . . . . . . . . . . . . . . . . . . . .

 Revised GMDH AIgorithm of Generating Optimal Intermediate

 Polynomials .'. . . . . . . . . . . . . . . . . . . . . . . .

 Discovery of Physical Law by the Revised GMDH AIgorithm . •. .

'Concluding Remarks . . , . . . . . . . . . . . . . . . . . .
                                            '                                                               '                                                          '

4 APPLICATIONS TO ArR POLLUTrON PROBLIE}vlS . . . . . . . . , .
        '                 ' Xntroduction . . . . . . . , . . . . . . . . . . . . . . . .
                                     tt
 Large-Spatial Pattern Identification of Air Pollution . . . .

.2.1 Physical and statistical models of air pollution . e . •

.2.2 Source-reeeptor matrix e . . . . . . . . . g e . e . . "

.2.3 Estimation of souree--receptor matrix by a regression

     analysis . . . . . . . . . . . . . . . . . . . . . . . .

.2.4 Identification of iarge-spatial pattern of air pollution

     by the combined model o • . e . . . . . e e m " e b • • o

 Nonlinear Modeling for Short-TerTn Prediction of Air Poliution

 Concentration........-......e."oe.gt.
.3.1 Linear and nonlinear modeling for short-term. prediction .

.3.2 Nonlinear models Åíor short-term prediction of air

     POIIUtiOn . . . . . . . , . . . . . . . a . . . ts s n " .
                                                '.3.3 Short-term prediction by the revised GMDH . . . . . . . .

                                                      ' Concluding Rernarks '. . e . . . - . . b " . , . - . . . . lp .

47

47

48

59

64

68

68

69

69

71

74

77

88

88

89

93

104

-v-



CHAPTER

     5.1

     5.2

       5

       5

     5.3

       5

       5

     5.4

CHAPTER

5 APPUCATION TO RIVER POLLUTION PROBLEM , . . . . . . . .

 Introduction . . . . . . . . . . . . . . . . . . . . . . .

                                            ' Modeling of the Steady State River Quality . . . . . . . .

.2.1 Parameter estimation of the physical model . . . . . .

.2.2 Modeling of the steady state system by the revised GMDH

 Modeling of the Steady State Bormida River Quality . . . .

.3.1 Results of parameter estimation of the physical model .

                                                           '.3.2 Results of rnodeling by the revised GMDH . . . . . . . .

                            ' ConcZuding Rernarks . . ... . . . . . . .. . . . . . ... . .

6 CONCLUSION .......................

.

.

-•

.

.

.

.

.

.

.

107

107

108

110

X12

114

116

117

126

129

   .-Vl-



LIST OF ILLUSTRATTONS

Figure

  l.1

  1.2

  1.3

  2el

  2.2

  2.3

  2.4

  3.1

  4.1

  4.2

  4.3

  4.4

Examples of system structures having heuristic

self---organization . . . . . e e i . . . . . e e . . . '.
                                             '
Block diagram of the basic GMDH . . . • . . . • . . e .
                                      '
Block diagram of a Tevised GMDH . . e e . e e e . . . .

        '                                          '                                                       '                                     '           '
Order of complete polynomials obtained for different

partial polynomials e e e e - e e e " e - e e e e . ts .
                                               '
Block diagraTn of the revised GMDH of generating optimal
                                                      '
partial polynomials . . . . e t . e . . e . . . . . . .

Generators of the optimal partiai polynomiais . . . . .

CombinatÅ}ons of intermediate variables in each selection

                                         'layer - - - - - - - e e i t e e - - e e - " e - t - " -

 '
Block diagram of the revised CJ]Y[DH of generating optimaZ

intermediate polynomials . . . . . . . . . . . . e . e
                                         '

                              '
Coordinate system and source-receptor matrix . . . . .

!nput and output of the simulator for single source . .

Input and output of the simulator for multiple sources

Predicted values of large--spatial pattern using source-

reeeptor matrix . . . . e . . . - . . . . . . . . e . .
                                                 '

                        '                            '
                        - vii -

.

e

.

e

"

.

e

e

"

-

e

.

e

.

.

-

.

.

fi

.

e

-

.

s

.

.

.

e

.

.

.

'

e

-

.

e

Page

  4

  8

 11

28

32

34

43

49

73

76

78

80



Figure

  4.5

  4.6

  4.7

  4.8

  4.9

  4.10

  4.11

  4.12

  4.13

  4.14

  4.15

5

5

5

5

.

.

.

.

1

2

3

4

DevÅ}ation of the predicted values from the measured data . .

               'Block diagram of the prediction system using source-
                                            '
receptor matrix and revised GMDH e e . . . . . . . . . . . .

Predicted vaiues of the deviation by the revised (na)H . . •

                                               'Mean square error, PSS and RSS . . .'. . . . . . . . . . . .

Predicted values for three procedures . . . . . . . . . . .

The prediction error at three hours in advance for various

samplesizes........................
The prediction error at three hours in advance for various

prediction models . . . . . . . . . . . . . . . . . . . . .

The predicted values at one hour in advance by the revised

GMDH, the confidence intervals and the actual values . . . .

The predicted values at three hours in advance by the revised

GMDH, the eonfidence intervals and the actual values . . . .

              'ComparÅ}son of the prediction error at three hours in advance

for the revised GlvrDH model and the basic GMDH model ....

Comparison of the prediction error at three hours in advance

for the revised GMDH model and linear models . . . . . . . .

                                        'The variables measured in a river . . . . . . . . . . . . .
                                          '             '                                                   '
The Bormida river and locations of measurernent stations. . .

Measured and computed values of BOD for 14-th steady state

bymodelI-3........................
                     '
Measured and cornputed values of BOD for 15-th steady state

bymodelI-3........................

                       -- viii -

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-•

Page

81

81

86

86

87

95

96

97

97

1Ol

103

111

IZ5

120

120



Figure

  5.5

  5.6

  5.7

  5.8

  5.9

  5.10

Table

  1.1

  ill

ili

  3.1

Measured and

by rnodel I-3

Measured and

by model !-3

Measured and

            'by model II

Measured and

by model IZ

Measured and

by model II
             '
Measured and

by model I!

computed values of DO for 14-th

----i--e-e---e-e
computed values of DO for l5-th

------ee--- e.----
computed values of BOD for 14-th

--ete-"i------e-
computed values of BOD for 15-th

-t--etsoeee--e-e
computed values of DO for 14-th

e--"--eo-eeeevte
computed values of DO for 15-th

"eb-ee-----t-ee-

Constructing a

lnput data at

Input data at

Change of mean

Changes of RSS

      '  '

Observed data

steady

----
steady

--t-
 steady

-e--
 steady

ee-s
steady

eeee
steady

e"-e

 partial polynomial e o . " " e e

                  '

the interpolatÅ}on points . . e . .

the prediction points . . . . . .

 square error at the interpolation

 andPSS•.•o•e•.e••"-

in a simple kinetic system ( m = 9

             .          - zx -

state

 ---
state

 -t-
 state

 e--
 state

 -e-
state

 --"
state

 --e

eo-

ee-
e-"
  'poznts

eee

)e.

.

.

'

o

.

.

.

e

s

.

e

.

.

.

e

e

e

`

.

.

.

.

.

.

.

.

.

s

e

.

.

e

"

.

.

Page

 123

 123

 125

 125

 125

 125

Page

  13

  37

  37

  39

  43

  60



Table

  4.1

  4.2

  4.3

5

5

5

.

.

.

1

2

3

Structure of the data . . . . , . ! . . . . . . . .
                                    '
rnput variables selected in the revised GMDH and the

                       '                      'maximum order . . . . . , . . .•. . . . . . . . . .
     '
rnput variables selected in the basic GMDH and the

maximum order . . . . . , . . . . . . . . . . . . .

         '   '

                                        'The data used for modeling and model validation . .

Structures of the BOD model r . . . . . . . . . . .
                                         '
Structures of the DO model ! . . . . . . . . . . e .

.

'

.

.

.

.

.

.

.

.

.

.

.

.

.

-,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Page

  90

  98

 102

 116

 119

 121

-x-



REVrSED GMDII

    STUDrES

      ON

ALGORXTH>([SWrTHAPPLrCATrONS

by

Tadashi Kondo

ABSTRACT

     In this thesis, the revised GMDH ( Group }{ethod of Data Handling )

algorithms and their applications to environmental problems such as
                               'air pollution and river pollution problems are discussed.

     A basic GMDH algorithm, originally proposed by Xvakhnenko in 1968,

which is based on a principle of heuristie self-organization, is a

useful technique of data analysis for identifying complex nonlinear

systems under the statistical anaXysis of input-output data. This

algorithm has many advantages to deaZ with modeling of real complex

                            'systems, however, the algorithm has many methodological limitations such

that the algorithm needs many heuristics, and the identified results

depend heavily on these heuristics.

     In this thesis, the author proposes two kinds of new revised GMDH
 ' '
algorithrns which eliminate the limitations in the basic GMDH. One is

   .-x=-



the revised GMDH algorithm which generates optimal partial polynonials

                                        'automatically in each seleetion layer, and therefore, much better

                'flexibility for constructing a complete polynomial can be obtained

compared with the basic GMDH algorithrn. The other is the revised
                           '
GmoH aigorithm which generates optimal intermediate polynomials

automaticaliy instead of partial polynomials in each selection layer.

The optimal intermediate polynomials express the direet relationship
                            '                                   'between the input and output variables and they are generated so as

to minimize the prediction error evaluated by using all the data.

                                      'Therefore, the physically meaningful structure can be identified when

the characteristics of the system are well reflected in the data.

                         '     Then, these two revised GMDH algorithms are applied to environmental

problems. As the first example, large-spatial pattern identification of

air pollution by a combined model of source--receptor matrix and the

revised GMDH aigorithrn of generating optimal partiaZ polynomials is

discussed. By using synthetic data obtained by the computer simulation
                                                   '
of air pollution diffusion, the predicted results obtained from the

combined model Å}s compared with the results obtained from the source-

receptor matrix rnodel only, and also with the results obtained from

the combined model of source-receptor matrix and the basic Gly[DH. As the

second example, nonlinear modeling for short-term prediction of air

pollution conaentration by the revised CMDH of generating optimal

partial polynomials.is discussed. By using the time series data of

S02 concentration, the wind velocity and the wind direction in Tokushima,

Japan, a suitable model for predicting S02 concentration at a few hours

                                                                      '                                            '   '
                '                                            '                                                                  '                                          '                                                  '
                           .t
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Å}n advance is developed. The predicted results obtained by the revised

GlroH model are compared with the results obtained by a linear regression

                                                '                                                                    '
model, a linear autoregressive model and a basic Gb(DH model. As the '

third example, nonlinear statistÅ}cal modeling of steady state river

quality by the revised GMDH of generating optimal intermediate

polynomials is discussed. By using rneasured data of river quality such

as BOD and DO concentrations in the Bermida river, Italy, two kinds of

steady state models of rÅ}ver quality is developed. The predicted results

obtained by the revised GmbH model are compared with the results obtained

by a conventional physical model.

     Each Chapter of this thesis is based on the fo!lowing papers.

Chapter 2

[1] H. Tamura and T. Kondo: Revised Gl.![DH aigorithn using self-selection

     of optimal partial polynomials and its application to large-spatial

     air pollution pattern identification, (in Japanese) Trans. Soc.

     Instr. Control Engineers, Vol. 13, No. 4, 35Z-357 (1977)

[2] H. Tarnura and T. Kondo: Revised G}4DH algorithm using predietlon

     sum of squares (PSS) as a crite-cion for model selection, (in Japanese)

     Trans. Soc. Instr. Control Engineers, Vol. 14, No. 5, 519-524 (1978)

Chapter 3
                                  '
[3] T. Kondo and H. Tamura: Revised G?t[DH algorithm of self-selecting

     optima1 intermediate polynomiais using AIC, (in Japanese) Trans.

     Soe. Instr. Control Engineers. (forthcoming)
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Chapter 4
                                      '
[4] H. Tamura and T. Kondo: Large-spatial pattern identification of air

                                                         '     pollution by a combined model of souree-receptor matrix and revised

     GMDH, Proc. IFAC Sympo. on Environmental Systems Planning, Design
                                                             '     and Control, 373-380, Kyoto (Aug. 1977) '

[5] H. Tamura and T. Kondo: Nonlinear modeling for short-term prediction

                      '     of air pollution concentration by a revised GIMH, Proc. rnternational

     Conference on Cybernetics and Society, TEEE Syst., Man, Cybern.

     Society, 596--601, Tokyo and Kyoto (Nov. 1978)

              '           'Chapter 5 '

[6] H. Tamura and T. Kondo: Nonlinear modeling for the steady state

     river quality by a revised GM)H, (in Japanese) Trans. Soe. rnstr.

     Control Engineers. (submitted)
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CamTER 1 FUNDAMENTAL PRTNCXPLES OF GMDH

            '       '
     .1.1 Introduction

                                      '
     ReeentZy, the contributibn of the systems engineerÅ}ng to the complex

large--scale problems sueh as environmental pTobiems, traffic problems,

resource problems, etc. has been eagerly desired. In these real systems,

very many variables and pararReters are contained, and it is very difficult
                                 '                                               'to identify the systems characteristics exactly by using the knowledges

of some specific sciences only. Basic GMDH ( Group Method of Data '

Handling )- proposed by A.Ge Xvakhnenko, which is based on a method of

heuristic self-organization, is a usefuZ technique of data analysis for

identifying a completly unknown noniinear system using the input-output

data [7'-10]. '                                               '                                                          '                                                                     '
     In the basie GIYfi)H algorithm, the following advantages can be found.
  '
(a) Nonlinear systems can be identified easily by using a small number

 . of input-output data. '
(b) The struature of the model ean be self-selected by using no a priori

    information on the system structure. ' •
                                          '                                       '
However, the basic GMDH algorithm includes many disadvantages, and

therefore many attempts have been made to improve the algorithn since

                        '

                               -1-



it was proposed in 1968. Almost alZ the improvements on the GMDH are
    '
concerned with the procedures of eonstructing the proper model and with

         'the criterion for the modei selection.
       ..                          '     !n this Chapter, firstly the principle of heuristic self-organization,

                                            'which is a basic concept of GMDH, is described. Secondly, the basic GmoH
                                                                           '
algorithn proposed by Ivakhnenko is shown, and its disadvantages are

                 'clarifigd. Then, some revised GMDH algorithms which have been proposed

to overcome these disadvantages are shown. Finally, the rnotivation to

this thesis research is mentioned.

1.2 Principle of Heuristic Self--Organization [5,8]

     (]MDH is based on a principle of heuristic self-organization which

is a useful approach to various complex problems. The systems or

programs of heuristic self-organization are defined as those which have

a multilayered or a hierarehicai algorithm and include the generators

of random hypothesis, or combinations, and several layers of threshold

self-sampling of useful information. In each layer, by applying random

combinations to input variables, new variables, whose structures are
                       '                                               'more complex or whose characteristics are more improved than those of

the input variables, are generated, and from these variables more

effective variabZes can be self-seiected. These operations are repeated
 '
until the desired characteristics of the variables begin to degenerate.
                                               '                                                                         '       'By using heuristic self-organization, we can solve the problems whieh

are too complex to trace all input-output relatÅ}onships throughout the

                                  -2-



system. That is, in heuristie self-organization, the notion of general

integral influences which has a seif-adjustment facility of the system

                                          'by acting upon the multilayered structure, is used, and particular
      '                        '
information of each component of the system is not neeessary. The integral

influence is a heuristic one which is determined according to the summary

result of input and output responses. The simplest reaiization of

integral influenees is a threshold unit permitting only some inputs to

pass. rn the self-organization, heuristics, which are eonjectures in

evaluating a course of problem solution by man, i.e. are creative

thought processes of man, play an important role. Man controls the

course of the solution by continuously directing its way to the desired

results by rneans of integral influences. That is why heuristic self-

organization ensures an accuracy which could not be reached by the use
                                  '
of routine mathematical methods. From the mass selection of plants

and animals, the hypothesis of selection, which is a basis of the

heuristic seif-organization, can be found. This hypothesis of selection

has the threshold type unit of integral influence, each of which has

a single optÅ}mal setting eorresponding to the accuracy in the result.

Three examples of self-organizing systems are shown in Fig. 1.1.

The first example in Fig. 1.1 (a) is the well-known perceptron, the

model of the brain perception function, designed by Rosenblatt [19].

The second example in Fig. 1.1 (b) is the structure of a system designed

at the Stanford University, where the probiem is to predict the structure

of organic molecules [18]. The third example in Fig. 1.1 (c) is the

structure of G)q)H. rn the following section' , the basic GMDH algoTithn

based on the heuristic self-organization is shown.

                                 -3-
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1.3 Basic GMDH AIgorithrn [21]

                           '                '                                                                  '             '     The relationship between the input variables (Å~1,Å~2,''',xm) and

the output variable Åë of the system is assumed to be written by
                                                         '   '                       '
                                                          '
                                                       tt     '                                                                 '     Åë=f( Xl,X2,''',Xm). (i.1)
     '

         '
Equation (1.l) is called as a complete description of the system. Many

                  'kinds of GMDH algorithms can ba constructed for various kinds of complete

descriptions such as polynomials, Bayes formulas, trigonometrieal

functions and rational expressions [2,8,11]. Among many kinds of

complete descriptions, the Kolmogorov-Gabor polynomial

                                                           '
     Åë = ao + 2i aixi + i.. i aij xixj + i. i. { aij kx ixj xk + ''' (l•2)

                                       -
        '         '      '

is most widely used, because almost all the real systems can be described

as eq. (1.2) equÅ}valently. Equation (1.2) can be constructed by

combining the following second order polynomials of the two variables

                                                                     '                                     'in multilayers.

                          '     Yk = bo + blX'.• + b2Xj + b3Xti.xj + b4xi• + bs: /." ' (i.3>

                                                                     '                                                                         '
                                                                   '                       '     '                                                            'Here, yk is caUed as the intermediate variable, ap-d eq. (l.3) is called

                           'as the partial polynomial. The basic G]yt-DH algorithrn of constructing a

proper Kolmogorov-Gabor polynomial is written as follows [9,10]:

-5 --



Step

Step

step

Step

1:

Determine the input variables xi (i=1,2,''e,m) and the output
 '

variable Åë.• Normalize each variable if necessary. That is,

                                                         'each variable is transformed as .
            '                                                             '                                             '
    '  xi..- Xli.li!i, gi , (i-1,2,•••,.) ;'th&f OtT6or . a.4)

             x.• O              1.

Here, xit is the ct-th data of the input variable xi, and xi and

Vx. denote the mean value and the variance of xi, respectively.
  i         '                                                              '                                                            '

            tt            '                                                              '
Divide the original data into two groups; the training data for

estimating the coefficients of the partial polynomials, and the

checking data for selecting the intermediate variables. The

dividing rule is very heuristic. Usually the training and cheeking

                                                                   'data are taken alternateiy or on the basis of the variance from

the mean value. '                                           '                                       '
                                                           '       '3:
                              '
For the combination of two variables x. and x., estimate the
                                       IJ
                                                            'parameters (bo,bl,,''',bs) contained in the partial polynomial of

eq. (1.3) by using least square estimation for the training data.

4:

                                                                '
Calculate the following mean square error for the checking data,

      .N  A.h=Nl zCh(Åë.-yk.)2 '' . .. d.s)
                                     '

- 6 --



     by using the partial polynomial estimated in Step 3. Here, Nch
                                              '
     denotes the number of ahecking data, and y                                                   denotes the ct-th                                                kor
                                                                     '     estimated value of the output under the k-th intermediate variable

     yk. Select L intermediate variables which give L smallest mean
                                                                 '     square errors... This selection rule is also very heuristic.
                                   '
     Equation (1.5) is called as a regularity criterion.

Step 5:

     Replace xi and xj by yi and yj, respeetively, and go to Step 3.

     Repeat steps 3 to 5 until the smallest mean square errOr Aeh(min)

                             '     cannot be improved.

     rn addition to the above procedure, we must optimize heuristics

so as to find an optimal complete polynomial. The block diagram of
                                            A'
the basic GbMH is shown in Fig. 1.2, where Åë denotes the estimated

                                      'value of the output variable Åë. In the above procedure, eq. (1.3) is
                     'used as a partial polynomial and the 2T-th order complete polynomial

with respect to the input variables can be constructed in the T-th

layer. In order to identify the systems wi.th various complexity more

easily, some other partial poZynomials have been proposed as follows;

(a) First order polynomial

                                                            '     yk ---- bo+blxi+b2xj •' a.6)
      '                                     t t ttt
       '        '             '                   '
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(b) Second

As ab

 order

ilinear

polynomials

 partial polynomial

Yk =b +bx +bx +b   O li 2                 j 3XiXj
(1.7)

has been

number of

proposed. As a

 parameters

partial polynomial which      .conta-n sma11er

Xk = wr<Å} + (1-w)xj w: weight (1.8.a)
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      Yk=bo+blXk+b2Xft • (1.s.b)
                                         '
                                                          '                                     '                                                    '                                 '                                                                  '
                             '    has been proposed [4]. •                                          '                                              '(c) High order polynomial [5,6] ' '
           '                                                          '                                                     '
                           2'      Xi == botbixi+b2xi . a.g.a)
                                                              '                                           '                                                                       '      '                                                                      '
      Xj -b6+bixj +p5xJ2. . (1.g.b)
                                                           '      Yk = Co + elXi + C2Xj + C3XiXj + c4Xi• + csXJ2. (1.9.c)

                  '                                                                        '
     We must predetermine the form of the partial polynomial which is

used in the GMDH algorithn. This predetermination rule is also very

heuristic. As is evident from above discussion, the following heuristics

are contained in the basic GMDH algorithm• •

Hl. Determination for the divisioh ruie of the available input-output

    data into the training data and the checking data.

H2. Determination for the number of intermediate variables selected

    in each layer. • •                                                '
H3. Determination of the form of partial polynomial. •
  .. We must optimize these heuristics so as to find an optimal complete

polynomial, and therefore we must repeat the GIYfi)H computational procedure

very many times by ehanging the heuristics. Furthermore,'  the basic GMDH

algorithm involves foZlowing limitations to be solved.

                                                       '
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Ll. The identified model depends heavily on the heuristics Hl, H2 and H3.

L2. When a seeond order or a higher order polynomial is used as a partial

    polynomiaZ, the system, which has many input variables with low order

    polynoTnial, eannot be identified. The identified model with many

              '    input variables will become unnecessarily complex.
              '                                                                    '                                                                      'L3. The identified model fits well to the training data but not well to

  ' the checking data.
         '
     In the following section, improvements made on the basic GIMH

algorithm in order to overcome these liinitations are discussed.

1.4 rmprovements of the Basic GMDH [21]
       '            '

     The methodological improvements of the basic GMDH algorithm are

almost concerned with the procedure of constructing partial polynonials

in order to overcome the limitation L2 and with the criterion for the

model selection in order to overcome the limitation L3. Firstly, the

GMDH algorithms, which are Å}mproved in the procedure of constructing
    '
partiai polynomials, are shown.
 '

                          '

                                                       '                                                              '1) Algorithrn of constructing optimal partial polynomials by stepwise

    regression under the statistical test for signifieance [1]

                                                                 tt     !n this algoritlm, heuristics H3 is not necessary, and 1imitation
                                                 '
L2 and a part of limitation Ll are eliminated. But, limitation L3 is
                                           '
not eliminated because the structure of the partial polynonial is
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determined by using only the training data.

2) Algorithm of self-selecting optimal partial polynomials so as to
                                         '       '  '    minimize the mean square error for the checking data [20] '

                   tt                                                      '                             '                                                    '
     Xn this algorithm, heuristies H3 is not necessary, and limitation
                                                       tt ttt t                                                                 '                          '             'L2 and a part of limitation Ll are eliminated. Furthermore, limitation
                                                              '                                                           tt                                        'L3 is considerably eliminated. The block diagram of this algorithm is
                                     '
shown in Fig. 1.3. The mean square error for the checking data is used

G2
Xl

L=1Xl Yl
X2 Gl YlL=2 IVX2 Y2w I!..

L=N

I III

...Gl

G2
---

.t.xm ...yp ..,Yq

...xZ

L=Z

L=,2
W II

,.

L=M

I:
!I :
ZII :

rv :
Gl :

Fig. 1

A
Åë

 Self-selection of input variables

 Self-selection of optimal partial polynomials

 Self-selection of intermediate variables

 Optimization of threshold

 Filter, G2 : Base function with a single input

.3 Block diagram of a revised G)di)H [20]
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in order to deterndne the structure of the eomplete polynomial. Tn other

words, the mean square error for the cheeking data ts used to generate
                                         '                             '
the optimal partial polynomials and these polynomials are used to

construct the multilayered structure. The self-selection procedures

of optirnal partial polynomials, in which the mean square error for the
                '
checking data' is used as a selection criterion, are considered on the
                   '                                                                 '                       'basis of eqs. (1.3) and (1.8). Application of this algorithm to an
                                     '
environmental problern of air pollution can be found in [20].

                                           '
     rt has been reported that the revised GMDH algorithrns as deseribed

above can construct more simplified complete polynomials and obtain

better predietion aecuracy than the basic GMDH algorithn.
                                                                '
                                                            '     Secondly, the GMDH algorithm, which are revised for the procedure

of constructing the partial polynomial and for the criterion for the

model seleetion, are shown.

                               '
3) Combination-generating GIYll)H algorÅ}thm using unbiasedness criterion

                               '                    '
                  '
                                                       '                                                                   tt
     This algorithm was proposed by Ivakhnenko.
  '        '(a) Procedure of constructing optimal partial polynomials by generating

                                           '    combinations of input variables [12]
                                                                  '
     Instead of using second order polynomial of eq. (1.3) as a partial
                                           '
polynomial, 'a combination, which gives the smaZlest value of unbiasedness

index, is selected from combinations of two variables shown in Table 1.1,

                                                                 '                                                            'and an optimal partial polynomial is constructed.
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Table 1.1 Constructing a partial polynornial' [12]

1 2 3 4 5 6

Numberof
po/lynomials

20=l 21.2 22.4 23..s 24.16 2S=32

zl=ao z2=alX2
2z3=a2x2

z4=a3Xl zs=a4xlX2 z=ax2
651

Z2+Zl z+z31 Z4+Zl Zs+Zl Z6+Zl

Rightsides
z+z32 z+z42 z+z52 z+z62
Z3+Z2+Zl Z4+Z2tZl z+2+z521 Z6+Z1+Z2

ofthe Z4+Z3 z+z53 z+z63
partial

Z4+Z3+Zl z+z+z531 z+z+z631
Z4+Z3+Z2 z+z+z532 --t-t-

polynomials Z4+Z3+Z2+Zl z+z+z+z2153

z+z54
Z5+Z4+Zl

----i-

(b) Unbiasedness criterion [13]
                                      '                                                                  '                                                               '                                                  '
     This criterion is used in order to eliminate the limitation L3.
                                               '
Firstly, the available input-output data are divided into two groups Al

and A2. Here, the numbers of the data are Rl and R2, respectively.

Secondly, the partial polynomial

       '                          '     '                  '                                         '                                 t tttt t/ tt ttt t/ t tt                                                                '      *     Yk= fl (Xi,Xj) .. i .(1.10)
                                                             '                                                         tt t                                                              '

                                     '                                            '                                                   tt ttt                                                 '              t                           'is estimated by using Al as the training data. The data A2 are used
                                                                'as the checklng data. Then the role of the data is exchanged. That is,
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Al is used as the checking data and A2 is used as the training data.

The partial polynomial ' .
                 '               '               '
                                                                     '                                                 '                          '     Yi*=f2(Xi,Xj) ' , (1.11)
                        tt
                                              '                                                        '                         '          '
                                                                  '                                         '          '
l.il i:gilllftthedibaYyelSinF ti2' The Unbiasedness index for the k-th combination

                                                        '    . •R +R '                  12    '"Tk"RiikR2 .Ei (yl!.-yi: )2 . (i.i2)

                                   'is ealculated. Here, y:ct and yict* denote the ct--th values of y: and y:*,

respectively. Then, the unbiasedness criterion in the T-th layer
                                                                   '
                                 '                                                          '
          1   . NT =i 2 nTk                                                                 (1.13)

            k=1 •. .                                                                 '                         tt                                                                 '          '                                                         '                                   '                   '

is calculated. Here, F is the number of the intermediate variables

                                                                 'selected in the T-th layer. -
(c) Combination-generating GlroH algorithm using unbiasedness criterion

  ' [12,13]

   . rn the first layer, the avaUable input-output data are divided
                    '
into two groups, and for each combination of the two input variabZes .

the unbiasedness indexes for ail the polynomials shown in Table i.1 are

calculated. Then the optimal partial polynomial, whieh gives the

smallest unbiasedness index, is constructed. Then the F intermediate

variables, which give F srnallest unbiasedness indexes, are selected

         '                   '                               '                             '
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and the unbiasedness criterion in eq (1.13) Å}s calculated. Zn the second

layer and above, the procedure tn the first layer is repeated. The '

iterative computation is terminated when the value of N                                                          cannot be                                                        T
decreased.
                          '
     In this algorithm, a part of limitation Ll, and limitations L2 and

L3 are elirninated. But, since the division of the data is used, the

heuristics Hl is still necessary. Furthermore much more computation

time is needed cornpared with the basic GlubH.

4) Algorithm using the struGtural and parametric stability [3]

(a) Struetural stability '
     Firstly, the input-output data are divided into two groups. The
  '
partial polynomial is estimated by the least square estimation for the

data 1, and the mean square error for the data 2 is calcuZated. Then,

the role of the data is exchanged and the mean square error for the

data 1 is calculated. The partial polynomial, which gives smaller sum

of two mean square errors, is defined as structurally stable one.

(b) Parametric stability
                                                                        '
     In each second order polynomial, the term which has small difference

between two values of each parameter estimated for data 1 and 2 is

defined as parametrically stable one.
                                                 '
     The algorithm using these two stability is shown as foUows.

The partial polynomial in each selection iayer is constructed under the

criterion of the parametric stability in the second order polynomial
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of eq. (1.3), and the intermediate variables are selected under the

criterion of the structural stability. The iterative computation is .

                                                                          'terminated when the value of the structural stability cannot be improved.

The structural stability is considered as the equivalent idea to the

unbiasedness criterion proposed by Ivakhnenko.
                               '                                                 '     In this algorithm, a part of limitation Ll, and limitations L2

                                                                     'and L3 are eliminated, but heuristies Hi is necessary because we need
                     '                                                  '
to divide the data into two groups.

                 '

                                                                  '                                                    '     The revised Gba)H algortthms described above have been proposed in

order to eliminate the three limitations Ll, L2 and L3. But, these

                                                                         'revised GMDH algorithms do not eliminate the three limitations completeZy.

Especially, all of thern need the heuristics Hl and therefore computational

                                              'procedure of GMDH is to be repeated many times in order to find an optimal
           tt
heuristics Hl. In general, however, it is practically impossible to

find the optimal division rule for each problem, and the identified model

wili depend heavily on the heuristics M. The revised GmoH algorithrn,
                                                           '
whieh does not use the heuristics Hl, i.e. which uses all the data as
                                                                  '                                         'the training and at the same time as the checking data, is desired in

order to obtain the optimal modeZ which fits well to all the data.

     Sorne other revised GMDH algorithms have been proposed from practieal

situations. Subsequently, these revised GMDH algorithms are shown

briefly.
        '
  '      '     '

            tt    '5) Algorithm using balance-of-variables criterion for the purpose of
.

            '
    the long-term predietion [14,l5]
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     !n this algorithm proposed by Zvakhnenko, various procedures such

                           'as the procedure of using balance function or the procedure of using

direct functibn and inverse function are included.

6) Sequential GIY[DH algorithm [6]

        '
     ln this algoritlm, the strueture of the system is predetermined by

using the basic G]Y[DH algorithn, and when new input-output data are

obtained, the estirnates of the parameters are updated by using a

sequential ieast square estimation method. It has been reported that

this algorithm is usefui to obtain stable predicted values for the time

   .ser!es sequenee.

     Besides the improvements described above, there are many studies

on the GMDH by Ivakhnenko, et al., and they are summarized in [16,17].

1.5 Conciuding Remarks and Motivation to This Research

     In this Chapter, firstly the basie concept of GMDH algorithm which

is called the heuristic self-organization is described. The heuristic

self-organization is a very usefui concept to solve engineering cybernetics

problems which have very eomplex structure with large dirnensionality.

Secondly, the basic GMDH algorithm proposed by Ivakhnenko is shown. It

is clarified that the basie Gly[DH algorithm involves three main limitations

to be eliminated, and there exist many revised GMDH algorithrns in order

-17-



to overcome this diffÅ}cuity. But, the three limitations have not yet

been eXiminated completely.

                                     '     ln the following Chapters, the author will propose two kinds of

                               'new revised G)DH algorithms which'eiiminate these three limitations
                                                              '                               'completely where some prediction error eriterions will be used for

model sele,ction. By using the prediction error criterions, we try to
  '
develop the algorithms which do not need to divide the original data

into two groups; the training data and the checki.ng data. Furthermoice,

by using self-selection of optimal partial or intermediate polynomiaZs

in each selection layer, we try to eliminate the three limitations

completely eontained in the basic GMDH algorithn.

     The revised GMDH algorithm of generating optimal partial polynomials

under the prediction error criterion will be proposed in Chapter 2.
                                                                        '
This algorithn is supposed to be useful for identifying a very complex

system as a statÅ}stical model, where we cannot, in genera!, obtain a

                                  'physicai interpretation for the model identified. Then, the revised

GMDH algorithm of generating optimai intermediate polynomials under the

prediction error eriterion will be proposed in 'Chapter 3 where the

interrnediate polynomials generated in each selection layer express the
         '
direct relationship between the input and output variables. This
                                                                         '
algorithm is supposed to be useful for identifying physically meaningful
 '                                              '                                                                          'structure of a Telatively simple system when the eharacteristics of the
           '
system are well reflected in the input-output data.
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CHAPTER 2 REVISED G)4DH OF GENERATrNG OPTXMAL PARTIAL POLYNOM!ALS

           UNDER THE PREDICTION ERROR CRITERION

2.1 ' Introduetion

     The (]IY[DH algorithm, which is based on a method of heuristic

self-organizatio'n [10], is a useful technique of data analysis for

identifying a completely unknown nonlinear system using the input-

output data. rn the basic GMDH [11,12] developed by Ivakhnenko, the
                         '
concept of so called regularization is introduced for the purpose of
   '                                                                      'avoiding the overfitting for the past data. Namely, the available

input-output data are divided into the training data for estimating

the coefficients in the partial polynomials, and the checking data for
                 '
selecting the intermediate variables. In the basic GMDH algorithm,
                                                           '                      '
we need the following heuristics.

(a) Predetermination of the structure of the partial polynomials

(b) Division of the original data into two sets; the training data and

    the eheeking data

(c) Predetermination of the number of the intermediate variables

    These heuristics are to be changed so as to find an optimal complete
  '
polynomial. Therefore, the computational procedure of the basic GMDH

                                 - 22 --



must be repeated many times, but the complete polynomial obtained is

not always an optimal one. Furthermore, the identified results depend

                                                       'heavily on these heuristics.
                                             '
     In this Chapter, we propose a revised Gl![DH algorithm which does

not need any heuristics. In the basic GIYll)H algorithm, the structure
                          '  tt
of the partial polynomials is fixed to a predetermined description for
        '      'all possible combinations of two variables. The revised Gba)H a!gorithm
  '
proposed in this Chapter is the one whieh automatically generates optimal

partial polynomials in eaeh seleetion layer, and the polynomials as

such are used to construct a complete polynornial in the multilayered

strueture. Therefore, the identified results do not depend on the
 '
heuristics of determining the structure of the partial polynomÅ}als and

much better flexibility for constructing a complete po!ynomial can be

obtained compared with the basic GMDH aigorithm. Furthermore, in the
        '                 'revised GMDH algorithrn proposed in this Chapter, all the data can be

used as the training data and at the sarne time as the checking data,

where instead of the mean square error for the checking data

the Prediction Sum of Squares (PSS) [4] or Akaike's Information

Criterion (AIC) [1,2,3] calculated fyom these data can be used as a

criterion for generating partiaZ polynomials, for selecting interrnediate

variables and for stopping the multilayered calculation. Therefore,

the identified results do not depend on the heuristics of dividing the
              '                '
data into two sets. In the revised G"fDH a!gorithm, the number of the

intermediate variables is preferred to be as large as possible in order
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to minimize PSS or AXC. That is, the number of the intermediate ..

girtihagilllZ..ZrSyd2.tpei[ll.!;d.iOtthb.Y..t.hpe.:.e".iiStics b"t by the upper i:mit

   . Firstly, we discuss the partlal descriptions used in the previous
                                                     'GMDH algorithms. In the previous GMDH algorithms, the mean square error

for the checking data has not been used for determining the structure of

the optima! partia! polynomials and for estimating the parameters Å}n

the partial polynomials. Therefore, the valuable information contained
                                           '                                                         '                                      'in the checking data is disregarded to construct the partial polynomials,
                                 '          '
and, as the results, the identified model does not fit well to the

checking data. Secondly, the methods of computing the predietion errors;

Prediction Sum of Squares (PSS) and Akaike's rnformation Criterion (AIC)

                                              '
are shown. By using these prediction errors as a criterion for model

selection, we ean construct an optimal model which fits well to all the
                               'data. Then, the revised G)4DH algorithm of self-selecting partial
                                                                        '
polynomials under the criterion of PSS or AIC is developed. Since any

heuristics are not needed in this revised Gr4DH, we do not need to repeat

the computational procedures of the revised GMDH. The revised GMI)I{

algorithm is applied to a simple illustrative exarnple and t.he results

                                                                 '                                                                    'are compared with those obtained by the basic GMDH algorithm.

2.2 Partial Polynomials Used in the Previous GmoH AIgorithms [14]
                                                           '                                 '                                                                   .)t.t.
     There are many kinds of GMDH algorithms in which rnany kinds of
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complete

formu1as

descriptions such

are used. Here,

 as

we

 poiynomials, rational expressions,

use the Kolmogorov-Gabor polynomial

Bayes

     Åë= ao + i. aixi + E.. i aijxixj t 2i i i aijkxixjxk + ... . (2.1)

as a complete description of the system. rn what follows, we show
                               -,
sorne kinds of polynomials which have been proposed as partial polynomials.

1) First oTder polynomial

     Yk= bo+blxi+b2xj (2.2)
By using this polynomial, we can construct a first order complete

polynomial.

2) Second order polynonial

     Yk =bo+bixi+b2xj +b3xixj (2.3)
               '
     '
                                          2 2 •     Yk = bo + blxi + b2xj + b3xÅ}xj + b4xi + bsxj (2.4)

  '    tt                                                              TBy using these second order polynorntals, we can construct a 2 -th

order polynomial after passing the T-th selection layer. As a

second order polynomial, which contains a smaller number of

parameters than eqs. (2.3) and (2.4), the following partial
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polynomial has been proposed [8].

                                                        tt                                                              tt                                                       '                                                   '     Xk=WXiÅ}(1-w)xj • w: w.eight (2.5.a)
                          '
                  '                                                      '
                                  '           '
                         2•     Yk=bo+blXk+b2Xk . (2.s.b)
3) High order poiynomial [9]
       '

                                              '                         '                                                              '                                                 '                         2     Xi"bo+blxi+b2xi ' (2.6.a)
               '                    '                                             '                                                    '

                         2•     xj = b6 + bixj + b5xj ,                                                               (2.6.b)

                                                                '
                                       '
                    '                                        22     Yk = Co + CIXi + C2Xj + C3XiXj + C4Xi + CsXj . (2.6.c)

                                             '                                                tt/
                                                       'By using this polynomial, we can construct a 4T--th order polynomial after

passing the T-th selection layer.

    Optimal partial polynomials for each combination of two variables4)

                          '      '
  (a) Optimal partial polynomial in which parametric unstable terms

      contained in eq. (2.4) are eliminated [7].

  (b) Optimal partial polynomial in which unnecessary terms contained

      in eq. (2.4) are eliminated by applying stepwise regression

      method [5] using residual sum of squares (RSS) for the training

                                                                  '      data [6].
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By using these optimal partial polynomials, we can construct a complete

polynomial of various order between the first and the 2T-th order after

passing the T--th selection layer.

     The relationship between the number of selection layer and the
  '
order of a complete poZynomÅ}al is shown in Fig. 2.Z. The order of the

complete polynomial constructed by the optimal partial polynomiais in

4) (a) and (b) is shown by round rnark. By using partial polynornials

of eqs. (2.3)-(2.6), the system, which is represented by a polynomial

having many input variables with low oTder, cannot be identified

because the order of the complete polynomial is doubled in each
      '
selection layer. By using optimal partial polynomials in 4) (a) and

(b), a systern as such can be identified. That is, much broader kinds of

systems can be identified by using optimal partial polynomials but

not by using predetermined polynomials for ail potssible eornbinations

of two variables. Furthermore, the number of terms contained in a

complete polynomial can be deereased by using optimal partial polynomials.

                                                                    'But, in 4) (a), a lot of computation time are needed in order to

construct an optimal partÅ}al poXynomial. And, in 4) (b), it is

difficult to find the optimal standard value of variable selection,

and furthermore the valuable information in the checking data cannot

be used to construct the partial polynomials.

     In order to cope with the disadvantages contained in the previous

partial polynomials as described above, we propose a revised` GMDH

algorithn which generates in each selectÅ}on layer an optimal partial
                                                                   '
polynomial which minimize the, prediction error.
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        Fig. 2.1 Order of complete polynomials obtained

                  for different partial polynomiais

                               '
2.3 Prediction Surn of Squares (PSS) and Akaike's Information

                                        '     Criterion (ATC)

1) Computation of PSS [4]

     !n a muitiple regression analysis, PSS is used as a criterion for

selecting the independent variables, and the optimal regression equation

                                                   '
                                      '              m     2ct = bo +iEibixi., ct=i,2,.''',n

is constructed so as to minimize PSS.
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     PSS is defined as
                                                  '
                '
            n     pss -- ..z,i( z.- 2.*)2 ' • . . (2.7)

                 m     A*     zct =boct + Ebictxict, ct=i,2,''',n .
                i=1

Here, n denotes the data length, z is the drth actual value, and
                                 ct
2: is the ct-th estimated value obtained by a multiple regression

analysis of all the data except the or-th data. Tn order to compute

PSS of eq. (2.7), the multiple regression analysis must be repeated n

times, therefore the amount of computation increases as the increase

of the number of data. For this reason, when there are maRy data, it

is not practieal to compute PSS in the form of eq. (2.7)•

     PSS of eq. (2i7) can be reduced to [13]

                         A            n z-z     pss= 2]-( \Tct-1 )2 (2.s)
           ct=1 1-x (X X) Å~
                   -ct -tsc
wh ere

       .m     2. = bo + i.Zibixi., ct=1,2,''',n

        '           '
    3scTe "" (1sxlct,x2ct,''',xmct)

     xT = [2s!i,2!2,''''2!n] '
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       AHere, zct is the ct-th estimated value obtained by a regression analysis

of all the data. rn this procedure, we do not need to repeat the

                       'regression analysis. • . .
                                 '        '
                         '                                                     t-
2) Computation of AIC [1,2,3]

                             '

     rn a multiple regression anaiysis, AIC is also used as a criterion

for selecting the independent variabZes, and the optimal regression
                   '
equation is constructed so as to minimize ArC. The basic statistics of

ArC is defined as

     AIC =- 2 log ( Max imum Likelihood )+2 k, ' ' (2.9)
                  e                                                           '                                                               '        '
                                                t ttt
                      '
where k is the number of parameters in the model to be adjusted to

attain the maximum of the likelihood. Our identification procedure

is realized by adopting the model which gives the minimum of AIC '

within a set of possible alternative complete polynomials. By this

procedufe, we are trying to minimize the expected deviation of the

                                                            'fitted distributiori from the true distribution as measured by Kullback-

Leibler's mean amount of information for discrimination. The information
     '                                                          'theoretic justification of the use of ArC for this purpose for

                                                                          '                                             'independent observations can be found in [2,3]. For a linear regression

analysis, AIC is reduced to

                  '     AIc =n loge s2 +2k+c (2.lo)
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     sft =t S( ..- 2.)2 (2.11)
            ct=1

where n denotes the data length, C is a constant, 2 is the ct-th estimated
                                                  ct
                '                     .t . . t.value obtained by a regression anaiysis of all the data, and z is the
                                                             ct
ct-th observed value. Here, it is assumed that the noises contained in

the model are mutually independent and normally distributed.

2.4 Revised GMDH AIgorithm Using PSS or AIC as a Criterion for

     Model Selection [15]

     In a GMDH algorithm, PSS or AXC calculated from all the data ean

be used as a criterion for generating optimal partial polynomials in

each selection layer, for selecting intermediate variables and for

stopping the multilayered iterative computation. The significant

advantage of using PSS or AXC for mode! sekeetion is that it is not

necessary to divide the available data into the training data and the

checking data. All the data ean be used for construeting the model

and at the same time for evaluating the prediction error, since PSS

and AIC have an ability to evaluate the prediction error incurred by

the model. Therefore, the identified results do not depend on the

heuristics for dividing the data into the training data and the checking

data, as it does in the basic anH algorithm. Furthermore, much better.
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flexibility for constructing a eomplete polynomial can be obtained

compared with the basic GMDH algorÅ}thm. .

     The block diagxam of the revised GIYll)H algorithm using AIC is shown

      '
in Fig. 2.2. Here, it is assumed that the compZete description of the

system can be written as the Kolmogorov-Gabor poZynomiai .'

                                      '                  '
       '

                                      '     Åë= ao + i, aixi + Zj i. aij xixj + ''- • •. (2.12)

                                                                      '
                              '                                  '                   '
              '                                                                   '
The revised G13ff)H algorithm is constructed by the following four procedures:

1) Generating optimal partial polynomials in each seleetion layer

                           '           kt) • .,,•
                                                                '            .
                 '

            Xm-1
           .            Xm
           --"'--i)b

              I : Self-selection of interrnediate variables

        Fig. 2.2 Block diagram of the revise.d G){DH of generating

                  optimal partial polynomials

Yl Yl
Gl

Y2 Y2
G2

I
,1YL-1

YL'-1

G3
YL' YL

G4

G4

G4
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     The optimal partial polynomials can be generated through Gl, G2, G3

and G4 applying a stepwise regression procedure [5] for the input

                                                'variables to the following second order polynomial,
                                      '      '

      '                                          22 •                                                   . (2.13)     yk = bo + blxÅ} + b2xj + b3xixj + b4xi + bsxj

                                                     'In this stepwise regression procedure, PSS or AIC is used as a er-iterion

                                   'for selec.ting dorninant variables in eq. (2.13). The normal equation

for this polynomiai can be uritten as

      TT     XXB=XY

                      Twhere l}=(bo,bl,''',bs) and

(2.14), 7Å~!3 matrix

         TlTl
        xx i x                  XlI
        -T- -+- T" -T- paTM
              l YY l O        yx
              ll

          2 i Exi. ''' Ex3• ,,

          2xi. Ex2i. ''' Zxi.

            e•- e            -et            -ee          2 xi . E x i• . x i.• ' Exj4. .

          - -- ny - -- --- -
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is constructed, where I is a unit matrix, gT is a zero vector, and the

7-th row is supplemented for computing RSS (Residual Sum of Squares)

which expresses the accuracy of fitting for all the data. '

     By using this matrix, we can select the demÅ}nant input variables

contained in eq. (2.13) easily, That is, when the m-th variable in

eq. (2.13) is to be entered in the partial poiynomiai, the (m+1)-th column

reduced to the unit vector of the (mi-8)-th column using a pivoting

operation. On the othenc hand, wh.en the m-th variable in eq. (2.13) is to

deZeted from the partial polynomial, the (m+8)--th column is reduced to

the unit vector of the (m+1)-th column using a pivoting operation. These

seleetion proeedures are repeated alternately based on PSS of eq. (2.8)

or AIC ' of eq. (2.10), where the dominant input variables are selected

so as to minimize PSS or AIC. Optimal partial polynomials can be

constructed by using the selected input variables. Four kinds of the
                               ,
generators of the optimal partial polynomiais are shown in Fig. 2.3.

                        tt                                                                '                                                    '
    '                                                              '
           ' • Yk=bo+b,Xi+b2Xrb3xiXj+b4X?•+bsXi

                          Yk= bo+ b, Xi + b2 Xjt b3Xi Xj

                                 I

                          Yk= bo+ b, Xi+ b, Xj'

                          Yk= b,.b, Xi+ b,x3

                          Yk= bo+ b,Xi

                             '          '                           '                                                          '

      Fig. 2.3 Generators of the optirnal partial polynomials

                       '                                '
              '                                 -- 34 -
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The generator G4 generates the same intermediate variabZe as that

generated in the previous layer.

          '
       '           '

2) Sel'e'  cting the intermediate variables

                 '         '

     The L interrnediate variables, which give the L smallest PSS or

AZC, are selected from all the intermediate variables. The number L
                           '
is preferred to be as large as posstble in order to minimize PSS or
                        'AIC. That is, L is not determined in a heuristic manner but by taking

into account the upper limit of the memory capacity of the computer.

                          '
3) Stopping the rnultilayered iterative computation

          '
     wt}en all the generators of the optimal partial polynomials in the

selection layer become G4, the iterative computation of the revised

GM])H is terrninated, because PSS or AIC cannot be decreased any more.

                                                                 '

4) Computation of the predicted values

                                                    '
    'The prediction model is obtained as a weighted average of complete

polynomials whieh are constructed by the intermediate variables remaining
                                           'in the final layer. Since we can compare the predicted values obtained

from several complete polynomials in the final layer, it is possÅ}ble

to exclude the abnormal predicted values before we obtain the fina2
                                                                    ttt
predicted value as a weighted average. Therefore, a stable prediction

can be realized.
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     Since the revised

not need any heuristics

procedure for different

GblDH algorithm descr:tbed in

, we do not need to repeat

                        ' heuristlcs.
             '

 this Chapter does

the computational

2.5 Numerical Example [15]

                           '
     Input and output relationship is assumed as

                    '
                       '                                                                      '
     th =( O.1 + O. 2xl + O. 3x2 +O.4x3)2. ' (2.16)
                                '

                         'As input variables, xi(i=1,'.',4) are used. Here, the variable x4 is

not contained in eq. (2.16). The data used for modeling are shown in

Table 2.1, and the data used for model validation are shown in Table 2.2

     Firstly, the numerical results obtained by the basic GMDII are

shown. Four variables, which give the four smallest mean square errors

for the checking data, are selected as the intermediate variables.

Thiyteen data in [Eable 2.1 are used as the interpolation points. The
           '
interpolation points are divided into the traÅ}ning data and the checking
         '
data in proportion of 7 : 6 and two cases are considered as follows:

                                       'Case l:' (Tr.) 1-7--th data '' .' '                                  '                                                              '

. . (Ch.) 8-13--th data '' • •
                                   'Case 2: (Tr.) odd-numberedi data ' ' '
         (Ch.) even-numbered data

'
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T. able 2.1 Xnput data at the interDolation
     t

  .polnts

No. Xl X2 X3 Å~4 o

1 o.o O.O 5.0 5.0 4.4

2 LO 3.0 1.0 4eO 2.6

3 2.0 5.0 4.0 3.0 13.0

4 3.0 2.0 2.0 2.0 4.4

5 4.0 o.o 3.0 1.0 4.4

6 5.0 4.0 2.0 o.o 9.6

7 o.o 5.0 4.0 1.0 10.2

8 1.0 LO leO 2.0 [teO

9 2.0 o.o 5.0 3.0 6.2

10 3.0 2.0 o.o 4eO 1.7

11 4.0 5eO 4eO 5.0 16.0

12 5.0 3,O 1.0 4eO 5.8

13 O.O o.o 3.0 3eO 1.7

Table 2.2 Input data at the prediction   .polnts

No. Xl X2 X3 x4 Åë

1 1.0 leO 2.0 2.0 2.0

2 2.0 5.0 3.0 1.0 10.2

3 3.0 4.0 1.0 o.o 5.3

4 4.0 o.o 4.0 LO 6.2

5 5.0 3.0 o.o 2.0 4.0

6 O.O 5.0 5.0 3eO 13.0

7 1.0 2.0 1.0 4.0 1.7

'8 2.0 o.o 4.0 5.0 4.4

9 3.0 4.0 2.0 4.0 7.3

10 4.0 5.0 3.0 3.0 13.0
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     Prediction rnodels identified by the basic GMDH are as follows:

Case 1 t (First layer)
                                            '                                                              '                                              '                      '                                                        '
     yi = 4.277 + O.762xl - 3.386x2 ; O.239xlx2 - O.161xi +'O.900x;

  '                   '

Here, as a Case 1', we describe the prediction model of the second

layer in order to show the increase of compJ.exity according to the

increase of the layer.

Case 1': (Second layer)

                                                        '                                       tt     zl = 1.100 - 1.301y3 + 2.025y4 - O.226y3y4 + O.273y23 - o.06s.y42

                      '
                                                        22     y3 = -13.80 + 2.642x2 + 9.713x3 - O.605x2x3 + O.195x2 - l.214x3

         '
                                                  '                                           '     y4 = -3.847 - l.929xl + 9.115x3 + O.177xlx3 + O.241xi - 1.423xi

     '

Case 2: (First layer)
                                                  '

                  '     yl = l8•74 + 3•929xl - 9.910x4 + 1.089xlx4 - 1.619xi + l.4ogx42

                                                               '
The variables selected in the model are as follows: .
                         22case 1: !1, 2i2, UIE2, Xl, g2 '
                                                  'Case 1': ts1, 2s2, g3, !lz2, 3Elts3, 2s2g3, -x-i E22, S, xlx2x3, xlxi,

          xixg, xix2xi, xix;x3, xixZ, xix2, xix3, xix2x3, xix3,

            '              '                                                '                    '                           '          '
                                               '                             '
                                             '                                                      '
                     '
        '



           22 433 22 3 22 433          Å~IX3, Xl' Xl' XIX3' X2X3' X2X3' X2X3' Å~2X3' X2' X2, X2X3'

           34          X3, X3

               22Case 2: Kl, 2Sl, X4, XIX4' Å~4

where the variables contained in the proper model eq. (2.16) are shown

with underline. Comparing the result of Case 1 with that of Case 1',

we can see that the model becomes very complex according to the increase

of the layer. The model of Case 2 is essentially different from eq. (2.

     The accuracy at the interpolation points can be shown as follows:

The mean square errors for the training data and the checking data for

Cases 1 and 1' are shown in Table 2.3 (a). The mean square errors for

the training data and the checking data for Case 2 are shown in Table

2.3 (b). From Table 2.3 (a), we can see that the fitting for the

training data is very accurate but for the checking data is very

inaccurate. From Table 2.3 (b), we can see that the model of Case 2

      Table 2.3 Change of mean square error at the interpolation

                  points .

                          (a) Case 1 and 1'

                          (b) Case 2

1-stlaverJ 2-ndlayer
Trainingdata
Checkingdata

Oe335

2.37

-.
78e57Å~10!

4o.7--.----J

Training data

Checking data

1-st

  3.

  60

22

.7

39 -

averv 2--ndlayer
7.32Å~lo-m2

4.o6Å~ie4

16)
.



is not identified properly. The accuracy at the prediction points is

evaluated by

            1 lo Åë -S
     J=( --- E ct ct )Å~ 100 (2.17)
            10 ct=1 O
                         ct
                          '

                          '
                                  Afor ten data in Table 2.2, where Åëor denotes predicted value. The

                                                  'prediction accuracy obtained is

Case i: J= 30 %
Case 1': J -- 129 7.

Case 2: J= 175 %.
                '                                   '
     The numerical results obtained by the revised GMDH are shown.

Four variables, which give the four smallest values of PSS, are selected

as the intermediate variables. Thirteen data in Table 2.1 are used as

the interpolation points.

     Prediction models identified by the revised GMDH are as follows:

Two intermediate variables are remained in the final layer.

Predi.ction' model 1: (Weight wl=O.520)

                                    '       '                               '

     vl = -O.080 + O.571zl + O.442z2

           '     zl = -O.534 + O.932y2 + O.060y2y4 - O.033yi

                                       '                                             '                                      '
     '
     z2 = -O.935 + O.868yl + O.282y4

            '
                                               2     yl == 4.171 - 3.632x2 + O.258xlx2 + O.973x2 .
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                                  2     y2 = O.237 + O.996x3 + O.365x2

     y4 = 1.l98 + O.960x3 + O.461xlx3

             '

Prediction model 2: (Weight w2=O.480)

     v2 = -bO.113 + O.707zz + O.311z4

      '
                                              2     zl = -O.534 + O.932yz + O•e60y2y4 - O•033y2

     z4 = O.OOO + 1.000yl

                                             2     yl = 4.17IL - 3.632x2 + O.258xlx2 + O•973x2

                                 2     y2 = O.237 + O.996x3 + O.365x2

     y4 = 1,198 + O.960x3 + O.461xlx3

The variables contained in the prediction mode!s

              22 22 2    2!2, E3, 2!2, g3, XIX2, glE3, XIX3, X2X3, XIX2

     The accuracy at the interpo!ation points can

The mean square errors for all the data (RSSI13)

PSS (PSS!13) are shown in Table 2.4. From Table

                                 '

                                -- 41 -
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the difference between RSS and PSS in higher layers is smaller than in

lower layers. The accuracy at the prediction points is again evaluated

by eq. (2.17) for ten data in Table 2.2. The prediction accuracy

obtained is . .                                                  '                                                           '

     J= 10.8 %. .
The combinations of the intermediate variables in each selection layer

are shown in Fig. 2.4. The iinear generators (G2,G4) are appearing

more often in higher layer. The iterative computation of the revised

Gbff)H is temminated at the fifth layer•

     From the numerical example deseribed above, the following results

are obtained.

(a) From the results of Cases l and 1', the prediction model obtained

    by the basic GMDH becomes very cornplex as the selection layer

    increases. From the results of Cases 1 and 2, the identified •

    results depend heavily on the way of dividing the original data into

    the training data and the checking data. The prediction model of

    Case 2 is essentially different frorn eq. (2.l6) because even

    numbered data cannot be used for modeling and odd numbered data

    used for modeling do not contain sufficient information. Furtherrnguce,

    in the basic GMDH, the identified model fits well to the traintng

    data, but not to the checking data. • ' ' •

(b) The prediction model obtained by the revised GMDH is constructed

    in the fifth layer but is not complex. Furthermore, a uniform •

    accuracy for all the data can be obtained. The prediction accuracy

    of the revised GMDH is much better than that of the bas-c GMI)H.
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Table 2.4 Changes of RSS andpss

1-stlayer 2-ndlayer 3-rdlayer 4-thlayer 5-thlayer

RSS/l3

PSS/13

1.29

2.26

O.642

1.00

O.450

O.689

O.450

O.574

O.450

O.574

m
m
s:-,

X4

X3

X2

Xl

Gl

oo
Gl

G
G4
Gl

G2
Gl

Gl, G3 :

G2, G4 :

G2
et
G2
G2

Nonlinear generator

Linear generator

-- --.--g G2

G4sG4G4 sG4
o 1 2 3 4 5

Layer

Fig. 2.4 Combinations of intermediate variables in each selection layer
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2.6 Concluding Rernarks

     In this Chapter, a revised GMDH algorithn of generating optimal

partial polynomials under the prediction error criterion is proposed.

      'The algorithm is appiied to a simple illustrative example and compared

with the results obtained by the basic GMDH algorithm. The advantages
                                       '
of the revised G)a)H cornpared with the basic Gmoll are as foilows:

(a) The revised GMDH algorithm based on PSS or AIC does not use the

    heuristics to divide the original data into two groups; the training

    data and the checking data. That is, all the data can be used as

    the training data and at the same tirne as the checking data.

    Therefore, a uniform accuracy for all the data can be obtained.

(b) The revised GIY[DH algorithm generates optimal partial polynomials

    in eaeh selection layer so as to Tninimize PSS or AIC. Therefore,

    much better flexibility for constructing a complete polynomial can

    be obtained. '                                          '                                                              '
(c) Since any heuristics are not contained in the revised GbOH a!gorithm,

    we do not need to repeat the computational procedure for the

    different heuristics and the identified scesults do not depend on

    the heuristics.

     The application of the revised GMDH in this Chapter to air pollution

problems will be discussed in Chapter 4.

                               '
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CHAPTER 3 REVXSED G]Y[DH ALGORITHM OF GENERATrNG OPTI}fAL INTERMEDrATE

           POLYNOMIALS UNDER AKA:KE'S INFOIMATXON CRITERION

3.1 rntroduetion
   '

     Tn Chapter 2, we have proposed the revised Gb(DH algorithm [8]

which generates optima1 partial polynomia!s in each selection layer

automatically by using prediction errors [1,2] as a criterion for

model selection, and it is shown that this revised GMDH algorithm has

rnany advantages compared with the previous GMDH algorithms [4,5,6].

                'Very complex systems, which contain many variables, can be identified

by using the revised GMDH algorithn in Chapter 2, but, in general,

it is difficult to identify physically meaningful structure between
                                        '
the input and output variables, because the partial polynomials, in

which the intermediate variables are the input variables in each
                                                                     '
seleetion layer, have been estimated and accumulated in the multilayered
                     '
structure.

     Zn this Chapter, a revised GMDH algorithTn, which generates optimal

                                'intermediate polynomials automaticalXy instead of partial polynomials

in each selection iayer, is proposed, The optimal intermediate polynomials

express the direct relationship between the tnput and output variables,
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and they are generated so as to minimize the Akaike's Information

CrÅ}terion (AIC) [1] evaluated by using alZ the data. Therefore, the

physicaily meaningful structure can be identified when the characteristics

       'of the system are well reflected in the data. This revised GMDH algorithm
                 '
is applied to the input-output data observed in a simple kinetic system,
                       '                     'and we try to discover the Newton's second law. The result obtained
                                                        '
is cornpared with that obtained by the revised GMDH algorithm of generating

partial poiynomials.

3.2 Revised GIY[DH AIgorithm of Generating Optimal Intermediate

     Polynomials [7]

     In this section, we propose a revised amH algorithm which generates

optirnal intermediate polynomials automatically in each selection layer.

In this aigorithm, AIC calcuiated from all the data is used as the

criterion for generating optimal intermediate polynomials in each
                                                          '
selection layer, for evaluating intermedÅ}ate polynomials and for stopping

the multilayered iterative computation. Here, the heuristics of dividing

the avaUable data into two group$; the training data and the checking

data, is not needed, and the structure and the parameters of intermediate

polynomials are determined so as to minimize the prediction errors

evaluated by using all the data. Namely, we select optimal intermediate

polynomials in which unnecessary variables are eliminated by applying

a stepwise regression procedure [3] using AIC as a criterion for model

selection, and we terminate the iterative computation when the value of
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A!C cannot be decreased any more. Kere, the significance of using A!C

                                  '
as a criterion for generating intermediate polynomials is to obtain

                      'the best model by using smaller number of the input variables.

     The block diagraTn of the revised GIYll)H algorithm is shown in Fig. 3.1,

where m is a number of input variabZes, ml is a number of optimal

interrnediate polynomials selected in each selection layer and Ll is a

rnaximum number of the terms of the intermediate polynomials in each

selection layer. The revised GIY[DH algorithm is constructed by the

following procedures:
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A. Procedure in the first layer

     In the first layer, the optimal intermediate

applying a stepwise regression proceduTe for the

following p-th order polynomial.

 polynomial is

input variables

generated by

 to the

th . ao +

Here, eq.

procedure,

in eq. (3.

+
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 A!C
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 this polynomial can be written as
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where A= (ao

(L+1) Å~ (2L+1)

,a l'''

    .matr-x

       T
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is constructed, where I denotes a LxL unit matrix, gT denotes a zero

vector, and (L+1)-th row is supplemented for computing RSS ( Residual

                                                                   'Sum of Squares ) which expresses the accuraey of fitting for all the

data. By using this matrix, we can seleet the combination of the
         'dominant input variables which minimize ArC, and we can construct

optimal intermediate polynomials from this aombination.
                                                               '
     Firstly, by applying Gauss-Jordan elimination procedure to the

matrix (3.3), the first column is reduced to a unit vector by eliminating

the non-diagonal elements. Then, we select the dominant input variables

contained in eq. (3.1). That is, when the Z-th variable in eq. (3.1) is

entered in the intermediate polynomial, the (l+1)-th column is reduced to

a unit vector by using Gauss-Jordan elimination procedure. On the other

hand, when the Z-th variable in eq. (3.l) is deieted from the intermediate

polynomial, the (L+Z+2)-th column is reduced to a unit vector. These

selection proeedures are repeated alternately so as to rninimize A!C,

and the dominant input variables are entered gradua!ly into the

intermediate polynomial. We terminate this procedure when the value of

AIC cannot be decreased any more or when the (Ll-1) variables are

                                   'selected in the interrnediate polynomial. Optimal intermediate polynomial

can be constructed by using the selected input variables. The procedure

in the first layer is called as the generator Gi of optimal intermediate

polynomials. Then, from mC2 Å}ntermediate polynomials generated in the

first layer, the ml intermediate polynomials, which give the ml srnallest

                                                                       tttAIC, are selected. '
                                                      '                                      '
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B. Procedure in the second layer

                            '                                                         '
      Zn the second layer, two kinds of combinations are considered.

       '

1) Combination of two intermediate polynomials seleeted in the first

   layer '
            '                               '
                                         '
     Let the i-th intermediate polynomial selected in the first layer be

     S= f5. i)( g) a-i,2,•••,mi) (3 •4)
                                                                       '

where x is input variables, and it is assumed that eq. (3.4) contains

 (1)Ki• ( Åí Ll-i ) variables. We combine two intermediate polynomials

 (1)           (1)fi and fj • Let the equation constructed by gll the variables
contained in ffi) and fgi) be

              1J

     6- ffl)( x)+ffl)( x). (3.s)          1- J-
           t tt                          '     '
The norrnal equation for eq. (3.5) can be written as

     [ .gl)l xgi)]T[ .gi)l xfi)] A . [ ,Si)l ,gi)]T Åë                                                                    (3.6)

        llJ II]- 11J -
 '

Where A " (ao,al,''',aK(1)+K(o+1)T• For the norma! equation (3.6),

                        ij
the fonowing (K5.1)+KJ(.i)+3)Å~(2KS.i)+2KJ(.i)+s) matrix
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Here,

layer

Ml3'

as

M14'     and M,M         34 33 have been already calculated in the first
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     }fi3 =( x5. i) Tx 5. i))'ix5. i) Tg ' • (3.g)

                                                              '
                                '     Mi4 -.( x5.i)Tx5.i))-i ' ' (3.io)
                                       '

                                                       '     M,3 - flLTf!L - e.Tx5. i)( x5, i)Tx5.i))'[t }<5. i)Tg ' (3.io

     M34 =-- !Tx5.1)( x5.1)TxS,1))--1. (3.12)

     The remaining parts of the matrix (3.8) can be obtained as

            tt

     M12=M14( x5, 1)TxJ(. l)) (3.13)

                                       '     M22 - xJ(,1)TxJ(.l) - ( x](.i)Tx5.1))M12 (3.14)

                                                            '                                 '

     M32=.gTxj(. i) -( gTxS. i) )Mi2 . (3.is)
                                        '
                                               '     M23 = xJ(. 1) T.[}L -( x](. 1)Tx 5. 1) )b,f13 (3.16)
                                         '

                                      '                 • (3.17)         =-M     M      24              i2

                         '                                               '                                             '
                                                     'By using eqs. (3.13)-(3.l7), we can construct the matrix (3.8) easily.

Then, by applying a stepwise regression procedure to the matrix (3.8)

                                                         'in the same way as tn the first iayer, we can select a combination of the

dominant input variables which minimize ArC, and we can construct an

optimal intermediate polynomial from this combÅ}nation.

                               -- 54 -



     In this procedure, when the number oÅí selected variables exceeds
                                                            '
(Lil), we try to decrease AIC under the foZiowing procedure. Firstly,

from (Ll-1) variables which have been already contained in the

intermediate polynonial, we find the variabXe, whic'h gives the smallest

increase of AXC, and deiete it from the intermediate polynomial. Then,

from the variables which have not yet been contained in the intermediate

polynomial, we find the variable, whtch gives the biggest decrease of
                                 '
AIC, and enter it into the interrnediate polynomial. We repeat this

procedure alternately so as to minimize AIC. VJhen the variable, which

is deleted from the intermediate polynomial, is entered into the

intermediate polynomial immediately, we terminate the iterative procedure

and construct the optimal intermediate polynomial by using the selected

input variables. The procedure in this part is called as the generator

G2 of optimal intermediate polynomials. Then, from m C2 intermediate
                                                      1
polynomials generated in this procedure, the ml intermediatte polynomials,

which give the ml smallest AIC, are selected.

            '
2) Combination of the intermediate polynomial and the input variables

     Let the i-th intermediate polynomial selected in the preceding
  '
combination be

     $- f5. 2)( 2g) (i=1,2,''',ml) (3•18)

where x is input variables, and it is assumed that eq. (3.18) contains
      -
 (2)Ki (ELil) variables. We combine the intermediate polynomials
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  (2) fi (i=1,2,"',ml) with the input variables xj (j=1,2,err,m). Let the .

                    'equation constructed by au the variabies contained in f5.2)and xjf5.2) be

        '     6=: f5.2)(g)ixjfS.2)(ts )l . (j-1,2,'"',m) ' (3.lg)

                                                             '                                                                '

                                                  '                      '                                      'where xjf5.2) contains (KS.2)+i) variabiesi The normai eqdation.for

eq. (3.19) can be written as

      [ x5.2) i xS.),]T[ x5.2) i. xS. i.)]-A-[ Å~, 5.2) I, xS. ;.)]T .iE,' .(3.2o)

               '

                     t tt                                                                  'Wher9 A= (aoral,"',a2Ki(2)+1)Te. For the normal equation (3..?o), the

fouowing (2Kf2)+3)Å~(4Kf2)+s) matrix

             Z1

             • •l l          x5.2)Tx5.2) x5.2)TxS.i.) : xE.2)T-g.. I .i •. o

            •'.I l          xS. i. )[rx5. 2) xS )Tx5. Z.) i 'xS, i,)Tg li o .r .1. ,... (3.2i)

         - -- - - - -" "-- -'- - ew -'- -- - -- -F -nt- -'- m - -- H --- psmM --- -"- -'- --
                                                '            .g.Tx5.2) ' gTx,(.i.) i/..gTg' l -o--T !".

                                    II

                                   '                                      '                                       ' ttis constructed, where i is a unit rnatrix, oT is a zero vector.
                                          -                   '
Then, by applying the stepwise regression procedure to the matrix

(3.21) in the same way as in the preceding cornbination, we select a

combination of the dominant input variables, whieh minirnizes A!C, and
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we construct an optimal intermediate polynomial from this combination.
                                          '
The procedure in this part is eailed as the generator G3 of optimal

intermediate polynomials. Then, from (rn1xm) intermediate polynonials
       '
generated in this part, the ml intermediate polynomials, which give
                   '
the ml smallest AIC, are selected.

     In the second layer, firstly we select dominant variables from

all the'  variables contained' in f(1) and ffl), and construct the

                        • 1 J                          (2)intermediate polynonial f. by using the selected variabies.• Then
                          i
we combine the input variables xj (j=1,2,e`',m) with f5.2)(i=1,2,''',ml)

and eonstruct the optimal intermediate polynornial in the second layer.

On the other hand, instead of using above linear cornbinations, we can
                                 (1)                                          (1)                                 . and f.                                              directly such as a seconduse a nonlinear combination of fx J

order polynomial of two variables, but the number of the variables,

which we must consider in selecting dominant variables, become very

large, and it is not desirable in the practical situation. Furtherrnore

it seems that the system can be identified rnore accurately by using

linear combinations than by using a nonlinear eornbination such as a

second order polynomial, because the model is becoming complex gradually

in each seieetion layer.

C. Procedure in the 3rd, 4th, ''' layers

                  '        '       tt    tt t                                                                '                                                                 '     ln the 3rd, 4th, ''r layerg, the same procedure as in the second

   t ttlayer is repeated. The multilayered iterative computation is terminated

                                                                     '                                    'in one of the following eases.
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 (a) The AIC is reduced to a very small value and the value of AIC cannot

    be decreased any more in the next layer.

 (b) The structures of ml intermedÅ}ate poZynoTniais are the same forms

       '    as those of rn1 intermediate polynomials in the previous layer.
                               '                                              '
     When the multilayered iterative computation is terminated as the

result of Case (a), it indicates that without being disturbed by large

noises, the nonZinear relationship between the input and output

variables can be obtained accurately. That is, it seems to be the

                                                                   'rnost probable that the physically meaningful relationship between the
                    '
input and output variables is obtained. On the other hand, in Case (b),

the relationship obtained between the input and output variables is not

a physically meaningful one. When the multUayered iterative computation

is terminated, the intermediate polynomial remained in the final layer

is adopted as a complete polynornial of the system.

     By using these three procedures A, B and C as described above, we

can construct the revised GMDH algorithn which generates optimal
                                 '                         'intermediate polynomials automatically in each selection layer so as to
                                '
minimize AIC evaluated by using all the data.
  '
     The parameters used in the revised GMDH algorithm are as fo!lows:

p : maximum order of the intermediate polynomial in the first layer

                                                           '    'Ll: maximum number of the terms in the lntermediate polynomial
       '
ml: number of the interrnediate polynomials selected in each layer.

These parameters are preferred to be as large as possible and are determined

                           'not by the heuristics but by the upper limit of the Tnemory capacity
                                                      '
of the computer. When we apply the revtsed GMDH algorithm to the real
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system, the structure and the parameters of the identified model may

be considerably different from those of the real system, because, in

generaZ, the measured data of the input and output varÅ}ables contain
       '
notiaeable measurement errors. Therefore, we must check the structure

  '
of the identified model' based on the physical knowledge and check the

                                       'estimated parameters based on the statistieal knowiedge. 9omparing the

estimates of the parameters in the identified model with the width '

                                           'of confidence interval, we can find the existing ranges of actual values

of parameters [3]. The 100(1--y) percentage confidence interval of the

estimated parameters is written as • ''

     b. ' B. + t( n--m-i ;y )/-lslllil-v] ' (3. 22 .a)

      i' i- e
           V.= S. 1( n-M-1) (3' 22.b)

where Ve is the sample variance, n denotes the data length, m is the

number of input variables, sii is (i,i)-tth element in (xTx)-1 and
                             tt                                   '
t(n--m- l;y) is the 100y percentage point of a t--distribution with (n-m-1)

degrees of freedom.

              ttt  '       '        '                '                                                               '
3.3 Discovery of Physical Law by the Revised GMDH AIgorithm [7]

                                                                    tt
     we assume that a force F (gr. cmlsea2) is applied to an object of

mass m (gr.) which is plaeed on a perfectly smooth surface, and the

displacement x and the velocity v are observed. Suppose we use four kinds
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of mass (m = 3,5,7,9 gr.), and observe x and v eight tirnes every one

second. The force is altered with respect to time. The obser yed data for

the rnass m = 9 are shown in Table 3.i, where it is assumed that the

measurement errors contained in the observed variables F(t), x(t) and

v(t) are Gaussian' white noises with zero mean and standard deviation

O.05. We will find the relationship between the input and output

variables by applying the revised GlwoH algorithm to these data. As the

output variables, two variables x(k+1) and v(k+1) are chosen, and as

the input variables eight variables

     xl = m, x2 = 1/m, x3 = F(k), x4 = 1!F(k), xs = x(k), x6 = 1!x(k),

     x7 = v(k), xs = 1!v(k)

are chosen.

1) Numerical results obtained by the revised G)4DH algorithTn of generating

   optimal partial polynomials

                                            '
                        '
     Eight intermediate variables are selected in each selection layer.

        '

                                                           '
    Table 3.1 Observed data in a simple kinetic system (m =9)

t(sec) o 1 2 3 4 5 6' 7

) 2.90

o.oo

o.oo

2.08

O.10

O.38

1.03

O.59

O.43

O.Ol o1o .95

.88

.67

12o .94

.65

.74

2.99

3.52

O.97

241 .oo

.63

.29
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Observed data for the mass (m = 3,5,7,9 gr.) are used for interpolation
                              '
points. The models for the output variable x(k+1) are constructed in the

fourth selection layer. We show an example of the model obtained in the
      '
fourth selection layer.

                   '                                   '                        '         '     zl = O.O17 + 1.081yl - O.087ys

                                '                                  '
     yl = O.146 + 1.098x7 + O.9S2xs

            '
                                               2     ys = O.042 + 4.259x7 - 12.11x7x2 + 1.065x2 . . (3.23)
                                                                     '

                                                                  '                                                                        'The models for the output variable v(k+!) are constructed in the fifth

selection layer. We show an example of the model obtained in the

fifth selection layer. ' .                                                          '                               '

     '     zl = - O.O14 + O.589yl + O.423y3'

                                               2     yl = O.249 + O.842x7 + 3.452x7x2 - O.362x2

                                                                   '                                                         2     y3 = O.IIL2 + O.109x3 + O.741x7 + O. L09x3x7 + O.078x7 (3.24)

                                                                     '                                                             '
For the output variable x(k+1), the input variables x(k), v(k), v(k)!m
                                                                   'and 11m2 are se!ected. For the output variable v(k+1), the input

     t.                                                              '                                                     'variables v(k), v(k)2, F(k), F(k)v(k), v(k)/m and Ym2 are selected.'

                                                                    tt
It took 2 seconds for eomputation in each selection layer and 13 kw
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                               ttfor computer memory, where NEAC 22001700t is used.

                          '
2) Numerical results obtained by the revised Gl!fl)H algorithm of generating
                                           '
   optimal intermediate polynonials

 . Three parameters used in the revised GIY[DH aigorithm are as follows:.

maximum order p of the interrnediate polynomial in the first layer is two,

maximum number Ll of the terms in the intermediate polynomial is ten,

and the number ml of intermediate polynomials selected in each selection

layer is eight. Observed data for m= 3, 5, 7, 9 gr. are used as the
                     'interpolation points.. The model for the output variable x(k+1) is '
                                            '
constructed in the third layer as

                                                 '
     x(k+i) -(.g183,5,) +(.glg29,x)s +(.O,lg22lj7 +(.O,14,,3;g2x3 • (3•25)

                                                                     '                               '
                                                                  '

The model for the output variable v(k+1) is constructed in the second

                                                               'layer•as

                                                '     '
                                                            '     V(k+i) =(.818g;) t(.81gg2,i7 +(.81224,g,x3• (3•26)

                               '

Here, the values shown in the parentheses are 95 percentage confidence

interval for the estimated parameters. For the output variable x(k+1),

the input variables x(k), v(k) and F(k)lm are selected. For the

output variable v(k+1), the input variables v(k) and F(k)!m are

t The operation time of this computer is about three times longer

   than that of XBM 370!168.
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selected. It took 15 seconds for computation in each selection layer

and 16.5 kw for computer rnemory. Here, we discuss the relationship between

the displacement x, velocity v and accelat,ion ct. The relationship

                                              'among these variab!es are defined as .• .
                                                       tt                                               '
           '                                                    '                                                   '                                      '                     '     t-
    '                                                 '

By using a vector-matrix expression, eq. (3.27) is described as

                                          '
            '                                                                    i /•     d x. O1 Xl+[O .. (3.2s)
     dt. v- oo vj (i '
                         '

                                             +/
This continuous-time system can be transformed to a discrete-time system

                                 '

       l[l:i,] - :l [l:i + 2Ig or(k) (mo)

                              '                        '

when we ehoose sampling tiTne interval of one second. By comparing

eq. (3.29) with eqs. (3.25) and (3.2oi) obtained by the re.vised GiMDH of

generating intermediate po!ynomals, we can fmd the relationship

     F(k) 1m cr ct(k). .(3.30)
            '                 tt                                                  '                          '
Equation (3.30) shows the Newton's second law. This shows that
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the Newton's second law is discovered by the revised GMDH of generating

                                                          '                                 '                                                      'intermediate polynomials.
 tt

     On the other hand, even if we compare eq. (3.29) with eqs. (3.23)
        '
and (3.24) obtained by the revised GMDH of generating partial polynomials,

we cannot find the Newton's second law. The reason for this is that,

ln the revised GmoH of generating optimal partial polynomials, it is

difficult to identify a physieally meaningful structure between the

input and output variables because the partial polynomials, in which

the interrnediate ,,variables are used as the input variables in each

selection layer, are accumulated in the muitilayered structure. The
c' 6mputation time of the revised GMDH of generating optimal partial

polynomials is much less than that of the revised GMDH of generating

.optimal intermediate polynomials.

                                -.

3.4 Concluding Remarks

                                                                      '
     !n this Chapter, a revised GMDH algorithm of generating optimal

intermediate polynomiql$ in each selection 2ayer is proposed where

AIC is used as a criterion for model selection. In this algorithn,

the intermediate polynornials show the direct relationship between the

input and output variables, therefore the physically meaningful

structure can be identified when the characteristics of the systern are

well reflected in the data.

     The revised GMDH algorithm is applied to the input-output data

observed in a simple kinetic system, and we tried to discover

                  '
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the Newton's second' law. The resuZt obtained is cornpared with that

obtained by the revised GmoH algorithm of ttsing optimal partial

     'polynomials, and the effectiveness of the revised Gbfi)H algorithm in this

Chapter for the problem of identifying physically meaningful structure

is justified.
                                             '
     When we apply the revised GmoH algorithm to the rea! problem, we

                                                                   ttrnust investÅ}gate the structure and the parameters of the identified

model under the physical and statistical knowledges, respectively,

because when the input and out B,tut variables are disturbed by the noises,
                       '                               ,the structure of the j.dentified mode]- may become quite different from
                                                        '
that of the real system. For the probiem of including very many

variables and very complex structure, the revised GlthH algorithrn of

using optimal partial polynoTnials is more suitable than the revised
                                                               '                                                                   '
amH algorithm of using optimal intermediate polynomials. This is
                               '
beeause it is difficult to find the physically meaningful relationship

between the output variable and each input variable when very many
                    '
variab!es are contained in the systeTn. Furthermore, we consider that

                                     'it is very difficult to identify the structure of the sysitem aceurately

by using only observed data in the presence of measurement noises.

That is, it is necessary to know how to use tho- GMDH algorithm properly

depending upon the characteristlcs of the problem.

     When the characteristics of the preblem is completely unknown,

the complexity of the system strueture can 'be tested by using t'he
                 '
revised GMDH algorithTn in this Chapter. If the model with very cofnplex

structure is identified, the system shou2d be identified again by using
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the revised Gl![DH algorithm of using optimal partial polynomials.
                                                                '. '  The advantage of the revised GMDH in this Chapter compared with the

muitiple stepwise regression anaiysis with variable selection is now

clear. In the multiple regression analysis the amount of computation •

                                                                    'Å}s incr.easing very rapidly with the increase of the number and the '

order oÅí the input variables. On the other hand, in the revised GMDH

the increase of the computational burden with respect to the increase

of the number of input variables is quite modest.

     The application of the revised Gbfi)H in this Chapter to river pollution

problem will be discussed in Chapter 5.
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CHAPTER 4 APPLrCATIONS TO AIR POLLUTrON PROBLEMS

4.1 Introduction

                                        '
     rn this Chapter, the revised G)(DH algorithn of generating optimal

partial pplynomials, which has been developed in Chapter 2, is applied to

two air pollution problems; one is a steady state spatial pattern

identification problem and the other is an unsteady state short-term

prediction problem. In 4.2, large--spatial pattern identification of

aÅ}r pollution by a combined model of source--receptor matrix and the
                                                 '                           'revised GMDH is discussed [10]. A souree-receptor matrix [6], which

represents a linear relationship between the rnultipZe air pollution

sourees and the air pollution eoncentrations at the multiple monitoring

stations (receptors), is estimated by a regression analysis of rough.

data. This source-receptor matrix is used as a rough model of first-
                                              'order apprpximation. Then, the difference between the output of the

real system (measured data at the monitoring station) and the output

of the rough model is identified by the revised G)fi)H algorithm using

optirnal partial polynomials. By using synthetic data obtained by the

computer simulation of air pollution diffusion, the predicted result
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obtaÅ}ned from the combined model developed in this Chapter is compared

with the results obtained from the source-receptor matrix model only,

and also with the results obtained from the cornbined model of source-

receptor matrix and the basic GMDH. '
     In 4.3, nonlineaf •modeling for short-term prediction of air
                                                                    tt
   '
pollution concentration by the revised G){DH is discussed [11],. By using

the time series data of S02 concentration, the wind velocity and the

.wind direction in Tokushima, Japan, we intend to find a suitable model

for predictÅ}ng S02 coneentration at a few hours in advance. Firstly,

a suitable data length for modeling air pollution in Tokushima is

investigated. Secondly, three different prediction models obtained
            '
by the revised GMDH are compared to find suitable structure and the

suitable input variables in the rnodel. The predicted resu!ts obtained

by the revised GMDH model are eompared with the results obtained by .
                               '
a linear regression model, a linear autoregressive model and a basic

GMDH model. It is shown that 'che revised GMDH moclel developed in this

Chapter gives better performance for short-term prediction of air

pollution concentratioR compared with the linear models and the basic

GMDH model, and it is also shown that the revised GMDH model obtained

is mueh simpler than the basic GMDH model.

4.2 Large--Spatial Pattern Identification of Air Pollution [10] ,

4.2.1 Physieal and statistical models of air pollution
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     The air pollution models used for predicting air pollution

concentration have been proposed as physicaZ models [3,9] or statistical

modeis [1,5,8]. Some physical models are based on three-dimensional
       '
partial differential equations which govern the diffusion phenomena of
                                              'the pollutant. But, in general, it is not easy to solv' e these diffusion

equations for practical situations. So simplified physical models, sueh

as plume model, puff rnodel and box model, have been proposed and applied
                                                           '
to long-term prediction or short-term predietion of air pollution

concentration. But these physical models have Ztmitations in practicai

                                                  'applications such that some unrealistic assumptions and simplifications

are used for obtaining the models. On the other hand, nonphysical
      'statistical models [8] are constructed depending only on the statistical

analysis of the data measured at the monitoring stations, and very

easUy applicable to practical-prediction problems. Furthermore,

complex factors, which cannot be expressed theoretically, ean be taken

into account in nonphysical models through measured data. But, in

these rnodels, the physical processes are treated as a black box, so

the physical meaning of these rnodels is not clear.

     Here, a combined model of a source-receptor matrix and a revised

G]Y[DH is developed. By using any physical prior knowledge of the

system, the source-receptor rnatrix [6,7], which represents a linear

relationship between the rnultiple air pollution sources and the air

pollution concentration at the multiple rnonitoring stations, can

be estimated as a model which has a physical meaning [6 1. After
                                             '
eliminating the linear part of the system by using the source-receptor
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matrix, the compZetely unknown nonlinear part of the system is
                         '                                                                tttidentified as a nonphysical model by using the revised Gr(DH proposed

in Chapter 2.

4.2.2 Source-receptor matrix [6,7]
   '
 '                                                              '                          t ttt     Zt is assumed that an air pollution model used for steady state

(monthly or yearly average) identification of air pollution concentration

e-an be described by the following equation for single air pollution

source.

                                 .t      '
where c is the air pollution concentration at the monitoring station,

q is the emission intensity of pollution source, and f is a coefficient

whieh is determined by the various factors concerned with the pollthtion

source and the diffusion field. rn this paper, f is considered to be

an explicit function of relative coordinates between the pollution source

and the monitoring station. The other factors, such as the topography

and th6 atmospheric stabUity, are taken into account implicitly when

f is determined by using the measured datae

     For multip!e sources, the air pollution concentration of each

monitoiring station is estimated by the fo!!owing equation
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      N
ci = jil fij qj , i=1,2,...,}( (4.2)

where

f

X

Y

ij

ij

ij

     ci:

     qj:

     (xr,

     (xg.

     M. :

     N:

By using

 == f.( X.., Y..), i=1,2,...,M; j=1,2,
        IJ             13    J

 - xg - x9,                      i=1,2,...,M; j=1,2,
    xJ      '

    rs " Yi - Yj, i=1,2,''',}{; j=1,2,

 air pollution concentration at the i-th

 emission intensity of the j--th pollution

, Yri): coordinates of the i-th monitoring

, y9): coordinates of the j-th pollution
   J

number of monitoring stations

number of pollution sources.

vector-matrix representation, eq. (4.2)

.e. )N

... ,N

•.. ,N

monitoring

 source

     ' stat-on

source

can

    .statlon

be written as

g=Fg
where

      T
     c ==

      [l]
     s=

(Cl,C2,''',CM)

(ql,q2pe'',qN)

(4e3)
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     When regional environmental planning and environrnental impact
  '                      '
assessment are to be performed, it is necessary to estimate the spatial

distribution pattern of each air poZlution source. For this purpose,

the source-receptor matrix, which represents the relationship between

each air pollution source and the air pollution concentration at each

monitoring station, would be very useful [7].

4.2.3 Estimation of source-receptor matrix by a regression analysis

     For estimating each element of the source-receptor matrix, it has
              '
been proposed [6] to use physical model such as plume model, but the

physical modei has iimitations in praetical applications such that

complexity of topography, down wash, and down draught cannot be easily

taken into account in the model theoretically. Here, instead of using

physical model, each eXement of the source--receptor matrix is estimated

by a regression analysis of the spatiaZly distributed data obtained

from e.g. wind tunnel experimentst for a single source. Each element

                                                              'f.. of the source-receptor rnatrix F in eq. (4.3) is assumed to be
 IJ

deseribed as

                                      22     fij = aoj lj ij + a2jYij + a3jXij               +a X                                         + a4jYij + asjXijYij

           +a6je-aj/3tlll;;-l?ilT'j yij (4'4)

t rf it is hard to
   inaecurate data

   our purpose.

 execute
obtained

the wind tunnel

from a physieal

   - 74 -,
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where

                                  '            rs     Xij =. Xi - Xj, i=1,2,•••,M; j=1,2,•••,N
                                '                                         '        '           '                     '                                   '       '

     Y.. = Yg - Y?, i=1,2,••.,M; j=1,2,•••,N
            lj      lj

     a.: a constant
               '     (Xri, Yr-.): coordinates of the i-th monitoring station

       9, y9): coordinates of the j-th pouution source     (x
       Jj
     M : number of monitoring stations

     N : number of pollution sources,
                                                        '
For eaeh pollution source , we need to estimate the coefficients a                                                                    oj '

alj,"',a6j in eqe (4•4) by the repetition of regression analysis.

Each element f.. is then obtained from eq. (4.4).
              iJ
     In this paper, instead of using the data obtained from wind tunnel

experiments, synthetic data, which are obtained by the computer simulation

of air poliution diffusion, are used to estimate each element of the

source-receptor matrix. Figure 4.2 shows input and output data of the

simulator for a single source. !f there exists an air pollution

source of intensity one at the coordinates (4,4) as shown in Fig. 4.2 (a),
                                                '
and the diffusion rate of the pollutant are O.2, O.2, O.5 and O.i,

                                     'a steady state of the spatially distributed air pollution concentration

shown in Fig. 4.2 (b) is obtained. By the multiple regression analysis

of the data shown in Fig. 4.2 (b), the coefficients in eq. (4.4) are
                                              '
obtained as
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f''
 iJ

where Phe

selecting

we assume

" o•i4i + o•o67xij - o.eisy2,j + i.o2ge'-'/ltllll;I I{l;•j ij (4.s)

             '
 stepwise forward regression analysis [2,4] is used for

 dominant variables. In order to simplify the procedure,

 that eq. (4.5) is applicable to all the air pollution sources.
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4•2.4 Identification of large-spatial pattern of air pollution by

                                                   '                                            '      the combined Tnodel

     In this section, a spatially distributed pattern of air pollutant,

                   '                             'which is emitted frorn the multiple air pollution sources, is identified

by the eombined approach of source-receptor matrix and the revised GMDH.

Suppose there exists three air pollution sources at the coordinates

(2,4), (4,2) and (4,6) as shown in Fig. 4.3 (a), a steady state of the
                                                         '                                                       'spatially distributed air pollution concentTation shown in Fig• 4•3 (b)

is obtained as the result of the computer simulation of air pollution

diffusion. The data underlined in Fig. 4.3 <b) are assumed to have

been measured at the monitoring stations. This large-spatial pattern

is identified by the combined approach in this section. Firstly, by

applying eq. (4.5) to each air pollution source, a source-receptor matrix

is determined as •                                                   '                                 t t ttt                            '                                                           .tt
          '
                                       '           --O.O[L85 -O.0305 -O.4352 '

            O.0559 . 0.1026 -O,3668

     F-- :': : .'. (4e6)
              --e••                             '                                                  tt                                            '
                                                 '                                                       '            O.3411 -O.0350 O.3696 '•'
                   '                                '
                           '                     '                              '
The air pollution model using this source-receptor matrix is described as

                                     '                                            '

                                                    '                                                           '
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wh ere

               '
     sE.T= (cl,c2,''e,c4gt)

                    '

      [l]     q = (ql,q2,q3) .

This air pollution model is used as a rough model of first-order

approximation, which plays a role of eliminating so called trends

from the measured data at the monitoring stations. The large-spatial

                                                                     'pattern predicted by the rough model is shown in Fig. 4.4.

     After eliminating the linear part of the system by ustng the

rough model, the residual pattern, which' is the completely unknown

nonlinear part of the system, is described as

        . 1 3
     .ACi :sj-il gj (Xij, Yij), i=1,2,e••,4g (4.s)

where

     X.. = XY -- X?, i=l,2,''',49; j==1,2.,3
            xj      11

                                  '            rs                  , , i = 1 , 2 , ' ' " , 4 9 ; j -- 'l. , 2 , 3     Y.. = Y. -Y      IJ - j

                 '
     Aci: resÅ}dual data at the i-th point
          tt     (X?, yY): coordinates of the i--th p".int
       X-
       F, y?): coordinates of the j-th pollution source.     (x

t Here, the

      .  statlons

 number

but also

of points ineludes not on]-y the

 the number of predlction points
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                         IJ                 13
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       '
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eorrected by using eq. (4.8)

     The block diagram of
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     For comparing the

results obtained by a comb'

basic GMDH are also shown
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        A   .408 1.210 .611 .215 -.370    /•
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             '
                          '
  values of large-spatial pafittern

              matrix

                              '
) (j=1,2,3) whose structures are completely

       by polynomials of a certain order

Equation (4.8) can be obtained as an

         by the revised GMDH. The residual

can be calculated by using the measured

 , are used as the input data of the revised

   predicted by the rough model is

prediction systern using the combined

  and the revised GMDH is shown in Fig. 4.6.
                             tt GMDH with the basic GMDH, the predicted

 model of source-receptor matrix and the

                      '  five variables '
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           rs rs 2 2     Xl = Xi '- Xj, X2 ' Yi - Yj, X3 " Xi, X4 = X2, Xs -' XIX2

                                                   '
are used as input variables, five intermediate variables are seleeted

in each layer and twenty-five points are used as the interpolation

points. In the basic GmoH, the interpolation points are divided into
                                                   '
the training data and the checking data in proportion of !7 : 8.

                                             '                                          '         '                     '
                           '
1) Prediction model identified by GMDH

                                                      '
     For the air pollution sources at the coordinates (2,4), (4,2) and

                                                '(4,6), the prediction models g?(x,y), gB(x,y) and gg(x,y) are identified

by the basic'GIYil)H. Here, only gb 3(X,Y) is described as

                    '     gg(x,y) = zl = O.095 + O.610y3 + 1.403y4 + 21•567y3y4

                              '                                                  '                tt

                    m" 14e867yll ua 8•727y42

                                                 '                                                '                                '                                     '              y3 = O.o61 + e.132xl - O.024x4 -- O•O06xlx4

                                                        '
                   ne" O.045xi + O•O02x42

                                        '
              y4 = O.035 + O.162xl + O.192x2 + O.038xlx2

                   + O.051xi + O.056x; .
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The

The

by

 mean square error for

  checking data: O.315

  training data: O.042 .

 prediction models gl(x,y), gE(x,y) and gg(x,y) are also identified

the  rev F..ed ,GMDH.. .Here, only gr3(X,\) is described as follows :

                             '
   (1)  g3 (X,Y) = z2 = - O.097 + O.575yl + O•553ys + O.816yzys

              ys = O.253 + O.207xl - Oe037xlx3

                                '
                                                      2             yl = O.179 + O.220x2 - O.O06x2xs + O.063x2

                                      '                          tt
  PSS125 = O.073, RSS125 = O.063

                               '
                                            '                           ' gg2>(x,y) = zl = - o.lo7 + o.s8gy3 + Oo552ys + O•946y3ys

                                    '
             ys = O.253 + O.207xl - O.037xlx3

                                    '
                                                      2             y3 = O.l79 + O.220x2 + O.023xlx2 + O.063x2

 PSS/25 = O.074, RSS!25 = O.066

                                      tt
   (3)                                                      2      (X,Y) = v3 = - O.103 + 1.005z4 + O.583zs - O.290z4 g3
                                                  '                                 '                                                    '                                                      '

                                            2             z4 = - O.024 + O.745ys + O.677y2

                      '                                '
                                    '                           '                      '
                            -83-
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    1 3
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 (4)
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Z3 =- O.037 + o.795ys

519z

+ O.737y

5

2
4

Z5 " O•OOO+ 1.000Yl

Ys = e•253 + O.

Y4 = O•X37 + o.

Yl = O•179 + o.

207x

OOIx

22Ox

  - O.037x x1         ,1 3

            24Xs + O.OOIx4

2 - O.O06x2xs + O•     2063x    2

     PSS/25 = O.087, RSS!25 = O.076

       (i)           (i=1,2,3,4) is the i-th complete polynomialHere, g       3

in the finai layer, and nhe resulting prediction rnodel

as a weighted average of fourc poZynomiaXs as

                                -- 84 -

which is

gg(x,y)

 rernained

is obtained



     gg(x,y) = o.26sggi)(x,y) + o.264gg2)(x,y) + o.242g53)(x,y)

                        (4)                           (X,Y) .               + o.225g3

         '
The predicted result for the residuals, which is an output of the revised
                                              '
GIY[DH, is shown in Fig. 4.7.

2) Accuracy at the interpolation points

     Accuracy at the interpolation points, which is obtained from the

prediction rnodel for the aÅ}r pollution source at the coordinates of

(4,6), is shown in Fig. 4.8. For the basic Glth}l, the changes of mean

square errors for the traÅ}ning data and the cheeking data are shown in

Fig. 4.8 (a). The mean square error foÅé the training data is very

small but that for the checking data is very large. This result shows

that the prediction model identified by the basic GMDH is not a

satisfactory model of the system. For the revised GIYfi)H, the changes

of PSS and RSS are shown in Fig. 4.8 (b). PSS and RSS are very small

and coincide well at the 4-th layer, These results justify that the

prediction model Å}dentified by the revised GMDH is much better than the rnodel

                                                         'identified by the basic GM)H.

                     tt

3) Accuracy at the predietion points

               '                       '
     The large-spatial pattern of air pollution concentration predÅ}cted

by the following three models are shown in Fig. 4.9.
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 (a) Source-receptor matrix model
                                                        '
(b) Combined model of source-receptor matrix and the basic GIYil)H

(c) Combined model of source-receptor matrix and the revised GMDH

For comparing the accuracy of prediction by using these three models,

                                                'a performance index defined as
                                                               '

            24 24     Jk =( .il lc. - 6k.l ! .=El c. )Å~ loo , k=1,2,3 .• . (4.g)

                                                                '
                                                                  '
                                                     '
                     Ais introduced, where cku is the predicted value using the k-th model.

                                                    '
                                               '                                                           '
    .Jl = 30.8 %, J2 = 23.1 %, J3 = i6.2 % .

                                                '

are obtained. The third model developed in this section gives the best

performance among these three models. • • .

4.3 Nonlinear Modeling foT Short-Term Prediction of Air Pollution

     Concentration [11]

4.3.1 Linear and nonlinear modeiing for short-term prediction
                 tt                                                    '                                                              '
     The mathematical models used for predicting air pollution
                                                              '
coneentration can be roughly classified into two groups; physical models

and statistical models [3,8,9,10]. Generally, in physical rnodels based

                          '        '                                             '                                    '     '
            '                    '
                              '                                               tt      '
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on the diffusion phenomena of the pollutants, the physieal interpretation

of the model can be easily obtained, but there exist many compiex
                                                         '
factors which eannot be incorporated in the model theoretically. On the

                                                                    'other hand, in statistical models, the physical interpretation of the

model is not ciear, since the physical process is regarded as a black-
                                               'box, however, the compiex factors can be implicitly taken into account

in the model through the measuTed data. As the statistical rnodels for

                                                                  'short-term prediction of air pollution concentration, iinear models

such as multiple regression modeis and autoregressive models have been

often used [8]. However, since the phenomena in air pollution are

considerably influenced by the compiex weather conditions and photo-

chemical reactions, "near statistÅ}cal models are not sufficient to

describe the phenomena.
                              '                                                                        '     Here, nonlinear statistieal models for short-terrn prediction of air

pollution are tdentified by a revised G}IDH aigorithm proposed in

Chapter 2.

4.3.2 Nonlinear models for short-term prediction of air pollutÅ}on

     Here, the nonlinear statistical modeis for short--term predietion

of air pollution concGntration are constructed. We use the time series

data of S02 concentration, wind direction and wind veloeity obtained at
                     '
the monitoring station in Tokushirna, Japan. . Suppose the time series
                                       tt             '
data of these three variables which are measured every one hour have

been accumulated for N days. Table 4.1 shows the structure of the data.
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Since the measured data of S02 concentratÅ}on contain a periodic

phenomenon of 24 hours, the data are pre-processed in order to remove
                                                               '
this periodic factor. Furthermore, the measured data of the wind

      'direction and the wind velocity are transformed to the east-west
                                                    '
cornponent and the south-north component of the wind velocity.

 '     The output variable of the prediction model is the S02 concentration

at one, two and three hours in advance. The input variables of the
                                                     '
prediction model are the time lagged values of the S02 concentration,

the east-west component and the south-north component of the wind
                                                            '
veiocity. The number of time lagged values T is chosen by evaluating

the auto-correlation function of S02. rn this section, we consider the

following three different models to be identified by the revÅ}sed GIY[DH.

Table 4.1 Structure of.the data

.TimDay

1 2 el . 24

1
Cl,1 C1,2 -- .

c1,24--•

2
ic•2,1 c2,2 -" . c2,24

- e . .

. . . .

. . . e

N--t--m cN,1------k cN,2---

------
.-

cN,24------

.

N+l CN+1,1CN+l,2-- .
cN+1,24

   The data
   used for
   modeling

  The data>  to be
  predicted
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l) Prediction model X

  '                                                                    '
     !n this model we use only one variable, S02 concentration, as an

input variable. Firstly, by using a revised GMDH algorithm, we identify

the following model

       ' '            '
     A     x(t+1) = f(x (t),x (t-1),''' ,Å~ (t-T )) (4 .10)

                                      t tt  '

where f is a high-order polynomial, x(t) is the S02 concentration at

.time t. By using eq. (4.10) the value of the S02 concentration at one

hour in advance is predicted. Then, the value at two hours in advance

is predicted by using the same model as eq. (4.10), that is ' '

                                              '                                         '

     AA     x(t+2) = f(x (t+1),x (t),'•e,Å~ (t+1--T)) (4.11)

                                '

where the predicted value at one hour in advance is used instead of

the actual value. In the same way, the value at three hours in advance

                                          'is predicted by using
                                                                        '

                                                       '     A AA     x(t+3) == f(x(t+2),x(t+1),x(t),''',Å~(t+2-T)) (4.12)

                                                       '              '                                              tt t
where 2(t+1) and 2(t+2) are the predicted values at one and two hours

in advance, respectively. . -
                                               '

                                       '2) Prediction model ll . .
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     In this model also we use only one variable, S02 concentration,

as an input variable. By using the revised GMDH algorithm, we identify
          '
the following three models ' .
                     '      '

                                                                '                                           '     A     x(t+1) = fl(x(t),x(t-1),...,x(t-T)) (4.13)
                          '                                                              '                                                       '
     A     x(t+2) = f2(x(t),x(t-1),•..,x (t-T)) (4.14)
                                                       '                                                      '                                                                     '
                                                           '     {}(t+3) = f3(x(t),x(t-1),•••,x(t-T)) ' .(4.15)
                     '
                                                                   '                            ' '
                                                                  '                                               '
The values of one, two and three hours in advance are predieted by -

using these models independently.

 '

3) Prediction model XIZ

                                                                '
     rn this model we use three variables, S02 concentration, the east-

west component and the south-north component of the wind velocity, as

input variables. By using the revised GMDH algorithm, we identify the

                                                                 'following three models
                                  '                                                                   '

     {}(t+1) = gl(x(t),x(t-1),'.',x(t--T),

                                      '

                 Vl(t),Vl(t-1),...,Vl(t-T),

                                                    '                                                            '                                  '
                 V2(t),V2(t-[L),''.,V2(t-T)) (4.16)
                                               '
                                                        '
                                                                  '                                               tt
                                                       '
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     A     x(t+2) = g2(x(t),x(t--1),''',x(t-T),

                  Vl(t),vl(t-1),"',vl(t-T),

                 V2(t),V2(t-1),''',V2(t-T)) ' (4.17)

     {l(t+3) = g3(x(t),x(t-1),''',x(t-T),

                 Vl(t),Vl(t-L),...,vl(t-T),

                 V2(t),V2(t-1),''',V2(t-T)) (4.18)
                      '

          'where vl(t) is the east-west component of the wind velocity at time t

and v2(t) is the south-north component of the wind velocity at time t.

The values of one, two and three hours in advance are predicted by using

these models independently.

4.3.3 Short-term prediction by the revised GmoH

     The nonlinear statistical modeis for short-term prediction of air
                                                                      '
pollution levels are identified by the revised GMDH algorithm, and the
        '
S02 concentration at a few hours in advance are predicted by the
          '      '     'identified models. The prediction accuracy obtained by the revised

GmoH model is compared with those obtained by the linear models and

the basic GI4DH model. The predictÅ}on results of the linear models are
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quoted from [8], and we applied the revised G)q)H to the same measured

data in Tokushima as in [8]. The time series data of air pollution were

measured every one hour during the period from May to June, l975 in

Tokushima, and we use these data. The S02 concentration during 15 days

from June 1 to June 15 are predicted, where the modeling is repeated

                             'for each day.

             '
A. The prediction results by the revised GMDH

         '

1) Comparison for various sarnple sizes used for modeling

     As the sample size ( N days ) for modeling, we consider the

foZlowing three cases.

     Case 1: 5days data (N= 5)

     Case 2: 10 days data (N pt 10 )

     Case 3: 31 days data (N=31) .
In other words the measured data during the past N days ( N=5,10,31 )

are used for modeling, and the S02 levels at ( N+1 )th day are ''

predicted by the identified model. Figure 4.IO shows the comparison

of the prediction errors of S02 from the actuai data at three hours

in advance, where the prediction error for i-th day is evaluated under

the following performance index,

                                                                '            24     AJi za E { xi(t) - {}i(tlt-m) }2 ! 24 . . (4.lg)
           t=i
                             '                                                                    '                                                                  '                '                                                  '    tt          tt t                     AThe predicted values xi(t!t-m) are computed by using the prediction

 '

                                                                '
                           '
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        the same pattern of•variation as that of Case 3 in

       that of Case 1 does not show the same pattern of variation

          or Case 3 in 6--th and 14-th days. Furthermore, the

predictÅ}on acauracy of Case 2 is better than that of Case 3.

   prediction results, we find that the data of 5 days are
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        many ( probably because of the time--varying nature of
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 short-term predictions in Tokushima is about 10 days.
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at three hours in advance obtained by predietion models I, I! and Irl.

Here, the prediction error for i-th day is evaluated by eq. (4.19) and

the data of 10 days are used for modeling. !n Fig. 4.11, the prediction

error 6f the model Iz is smailer than that of the moael r in most days,

and the prediction error of the model IIX is smaller than those of other

models only in a few days. From these prediction results for the SO                                                                   2

data in Tokushima, it seems that the prediction model II gives better

performance than two other prediction models, and furthermore, we ean

not expect the Å}mprovernent of the prediction accuracy by using the

east-west component and the south-north component of the wind velocity

            'as input variables. Figures 4.12 and 4.13 show the time series pf the
                       '
predicted values of S02 at one and three hours in advance, respectively,

                                                                  'obtained by the prediction model II, and the predicted values are

compared with the time series of the actual values. Table 4.2 shows

                                                              '
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Table 4.2 Input variables

and the maximum
selected in the revised GIYfi)H

order

Day
Variable i2345678910Zl12131415

Xl ooooooooooooooo
X2 ooooooooooooooo
X3 oooooooooooo
X4 oooooooooooooo
X5

X6

X7

Maximum
Order 212411122122222

input variables selected in the prediction model at three hours in

advance and the maximum order. As an example of a precise model

description, the complete model for June,4 is shown as follows:

The third layer:

     vl = Oe661 + le048zi - O.O18z; ( 4-th order polynomial

                        '           '
     V2=Zi' (4-th order polynomial
                                                        '
                                                   '
     v3 " OeO03 + 1•288z4 -" O•411z7 ( 4-th order polynornial

                             tt
    V4=Z2 (2-nd order polynomiai
                                                '

                '      '    Vs"Z4 (4-th order polynomial
                                                               '                                                               '                               '
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V6 = Z3 ( 1-st order polynomial )

The sedond layer:

z = O.0631
+ o.874yl + o.288y7 + o.053ylY7 - O.042y

2
7

Z2 = •- O.O05 + o.913yl + o. 2.8 9ys

Z3 = Yl

Z4 n O.350 + o.946y2 + o.046y2Y7        2- O.056y       7

Z7 = Y3

The first layer:

Yl = - o. 070 + O.775x  - O.202x

Y2 = - O. 078 + O. 595x1

Y3 = - O.067 + o. 487x2

Y5 = O. 701 + o. 395x   4 - O.O05x6 - O•     2O05x    6

Y7 = O•757 + o. 364x - O.   5 O05x    6
       2- O.O05x       6
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where xz= x(t+1-Z) (Z=1,2,''',7). The final model is constructed as an

average of six polynomials obtained in the third layer.

B.'  The comparison with the prediction results obtained by the basic

                                                                   '                                                                  '    GlwoH

                              '                '                   '                                                        '     Heuristics used in the basic GMDH is as follows: As the partial

                '     yk = bo + blxi + b2xj + b3xixj + b4x2• + bsxi

is used, and seven variables are seleeted as intermediate variables

                       'in each layer. We use the following two divisions.
                                                   '                      '
     Division I : (Tr.) odd-numbered data

                    (Ch.) even-numbered data

     Division Ir : (Tr.) data of 1-7--th days
                                                     tt tttttt tt / tttt t tt tt ttlt tttlltt ttt t tt
                    (Ch.) data of 8-10-th days
                       '                        'Figure 4.14 shows the prediction error of S02 from the actual data at

three hours in advanee obtained by the basic GIY[DH, and the prediction

error is compared with that obtained by the revised GMDH. Here, the

prediction model II is used and the data of 10 days are used for

modeling. We find from Fig. 4.14 that tihe complete polynomials

                                          '                                           ttconstructed by the basic GMDH are very unstable in both divisions, as

seen from.very large prediction errors for June 5 and 8. In the basic
                                                                   '
amH algorithm, the structure of the partial polynonials is fixed to

a predetermined description, therefore the partial polynomials obtained

•- 100 -



        A        a        s        pt        pt        v            1000         N        8

       -Åé

        :
        u
        Åë
        Åë 500        "        os        pt
        v        co
        a        ca        o       =

        Fig. 4.

are not the

is no longer an

very unstable.

basic GIYn)H and

amH are very

GMDH. Since

training data

heavily on this

C. Th' e '
    statistieal

     The

with the

Ax,

ljx

  sA
'

   lti

   lit

  ii'

  i4i'

  '  '  1'l

  li

 !:i

.k,

li,

il

1il

'ii

llLl

1)

]

t

,

L

,

I

t

,

l
L

t

t

E

,

 lil

I!

l,li

lii

  fi

Ii

  i'i`

  lt
  Ji/i

l

•l
lii

ii'

iit

iiXl

A
 isiA

 liil
  SNIX

A
L;t

t

A---A

x---x

CF----O

x-- X s .

Ntix

 s,
'

Basic Gbfi)H
(Division X)
Basic GMDH
(Division !I)
Revised GMDH
       '

  rf,,p

 Ejt

Jti'

t

          1 2 3 4 5 6- 7 8 9 10 u 12 13 l4 15
                           Day

      14 Comparison of the prediction error at three hours

           in advance for the revised GMDH model and the

          basic GmoH model
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        Table 4.3 shows the input variables selected in the

       the maximum order.- The models obtained by the basic

      complex compared with the models obtained by the revised

     the basie G}{DH needs to divide the original data into

      and the checking data, the identified results depend

        division.

                 '

eomparison with the prediction results obtained by the iinear

                                        '        models

 prediction results obtained by the revised GMDH are compared

 results obtained by the linear statistical models such as a
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Table 4.3 Input variables selected in the basic GMDH

and the maximum order

(a) Division procedure I

Day
Variable 1234'5678910111213i415

Xl ooooooooooooooo
X2

X3

X4

X5

X6

X7

Maximum
Order 4162323264484642161644

(b) Division procedure I:

Day
Variable 123456789101112131415

Xl ooooooooooooooo
X2

X3

x4

X5

X6

•x 7 oo
Maximum
Order 248464432168222244
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regression model and an autoregressive model. Precise description of the

linear statistical models can be found in [8]. Figure 4.i5 shows the

comparison of the prediction error incurred by the revised GMDH rnodel

with that by the linear modelsr We can see froTn Fig. 4.15 that the

             'revised GIDH gives better performance than the linear models. The

average computation time for constructing a revised GMDH model to predict

the values of 24 hours is about 17 seconds, where NEAC 2200!700 of
tt        '
the Computation Center in Osaka University vvas used. The revised GMDH

needs much more computation time for rnodel building than the linear

statistical model building, but the computation time is not too large

for the practical use.

                1500
            'E ty--- Regression model
             'iZ x---Å~ Autoregressive model
            vpt o---o Revised GmoH

             8iooo il'
            "U'`' /,.gs,,, 1"XXxx, /1 2Xxxv/11

g
  x

Fig. 4.i5

1 2 3 4 5

Comparison

three hours

GbCDH model

 6

of

 in

and

7 8 9 10 11 12 13 14 15
Day

the prediction error at

 advance for the reviSed

 linear models
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4•4 Conciuding Remarks

     '
                                                        '                                                            '
     In this Chapter, the revised GmoH algorithm developed in Chapter 2

is applied to two air pollution problems of identifying steady state

and unsteady state air pollution models.

     rn 4.2, a method of identifying a steady state spatial pattern

of air pollution concentration in a large area, is developed. By

comparing three models, the effeetiveness of the combined model of the
                                   '
source-receptor matrix and the revised GmoH is justified. A steady
                                                                 '
state ( monthly or yearly average ) large-spatial rnodel developed in

4.2 would be useful for regional environmental planning and environmental

impact assessment, since it could help to find

(a) Relationship between the environmental capacity and the level of

    pollution sources

(b) Allocation of the level of each polZution source to each polluter

    for regulating total amount oÅí aÅ}r poUution.

                                                                       '     In 4.3, nonlinear statistical models for short-term prediction of
                                                                        '
air poliution concentration are identified by the revised GMDn algorithn.

Comparing the prediction results of the revised Glhl)H rnodel with those

of the linear statistical models and the basic GMDH rnodel, the following
                                                                   '                                        'results are obtained.

(a)'The suitabie length of data used for short-term predictions in

    Tokushima is about 10 days.

(b) For the prediction at three hours in advance, the prediction model

    II gives better performance than the predietion model I. Furthermore,

    we cannot expect the irnprovement of the prediction accuracy by using

                                                '
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    the information of wind direction and wÅ}nd velocity at the concerning

    point only.
                                                                     '                                                            '
(c) The models obtained by the basic GMDH beeome very unstable in some

                                                                        '    days, however, the modeis obtained by the revised GMDH are always '

    stable. Furthermore, the revised GMDH model is much simpler and gives

    better performance than the basic GMDH model.

(d) Although it takes longer computation time for modeling, the revised

    GMDH modei gives better performance than the linear statistical

    models as well..

Ferom these prediction results, the effectiveness of the nonlinear models

obtained by the revised G}CDH is justified for short-term prediction of

air pollution concentration.
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CHAPTER 5 APPLICATZON TO RIVER POLLUTXON PROBLEe(!

5.1 Introduction

     In the river quality systern, there are many complex phenomena such

as bSochemical reactien, thermal behavior, sedimentation, and

photosynthetic oxygen productien, therefore the structure of the

physical model considerÅ}ng the influenees of these phenomena is becoming

very complex [1,3]. Parameter estimation procedure of the physical

model, which has been used for predicting pollution levels of the river

quality, is a very eompiieated one.
                                                                     '
     In this Chapter, non!inear statistical modeZing of steady state

river quality system is developed. The methodoiogy used for modeling is
               '
the revised GMDH algor-ithm of generating optimal intermediate polynomia!s

which is discussed in Chapter 3 [2]. By using measured data of river

quaiity sueh as BOD and DO concentrations in Bormida river, Italy [3],

we intend to construet two kinds of steady state models of river quality.

rn steady state model r, we intend to discover a suitable structure of

the Bormida river by using no a prioxi information of the system strueture.

rt ls shown that the structure of the revised GIY[DH model depends on the

statisticai properties oE the data used for modeling. Furthermore, the
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predÅ}ction aceuracy obtained by the revised GMDH model is compared with

that obtained by the physical model which is called as Streeter--Phelps

model. It is shown that the revised GMDH model gives much better

performance for DO concentration compared with the physical model.
                                                             'In steady state modei II, we intend to approximate the Bormida river

system as a polynomial of input variables. But it is shown that it is

difficult to approximate the DO part of the model as a polynomial of

input variables, because the system structure for the DO concentration

is very complex.

                                        '
S.2 Mode!ing oE the Steady State River Quality [3,4]

     BOD and DO coneentration have been widely accepted as the important

indexes of organic river quality. The dynamic behavior of these levels

is described as a generalized Streeter-Phelps model

                                                                       tt
     glbt.+xT g{Pt-- (ki(T)+ kil(V))b (s.i..)

     g{/i +. v aacz = -- ki(T.)b + k:[TQ)'Q) (c,(T) -- c) + ll4 ' (s.i.b)

                  '
                                      '

                                                             'where, b is the BOD eonaentration (mg/Z), c is the DO coneentration

(mglZ), cs is the saturation level of DO concentration (mg!Z), kl is the

deoxygenation rate (1/day), k2 is the reoxygenation rate (m/day), k3

is the suspended BOD sedimentation rate (rn21day), k4 is the photgsynthetic

                                                                           '
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oxygen production rate ((mg!Z)(m21day)), t is the tirne (day), Z is the

distance (kn), T is the water temperature (OC), A is the cross sectional

area (m2), Q is the fiow rate (io3 m31day), v ( = QIA ) is the average

stream velocity (knlday) and H is the mean river depth (m). Here, for

simplicity, it is assumed that the cross seetional area A is not varying

along the river and the velocity V is constant in space and time. Then,

the steady state BOD and DO concentrations satÅ}sfy the differential

     'equatlons
                                   '

                                                           ' • gl/t.=-Kl(T,Q)b (s,2.a)
           '

    {lÅÄ/ = d- K2(T,Q)b + K3(T,Q)(c,'c) + K4(Q) ' (5•2•b)

           '                                                             '
wher6 the functions Kh (h=1,2,3,4) depend upon the two independent

variables q and T, i.e.
                                                              '                                     '

     Kl([ir,Q) = kl (T)!V(Q) + k3 (V(Q))!Q (5.3.a)

                            '

     K2(T,Q) == kl(T)IV(Q) (5.3.b)
                                                      '                                     '                                                '                                       '                                                            '     K3 (T,Q) - k2 (T,Q)! (H (Q)V(Q)) (s.3.c)
                                     '
                                              '
     K4(Q)=k4/Q .' • . . (s.3.d)
                                 '                                     '                                   '

                tt

                                                               '          . -- X09 --- '



The solution to eq. (5.2) is well known and is obtained as

                     '                     -Kl •                       1     b(Z,Kvbo)=boe ' '• (5.4.a)
                                                               '
                                                             3     c(Z, Kl,K2,K3,K4,bo,co) = cs + K41K3 - [c.+(K41K3)-co]e

                                    -KIZ -K3Z
                  + [K2bo/(Kl-K3)][e -e ] (s.4.b)
                                  '

                      '
where bo•and eo are BOD and DO concentrations near the discharge point,

and it is assumed that there is no discharge inside of the subject range.

     Data are measured for n different steady states. The i-th steady

state is charaeterized by the flow rate Qi and the temperature Ti.

BOD and DO cortcentrations are measured at r points along the river as
                                                                '
shown in Fig. 5.1. Suppose the 'following measured data are available.

            '          '                         '      '
        tt .t     (.boi, c6 ), (i=1,2,''',n) . (s.s.a)

     (bl, cl ), (i=1,2,'",n; j=1,2,"',r) • (s.s.b)
        jj
                                                       '                                                     '

S.2.1 Parameter estimation of the physical model [31

     Here, the estimation method of parameters contained in eqs. (5.4.a)

and (5.4.b) is introduced briefly. This method is proposed by Rinaldi,
                                                '
et al. [3]. The structures of functions Kh (h=1,2,3,4) eontained in

eqs. (5.4.a) and (5.4.b) are assumed as
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where

 .r.TL= 2
     j=1

 jiEb "[

[ Aegi +<1vx

b.(Zj,Kii,b,i) -- b/r

)e

]2

ji ]s
e, O<A<1 (5.6.b)

(5. 6.c)
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     eJ.'i=[c(zj,Kl',.e•,Kiboi,cg) - c/r ]2 • . (s.6.d)

                                       '                                               '       '
                                                                   'and egi is a square error.between the measured value of BOD concentration

of the i-th steady state at the j-th point and the estimated value by
           'eq. (5.4.a). egi is a square error for DO Åëoncentration, and X is a

weight for the BOD concentration. It is very difficult to estimate,

parameters .e.h (h=1,2,3,4) directly so as to minimize J in eq. (5.6.a)

beeause the diinension of .e,.h is very high. Therefore, the following
                                                       '       'procedure is used to estimate the . Firstly, by using the data measured

in each steady state, functions Kiii'  (h=1,2,3,4; t=l"}2,''',n) are '
estimated so as to minimize Ji (i=1,2,''.,n). Then, by using the

estimated values of Kiii' , parameters -e=h are estimated so as to minimize

                              h   '
                                                  '          n4 .. .    J' - E E ( Kh (.e.h,T i,Qi) - Kll )2. • • . (s.7)
         i=1 h=1
                                          '
            '

More precise description of this procedure can be found in [3].

                                                    '
         '        '                                                '
 '5.2.2 ModeZing of the steady state systern by the revised GMDH [4]

                                                                    '
     Here, the steady state rnodel of the river quality is constructed

by the revised GMH aXgorithm developed in Chapter 3. rn this revised

G)fi)H algorithm, optimal intermediate poiynomials, which express the

direct relationship between the input and output variables, are
           '
generated automaticaaZy in each selection layer so as to rnininize AIC

                                                                   '          tt
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and the complete polynomial is obtained from the optimal intermediate

polynomial remained in the final layer. By using the revised GIMH

algorithm, the following two steady state models are constructed.'

        '                                    '        'tt t tt                                                  '                                                    '                                                               '                                                                 'A• Steady state modell .. , ... ,. .
                                                             '                                    '                                                      '     Steady state model in the form of eq. (5.2) is constructecl.1 Two

variables b(j+1) and c(j+1) are used as output variables and five i
variab!es b(j), c(j), Q'l, Q-O'5 and T are used as input variables• '

Here, it is assumed that the measuring po'Lnts of BOD and DO concentrations

are equally spaced along the river. The steady state model to be

identified by the revised GMDH is '

     b(j +1) = fl (b (j ),c (j),Q-1,q-O'5,T) ' (s.s.a)

                                                             tt
                               '
                             -1 -O.5     C(j+1)=f2(b(j),c(j>,Q ,Q ,T). (5.8.b)
                                                                '

Equation (5.8) can be transformed to

                      '

                                                                   '                                                               '     [b!2-sctiR-2gil-:le-Sj-( +l) z b( ) =k { fl(b(ab,c(j),Q'-1,Q-O'5,T) - b(j) } . (s•g•a)

                                                 '
              '
       '                          tt                                                       '                                 '                                      '                                                               '                        t ttt                                                        '                                                                 '          '
     -S!-S(JÅ}ll22sEi-Si-S2-+i)Az () =. ilzt- { f2(b (j),c<j),Qdi,{-O"5,T) - (:. (j) }. (s.g.b)

                                                           '                                                            '         '

                                  '                                                             '                                   '                 '                                                                 '
In eqs. (5.9.a) and (5.9.b), if the left hand sides of the equations are

                            eapproximately replaced by dbldZ and dcldZ, respectively, steady state

 tt                                                              '                                                                   '                    '
                                                  '                                                                      '                               '                                                          '                                                  '                                 -113 N- ', .



model xn  the  form  of  eq.  (5.2)  can  be  obtaxned.
..

.                            'B. Steady state model XX

       '                                             '
     Steady state modei in the form of eq. (5.4) is constructed.
        tttTwo variables b(Z) and e(Z) are used as output varil'bles and seven

                                                                  '                                                       '                  'variabies bo, co, z, z-i, QO'5, Q-O'5 and T are usg.d as input Variabies.

!n this case, the physical interpretation of the model constructed ,Py

                                '                                       'the revised Glyfi)H is not possible, because eq. (5.4) cannot be describeq

                                                                'as a physically rneaningful polynomial in terms of these input variables.

That is, a revised GMDH model obtained is a nonphysicaZ model. The

steady state model to be identified by the revised Glhl)H is

                                   '                                             '                                      --O.5                                 O.5                            -1     b(Z)=gl( bo, co, Z, Z ,Q ,Q, sT) , (5.lo.a)
                                                '                                                                   '                                                      '     '           '                                         '                               '                                                                  '                                                     '                                              '                                                            '     c(Z) = g2( bo, co, z, il, QO'5., Q'9'5, T.) r. ,,. '(s.lo.b)

                                                        '                                             '                                                                 '                                                 '                      t ttt                                                                 tt ttt                                           t t ttt
For constructing this model, measuring points of BOD and DO concentrations

                                                               'are not necessarily equally spaced aiong the river.

5.3 Modeling of the Steady State Bormida River Quality [3,4]

       'ttt
     The steady state model of the Bormida river shown in Fig. 5.2 is,

                           'constructed by applying the revised GMDH aXgorithm to the data shown
        '        '                                                                     'in Table 5,1 and the predicted results obtained by the revised GMDH model

are comparced with those obtained by the physical model estima'ted bY'ii' •
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Rinaldi, et al.
                                                '                                                           '                  '                                     '          '                                       '                                                '     The data measured in the Bormida river are used [3], where four

                                                                      'variables, BOD concentration b, DO eoneentration c, flow rate Q and

temperature T are measured as shown in Tabie 5.X. Data of BOD and DO
                                                          '
concentrations are the daily average vaZue and measured at six points

which are located with the interval of about 10-15 km along the river.

                                                                      'Here, the data at the fourth point is not the Tneasured value but the

value obtained by a linear interpolation. Data of the temperature are
             '
the average values obtaÅ}ned at six points but the rneasurement time is

different for each steady state, and therefore it is difficult to find a

significant interpretation for the data. We simply negleated the

                                            'ef.fect of the temperature vaniation. F.ifteen steady states are

measured (n=l5). Among them thirt.een steady states data are used for

modeling and two steady state$ data are used for model validation.

                                               3

   bV
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Fig. 5.2 The Bormida river and locations of

          measurement stati.ons [3]
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Table 5.1 The data used for mode1ing and modei val idation [3]

Stationnuinber O123(4)5 Flow•rate Water
oTernperature[cl

DÅ}stance[Kml ".2014.0025.004o.oo(54•OO)6s.oo uo3rn31day] Average Range

Steadystate
z 2eo.oile.o64.o3s.e24.0zo.o

O.O4.5S.S6.57.89de
S5 17.5 4.2

2
41.0i20.092.072.024.0S8.03.os.sg,og.s9•5g.s

60 g.e

3 162.o126.ollo.o66.o53•O4olo1.o3.os.o6.s8•5lo.s
125 o.s 5.0

4 zos.og4..e7a.o44.o41•O3g.a
2.0s.Os.S6.o6.87.s 100 i9.0 3.o

s 12s.O7s.O46.ols.o16•O14.o
1.s3.s4.ss.s6.37.e 7S 18.0 3.2

6 12S.O86.o7o.o46.o33•O2o.o 80 17.0 3.32.0S.O6.06.06.36.5
7 68.056.050.o34.o29•O24.o

2.06.07.09.510.812.0 22S 5.0 2.S

8 i4s.o72.o6B.o3o.o23•O16.o
O.OZ.22.23.64,7S.8 ioo 2S.O 3.7

9 200.0104.09S.O60.059.058.0 5S 10.0 8.9O.O4.06.06.06.57.0
io 90.070.06S.O58.040,O22.0 200 1.B 3.54.04.08.09.0g.o9.0
li Bo.a6o.oso.o36.o3o.o2g.o6.08.010.010.5lo.sIX•O 250' 3.5 2.4

12 13s.Oioo.Oss.o62.o56.0so.o
o.s4.os.a6.o7.oB.o 125 !l.8 2.4

13 7o.e6o.o4tl.o"6.o34.022.o
3.06.07.07.57.88.0 200 16.0 2.5

1"• ss.o7o.oss,o4o.o30•O2o.o 200 11.5 5.53.06.07.o9.o9.3g.s
15 80.0' 40.030.020.016.0i2.0 !50 •16.0 6.0

2.SS.O7.08.58.s9.0

5.3.l Results of parameeer estimation of the physical model [3]

                 '
     Parameeers of physical modeZ are estimated by using the procedure

deseribed tn 5.2.i. T`he daea ef the 1-13-th steady states are used

for modeling. The sexueture of Kh (h=1,2,3,4) are assumed as '

                    '   ' Kh( .gh, Q)= ehlQeh2 ' • (s.zl)
                                                                  '                                                       '                                              '                                                '
                                        '                                                                     '                                             'wheres 9h za(S' hi, eh2 )' . '' ' '
                 '
                '                               -- li6 -
         '



           i              (h=1,2,3,4; i=1,2,e..,13) are estimated so as to minimizeFunctions Kil

Ji (i=1,2,"',13) in eq. (5.6.b) and as the result •'
                                          '

                                                             /tt t
                            '       '     Kl st K2, K4=O (s.12)
                        tt       '                                                                    '                                                                      '                '                                     '
is obtained. This result shows that BOD and DO coneentrations in the

Bormida river can be described as the Streeter-Phelps model. Then

parameters .Ql and a3 are estimated so as to mÅ}nimize J' in eq. (5.7) and

                                                         '

             tt                 --O.43     db     la'z=-O•2Q b (5.13.a)
                                 -Oe8                 -O.43     dc     E-z=- O•2Q b+ 16•4Q (c.-c) (5.13.b)
      '                       '                                      '
                     '                                '

                '                    '
             '                   tt
5.3.2 Results of rnodeling by the revised G]roH [4]

                                                   '
       '

A. Steady state model r

  '
                                  -1                                          -O.5     Four variables b(j), c(j), Q                                               are used as input                                     and Q

variables. Parameters used in the revised G)4DH are

           '
     p=2, Ll = 10 , ml =6•

           '
1) BOD model identified by the revised Gl![DH
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     BOD models identified by the revised GMDH are shown in Table 5.2.

The fourth model is identified by using all the data of 15 steady states,

Frorn Table 5.2, we can see that the structure of the model is varying
       '                                                                       '
slightZy according to the measured data used Åíor modeling. In the

                                                  'revised G}4DH, the structure of the model is determined by using only the

measured data, and therefore the dependence of the structure of the

model on the statistÅ}cal characteristics of the measured data cannot

be avoided. But, if sufficiently many data can be used, the dependence

can be reduced. The third model

                                                                    '                                                   '     b(j+1) = -- 4.22 + o.g2ob(j) + o.oooo37b(j)2 - o.o133Q-"O•5b(j)2

                                                                   (5.14)

is identified by using the measured data of 1-13--th steady states.

                                                        'This model can be transformed tb
           '

     lbbSjÅ}ELZ2f( +1) z b( ) . 71t- { p 4.22 - o.osob(j) + o.oooo37b(j>2

                                '      '
                   '                                                                        '                      .- o.o133Q'pO•5b(j)2 }.. . (s.ls)
                                                                         '

                  '           '                    ttSince AZ bl 10 km, eq. (5.15) can be approximatdly reduced to

                       '

     {l-/ =r - o.422 - o.oosob + o,ooooo37b2 - o.ooi33Q-O"5b2 . (s.i6)

We ean find that the second order .terms of BOD concentration are
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contained in eq. (5.16), and the structure of the model is a little more

complex than the physical model (5.2.a). Xn order to verify the

if,iiitil:".&SS.:i,:g'.i5sif' },rl2,pg:d.Å}:X;"..:gr:;. :,f:i.g:e.l`[x2 a"d

physical model (5.2.a). In eq. (5.i4), the BOD concentration b(1)

is predicted by using the measured data bo, and the BOD concentrations

b(j+1) for j=1-4 are obtained by using the predicted values for j=O-3•

Predicted results for the 14-th and 15-th steady states are shown in

Figs. 5.3 and 5.4. It can be seen that the prediction accuracy

obtaÅ}ned by the revised GMD}l model (5.14) is identical with that

obtained by the physieal model (5.2.a).

       Table 5.2 Structures of the BOD model r

Model Prediction 2 -O.5 2-O.5
points constant b b bQ bE'2•T

1 4,5 -5.84 O.960 -O.OO040 k -O.Oll
'

2 9,10 '2e.38 1.027 -O.OOO70 -2.06 -.k

,

3 !4,15 -4.22 O.920 O.OOO04 ?k. -O.O13

4 o -3.82 O.900 O.OOO08 rk -O.O13
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             A Physical model                                                 A Physical model
                                    '             o Revised GMDH model                                                 o Revised GMDH model
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                       '

                                    '

           tt

                                                '                                                    '
            10 20 30 40 50 60 70                                                10 20 30 40 50 60 70
            BOD.measured [rng!Z]                                                 BOD measured [mglZ]
              '                                                           '
   Fig. 5.3 Measured and computed Fig. 5.4 Measured and eomputed

             values of BOD for 14-th vaiues of BOD for 15-th
             steady state by model steady state by model

             1-3 • r--3
2) DO model identified by the revised G)(I)H
                                '              '                           '                  '    'rdentified DO model is shown in Table 5.3. The fourth model is

                                        '                                                               'identified by using ail the data of 15 steady states. From Table 5.3,

we ean ,see that the structure of the model is varying remarkably

according to measured data used for modeling. Zn partieular, the terms

coneerned with the flow rate Q is remarkabiy varied. The reason for

this is that the numbe'r of different measurement data for the flow rate

                              'are very few compared with the number of the terms contained in the

model, and therefore the information contained in the input variable Q

is not fully taken out from the data. The third model '
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     c(j+1) =

       '

is identified

6.72 + O.

        -o
--  46.IQ

by using

        '

Table 5.3

431c(j) -- O.

          -o.5•
   + 3.91Q

the measured

          '

   '

  Structures

          2OO0203b (j )            + o.

           '

          '.5c(j) ''

        '

 data of 1-13--th

              '

 of the DO model

      -oO0222Q

  '

 steady

r

•5b(j)2

      (5.

states.

17)

Model
P-redictiOn
points constant c

b2 2-O.5bQ 2-1bQ

ii 4,5
9,10

14,15
o

2.39

7.75

6.72

10.3

O.895

O.993

O.431

O.553

O.OOO03

-O,OO020

-O.OO020

-O.OOO08

*rkrkO.O080

Mode1 -O.5Q
-1

Q

ii *-54e2--46.i-H8. **ft382•- -1.19

-10.4

3.91

*

*78.6*18.3
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This model can be transformed to

                                     ttt                                            '

     •9-g(rif2-zl+i) z ( ) - 71I7t-' { 6.72 -- o.s6ge(j) - o.ooo2o3b(j)2

      . . + o.oo222Q-O•5b(j)2 .- 46.zQ-O•5 + 3.glQ-O•5.(j) } . (s,ls)

                                                                 '

                                                                         '
Using AZ st 10 kn, eq. (5.18) can be approximately reduced to .

                                                                        '      '
                                                                        '                                           '  '
     $' 7 9•672 - O•os6gc - oloooo2o3b2 + o. ooo222g-O•5b2 ..

       . '- 4.6iQ-'O'5+o.3giQ-O'5c . ' ' . '' ' (s.ig)

                                                                    '        '                                  '                         '                                                                         '
From this rnodel, we can find that the second order terms b2 and .

Q-O'5b2 hre contained in both BoD model (5•16) and DO model (5•19)•

The tdmhs ' Q-O'5' and Q-O'5c are similar to' Q-O'8 and Q-O'8a contained.

in the physical model (5.2.b), respectively. .Xn order to' verify the .

effectiveness of eq. (5.17), the prediction etrors for the 14-th and ,

15-th steady states of eq. (5.17) ave compared with those of the

physical model (5.2.b). In eq. (5.17), the DO concentration c(1) is

predicted by using the measured data bo and co, and the DO concentration

c(j+1) for j=1-4 are obtained by using the predicted va!ues for j=O-3..

Predicted results for the 14-th and 15-th steady states aTe shown in

Figs. 5.5 and 5.6. From Fig. 5.5, it can be seen that the revised

GMDH model (5.17) gives much better prediction accuraey for the 14--th

steady state than thait of physical rnodel (5.2.b). From these prediction

                 '
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results, we can see that the steady state model I identified by the

revised GMDH algorithm is fairly reliable as the predietion model.

Furthermore, the strueture of the steady state model I is a little more

compXex than that ef the physical model but they are very similar.

This shows that the statistical analysis of the input and output data

by the revised amH aigorithn of using intermediate polynomials enables
 '
to give the important information concerned with the structure of the

system whieh is very complex and completeiy unknown.

B. Steady state model Zl

     skx variables of bQ, co, z, z-i, QO'5 and Q-O'5 hre used as input

                                              '                                          '                                                           '                                                              '
variables. Parameters used in the revised GMDH are as follows.
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     p=2, Ll = 10 , ml =6

1) BOD model identified by the revised GMDH

     By using the measured data of the IN13-th steady states, BOD model

identified as . , .
                                                 '
             '
     b(Z) = 2s.g - o.o26sboZ - o.o217Z2 + 1.s23z + o.ooo261boz2

         ' + io.2boQ-Oe5z-i + o.ooo4bgQO'5 + o.snbocoQ-O'5

               '
                           O.5                       2            -- O.OOO042bocoQ . . (5.20)
                                              '                     '

We can see that the structure of eq. (5.20) is more comp!ex than the
                               .t
steady state model I (5.14). Tn order to verify the effectiveness of

eq. (5.20), the prediction errors for the 14-th and 15-th steady states

of eq. (5.20) are compared with those of the physical model (5.4.a).

Predicted results for the 14-th and 15--th steady states are shown in

Figs. 5.7 and 5,8. We can see that the ' revised GMDH model (5.20) has

the same prediction accuracy as the physical model (5.4.a). .,
                                                                    '                                                             '

2)' DO model identified by the revised GMDH
                                                        '

    By using the measured data of the 1-13-th steady states, DO model is

identified as

                  tt                                   '
        '

                                                                     '
          '                               '
         '                           •-124- .                                                    '
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     c(z) :' :-L 34.s + 1.74QO•5 - 11.6z-1 - o.oolo4z2 + lsgQ-O•5

                                        '            + g.26.oQ-O•5 + o.olo6QO•5z - o.ooo436bocoz

                                                         tt                                                                    '                 '                                                      '            + o.ooooo4boz2 + o.ooooo3bo2coz • ,(s•2o

                                                                      '
We can see that the structure of eq. (5.21) is also more complex than

the steady state model I (5.17). In order to verify the effeetiveness

of eq. (5.21), the prediction errors for the 14--th and 15--th steady

states of eq. (5.21) are compared with those of the physical rnodel (5.4.b).

Predicted results for the 14-th and 15-th steady states are shown in

Figs. 5.9 and 5.10. From Fig. 5.10, the revised GIY[DH model (5.21) gives

worse prediction accuracy for the 15-th steady state than the physical

model (5.4.b). The reason for tihis Å}s that the structure of the system

for the DO concentration ts very complex and cannot be deseribed as .

a polynornial approxirnation of six input variables used in steady state

model rl. From these prediction results, we eannot expect a good

prediction aceuracy for DO concentration in the steady state model ZI.

                                    '
                                               '                              '

5.4 Concluding Remarks

    rn this Chapter, two kinds of steady state river qualÅ}ty models are

constructed by applying the revised GIYfDH algorithn to the rneasured data

in the Bormida river. By comparing the revised GMDH rnodel with the
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physical model estimated by Rinaldi, et al., the foliowing results are

obtained. .                        '                   '                                                     '                                   '                                                          '
(a) Steady state model I identified by the revised G)CDH gives the same

    prediction accuracy as the physical model for BOD concentration

    but gives better prediction aecuracy than the physicai model for

    DO concentration.
                                                                     '                                                                 '
(b) ln the revised GMDH models identified for the DO concentration,

    the steady state model I gives better prediction accuracy than the

    steady state rnodeZ XI, The reason for this is that the structure

    of the systern for the DO concentration is very complex and cannot

    be described by a polynomiai approximation of six input variables

                                                                      '                                                       '                                                     '    used in the steady state modei II.

(c) The structure of the revised GMDH model is heavily dependent upon

    the statistical properties of the data used for modeling, because

    the structure of the model is determined by using only input-output

    data. !n the case of the Bormida river, the terms of the flow rate

    in the revised G}di)H model is particularly dependent on the data

    because oÅí the lack of infoxmation contained in only a few different

    flow rate datae

(d) For the steady state model ZX identified by the revised GMDH

    algorithm, second order texms of BOD e,oncentration are contained

    in both BOD and DO models. The other terms are similar to those
                '
    of the physical modei.
                                                            '                       '
(c) :n the physical modeX, the computation fot estimating the parameters

    is quite eomplex, but in the revised GMDH model it is not.

                   '                                                             '
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From these investigations, the effectiveness of the revised GMDH

algorithm is justified for constructing steady state models of river

             '
                                                '
      '
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CllAPTER 6 CONCLUSION

     rn this thesis, two kinds of new revised GMDH algorithms are

developed and applied them to modelÅ}ng of air pollution and river

pollution problems.

     In Chapter 1, the fundamental eoncept of (IMDI{ whieh is called the

heuristic self-organization is described. Then, the algorithm of the

basic GMDH proposed by rvakhn6nko is shown, and the advantages,

disadvantages and heuristics involved in the basic GMDH are discussed.

Then, the improvements, which have been made on the basic GMDH algorithm,

are brÅ}efly surveyed, and the motivation to this thesis research is

clax' ified .

     In Chapter 2, a revised GmoH algorithm of generating optimal partial

polynemgi Lfi-r!f under the 'prediction error criterion is developed in which

we do not require to divide the available data into two groups; the

traindng daea and the checking data, rn this algorithm, all the data
                                                'can be used n- pt Qnly as the training data but as the checking data.,

that is, the prediction error such as PSS and AXC calculatea from aZl
       '
the data is used as a eriterion fox selecting intermediate variables

and foec st..o, pptng ithe multilayered computations. Therefore, the
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identified results do not depend on the heuristics of dividing the data

into two groups. Furthermore, the revised GMDH developed in Chapter 2

generates optimal partial polynomials automatically in each selection

layer. The revised GMDH, therefore, has much better flexibility than

that of the basic GMDH in eonstructing a complete polynomial. The

                                                           'revised GlubH algorithm is appiied to a simple illustrative example
    tt
and compared with the results obtained by the basic (MDH algorithn.

Many advantages of the revised GMDH algorithm compared with the basie

GrmH algoritlm are clarified.

     In Chapter 3, a revised GMDH algorithm of generating optimal

intermediate polynomials under the predietion errot criterion is
                  '
developed. This revised GMDH algorithm generates optiTnal intermediate

polynornials in each selection layer, whieh express the direct

relationship between the input and output variables, so as to

minimize the prediction error criterion evaluated by using all the

data. Therefore, physieally meaningful structures ean be identified

when the characteristics of the system are well reflected in the data.

The revised GMDH algorithn is applied to the input--output data observed

in a simple kinetic system, and we tried to diseover the Newton's

second law of motion. The result obtainect is compared with that

obtained by the revised GMDH of using partial polynomials. The

effectiveness of the revised GMDH algorithn of using interrnediate

polynomials fbr identifying physically meaningful structure between

the input and output variables is justified.
                                                              '                           '                                          '     In Capter 4, the revised GMDH algorithn developed in Chapter 2 is

appiied to two kinds of air poilution problems, the steady state

                          '               '                                               '                                                              ' '

                                                          '
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modeling and unsteady state modeling of air pollution. In steady state

modeling, a method of identifying a steady state spatial pattern of air

pollution coneentration in a large area, is developed. By eomparing

three models, the effectiveness of the eombined model of the source-

receptor matrix and the revised GmoH is justified. The combined modeZ

of this kind would be useful for regional environmental planning and

environmental impact assessrnent. In unsteady state modeling, nonlinear

statistical models for short-term prediction of air pollution concentration

are developed. By comparing the prediction results of the revised GMDH

model with those of the linear statistical Tnodels and the basic GMDH

model, the following results are obtained.
                                                           '
(a) Suitable length of data used for short-term predictions in Tokushima

                                                                   '    is about 10 days.

(b) We eannot expeet the improvement of the prediction accuraey by using

    the information of wind direction and wind velocity at the eoncerning
                                                                      '
    point only.
                                         '
(c) The revised GMDH model is very stable and simple, and furthermore

    it gives better performance than the basic GIYn)H model and the linear

    statistical rnodels.

From these prediction resuits, the effectiveness of the nonlinear models

obtatned by the revised GICDH is justified for short-term prediction of
                                                     n.
air pollution concentration.

     Tn Chapter 5, nonlinear models for steady state river quality is

developed by the revised GMDH proposed in Chapter 3. By comparing the

                                                            'revised (ntDH model with the physieaa moael developed by Rinaldi, et al.,
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the following results are obtained. •

(a) Steady state model identified by the revised G}(DH algoritlm gives

    better prediction accuracy for DO eoncentration compared with the

    physieal model.
                                                                '
(b) In the GMDH model, second order terms of BOD concentration are

    appeared both in BOD and DO models, while• in the physical model only

    'linear terms are taken into acco.unt. The linear terms in the GMDH

    model appeared are similar to those in the physical model. '

(c) The structure of the revised GN])H model depends on the statistical

    properties of the data used for modeling, therefore, it is necessary

    l.:alhghde.Illaigigei.i.Stl:g:.::..E)e Co"cernipg system are vfen refiected

(d) :n the physieal model, the computation for estimating the parameters

    is quite eomplex, but the computation for obtaining the revised Glyfl)H

    model is fairly simple.
                                  '
From these results, the effectiveness of the revised GMDH algorithm is

justified for constructing steady state river quality models•

     The advantages of the revised GMDH algorithTns developed in this

thesis are now clarified both from the methodologieal point of view and

from the practical point of view. Finally, it should be noted that

                     .we need further researches to develop . '•
(a) Multivariate GMDH for identifying nonlinear multi-input multi-output

                                                                        '         tt   'systems . .             '
`b'  2:ii,l".e,g!:uiii"g,:iipg.goi.."i:gtl".ft.gl:,:Ed::.\i:2gv.ei,::x,:m,e

    Systeme
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