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STUDIES
ON

REVISED GMDH ALGORITHMS WITH APPLICATIONS

by

Tadashi Kondo

ABSTRACT

In this thesis, the revised GMDH ( Group Method of Data Handling )
algorithms and their applications to environmental problems such as
air pollution and river pollution problems are discussed.

A basic GMDH algorithm, originally proposed by Ivakhnenko in 1968,
which is based on a principle of heuristic self-organization, is a
useful technique of data analysis for identifying complex nonlinear
systems under the statistical analysis of input-output data. This
algorithm has many advantages to deal with modeling of real complex
systems, however, the algorithm has many methodological limitations such
that the algorithm needs many heuristics, and the identified results
depend heavily on these heuristics.

In this thesis, the author proposes two kinds of new revised GMDH

algorithms which eliminate the limitations in the basic GMDH. One is

_Xi_



the revised GMDH algorithm which generates optimal partial polynomials
automatically in each selection layer, and therefore, much better
flexibility for constructing a complete polynomial can be obtained
compared with the basic GMDH algorithm. The other is the revised
GMDH algorithm which generates optimal intermediate polynomials
automatically instead of partial polynomials in each selection layer.
The optimal intermediate polynomials express the direct relationship
between the input and output variables and they are generated so as
to minimize the prediction error evaluated by using all the data.
Therefore, the physically meaningful structure can be identified when
the characteristics of the system are well reflected in the data.

Then, these two revised GMDH algorithms are applied to environmental
problems. As the first example, large-spatial pattern identification of
air pollution by a combined model of source-receptor matrix and the
revised GMDH algorithm of generating optimal partial polynomials is
discussed. By using synthetic data obtained by the computer simulation
of air pollution diffusion, the predicted results obtained from the
combined model is compared with the results obtained from the source-
receptor matrix model only, and also with the results obtained from
the combined model of source-receptor matrix and the basic GMDH. As the
second example, nonlinear modeling for short-term prediction of air
pollution concentration by the revised GMDH of generating optimal
partial polynomials is discussed. By using the time series data of
S0, concentration, the wind velocity and the wind direction in Tokushima,

2

Japan, a suitable model for predicting SO2 concentration at a few hours

- xii -



in advance is developed. The predicted results obtained by the revised
GMDH model are compared with the results obtained by a linear regression
model, a linear autoregressive model and a basic GMDH model. As the
third example, nonlinear statistical modeling of steady state river
quality by the revised GMDH of generating optimal intermediate
polynomials is discussed. By using measured data of river quality such
as BOD and DO concentrations in the Rormida river, Italy, two kinds of
steady state models of river quality is developed. The predicted results
obtained by the revised GMDH model are compared with the results obtained

by a conventional physical model.

Each Chapter of this thesis is based on the following papers.

Chapter 2

[1] H. Tamura and T. Kondo: Revised GMDH algorithm using self-selection
of optimal partial polynomials and its application to large-spatial
air pollution pattern identification, (in Japanese) Trans. Soc.
Instr. Control Engineers, Vol. 13, No. 4, 351-357 (1977)

[2] H. Tamura and T. Kondo: Revised GMDH algorithm using prediction
sum of squares (PSS) as a criterion for model selection, (in Japanese)
Trans. Soc. Instr. Control Engineers, Vol. 14, No. 5, 519-524 (1978)

Chapter 3

[3] T. Kondo and H. Tamura: Revised GMDH algorithm of self-selecting
optimal intermediate polynomials using AIC, (in Japanese) Trans.

Soc. Instr. Control Engineers. (forthcoming)
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Chapter 4

[4] H. Tamura and T. Kondo: Large-spatial pattern identification of air
pollution by a combined model of source-receptor matrix and revised
GMDH, Proc. IFAC Sympo. on Environmental Systems Planning, Design
and Control, 373-380, Kyoto (Aug. 1977)

[5] H. Tamura and T. Kondo: Nonlinear modeling for short-term prediction
of air pollution concentration by a revised GMDH, Proc. International
Conference on Cybernetics and Society, IEEE Syst., Man, Cybern.
Society, 596-601, Tokyo and Kyoto (Nov. 1978)

Chapter 5

[6] H. Tamura and T. Kondo: Nonlinear modeling for the steady state
river quality by a revised GMDH, (in Japanese) Trans. Soc. Instr.

Control Engineers. (submitted)



CHAPTER 1 FUNDAMENTAL PRINCIPLES OF GMDH

1.1 introduction

Recently, the contribution of the systems engineering to the complex
large—scale problems such as environmental problems, traffic problems,
resource problems, etc. has been eagerly desired. 1In these real systems,
very many variables and parameters are contained, and it is very difficult
to identify the systems characteristics exactly by using the knowledges
of some specific sciences only. Basic GMDH ( Group Method of Data
Handling ) proposed by A.G. Ivakhnenko, which is based on a method of
heuristic self-organization, is a useful technique of data analysis for
identifying a completly unknown nonlinear system using the input-output
data [7~10].
In the basic GMDH algorithm, the following advantages can be found.
(a) Nonlinear systems can be identified easily by using a small number
of input-output data.

(b) The structure of the model can be self-selected by using no a priori
information on the system structure.

However, the basic GMDH algorithm includes many disadvantages, and

therefore many attempts have been made to improve the algorithm since



it was proposed in 1968. Almost all the improvements on the GMDH are
concerned with the procedures of constructing the proper model and with
the criterion for the model selection.

Inrthis Chapter, firstly the principle of heuristic self-organization,
which is a basic concept of GMDH, is described. Secondly, the basic GMDH
algorithm proposed by Ivakhnenko is shown, and its disadvantages are
clarified. Then, some revised GMDH algorithms which have been proposed
to overcome these disadvantages are shown. Finally, the motivation to

this thesis research is mentioned.

1.2 Principle of Heuristic Self~Organization [5,8]

GMDH is based on a principle of heuristic self-organization which
is a useful approach to various complex problems. The systems or
programs of heuristic self-organization are defined as those which have
a multilayered or a hierarchical algorithm and include the generators
of random hypothesis, or combinations, and several layers of threshold
self-sampling of useful information. In each layer, by applying random
combinations to input variables, new variables, whose structures are
more complex or whose characteristics are more improved than those of
the input variables, are generated, and from these variables more
effective variables can be self-selected. These operations are repeated
until the desired characteristics of the variables begin to degenerate.
By using heuristic self-organization, we can solve the problems which

are too complex to trace all input-output relationships throughout the



system. That is, in heuristic self-organization, the notion of general
integral influences which has a self-adjustment facility of the system

by acting upon the multilayered structure, is used, and particular
information of each component of the system is not necessary. The integral
influence is a heuristic one which is determined according to the summary
result of input and output responses. The simplest realization of
integral influences is a threshold unit permitting only some inputs to
pass. In the self-organization, heuristics, which are conjectures in
evaluating a course of problem solution by man, i.e. are creative

thought processes of man, play an important role., Man controls the
course of the solution by continuously directing its way to the desired
results by means of integral influences. That is why heuristic self-
organization ensures an accuracy which could not be reached by the use

of routine mathematical methods. From the mass selection of plants

and animals, the hypothesis of selection, which is a basis of the
heuristic self-organization, can be found. This hypothesis of selection
has the threshold type unit of integral influence, each of which has

a single optimal setting corresponding to the accuracy in the result.
Three examples of self-organizing systems are shown in Fig. 1.1.

The first example in Fig. 1.1 (a) is the well-known perceptron, the

model of the brain perception function, designed by Rosenblatt [19].

The second example in Fig. 1.1 (b) is the structure of a system designed
at the Stanford University, where the problem is to predict the structure
of organic molecules [18]. The third example in Fig. 1.1 (c) is the
structure of GMDH. In the following section, the basic GMDH algorithm

based on the heuristic self-organization is shown.
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Fig. 1.1 Examples of system structures having heuristic

self-organization [8]



1.3 Basic GMDH Algorithm [21]

The relationship between the input variables (xl,xz,"',xm) and

the output variable ¢ of the system is assumed to be written by

¢ = £( xl,xz,"',xm) . (1.1)
Equation (1.1) is called as a complete description of the system, Many
kinds of GMDH algorithms can be constructed for various kinds of complete
descriptions such as polynomials, Bayes formulas, trigonometrical
functions and rational expressions [2,8,11]. Among many kinds of
complete descriptions, the Kolmogorov-Gabor polynomial

Y ) oa, ., x,x, X, + oeee (1.2)
i3k 1jkTi7i7k ;

is most widely used, because almost all the real systems can be described
as eq. (1.2) equivalently. Equation (1.2) can be constructed by

combining the following second order polynomials of the two variables

in multilayers.

=b, + b,x, + b
i

yk 0 1 X, + b

x. X, + b
2] ]

2 2 ;
3%y x, + bSXj {(1.3)

474
Here, Vi is called as the intermediate variable, and eq. (1.3) is called
as the partial polynomial. The basic GMDH algorithm of constructing a

proper Kolmogorov-Gabor polynomial is written as follows [9,10]:



Step 1:
Determine the dinput variables X, (i=1,2,+++,m) and the output
variable ¢.  Normalize each variable if necessary. That is,

each variable is transformed as

X, =—_""_——:_ ’ (i=1,23...sm) 5 (b(; = ‘ (l'4>

Here, Xi is the a~th data of the input variable X and §i and
Vx. denote the mean vaiue and the variance of X5 respectively.
i
Step 2:
Divide the original data into two groups; the training data for
estimating the coefficients of the partial polynomials, and the
checking data for selecting the intermediate variables. The
dividing rule is very heuristic. Usually the training and checking
data are taken alternately or on the basis of the variance from
the mean value.
Step 3:
For the combination of two variables X, and Xj’ estimate the
parameters (bO,bl,---,bS) contained in the partial polynomial of
eq. (1.3) by using least square estimation for the training data.
Step 4:

Calculate the following mean square error for the checking data,

N
I - 2
Ach - NC Z ( ¢a yku) (1.5)

ju pd
Q



by using the partial polynomial estimated in Step 3. Here, NCh
denotes the number of checking data, and Yiea, denotes the o-~th
estimated value of the output under the k~-th intermediate wvariable
Yy Select L intermediate variables which give L smallest mean
square errors. This selection rule is also very heuristic.
Equation (1.5) is called as a regularity criterion.

Step 5:
Replace X, and xj by v and yj, respectively, and go to Step 3.

Repeat Steps 3 to 5 until the smallest mean square error A .
ch (min)

cannot be improved.

In addition to the above procedure, we must optimize heuristics
so as to find an optimal complete polynomial. The block diagram of
the basic GMDH is shown in Fig. 1.2, where $ denotes the estimated
value of the output variable ¢. 1In the above procedure, eq. (1.3) is
used as a partial polynomial and the 2T~th order complete polynomial
with respect to the input variables can be constructed in the T-th
layer. 1In order to identify the systems with various complexity more
easily, some other partial polynomials have been proposed as follows:

(a) First order polynomial

X, (1.6)

= b, + blxi + b2 5

Y = Po



Tm —> J x —> G ‘—*yml)

I ¢+ Division of the original data
II : Self-selection of the intermediate variables
IITI : Optimization of the threshold

G ¢ Generator of the partial pqunomial

Fig. 1.2 Block diagram of the basic GMDH

(b) Second order polynomials
As a bilinear partial polynomial

= b, + blxi + bzxj + b

Yie 0 Xixj 4 (1.7)

3

has been proposed. As a partial polynomial which contain smaller

number of parameters

Xk = wx; + (1—w)xj w: weight (1.8.a)



_ 2
Yy = b0 + blxk + bzxk (1.8.b)

has been proposed [4].

(c) High order polynomial [5,6]

2
Xi = bo + blxi + bzxi (1.9.a)
X, = b' + blx, + b'x% (1.9.b)
B 0 173 273
=c. +c, X, +c.X, +c.X. X, + X2 + x2 (1.9.¢)
Y T % T 1% T C2% T Gty T Gt T G5ty eC

We must predetermine the form of the partial polynomial which is
used in the GMDH algorithm. This predetermination rule is also very
heuristic. As is evident from above discussion, the following heuristics
are contained in the basic GMDH algorithm.

Hl. Determination for the division rule of the available input-output
data into the training data and the checking data.

H2. Determination for the number of intermediate variables selected
in each layer.

H3. Determination of the form of partial polynomial.

We must optimize these heuristics so as to find an optimal complete
polynomial, and therefore we must repeat the GMDH computational procedure
very many times by changing the heuristics. Furthermore, the basic GMDH

algorithm involves following limitations to be solved.



Ll. The identified model depends heavily on the heuristics H1l, H2 and H3.

L2. When a second order or a higher order polynomial is used as a partial
polynomial, the system, which has many input variables with low order
polynomial, cannot be identified. The identified model with many
input variables will become unnecessarily complex.

L3, The jidentified model fits well to the training data but not well to
the checking data.

In the following section, improvements made on the basic GMDH

algorithm in order to overcome these limitations are discussed.

1.4 Improvements of the Basic GMDH [21]

The methodological improvements of the basic GMDH algorithm are
almost concerned with the procedure of constructing partial polynomials
in order to overcome the limitation L2 and with the criterion for the
model selection in order to overcome the limitation L3. Firstly, the
GMDH algorithms, which are improved in the procedure of constructing

partial polynomials, are shown.

1) Algorithm of constructing optimal partial polynomials by stepwise

regression under the statistical test for significance [1]

In this algorithm, heuristics H3 is not necessary, and limitation
L2 and a part of limitation L1 are eliminated. But, limitation L3 is

not eliminated because the structure of the partial polynomial is

- 10 -~



determined by using only the training data.

2) Algorithm of self-selecting optimal partial polynomials so as to

minimize the mean square error for the checking data [20]

In this algorithm, heuristics H3 is not necessary, and limitation
L2 and a part of limitation L1 are eliminated. Furthermore, limitation
L3 is considerably eliminated., The block diagram of this algorithm is

shown in Fig. 1.3. The mean square error for the checking data is used

1
> .'Z’Jl y]_ 3
X [ —
_..i’. xX v
2 Y2
= -
I 111 ”
: ﬁ...__ -
.’L‘m yq
xz -———>J -
7 )

1 ¢ Self-selection of input wvariables

IT : Self-selection of optimal partial polynomials
III : Self-selection of intermediate variables

IV : Optimization of threshold

G ¢ Filter, G Base function with a single input

2

Fig. 1.3 Block diagram of a revised GMDH [20]

- 11 -



in order to determine the structure of the complete polynomial. 1In other
words, the mean square error for the checking data is used to generate
the optimal partial polynomials and these polynomials are used to
constrﬁct the multilayered structure. The self-selection procedures

of optimal partial polynomials, in which the mean square error for the
checking data is used as a selection criterion, are considered on the
basis of eqs. (1.3) and (1.8). Application of this algorithm to an

environmental problem of air pollution can be found in [20].

It has been reported that the revised GMDH algorithms as described
above can construct more simplified complete polynomials and obtain
better prediction accuracy than the basic GMDH algorithm.

Secondly, the GMDH algorithm, which are revised for the procedure
of constructing the partial polynomial and for the criterion for the

model selection, are shown.

3) Combination-generating GMDH algorithm using unbiasedness criterion

[12,13]

This algorithm was proposed by Ivakhnenko.
(a) Procedure of constructing optimal partial polynomials by generating
combinations of input variables [12]
Instead of using second order polynomial of eq. (1.3) as a partial
polynomial, ‘a combination, which gives the smallest value of unbiasedness
index, is selected from combinations of’two variables shown in Table 1.1,

and an optimal partial polynomial is constructed.

- 12 -



Table 1.1 Constructing a partial polynomial [12]

1 2 3 4 5 6
N
pzT:::mizls 2%-1 2%=2 2%=4 23-8 2%-16 29=32
z,=a z,=a. & z.=a xz z,=a.,x z_=3,%x & z _=a xz
170 2 712 37272 4 7371 574712 6 51
zz+z1 z3+zl 24+21 25+Zl 26+21
Right sides 23+22 24+22 25+22 26+22
23+22+z1 Z4+22+21 25+22+zl z6+zl+z2
of the 24+z3 25+z3 z6+z3
partial 24+z3+zl zS+z3+z1 26+z3+z1
24+z3+z2 25+23+z2 ......
polynomials 24+z3+22+zl ZS+Z3+ZZ+ZI
ZS+24
25+24+z1

(b) Unbiasedness criterion [13]

This criterion is used in order to eliminate the limitation L3.
Firstly, the available input-output data are divided into two groups Al
and A2' Here, the numbers of the data are Rl and R2, respectively,

Secondly, the partial polynomial

*

Ve = (1.10)

fl(xi,xj)

[

is estimated by using A1 as the training data. The data A2 are used

as the checking data., Then the role of the data is exchanged. That is,
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Al is used as the checking data and A, is used as the training data.

2
The partial polynomial

*%k

Vi = fp(xaxy) (1.11)

is estimated by using A2. The unbiasedness index for the k~th combination

in the T-th layer

-R.+R
1772 w2
N, =

1 Z *
Cyp . =y, )
Tk R1+R2 a=1 ko ka

(1.12)

*%

% kk *
is calculated. Here, Yo and Vi denote the a-th values of Yy and Yy
b

respectively. Then, the unbiasedness criterion in the T-th layer

Ay (1.13)

t~t

1
N, ==
TOF 4

is calculated. Here, F is the number of the intermediate variables
selected in the T-th layer.
(c) Combination-generating GMDH algorithm using unbiasedness criterion

[12,13]

In the first layer, the available input-output data are divided
into two groups, and for each combination of the two input variables
the unbiasedness indexes for all the polynémials shown in Table 1.1 are
calculated. Then the optimal partial polynomial, which gives the
smallest unbiasedness index, is constructed. Then the F intermediate

variables, which give F smallest unbiasedness indexes, are selected
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and the unbiasedness criterion in eq (1.13) is calculated. 1In the second
layer and above, the procedure in the first layer‘is repeated. The
iterative computation is terminated when the value of NT cannot be
decreaséd.

In this algorithm, a part of limitation L1, and limitations L2 and
L3 are eliminated. But, since the division of the data is used, the

heuristics H1 is still necessary. Furthermore much more computation

time is needed compared with the basic GMDH.

4) Algorithm using the struetural and parametric stability [3]

(a) Structural stability

Firstly, the input-output data are divided into two groups. The
partial polynomial is estimated by the least square estimation for the
data 1, and the mean square error for the data 2 is calculated. Then,
the role of the data is exchanged and the mean square error for the
data 1 is calculated. The partial polynomial, which gives smaller sum
of two mean square erroré, is defined as structurally stable one.
(b) Parametric stability

In each second order polynomial, the term which has small difference
between two values of each parameter estimated for data 1 and 2 is
defined as parametrically stable one.

The algorithm using these two stability is shown as follows.
The partial polynomial in each selection layer is constructed under the

criterion of the parametric stability in the second order polynomial
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of eq. (1.3), and the intermediate variables are selected under the
criterion of thegstructural stability. The iterative computation is
terminated when the value of the structural stability cannot be improved.
The structural stability is considered as the equivalent idea to the
unbiasedness criterion proposed by Ivakhnenko.

In this algorithm, a part of limitation L1, and limitations L2
and L3 are eliminated, but heuristics Hl is necessary because we need

to divide the data into two groups.

The revised GMDH algorithms described above have been proposed in
order to eliminate the three limitations L1, L2 and L3. But, these
revised GMDH algorithms do not eliminate the three limitations completely.
Especially, all of them need the heuristics Hl and therefore computational
procedure of GMDH is to be repeated many times in order to find an optimal
heuristics ﬁl. In general, however, it is practically impossible to
find the optimal division rule for each problem, and the identified model
will depend heavily on the heuristics Hl. The revised GMDH algorithm,
which does not use the heuristics H1l, i.e. which uses all the data as
the training and at the same time as the checking data, is desired in
order‘to obtain the optimal model which fits well to all the data.

Some other revised GMDH algorithms have been proposed from practical
situations. Subsequently, these revised GMDH algorithms are shown

briefly.

5) Algorithm using balance-of-variables criterion for the purpose of

the long~term prediction [14,15]
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In this algorithm proposed by Ivakhnenko, various procedures such
as the procedure of using balance function or the procedure of using

direct function and inverse function are included.

6) Sequential GMDH algorithm [6]

In this algorithm, the structure of the system is predetermined by
using the basic GMDH algorithm, and when new input-output data are
obtained, the estimates of the parameters are updated by using a
sequential least square estimation method. It has been reported that
this algorithm is useful to obtain stable predicted values for the time

series sequence.

Besides the improvements described above, there are many studies

on the GMDH by Ivakhnenko, et al., and they are summarized in [16,17].

1.5 Concluding Remarks and Motivation to This Research

In this Chapter, firstly the basic concept of GMDH algorithm which
is called the heuristic self-organization is described. The heuristic
self-organization is a very useful concept to solve engineering cybernetics
problems which have very complex structure with large dimensionality.
Secondly, the basic GMDH algorithm proposed by Ivakhnenko is shown. It
is clarified that the basic GMDH algorithm involves three main limitations

to be eliminated, and there exist many revised GMDH algorithms in order
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to overcome this difficulty. But, the three limitations have not yet
been eliminated completely.

In the following Chapters, the author will propose two kinds of
new revised GMDH algorithms which' eliminate these three limitations
completely where some prediction error criterions will be used for
model selection. By using the prediction error criterions, we try to
develop the algorithms which do not need to divide the original data
into two groups; the training data and the checking data. Furthermore,
by using self-selection of optimal partial or intermediate polynomials
in each selection layer, we try to eliminate the three limitations
completely contained in the basic GMDH algorithm.

The revised GMDH algorithm of generating optimal partial polynomials
under the prediction error criterion will be proposed in Chapter 2.
This algorithm is supposed to be useful for identifying a very complex
system as a statistical model, where we cannot, in general, obtain a
physical interpretation for the model identified. Then, the revised
GMDH algorithm of generating optimal intermediate polynomials under the
prediction error criterion will be proposed in Chapter 3 where the
intermediate polynomials generated in each selection layer express the
direct relationship between the input and output variables. This
algorithm is supposed to be useful for identifying physically meaningful
structure of a relatively simple system when the characteristics of the

system are well reflected in the input-output data.
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CHAPTER 2 REVISED GMDH OF GENERATING OPTIMAL PARTIAL POLYNOMIALS

UNDER THE PREDICTION ERROR CRITERION

2.1  Introduction

The GMDH algorithm, which is based on a method of heuristic
self-organization [10], is a useful technique of data analysis for
identifying a completely unknown nonlinear system using the input-
output data. In the basic GMDH [11,12] developed by Ivakhnenko, the
concept of so called regularization is introduced for the purpose of
avoiding the overfitting for the past data. Namely, the available
input-output data are divided into the training data for estimating
the coefficients in the partial polynomials, and the checking data for
selecting the intermediate variables. In the basic GMDH algorithm,
we need the following heuristics.

(a) Predetermination of the structure of the partial polynomials

(b) Division of the original data into two sets; the training data and
the checking data

(c) Predetermination of the number of the intermediate variables
These heuristics are to be changed so as to find an optimal complete

polynomial. Therefore, the computational procedure of the basic GMDH

- 22 -



must be repeated many times, but the complete polynomial obtained is
not always an optimal one. Furthermore, the identified results depend
heavily on these heuristics.

In this Chapter, we propose a revised GMDH algorithm which does
not need any heuristics. In the basic GMDH algorithm, the structure
of the partial polynomials is fixed to a predetermined description for
all possible combinations of two variables. The revised GMDH algorithm
proposed in this Chapter is the one which automatically generates optimal
partial polynomials in each selection layer, and the polynomials as
such are used to construct a complete polynomial in the multilayered
structure. Therefore, the identified results do not depend on the
heuristics of determining the structure of the partial polynomials and
much better flexibility for constructing a complete polynomial can be
obtained compared with the basic GMDH algorithm. Furthermore, in the
revised GMDH algorithm proposed in this Chapter, all the data can be
used as the training data and at the same time as the checking data,
where instead of the mean square error for the checking data
the Prediction Sum of Squares (PSS) [4] or Akaike's Information
Criterion (AIC) [1,2,3] calculated from these data can be used as a
criterion for gemerating partial polynomials, for selecting intermediate
variables and for stopping the multilayered calculation. Therefore,
the identified results do not depend on the heuristics of dividing the
data into two sets. In the revised GMDH algorithm, the number of the

intermediate variables is preferred to be as large as possible in order
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to minimize PSS or AIC. That is, the number of the intermediate
variables is determined not by the heuristics but by the upper limit
of the memory capacity of the computer.

Firstly, we discuss the partial descriptions used in the previous
GMDH algorithms. 1In the previous GMDH algorithms, the mean square error
for the checking data has not been used for determining the structure of
the optimal partial ﬁolynomials and for estimating the parameters in
the partial polyﬁomials. Therefore, the valuable information contained
in the.checking data is disregarded to construct the partial polynomials,
and, as the results, the identified model does not fit well to the
checking data. Secondly, the methods of computing the prediction errors;
Prediction Sum of Squares (PSS) and Akaike's Information Criterion (AIC)
are shown. By using these prediction errors as a criterion for model
selection, we can construct an optimal model which fits well to all the
data. Then, the revised GMDH algorithm of self-selecting partial
polynomials under the criterion of PSS or AIC is developed. Since any
heuristics are not needed in this revised GMDH, we do not need to repeat
the computational procedures of the revised GMDH. The revised GMDH
algorithm is applied to a simple illustrative example and the results

are compared with those obtained by the basic GMDH algorithm.

2.2 Partial Polynomials Used in the Previous GMDH Algorithms [14]

There are many kinds of GMDH algorithms in which many kinds of
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complete descriptions such as polynomials, rational expressions, Bayes

formulas are used. Here, we use the Kolmogorov-Gabor polynomial

i § E aijkxixjxk + oo (2.1)

as a complete description of the system. In what follows, we show
some kinds of polynomials which have been proposed as partial polynomials.

1) First order polynomial

X, (2.2)

=b.,+ b,x, +Db
i 274

kTP 1
By using this polynomial, we can construct a first order complete
polynomial.

2) Second order polynomial

b.+ b,x, +b.x, +b
i 273

Vi 0 1 Xixj (2.3)

3

x, + b,x.%x, + b x? + b x? (2.4)

= by th *5 * b2 j 37177 471 579

' T P07 1
By using these second order polynomials, we can construct a 2T—th
order polynomial after passing the T-th selection layer. As a
second order polynomial, which contains a smaller number of

parameters than eqs. (2.3) and (2.4), the following partial
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polynomial has been proposed [8].

P
Il

WX + (l—w)xj w: weight (2.5.a)

2
Yy bO + lek + b2Xk (2.5.b)

3) High order polynomial [9]

_ 2
Xi = b0 + blxi + bzxi (2.6.a)
X, =b! +blx, + b'X2 (2.6.b)
3 0 175 27 et
y, =c. +c. X, +c,X, +c, XX, +¢c X2 +c X2 (2.6.c)
k 0 174 275 37174 474 577 T

By using this polynomial, we can construct a 4T—th order polynomial after
passing the T-th selection layer.
4) Optimal partial polynomials for each combination of two variables
(a) Optimal partial polynomial in which parametric unstable terms
contained in eq. (2.4) are eliminated [7].
(b) Optimal partial polynomial in which unnecessary terms contained
in eq. (2.4) are eliminated by applying stepwise regression
method [5] using residual sum of squares (RSS) for the training

data [6].
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By using these optimal partial polynomials, we can construct a complete
polynomial of various order between the first and the 2T—th order after
passing the T-th selection layer.

The relationship between the number of selection layer and the
order of a complete polynomial is shown in Fig. 2.1. The order of the
complete polynomial constructed by the optimal partial polynomials in
4) (a) and (b) is shown by round mark. By using partial polymomials
of eqs. (2.3)~(2.6), the system, which is represented by a polynomial
having many input variables with low order, cannot be identified
because the order of the complete polynomial is doubled in each
selection layer. By using optimal partial polynomials in 4) (a) and
(b), a system as such can be identified. That is, much broader kinds of
systems can be identified by using optimal partial polynomials but
not by using predetermined polynomials for all possible combinations
of two variables. Furthermore, the number of terms contained in a
complete polynomial can be decreased by using optimal partial polynomials.
But, in 4) (a), a lot of computation time are needed in order to
construct an optimal partial polynomial. And, in 4) (b), it is
difficult to find the optimal standard value of variable selection,
and furthermore the valuable information in the checking data cannot
be used to construct the partial polynomials.

In order to cope with the disadvantages contained in the previous
partial polynomials as described above, we propose a revised GMDH
algorithm which generates in each selection layer an optimal partial

polynomial which minimize the. prediction error.
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(2.5)
(2.4)
(2.6) (2.3)

30

20

O
O

10

Order of complete polynomial

T T T O r T T rr rreT

O O o
o O o

443 8 .43(2.2)
4 5 6

1 2 3

Number of selection layers

Fig. 2.1 Order of complete polynomials obtained

for different partial polynomials

2.3 Prediction Sum of Squares (PSS) and Akaike's Information

Criterion (AIC)

1) Computation of PSS [4]

In a multiple regression analysis, PSS is used as a criterion for

selecting the independent variables, and the optimal regression equation

m
z =5b, + Z b.x, , a=1,2,***,n
i=1

is comnstructed so as to minimize PSS.
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PSS is defined as

n
PSS = [ ( z~ z,) (2.7)
. a=1
where
nk m
z, = by, iglbmxm, a=1,2,*+*,n

Here, n denotes the data length, z, is the a-th actual value, and

2: is the a-th estimated value obtained by a multiple regression
analysis of all the data except the a-~th data. In order to compute
PSS of eq. (2.7), the multiple regression analysis must be repeated n
times, therefore the amount of computation increases as the increase
of the number of data. For this reason, when there are many data, it

is not practical to compute PSS in the form of eq. (2.7).

PSS of eq. (2;7) can be reduced to [13]

8 o za 2
PSS = ) ( ) (2.8)
o=1 1 - x (XX) x
=0 =q
where
) m
2y = Pg + izl i*i0° a=1,2,+*,m
T
X (1’X1a’x2a’ ’Xmu)
T
X7 = [xy.%,,0 0% 1,
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A

Here, z, is the o-th estimated value obtained by a regression analysis
of all the data. 1In this procedure, we do not need to repeat the

regression analysis.

2) Computation of AIC [1,2,3]

In a multiple regression analysis, AIC is also used as a criterion
for selecting the independent variables, and the optimal regression
equation is constructed so as to minimize AIC. The basic statistics of

AIC is defined as
AIC = - 2 loge ( Maximum Likelihood ) + 2 k, (2.9)

where k is the number of parameters in the model to be adjusted to

attain the maximum of the likelihood. Our identification procedure

is realized by adopting the model which gives the minimum of AIC

within a set of possible alternative complete polynomials. By this
procedufe, we are trying to minimize the expected deviation of the

fitted distribution from the true distribution as measured by Kullback-
Leibler's mean amount of information for discrimination. The information
theoretic justification of the use of AIC for this purpose for
independent observations can be found in [2,3]. For a linear regression

analysis, AIC is reduced to

AIC = n log_ si +2k+C (2.10)
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v A2
Y (z~z) (2.11)

where n denotes the data length, C is a constant, 2a is the o-th estimated
value obtained by a regression analysis of all the data, and z 1is the

o
a—-th observed value. Here, it is assumed that the noises contained in

the model are mutually independent and normally distributed.

2.4 Revised GMDH Algorithm Using PSS or AIC as a Criterion for

Model Selection [15]

In a GMDH algorithm, PSS or AIC calculated from all the data can
be used as a criterion for generating optimal partial polynomials in
each selection layer, for selecting intermediate variables and for
stopping the multilayered iterative computation. The significant
advantage of using PSS or AIC for model selection is that it is not
necessary to divide the available data into the training data and the
checking data. All the data can be used for constructing the model
and at the same time for evaluating the prediction error, since PSS
and AIC have an ability to evaluate the prediction error incurred by
the model. Therefore, the identified results do not depend on the
heuristics for dividing the data into the training data and the checking

data, as it does in the basic GMDH algorithm. Furthermore, much better .
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flexibility for constructing a complete polynomial can be obtained
compared with the basic GMDH algorithm.

The block diagram of the revised GMDH algorithm using AIC is shown
in Fig. 2.2. Here, it is assumed that the complete description of the

system can be written as the Kolmogorov-Gabor polynomial
Z a,.,x.x, + ¢ . (2.12)
P 3 137175

The revised GMDH algorithm is constructed by the following four procedures:

1) Generating optimal partial polynomials in each selection layer

:15 Y SR P (==
2
BN Y y
. o5 5 G4|—
o RN
Xm-1 —G3 L '——L-; ——@‘—)
R RN oy RO I TR —{G4i—
J Y, /

I : Self-selection of intermediate variables

Fig. 2.2 Block diagram of the revised GMDH of generating

optimal partial polynomials
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The optimal partial polynomials can be generated through G1, G2, G3
and G4 applying a stepwise regression procedure [5] for the input
variables to the following second order polynomial,

=b.+ b.x, +b.x. +Db (2.13)

2
Vi = Pg * byxy tbox, + byxx, 4+ bx, + b

X2
575
In this stepwise regression procedure, PSS or AIC is used as a criterion
for selecting dominant variables in eq. (2.13). The normal equation

for this polynomial can be written as

X'X B = X'y (2.14)

— LN T — . o0 T 1
where §7(b0,b1, ,b5) and Xf(¢l,¢2, ,¢n) . For the normal equation

(2.14), 7x13 matrix

XX : X'y : I
R
| |
7 ! | N
J1 Iy, oo ij?a Ie,
o T D B
oo S 2.15)
B, B, D, 1 D,
Tog logmpgreelogxs, | Ie2 1 of
N ! ! Ve
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is constructed, where I is a unit matrix, Q? is a zero vector, and the
7-th row is supplemented for computing RSS (Residual Sum of Squares)
which expresses the accuracy of fittinglfor all the data.

By using this matrix, we can select the dominant input variables
contained in eq. (2.13) easily. That is, when the m—th variable in
eq. (2.13) is to be entered in the partial polynomial, the (m+l)-th column is
reduced to the unit vector of the (m+8)~th column using a pivoting
operation. On the other hand, when the m-th variable in eq. (2.13) is to be
deleted from the partial polynomial, the (m+8)-th column is reduced to
the unit vector of the (mt+l)-th column using a pivoting operation. These
selection procedures are repeated alternately based on PSS of eq. (2.8)
or AIC of eq. (2.10), where the dominant input variables are selected
so as to minimize PSS or AIC. Optimal partial polynomials can be
constructed by using the selected input variables. Four kinds of the

generators of the optimal partial polynomials are shown in Fig. 2.3.

Yic= Dy*byXj by Xj by X; Xivb, X +beX]

Gi—> yk= b0+ b,X}*bZXj+b3Xin

1)

62> VS Dy By Xit X,

- 2
=63} ¥, =b,*b X;+b,X

G Y, = 0y byX;

Fig. 2.3 Generators of the optimal partial polynomials
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The generator G4 generates the same intermediate wvariable as that

generated in the previous layer.

2) Selécting the intermediate variables

The L intermediate variables, which give the L smallest PSS or
AIC, are selected from all the intermediate wvariables. The number L
is preferred to be as large as possible in order to minimize PSS or
AIC. That is, L is not determined in a heuristic manner but by taking

into account the upper limit of the memory capacity of the computer.

3) Stopping the multilayered iterative computation

When all the generators of the optimal partial polynomials in the
selection layer become G4, the iterative computation of the revised

GMDH is terminated, because PSS or AIC cannot be decreased any more.

4) Computation of the predicted values

‘The prediction model is obtained as a weighted average of complete
polynomials which are constructed by the intermediate variables remaining
in the final layer. Since we can compare the predicted values obtained
from several complete polynomials in the final layer, it is possible
to exclude the abnormal predicted values before we obtain the final
predicted value as a weighted average. Therefore, a stable prediction

can be realized.
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Since the revised GMDH algorithm described in this Chapter does
not need any heuristics, we do not need to repeat the computational

procedure for different heuristics.

2.5 Numerical Example [15]

Input and output relationship is assumed as

b= ( 0.1+ 0.2x + 0.3x, + 0.4x)? (2.16)

1
As input variables, xi(i=1,"°,4) are used. Here, the variable X, is
not contained in eq. (2.16). The data used for modeling are shown in
Table 2.1, and the data used for model validation are shown in Table 2.2.

Firstly, the numerical results obtained by the basic GMDH are
shown. Four variables, which give the four smallest mean square errors
for the checking data, are selected as the intermediate variables.
Thirteen data in Table 2.1 are used as the interpolation points. The
interpolation points are divided into the training data and the checking
data in proportion of 7 : 6 and two cases are considered as follows:
Case 1: (Tr.) 1~7-th data

(Ch.) 8~13-th data

Case 2: (Tr.) odd-numbered data

(Ch.) even-numbered data
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Table 2.1 Input data at the interpolation points

No. Xy X, X x4 o)
1 0.0 0.0 5.0 5.0 4,4
2 1.0 3.0 4.0 2.6
3 2.0 5.0 3.0 13.0
4 3.0 2.0 . 2.0 4.4
5 4,0 0.0 1.0 4,4
6 5.0 4,0 0.0 9.6
7 0.0 5.0 1.0 10.2
8 1.0 1.0 2.0 1.0
9 2.0 0.0 3.0 6.2

10 3.0 2.0 4.0 1.7

11 4,0 5.0 5.0 16.0

12 5.0 3.0 4.0 5.8

13 0.0 0.0 3.0 1.7

Table 2.2 Input data at the prediction points

Z
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e
£~
h=g

10.
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Prediction models identified by the basic GMDH are as follows:

Case 1 : (First layer)

_ _ _ 2 2
vy = 4.277 + 0.762Xl 3.386x2 + 0.239xlx2 O.l6lxl + O.900x2

Here, as a Case 1', we describe the prediction model of the second
layer in order to show the increase of complexity according to the
increase of the layer.

Case 1': (Second layer)

_ _ _ 2 2

z) = 1.100 - 1.30ly, + 2.025y, - 0.226y,y, + 0.273y; - 0.068y;
= ~13.80 + 2.642x. + 9.713x, - 0.605x.x, + 0.195x° — 1.214x>
Yq . . x, - 713x, . X,Xq . X, . Xy

2 2

y4 = —?.847 - 1.929Xl + 9.115X3 + 0.177xlx3 + O.24lxl - l.423x3

Case 2 : (First layer)

2 2

yl = 18.74 + 3.929xl - 9.910x4 + 1.089X1X4 - l.619xl + 1.409x4

The variables selected in the model are as follows:

2 2
Case 1 : Xy Koy KXo, Xy X
)
Case 1': x;, Xy, X3, %X, X1X3, X)Xg, X)» Xp» X3s X XpXg, Xp%ps

2 22
XyXys XyXoXgs X XoXg, XpXgs XyXps XiXgs X X)pXgs XXy»
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x2x2 x4 x3 %%, X x2 X2R,, KXo x2x2 x4 % x3x
173 712 71 173 72732 273 T2T3r 273t T2 o 72Ty
x3 <
3 73

Case 2 : X x2 X,, X:X,, X
BEEES RE R/  A

where the variables contained in the proper model eq. (2.16) are shown
with underline. Comparing the result of Case 1 with that of Case 1',
we cén see that the model becomes very complex according to the increase
of the layer. The model of Case 2 is essentially different from eq. (2.16),

The accuracy at the interpolation points can be shown as follows:
The mean square errors for the training data and the checking data for
Cases 1 and 1' are shown in Table 2.3 (a). The mean square errors for
the training data and the checking data for Case 2 are shown in Table
2.3 (b). From Table 2.3 (a), we can see that the fitting for the
training data is very accurate but for the checking data is very

inaccurate. From Table 2.3 (b), we can see that the model of Case 2

Table 2.3 Change of mean square error at the interpolation

points
(a) Case 1 and 1'
1-st layer 2-nd layer
Training data 0.335 8.57x10"7
Checking data 2.37 40,7
(b) Case 2
l-st lavyer 2-nd layer
Training data 3.22 7.32x1072
Checking data 60.7 4.O6><104
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is not identified properly. The accuracy at the prediction points is
evaluated by
110 | 9 -

J=(—
10 a=1 )

) x 100 (2.17)

for ten data in Table 2.2, where $u denotes predicted value. The

prediction accuracy obtained is

Case 1 : J= 307
Case 1': J =129 %
Case 2 : J =

175 % .

The numerical results obtained by the revised GMDH are shown.
Four variables, which give the four smallest values of PSS, are selected
as the intermediate variables. Thirteen data in Table 2.1 are used as
the interpolation points.

Prediction models identified by the revised GMDH are as follows:
Two intermediate variables are remained in the final layer.

Prediction model 1: (Weight wl=0.520)

v, = =0.080 + 0.571z

1 1 + 0.44222

o 2

z, = -0.534 + 0.932y, + 0.060y,y, - 0.033y;
z, = -0.935 + 0.868y, + 0.282y,

2

y, = 4.171 - 3.632x, + 0.258x %, + 0.973x;
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Y4

+ 0.365x§

0.237 + 0.996x3

1.198 + 0.960x, + 0.46lx1x

3 3

Prediction model 2: (Weight w2=0.480)

Y4

= 0.237 + 0.996x%

= 1.198 + 0.960x, + 0.46lx1x

-0.113 + 0.707zl + 0.3llz4

~0.534 + 0.932y, + 0.060y,y, - 0.033y§

0.000 + l.OOOyl

4,171 - 3.632x2 + 0.258x1x + O.973x§

2

2
3 + 0.365x2

3 3

The variables contained in the prediction models are

52’ 1{.3’ .}.{_2’ 3{_3’ El.}_c.z’ 512(_3’ X1X39 X2X3a X1X2X3, X2-

The accuracy at the interpolation points can be shown as follows:

The mean square errors for all the data (RSS/13) and the values of

PSS (PSS/13) are shown in Table 2.4. From Table 2.4, we can see that
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the difference between RSS and PSS in higher lavyers is smaller than in

lower layers. The accuracy at the prediction points is again evaluated

by eq. (2.17) for ten data in Table 2.2. The prediction accuracy
obtainéd is
J = 10.8 Z.

The combinations of the intermediate variables in each selection layer

are shown in Fig. 2.4. The linear generators (G2,G4) are appearing

more often in higher layer. The iterative computation of the revised

GMDH is terminated at the fifth layer.

From the numerical example described above, the following results
are obtained.

(a) From the results of Cases 1 and 1', the prediction model obtained
by the basic GMDH becomes very complex as the selection layer
increases. From the results of Cases 1 and 2, the identified
results depend heavily on the way of dividing the original data into
the training data and the checking data. The prediction model of
.€ase 2 is essentially different from eq. (2.16) because even
numbered data cannot be used for modeling and odd numbered data
used for modeling do not contain sufficient information. Furthermore,
in the basic GMDH, the identified model fits well to the training
data, but not to the checking data.

(b) The prediction model obtained by the revised GMDH is constructed
in the fifth layer but is not complex. Furthermore, a uniform
accuracy for all the data can be obtained. The prediction accuracy

of the revised GMDH is much better than that of the basic GMDH.
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Table 2.4 Changes of RSS and PSS

l1-st layer 2-nd layer 3-rd layer 4—th layer 5-th layer
RSS / 13 1.29 0.642 0.450 0.450 0.450
PSS / 13 2.26 1.00 0.689 0.574 0.574
A
4 X
X3 Gl, G3 Nonlinear generator
X2 G2, G4 Linear generator
Xy
Gl
G3
Gt
v Gl
wn G4
=¥ Gt
G2
Gl G2
G4 \
G2 G2
G2 G4———> G4
0 1 2 3 4 5
Layer

Fig. 2.4 Combinations of intermediate variables in each selection layer
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2.6 Concluding Remarks

In this Chapter, a revised GMDH algorithm of generating optimal
partial polynomials under the prediction error criterion is proposed.
The algorithm is applied to a simple illustrative example and compared
with the results obtained by the basic GMDH algorithm. The advantages
of the revised GMDH compared with the basic GMDH are as follows:

(a) The revised GMDH algorithm based on PSS or AIC does mnot use the
heuristics to divide the original data into two groups; the training
data and the checking data. That is, all the data can be used as
thé training data and at the same time as the checking data.
Therefore, a uniform accuracy for all the data can be obtained.

(b) The revised GMDH algorithm generates optimal partial polynomials
in each selection layer so as to minimize PSS or AIC. Therefore,
much better flexibility for constructing a complete polynomial can
be obtained.

{(¢) Since any heuristics are not contained in the revised GMDH algorithm,
we do‘not need to repeat the computational procedure for the
different heuristics and the identified results do not depend on
the heuristics.

The application of the revised GMDH in this Chapter to air pollution

problems will be discussed in Chapter 4.
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CHAPTER 3 REVISED GMDH ALGORITHM OF GENERATING OPTIMAI, INTERMEDIATE

POLYNOMIALS UNDER AKAIKE'S INFORMATION CRITERION

3.1 Introduction

In Chapter 2, we have proposed the revised GMDH algorithm {8]
which generates optimal partial polynomials in each selection layer
automatically by using prediction errors [1,2] as a criterion for
model selection, and it is shown that this revised GMDH algorithm has
many advantages compared with the previous GMDH algorithms [4,5,6].
Very complex systems, which contain many variables, can be identified
by using the revised GMDH algorithm in Chapter 2, but, in general,
it is difficult to identify physically meaningful structure between
the input and output variables, because the partial polynomials, in
which the intermediate variables are the input variables in each
selection layer, have been estimated and accumulated in the multilayered
structure.

In this Chapter, a revised GMDH algorithm, which generates optimal
intermediate polynomials automatically instead of partial polynomials
in each selection layer, is proposed., The optimal intermediate polynomials

express the direct relationship between the input and output variables,
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and they are generated so as to minimize the Akaike's Information
Criterion (AIC) [1] evaluated by using all the data. Therefore, the
physically meaningful structure can be identified when the characteristics
of the system are well reflected in the data. This revised GMDH algorithm
is applied to the input-output data observed in a simple kinetic system,
and we try to discover.the Newton's second law. The result obtained

is compared with that obtained by the revised GMDH algorithm of generating

partial polynomials.

3.2 Revised GMDH Algorithm of Generating Optimal Intermediate

Polynomials [7]

In this section, we propose a revised GMDH algorithm which generates
optimal intermediate polynomials automatically in each selection layer.
In this algorithm, AIC calculated from all the data is used as the
criterion for generating optimal intermediate polynomials in each
selection layer, for evaluating intermediate polynomials and for stopping
the multilayered iterative computation. Here, the heuristics of dividing
the available data into two groups; the training data and the checking
data, is not needed, and the structure and the parameters of intermediate
polynomials are determined so as to minimize the prediction errors
evaluated by using all the data. Namely, we select optimal intermediate
polynomials in which unnecessary variables are eliminated by applying
a stepwise regression procedure [3] using AIC as a criterion for model

selection, and we terminate the iterative computation when the value of
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AIC cannot be decreased any more. Here, the significance of using AIC
as a criterion for gemnerating intermediate polynomials is to obtain
the best model by using smaller number of the input variables.
The block diagram of the revised GMDH algorithm is shown in Fig. 3.1,

where m is a number of input variables, m, is a number of optimal

1

intermediate polynomials selected in each selection layer and Ll is a
maximum number of the terms of the intermediate polynomials in each

selection layer. The revised GMDH algorithm is constructed by the

following procedures:

1st layer 2nd layer
X fil) xX
1y 1
z, 0! 3 fél) G2 _,fl(z} (2)->{G3 5
i
1> f(l):::‘ | T2
903%6’h> — fl(l) G2 “’fz” (2 G3 —>
3 i ~
I ? I > o }— > b
(1 '
f ) =
“n-1 -] > | ™l > f m
ml 1

(1=1,2,++,m )

I : Self-selection of the optimal intermediate polynomials

Gl, G2, G3 : Generators of the optimal intermediate polynomials

Fig. 3.1 Block diagram of the revised GMDH of generating optimal

intermediate polynomials
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A. Procedure in the first layer

In the first layer, the optimal intermediate polynomial is generated by
applying a stepwise regression procedure for the input variables to the

following p-th order polynomial,

% 2 2
¢ = a, + a.x, + Z a, , X, x, + s
0 i=1 * * i,=1 i,=1 i B )
P
+ a, . ... . X, X 't X, (3.1)
i<l =1 =l Rt LR R ) *p

Here, eq. (3.1) is constructed with L terms. In this stepwise regression
procedure, AIC is used as a criterion for selecting dominant variables

in eq. (3.1). The normal equation for this polynomial can be written as
X'x A=Xeo (3.2)

where A = (ao,al,°",aL_l)T. For the normal equation (3.2), the

(L+1)x(2L+1) matrix

““““““ (3.3)
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is constructed, where I denotes a LXL unit matrix, Q? denotes a =zero
vector, and (L+1)-th row is supplemented for computing RSS ( Residual
Sum of Squares ) which expresses the accuracy of fitting for all the
data. By using this matrix, we can select the combination of the
dominant input variables which minimige AIC, and we can construct
optimal intermediate polynomials from this combination.

Firstly, by applying Gauss—Jordan elimination procedure to the
matrix (3.3), the first column is reduced to a unit vector by eliminating
the non-diagonal elements. Then, we select the dominant input variables
contained in eq. (3.1). That is, when the lZ-th variable in eq. (3.1) is
entered in the intermediate polynomial, the (I+l1)-th column is reduced to
a unit vector by using Gauss-Jordan elimination procedure. On the other
hand, when the 7-th variable in eq. (3.1) is deleted from the intermediate
polynomial, the (L+I+2)-th column is reduced to a unit vector. These
selection procedures are repeated alternately so as to minimize AIC,
and the dominant input variables are entered gradually into the
intermediate polynomial. We terminate this procedure when the value of
AIC cannot be decreased any more or when the (Ll—l) variables are
selected in the intermediate polynomial. Optimal intermediate polynomial
can be constructed by using the selected input variables. The procedure
in the first layer is called as the generator Gl of optimal intermediate
polynomials. Then, from mC2 intermediate polynomials generated in the
first layer, the my intermediate polynomials, which give the m, smallest

1

AIC, are selected.
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B. Procedure in the second layer

In the second layer, two kinds of combinations are considered.

1) Combination of two intermediate polynomials selected in the first

layer

Let the i-th intermediate polynomial selected in the first layer be

3= (x)  @1,2,000m (3.4)

1)
where x is input variables, and it is assumed that eq. (3.4) contains
(l) (< L -1 ) variables. We combine two intermediate polynomials

fil) and f? ). Let the equation constructed by all the variables

contained in f( ) and f§l) be
b=tV exy +eMex) (3.5)

The normal equation for eq. (3.5) can be written as

CxgD Tk a- rx T e (3.6)

T .
where A = (ao,al, ,a (1) (l)+1) . For the normal equation (3.6),

(1)

the following (K(1)+K§ )+3)X(2K§l)+2Kj +5) matrix
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x DTy (1)
1 1

X.(l)TXgl>
i i

x (D Ty
1

Xgl)TXgl)

N

J

J

®

is constructed, where I is a unit matrix, 0

| N
|

DI 0

1

|

|

: 0 I

|

1

|

I _QT _O_T

|

! /

is a zero vector.

(3.7)

When K(l) variables contained in f§l>(§) are entered into the intermediate

i

polynomial in the second layer, the matrix (3.7) is reduced to

\
M, 0
My, I
T
M4 9
J/

(3.8)

Here, M13, Ml&’ M33 and M34 have been already calculated in the first

layer as
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Mo = Xil)Txil))—lXil)ﬁg (3.9)

13
Mpy = ( X§1>TX§1)>—1 (3.10)
M, = ETE _ ngil)( Xil)TXng))—lxil)Tg (3.11)
My = - i{’-TXil)( Xil)Txil))-l. (3.12)

The remaining parts of the matrix (3.8) can be obtained as

Myp = My, Xil)TX§l>> (3.13)
My, = xgl)Txgl) ¢ X§1)Txg1))M12 3.1
My = o - ek, (3.15)
M,, = X§1)T2 _ ¢ X§1)TX§1))M13 (3.16)
My, = = My, - (3.17)

By using egs. (3.13)~(3.17), we can construct the matrix (3.8) easily.
Then, by applying a stepwise regression procedure to the matrix (3.8)

in the same way as in the first layer, we can select a combination of the
dominant input variables which minimize AIC, and we can construct an

optimal intermediate polynomial from this combination.
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In this procedure, when the number of selected variables exceeds
(Ll—l), we try to decrease AIC under the following procedure. TFirstly,
from (Ll—l) variables which have been already contained in the
intermediate polynomial, we find the variable, which gives the smallest
increase of AIC, and delete it from the intermediate polynomial. Then,
from the variables which have not yet been contained in the intermediate
polynomial, we find the variable, which gives the biggest decrease of
AIC, and enter it into the intermediate polynomial. We repeat this
procedure alternately so as to minimize AIC. When the variable, which
is deleted from the intermediate polynomial, is entered into the
intermediate polynomial immediately, we terminate the iterative procedure
and construct the optimal intermediate polynomial by using the selected
input variables. The procedure in this part is called as the generator
G2 of optimal intermediate polynomials. Then, from mlC2 intermediate
polynomials generated in this procedure, the my intermediate polynomials,

which give the m, smallest AIC, are selected.

1

2) Combination of the intermediate polynomial and the input variables

Let the i-th intermediate polynomial selected in the preceding

combination be

6= (x)  (=1,2,0+,m (3.18)

1)

where x is input variables, and it is assumed that eq. (3.18) contains

ng) ( é=Ll_l ) variables. We combine the intermediate polynomials
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fiz)(i=l,2,"°,ml) with the input variables xj(j=l,2,~--,m). Let the

equation constructed by all the variables contained in fiz)and xjfiz) be

b= ePxy +x P x), GL2,m (3.19)
where Xjf§2) contains (K§2)+l) variables. The normal equation for
eq. (3.19) can be written as

! |
[x$20 x T x@ L @y 2 x @] 4T, (3.20)
i 731 i, T3t = i i —

where A = (a.,a,,***,a )T For the normal equation (3.20), the

- 0’1 (2)

2Ki +1

following (2K§2)+3)X(4K§2)+5) matrix

4 3
‘ (
x (2) Ty (2) DT x@T, 1 0
i i i Jji | i - I
| :
|
(2)T,(2) (2)T,(2) (2)T |
X1 %y i %y ) X2 0 I - (3.21)
! I
_______________ + -— —— —— — —— _* —— —— —— . e ]
!
7% (2) 2 x(2) 1 T I of  of
2 LI o0
8 ! : )

\ . . . T .

is constructed, where I is a unit matrix, 0" is a zero vector.
Then, by applying the stepwise regression procedure to the matrix
(3.21) in the same way as in the preceding combination, we select a

combination of the dominant input variables, which minimizes AIC, and
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we construct an optimal intermediate polynomial from this combination.
The procedure in this part is called as the generator G3 of optimal
intermediate polynomials. Then, from (mlxm) intermediate polynomials

generated in this part, the m, intermediate polynomials, which give

1

the my smallest AIC, are selected.

In the second layer, firstly we select dominant variables from

(1)

all the variables contained in fi

(2)

i

and f§l), and construct the
intermediate polynomial £ by using the selected variables. Then
we combine the input variables Xj (3=1,2,+<+,m) with fiz)(i=l,2,"',ml)

and construct the optimal intermediate polynomial in the second layer.

On the other hand, instead of using above linear combinations, we can

(1)

use a nonlinear combination of fi and f;l) directly such as a second
order polynomial of two variables, but the number of the variables,
which we must consider in selecting dominant variables, become very
large, and it is not desirable in the practical situation. Furthermore
it seems that the system can be identified more accurately by using
linear combinations than by using a nonlinear combination such as a

second order polynomial, because the model is becoming complex gradually

in each selection layer.

C. Procedure in the 3rd, 4th, °+* layers

In the 3rd, 4th, ¢+* layers, the same procedure as in the second
layer is repeated. The multilayered iterative computation is terminated

in one of the following cases.
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(a) The AIC is reduced to a very small value and the value of AIC cannot
be decreased any more in the next layer.

(b) The structures of my intermediate polynomials are the same forms
as those of my intermediate polynomials in the previous layer.

When the multilayered iterative computation is terminated as the
result of Case (a), it indicates that without being disturbed by large
noises, the nonlinear relationship between the input and output
variables can be obtained accurately. That is, it seems to be the
most probable that the physically meaningful relationship between the
input and output variables is obtained. On the other hand, in Case (b),
the relationship obtained between the input and output variables is not
a physically meaningful one. When the multilayered iterative computation
is terminated, the intermediate polynomial remained in the final layer
is adopted as a complete polynomial of the system.

By using these three procedures A, B and C as described above, we
can construct the revised GMDH algorithm which generates optimal
intermediate polynomials automatically in each selection layer so as to
minimize AIC evaluated by using all the data.

The parameters used in the revised GMDH algorithm are as follows:
p : maximum order of the intermediate polynomial in the first layer
L. : maximum number of the terms in the intermediate polynomial

1
m, : number of the intermediate polynomials selected in each layer.
These parameters are preferred to be as large as possible and are determined

not by the heuristics but by the upper limit of the memory capacity

of the computer. When we apply the revised GMDH algorithm to the real
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system, the structure and the parameters of the identified model may

be considerably different from those of the real system, because, in
general, the measured data of the input and output variables contain
noticeable measurement errors. Therefore, we must check the structure
of the identified model based on the physical knowledge and check the
estimated parameters based on the statistical knowledge. Comparing the
estimates of the parameters in the identified model with the width

of confidence interval, we can find the existing ranges of actual values
of parameters [3]. The 100(l-v) percentage confidence interval of the

estimated parameters is written as
b, + b+ t(nml;y ) sV (3.22.a)

V. = Se / ( n-m-1 ) , (3.22.1)

where Ve is the sample variance, n denotes the data length, m is the

. , ii | .. . T,\~1
number of input wvariables, S is (i,i)-th element in (X X) and
t(n-m-1;y) is the 100y percentage point of a t-distribution with (n-m-1)

degrees of freedom.

3.3 Discovery of Physical Law by the Revised GMDH Algorithm [7]

We assume that a force F (gr. cm/secz) is applied to an object of
mass m (gr.) which is placed on a perfectly smooth surface, and the

displacement x and the velocity v are observed. Suppose we use four kinds
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of mass (m = 3,5,7,9 gr.), and observe x and v eight times every one
‘second. The forcevis altered with respect to time. The observed data for
the mass m = 9 are shown in Table 3.1, where it is assumed that the
measurement errors contained in the observed variables F(t), x(t) and
v(t) are Gaussian white noises with zero mean and standard deviation
0.05. We will find the relationship between the input and output
variables by applying the revised GMDH algorithm to these data. As the
output variables, two variables x(k+l) and v(k+l) are chosen, and as
the input variables eight variables

X = 1/m, x

=m’

. x, 3= F), x, = 1/F(K), x; = x(k), x, = 1/x(k),

Xy = v(k), Xg = 1/v(k)

are chosen.

1) Numerical results obtained by the revised GMDH algorithm of generating

optimal partial polynomials

Eight intermediate variables are selected in each selection layer.

Table 3.1 Observed data in a simple kinetic system (m = 9 )

t ( sec ) 0 1 2 3 4 5 6 7

F(t) ( gr. cm/secz ) 2.90 2.08 1.03 0.0Z! 0.95 1.94 2.99 2.00

x(t) ( cm ) 0.00 0.10 0.59 1.24 1.88 2.65 3.52 4.63

v(t) ( cm/sec ) 0.00 0.38 0.43 0.55 0.67 0.74 0.97 1.29




Observed data for the mass (m = 3,5,7,9 gr.) are used for interpolation
points. The models for the output variable x(k+l) are constructed in the
fourth selection layer. We show an example of the model obtained in the

fourth selection layer.

zy = 0.017 + l.OSlyl —;0'087y8
¥, = 0.146 + 1.098x7 + 0.952x5
_ _ 2
yg = 0.042 + 4.259X7 12.11x7X2 + 1.065X2 (3.23)

The models for the output variable v(k+1l) are constructed in the fifth
selection layer. We show an example of the model obtained in the

fifth selection layer.

N
il

- 0.014 + 0.589y; + 0.423y,

1
- _ 2
v = 0.249 + O.842X7 + 3.452x7x2 O.362x2
2
ygy = 0.112 + 0.109x3 + 0.741x7 + 0.109X3x7 + 0.078x7 (3.24)

For the output variable x(k+l), the input variables x(k), v(k), v(k)/m
and 1/m2 are selected. For the output variable v(k+l), the input
variables v(k), V(k)z, F(k), F(k)v(k), v(k)/m and l/m2 are selected.

It took 2 seconds for computation in each selection layer and 13 kw
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for computer memory, where NEAC 2200/700+ is used.

2) Numerical results obtained by the revised GMDH algorithm of generating

optimal intermediate polynomials

Three parameters used in the revised GMDH algorithm are as follows:
maximum order p of the intermediate polynomial in the first layer is two,
maximum number Ll of the terms in the intermediate polynomial is ten,
and the number my of intermediate polynomials selected in each selection
layer is eight. Observed data for m = 3, 5, 7, 9 gr. are used as the

interpolation points. The model for the output variable x(k+1l) is

constructed in the third layer as

x(k+l) = 0.035 + 6.999x5 +0.993x, + 0.432%, . (3.25)
(£0.040) (£0.018)°  (¥0.046)’  (30.082)

The model for the output variable v(k+l) is constructed in the second

layer as

v(ktl) = 0.002 + 0.992x, + 0.994x2x3. (3.26)
(+£0.057) (£0.036) (+0.122)

Here, the values shown in the parentheses are 95 percentage confidence
interval for the estimated parameters. For the output variable x(k+l),
the input variables x(k), v(k) and F(k)/m are selected. For the

output variable v(k+l), the input variables v(k) and F(k)/m are.

+ The operation time of this computer is about three times longer

than that of IBM 370/168.
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selected. It took 15 seconds for computation in each selection layer
and 16.5 kw for computer memory. Here, we discuss the relationship between
the displacement x, velocity v and accelation o. The relationship

among these variables are defined as

x=v, v=a (3.27)
By using a vector-matrix expression, eq. (3.27) is described as

d x 0 1 X ( 0

—_— = + o . (3.28)

This continuous-time system can be transformed to a discrete-time system

x(k+1) 1 1 r x(k) 0.5

v(k+1) 0 1 v(k) 1.0

when we choose sampling time interval of one second. By comparing
eq. (3.29) with eqs. (3.25) and (3.26) obtained by the revised GMDH of
generating intermediate polynomials, we can find the relationship

F(k) / m = a(k) . (3.30)

Equation (3.30) shows the Newton's second law. This shows that
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the Newton's second law is discovered by the revised GMDH of generating
intermediate polynomials.

On the other hand, even if we compare eq. (3.29) with eqs. (3.23)
and (3.24) obtained by the revised GMDH of generating partial polynomials,
we cannot find the Newton's second law. The reason for this is that,
in the revised GMDH of generating optimal partial polynomials, it is
difficult to identify a physically meaningful structure between the
input and output variables because the partial polynomials, in which
the intermediate .variables are used as the input variables in each
selection layer, are accumulated in the multilayered structure. The
ébmputation time of the revised GMDH of generating optimal partial
polynomials is much less than that of the revised GMDH of generating

.optimal intermediate polynomials.

3.4 Concluding Remarks

In this Chapter, a revised GMDH algorithm of generating optimal
intermediate polynomials in each.selection layer 1s proposed where
AIC is used as a criterion for model selection. In this algorithm,
the intermediate polynomials show the direct relationship between the
input and output variables, therefore the physically meaningful
structure can be identified when the characteristics of the system are
well reflected in the data.

The revised GMDH algorithm is applied to the input-ocutput data

observed in a simple kinetic system, and we tried to discover
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the Newton's second law. The result obtained is compared with that
obtained by the revised GMDH algorithm of using optimal partial
polynomials, and the effectiveness of the revised GMDH algorithm in this
Chapter for the problem of identifying physically meaningful structure
is justified.

When we apply the revised GMDH algorithm to the real problem, we
must investigate the structure and the parameters of the identified
model under the physical and statistical knowledges, respectively,
because when the input and outRut variables are disturbed by the noises,
the structure of the identifieé model may become quite different from
that of the real system. For the problem of including very many
variables and very complex structure, the revised GMDH algorithm of
using optimal partial polynomials is more suitable than the revised
GMDH algorithm of using optimal intermediate polynomials. This is
because it is difficult to find the physically meaningful relationship
between the output variable and each input variable when very many
variables are contained in the system. Furthermore, we consider that
it is very difficult to identify the structure of the system accurately
by using only observed data in the presence of measurement noises.

That is, it is necessary to know how to use the GMDH algorithm properly
depending upon the characteristics of the problem.

When the characteristics of the problem is completely unknown,
the complexity of the system structure can be tested by using the
revised GMDH algorithm in this Chapter. If the model with very complex

structure is identified, the system should be identified again by using



the revised GMDH algorithm of using optimal partial polynomials.
The advantage of the revised GMDH in this Chapter compared with the
multiple stepwise regression analysis with variable selection is now
clear. In the multiple regression analysis the amount of computation
is increasing very rapidly with the increase of the number and the
order of the input variables. On the other hand; in the revised GMDH
the increase of the computational burden with respect to the increase
of the number of input variables is quite modest.
The application of the revised GMDH in this Chapter to river pollution

problem will be discussed in Chapter 5.
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CHAPTER 4 APPLICATIONS TO AIR POLLUTION PROBLEMS

4.1 Introduction

In this Chapter, the revised GMDH algorithm of generating optimal
partial polynomials, which has been developed in ChapterVZ, is applied to
two air pollution problems; one is a steady state spatial pattern
identification problem and the other is an unsteady state short-term
prediction problem. 1In 4.2, large-spatial pattern identification of
air pollution by a combined model of source-receptor matrix and the
revised GMDH is discussed [10]. A source-receptor matrix [6], which
represents a linear relationship between the multiple air pollution
sources and the air pollution concentrations at the multiple monitoring
stations (receptors), is estimated by a regression analysis of roughr
data. This source~receptor matrix is used as a rough model of first-
order approximation. Then, the difference between the output of the
real system (measured data at the monitoring station) and the output
of the rough model is identified by the revised GMDH algorithm using
optimal partial polynomials. By using synthetic data obtained by the

computer simulation of air pollution diffusion, the predicted result
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obtained from the combined model developed in this Chapter is compared
with the results obtained from the source-receptor matrix model only,
and also with the results obtained from the combined model of source-
receptor matrix and the basic GMDH.

In 4.3, nonlineaf‘modeling for short-term prediction of air
pollution concentration by the revised GMDH is discussed [11l]. By using
the time series data of SO2 concentration, the wind velocity and the
wind direction in Tokushima, Japan, we intend to find a suitable model
for predicting SO2 concentration at a few hours in advance. Firstly,
a suitable data length for modeling air pollution in Tokushima is
investigated. Secondly, three different prediction models obtained
by the revised GMDH are compared to find suitable structure and the
suitable input variables in the model. The predicted results obtained
by the revised GMDH model are compared with the results obtained by
a linear regression model, a linear autoregressive model and a basic
GMDH model. It is shown that che revised GMDH model developed in this
Chapter gives better performance for short-term prediction of air
pollution concentration compared with the linear models and the basic
GMDH model, and it is also shown that the revised GMDH model obtained

is much simpler than the basic GMDH model.

4.2 Large-Spatial Pattern Identification of Air Pollution {10]

4.2.1 Physical and statistical models of air pollution
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The air pollution models used for predicting air pollution
concentration have been proposed as physical models [3,9] or statistical
models [1,5,8]. Some physical models are based on three-dimensional
partiai differential equations which govern the diffusion phenomena of
the pollutant. But, in general, it is not easy to solve these diffusion
equations for practical situations. So simplified physical models, such
as plume model, puff model and box model, have been proposed and applied
to long-term prediction or short-term prediction of air poilution
concentration. But these physical models have limitations in practical
applications such that some unrealistic assumptions and simplifications
are used for obtaining the models. On the other hand, nonphysical
statistical models [8] are constructed depending only on the statistical
analysis of the data measured at the monitoring stations, and very
easily applicable to practical prediction problems. Furthermore,
complex factors, which cannot be expressed theoretically, can be taken
into account in nonphysical models through measured data. But, in
these models, the physical processes are treated as a black box, so
the physical meaning of these models is not clear.

Here, a combined model of a source-receptor matrix and a revised
GMDH is developed. By using any physical prior knowledge of the
system, the source-receptor matrix [6,7], which represents a linear
relationship between the multiple air pollution sources and the air
pollution concentration at the multiple monitoring stations, can
be estimated as a model which has a physical meaning [6]. After

eliminating the linear part of the system by using the source-receptor
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matrix, the completely unknown nonlinear part of the system is
identified as a nonphysical model by using the revised GMDH proposed

in Chapter 2.

4.2.2 Source-receptor matrix [6,7]

It is assumed that an air pollution model used for steady state
(monthly or yearly average) identification of air pollution concentration
can be described by the following equation for single air pollution

source.

(4.1)

(¢}

It
Hh

Ka]

where ¢ is the air pollution concentration at the monitoring station,
g is the emission intensity of pollution source, and f is a coefficient
which is determined by the various factors concerned with the pollution
source and the diffusion field. 1In this paper, f is considered to be
an explicit function of relative coordinates between the pollution source
and the monitoring station. The other factors, such as the topography
and the atmospheric stability, are taken into account implicitly when
f is determined by using the measured data.

For multiple sources, the air pollution concentration of each

monitoring station is estimated by the following equation



i j=1 ij 3

where
fig = £50 %, Y40 i=1,2,%+,M; j=1,2,+++,N
%5 = Xi - X;S i=1,2,°%+,M; §=1,2,%++,N
Yy o= Y’i - Yg", i=1,2,%+,M; §=1,2,+++,N

et air pollution concentration at the i~th monitoring station

qj: emission intensity of the j—~th pollution source

H

r . . . . .
(X,, Y.): coordinates of the i-th monitoring station
i g

[ SN

x., Y?): coordinates of the j—-th pollution source

(S

M : number of monitoring stations
N : number of pollution sources,

By using vector-matrix representation, eq. (4.2) can be written as
c=Fg

where

e]

= (cl’CZ’...’CM)_

Q4 = (459575 qy)
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Here, F is called as source-receptor matrix. Figure 4.1 shows the

coordinate system and the elements of source-receptor matrix.

0 y° v*
=
x® ~<L
Source
%t
Momnitoring
'] station

(a) Coordinate system

/)7/0 l1st monitoring
£ station

13 .

f .30 2nd monitoring
2]

j—th source station

M3 .

\&\O *th monitoring

statien

~. £

(b) Contribution of one source to many receptors

lst source o\\\\\

£
2nd source cxu\§__;il
) ‘i2>0 i-th monitoring

£ station
ér//,/' iN
Nth source

(c) Contribution of many sources to one receptor

Fig. 4.1 Coordinate system and source-receptor martix

- 73 -~



When regional environmental planning and environmental impact
assessment are to be performed, it is necessary to estimate the spatial
distribution pattern of each air pollution source. For this purpose,
the source-receptor matrix, which represents the relationship between
each air pollution source and the air pollution concentration at each

monitoring station, would be very useful [7].

4.2.3 Estimation of source-receptor matrix by a regression analysis

For estimating each element of the soufce—receptor matrix, it has
been proposed [6] to use physical model such as plume model, but the
physical model has limitations in practical applications such that
complexity of topography, down wash, and down draught cannot be easily
taken into account in the model theoretically. Here, instead of using
physical model, each element of the source-receptor matrix is estimated
by a regression analysis of the spatially distributed data obtained
from e.g. wind tunnel experiments+ for a single source. FEach element
fi' of the source-receptor matrix F in eq. (4.3) is assumed to.be

described as

2 2
= +
fiJ an ay Xij + aZjYij + a3inj + a4jYij aSinjYij
2 2
+a e %" Fi3 T Yy (4.4)

+ If it is hard to execute the wind tunnel experiments in practice,
inaccurate data obtained from a physical model could be used for

our purpose.
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where

X3 =%~ Xy i=1,2,%00,M; §=1,2,+++,N

S . .
Yij = Yi - Yj, i=1,2,+++,M; j=1,2,°°,N

aj: a constant

(Xi, Yz): coordinates of the i-th monitoring station
(X;, Y?): coordinates of the j-th pollution source

M : number of monitoring stations
N : number of pollution sources,
For each pollution source , we need to estimate the coefficients an’

a,.,***,a in eq. (4.4) by the repetition of regression analysis.

13 63

Fach element fij is then obtained from eq. (4.4).

In this paper, instead of using the data obtained from wind tunnel
experiments, synthetic data, which are obtained by the computer simulation
of air pollution diffusion, are used to estimate each element of the
source-receptor matrix. Figure 4.2 shows input and output data of the
simulator for a single source. If there exists an air pollution
source of intensity ome at the coordinates (4,4) as shown in Fig. 4.2 (a),
and the diffusion rate of the pollutant are 0.2, 0.2, 0.5 and 0.1,

a steady state of the spatially distributed air pollution concentration
shown in Fig. 4.2 (b) is obtained. By the multiple regression analysis

of the data shown in Fig. 4.2 (b), the coefficients in eq. (4.4) are

obtained as
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2 2
£;, = 0.141 + 0.067X,, - o.owyij + 1,020 %45 1 Yy (4.5)

i]
where the stepwise forward regression analysis [2,4] is used for
selecting dominant variables. In order to simplify the procedure,

we assume that eq. (4.5) is applicable to all the air pollution sources.

(a) Input data

Y .
.002 .004 .005 .004 .002 .0OO01

.001

.004 .009 .019 .028 .019 .010 .004

—_— \\\\\

X .015 .039 .093 .185 ,093 .039 .0l6

AN

7 N\
043 .124 .385 1.339 .385 .125 .044

/ / \

076  .194 .463 .925 .463 .194 .078
106 .237  .464 706 (465 ,238 .110
130 .259 .441 .580 .442 .262 .136

(b) Output of large-spatial pattern

Fig. 4.2 1Input and output of the simulator for

single source
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4.2.4 Identification of large-spatial pattern of air pollution by

the combined model

In this section, a spatially distributed pattern of air pollutant,
which is emitted from the multiple air pollution sources, is identified
by the combined approach of source-receptor matrix and the revised GMDH.
Suppose there exists three air pollution sources at the coordinates
(2,4), (4,2) and (4,6) as shown in Fig. 4.3 (a), a steady state of the
spatially distributed air pollution concentration shown in Fig. 4.3 (b)
is obtained as the result of the computer simulation of air pollution
diffusion. The data underlined in Fig. 4.3 (b) are assumed to have
been measured at the monitoring stations. This large-spatial pattern
is identified by the combined approach in this section. Firstly, by
applying eq. (4.5) to each air pollution source, a source-receptor matrix
is determined as
y N

-0.0185 -0.0305 =-0.4352

0.0559  0.1026 -0.3668
F = (4.6)

0.3411 -0.0350 0.3696

\

The air pollution model using this source-receptor matrix is described as

c=Fgqg 4.7)
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Fig. 4.3 Input and output of the simulator for



where

T‘—‘ s o8 L
c¢= (cqscy, ,c49i>

T_
q = (q1’q2$q3) .

This air pollution model is used as a rough model of first-order
approximation, which plays a role of eliminating so called trends
from the measured data at the monitoring stations. The large-spatial
pattern predicted by the rough model is shown in Fig. 4.4.

After eliminating the linear part of the system by using the
rough model, the residual pattern, which is the completely unknown

nonlinear part of the system, is described as

1

3
- ) g (X, Y..), i=1,2,¢++,49 (4.8)

ACi i i
3 j=1 ] ] J

where
r S . . o n
g T X T XD ARL2,0 485 e,
r s . ..
Yo=Y - Y i=1,2,°°+,49; §=1,2,3

Aci: residual data at the i-th point

(X?, Y?): coordinates of the i-th point
i i
(X;, Y?): coordinates of the j-th pollution source .

t Here, the number of points includes not only the number of monitoring

stations but also the number of prediction points.
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.600 1,678 1.928 2,032 1.218
——

.646 1.800 1.850 1.688 1,187

.864 mz.\ 1.807 1.380

.975 1.520 1

Fig. 4.4 Predicted values of large-spatial pattern

using source-receptor matrix

Here, the functions gj(xij’Yij) (j=1,2,3) whose structures are completely
unknown, are assumed to be described by polynomials of a certain order
with respect to Xij and Yij' Equation (4.8) can be obtained as an
average of the three models identified by the revised GMDH. The residual
data shown in Fig. 4.5, wﬁich can be calculated by using the measured
data at the monitoring stations, are used as the input data of the revised
GMDH. The large-spatial pattern predicted by the rough model is
corrected by using eq. (4.8).
The block diagram of the prediction system using the combined
model of source-receptor matrix and the revised GMDH is shown in Fig. 4.6.
For comparing the revised GMDH with the basic GMDH, the predicted
results obtained by a combined model of source-receptor matrix and the

basic GMDH are also shown where five variables
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Fig. 4.5 Deviation of the predicted values from

the measured data
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Fig. 4.6 Block diagram of the prediction system using source-
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x, = X Xj’ X, = Y, Yj’ x3 xl, X4 x2, x5
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are used as input variables, five intermediate variables are selected
in each layer and twenty-five points are used as the interpolation
points. 1In the basic GMDH, the interpolation points are divided into

the training data and the checking data in proportion of 17 : 8.

1) Prediction model identified by GMDH

For the air pollution sources at the coordinates (2,4), (4,2) and
(4,6), the prediction models gE(X,Y), gg(X,Y) and gg(X,Y) are identified

by the basic GMDH. Here, only gg(X,Y) is described as

I
o

b -
gB(X,Y) =z .095 + 0.610y3 + l.403y4 + 21.567y3y4

14.867y§ - 8.727y2

¥y = 0.061 + 0.132xl - 0.024x%, - 0.006X1X

4 4

2

2
+ 0.045xl + 0.002x4

= 0.035 + O.l62x1 + 0.191x2 + 0.038X1X2

4

+ 0.0Slxi + 0.056x§
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The mean square error for
checking data: 0.315
training data: 0.042 .
The prediction models gi(X,Y), g;(X,Y) and gg(X,Y) are also identified

by the revised GMDH. Here, only gg(X,Y) is described as follows :

(L _ B
gy (X,Y) =z 0.097 + 0.575y, + 0.553y, + 0.816y,7.

2

It

0.253 + 0.207x, - 0'037X1X

Vs 1 3

2
0.179 + O.220x2 - 0-006X2X5 + 0.06332

Y1

PSS/25 = 0.073, RSS/25 = 0.063

ggz)(X,Y) = z - 0.107 + 0.589y3 + 0.,552y5 + 0.946y3y5

1

Vs 0.253 + O.207Xl - 0.037xlx

3

0.179 + 0.220x2 + 0.023%x.x, + 0.063X§

73 1*2

.066

1
[e]

PSS/25 = 0.074, RSS/25

2

g§3)(X,Y) =v. =~ 0.103 + 1.005z, + 0.583z_ - 0.290z

3 4 5

£~

- 0.024 + 0.745y + 0.677y5

N
Il

- 83 -



N
[

0.000 + 1.000y,

+ 0.027x§ + O.Ole2

y, = 0.029 - 0.006xx, :
y, = 0.179 + 0.220x, - 0.006x,x, *+ 0.063x
Vg = 0.253 + 0.207xl - 0.037xlx3
PSS/25 = 0.081, RSS/25 = 0.072
g§4)(X,Y) =V, =- 0.050 + Q.679z3 + 0.51925
z, = - 0.037 + 0.795y, + 0.737y>
3 5 4
25 = 0.000 + 1.000y,
¥ = 0.253 + 0.207x - 0.037xx,
¥, = 0.137 + 0.001x,x, + 0.00lXZ
y, = 0.179 + 0.220x, ~ 0.006x,x + 0.063x)

PSS/25 = 0.087, RSS/25 = 0.076
Here, ggl) (i=1,2,3,4) is the i-th complete polynomial which is remained
in the final layer, and the resulting prediction model gg(X,Y) is obtained

as a weighted average of four polynomials as
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gg(X,Y) = 0.268g§l)(X,Y) + 0.264g§2)(X,Y) + O.242g§3)(X,Y)

+ 0.225g§4)<x,y) ,
The predicted result for the residuals, which is an output of the revised

GMDH, is shown in Fig. 4.7.

2) Accuracy at the interpolation points

Accuracy at the interpolation points, which is obtained from the
prediction model for the air pollution source at the coordinates of
(4,6), is shown in Fig. 4.8. For the basic GMDH, the changes of mean
square errors for the training data and the checking data are shown in
Fig. 4.8 (a). The mean square error for the training data is very
small but that for the checking data is very large. This result shows
that the prediction model identified by the basic GMDH is not a
satisfactory model of the system. For the revised GMDH, the changes
of PSS and RSS are shown in Fig. 4.8 (b). PSS and RSS are very small
and coincide well at the 4~th layer. These results justify that the
prediction model identified by the revised GMDH is much better than the model

identified by the basic GMDH.

3) Accuracy at the prediction points

The large-spatial pattern of air pollution concentration predicted

by the following three models are shown in Fig. 4.9.
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Fig. 4.9 Predicted values for three procedures
(a) Predicted values using source-receptor matrix
(b) Predicted values using source-receptor matrix and basic GMDH

(c) Predicted values using source-receptor matrix and revised GMDH
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(a) Source-receptor matrix model

(b) Combined model of source-receptor matrix and the basic GMDH

(c) Combined model of source;receptor matrix and the revised GMDH
For comparing the accuracy of prediction by using these three models,

a performance index defined as
24 . 24

Jo=C L le, = |/ } e )x100, k=1,2,3 (4.9)
o=1 o=1

is introduced, where eka is the predicted value using the k-th model.

are obtained. The third model developed in this section gives the best

performance among these three models.

4.3 Nonlinear Modeling for Short-Term Prediction of Air Pollution
Concentration [11]
4.3.1 Linear and nonlinear modeling for short-term prediction

The mathematical models used for predicting air pollution
concentration can be roughly classified into two groups; physical models

and statistical models [3,8,9,10]. Generally, in physical models based
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on the diffusion phenomena of the pollutants, the physical interpretation
of the model can be easily obtained, but there exist many compléx
factors which'cannot be incorporated in the model theoretically. On the
other hand, in statistical models, the physical interpretation of the
model is not clear, since the physical process is regarded as a black-
box, however, the complex factors can be implicitly taken into account
in the model through the measured data. As the statistical models for
short—-term prediction of air pollution concentration, linear models
such as multiple regression models and autoregressive models have been
often used [8]. However, since the phenomena in air pollution are
considerably influenced by the complex weather conditions and photo-
chemical reactions, linear statistical models are not sufficient to
describe the phenomena.

Here, nonlinear statistical models for short-term prediction of air
pollution are identified by a revised GMDH algorithm proposed in

Chapter 2.

4.3.2 Nonlinear models for short-term prediction of air pollution

Here, the nonlinear statistical models for short-term prediction
of air pollution concentration are constructed. We use the time series

data of SO. concentration, wind direction and wind velocity obtained at

2
the monitoring station in Tokushima, Japan. Suppose the time series

data of these three variables which are measured every one hour have

been accumulated for N days. Table 4.1 shows the structure of the data.
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Since the measured data of SO2 concentration contain a periodic

phenomenon of 24 hours, the data are pre-processed in order to remove
this periodic factor. Furthermore, the measured data of the wind
direction and the wind velocity are transformed to the east-west
component and the south—-north component of the wind velocity.

The output variable of the prediction model is the SO, concentration

2

at one, two and three hours in advance. The input variables of the

prediction model are the time lagged values of the SO, concentration,

2
the east-west component and the south-north component of fhe wind
velocity. The number of time lagged values T is chosen by evaluating
the auto-correlation function of SOZ' In this section, we consider the
following three different models to be identified by the revised GMDH.

Table 4.1 Structure of the data

'ﬁamie 1 2 - 24
\
1| G G2 - - S
2 | S0 G2 0 0 0 Cooy
_ The data
. ’ : : used for
. . . . modeling
N c c &
_—— - N1 W2 T 1\1’?_4__ { The data
M1 1Cgi,1 Cr,2 0 ¢ o Cnea,2s >t° be
predicted

- 90 -



1) Prediction model I

In this model we use only one variable, SO2 concentration, as an
input variable. Firstly, by using a revised GMDH algorithm, we identify

the following model
X(E+L) = £(x(t),x(t=1),***,x(t-1)) (4.10)

where f is a high-order polynomial, x(t) is the SO2 concentration at

time t. By using eq. (4.10) the value of the SO2 concentration at one

hour in advance is predicted. Then, the value at two hours in advance

is predicted by using the same model as eq. (4.10), that is
x(t+2) = £@x(t+1),x(t), ", x(t+1-1)) (4.11)

where the predicted value at one hour in advance is used instead of
the actual value. In the same way, the value at three hours in advance

is predicted by using
R(e+3) = Fx(t+2),x(t+1),x (), ,x(t+2-1)) (4.12)

where %(t+l) and g(t+2) are the predicted values at one and two hours

in advance, respectively.

2) Prediction model II
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In this model also we use only one variable, SO, concentration,

2

as an input variable. By using the revised GMDH algorithm, we identify

the following three models

x(t+1) = £, (x(£),x(t-1),* *+ ,x(£-7)) (4.13)
2 (t42) = £, (x(t),x(t=1), "+ ,x(£-1)) (4.14)
x(t+3) = £4(x(t),x(e=1),* *+,x(£-1)) (4.15)

The values of one, two and three hours in advance are predicted by

using these models independently.

3) Prediction model III

In this model we use three variables, 802 concentration, the east-
west component and the south-north component of the wind velocity, as
input variables. By using the revised GMDH algorithm, we identify the

following three models
x(t+1) = gy (x(£),x(t-1), "+, x(t-1),
Vl(t)’vl(t_l)’.."vl(t—T)’

Vz(t),vz(t_l)s."9V2(t—T)) (4016)
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x(£42) = g, (x(8),x(t-1),** ,x(e1),

vl(t),vl(t—l),"‘,vl(t—T),

v, (£),v,(e=1),° ", v, (£-T)) (4.17)
x(t+3) = g4 (x(t),x(e-1),°*+ ,x(t-1),

vl(t),vl(t-l),°-°,vl(t—T),

Vz(t),vz(t—l),“',Vz(t—T)) (4.18)

where vl(t) is the east-west component of the wind velocity at time t
and Vz(t) is the south-north component of the wind velocity at time t.
The values of one, two and three hours in advance are predicted by using

these models independently.

4.,3.3 Short~term prediction by the revised GMDH

The nonlinear statistical models for short-term prediction of air
pollution levels are identified by the revised GMDH algorithm, and the
802 concentration at a few hours in advance are predicted by the
identified models. The prediction accuracy obtained by the revised

GMDH model is compared with those obtained by the linear models and

the basic GMDH model. The prediction results of the linear models are
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quoted from [8], and we applied the revised GMDH to the same measured
data in Tokushima as in [8]. The time series data of air pollution were
measured every one hour during the period from May to June, 1975 in
Tokushima, and we use these data. The 802 concentration during 15 days

from June 1 to June 15 are predicted, where the modeling is repeated

for each day.

A. The prediction results by the revised GMDH

1) Comparison for various sample sizes used for modeling

As the sample size ( N days ) for modeling, we consider the

following three cases.

Case 1: 5 days data ( N = 5)
Case 2: 10 days data ( N = 10 )
Case 3: 31 days data ( N = 31 )

In other words the measured data during the past N days ( N=5,10,31 )
are uéed for modeling, and the SO2 levels at ( N+1 )th day are
predicted by the identified model. Figure 4.10 shows the comparison
of the prediction errors of 802 from the actual data at three hours
in advance, where the prediction error for i-th day is evaluated under
the following performance index,

24

A, = tzl { %, () - %, (t/t-m) 12 ) 24 (4.19)

The predicted values ﬁi(t/t—m) are computed by using the prediction
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Mean square error of SO
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brm---A Case 1 (N= 5)
o—oO0 Case 2 (N=10)
X— - —X Case 3 (N=31)

Fig. 4.10 The prediction error at three hours in advance

model I ( eqgs.

(4.10)~(4.12) ).

for various sample sizes

In Fig. 4.10, the prediction accuracy

of Case 2 shows the same pattern of-variation as that of Case 3 in

most days, but that of Case 1 does not show the same pattern of variation

as that of Case 2 or Case 3 in 6-th and 1l4—th days. Furthermore, the

average prediction accuracy of Case 2 is better than that of Case 3.

From these prediction results, we find that the data of 5 days are

insufficient for short-term predictions in Tokushima and the data of

31 days are too many ( probably because of the time-~varying nature of

the system ).

Therefore, we consider that the suitable length of data

used for short-term predictions in Tokushima is about 10 days.

2) Comparison for various prediction models

Figure 4.11 shows the prediction error of SO, from the actual data

2
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at three hours in advance obtained by prediction models I, II and III.
Here, the prediction error for i~th day is evaluated by eq. (4.19) and
the data of 10 days are used for modeling. In Fig. 4.11, the prediction
error 6f the model II is smaller than that of the model I in most days,
and the prediction error of the model III is smaller than those of other
models only in a few days. From these prediction results for the 802
data in Tokushima, it seems that the prediction model II gives better
performance than two other prediction models, and furthermore, we can
not expect the improvement of the prediction accuracy by using the
east-west component and the south-north component of the wind velocity
as input variables. Figures 4.12 and 4.13 show the time series of the

predicted values of SO, at one and three hours in advance, respectively,

2

obtained by the prediction model II, and the predicted values are

compared with the time series of the actual values. Table 4.2 shows

= A--— Prediction I
R=] e .
& | 0—0 Prediction II
p | -
¥~ Prediction III
™~ 1000 [
o)
w
1]
o
(o
o
<
~
3]
o 500
-
o
=]
o
]
o
o
a
=
1 2 3 4 5 6 7 8 9 10 M 12 13 14 15
Day

Fig. 4.11 The prediction error at three hours in advance

for various prediction models
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Fig. 4.12 The predicted values at one hour in advance by the revised
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GMDH, the confidence intervals and the actual values

..o The predicted values at three hours in advance
by the revised GMDH (Case 2)
*—— The actual values
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Fig. 4.13 The predicted values at three hours in advance by the

revised GMDH, the confidence intervals and the actual

values



Table 4.2 Input variables selected in the revised GMDH

and the maximum order

Day
Variable

x 0000000000000 0O0
2 OO0O000D0D0000000O0
% O 00000000000
» |0 0000000000000
s 00O 0O 00 0O0OOOOOO

1 2 3 4 5 6 7 8 9101112 13 14 15

% O 00 O | 00
*7 @) O
Maximum

21 2 41112 21 2 2 2 2 2

Order

input variables selected in the prediction model at three hours in
advance and the maximum order. As an example of a precise model
description, the complete model for June 4 is shown as follows:
The third laver:

0.661 + 1.048z, - 0.01822 ( 4-th order polynomial )

<
1

17 1 7
v, =2z, ( 4-th order polynomial )
vy = 0.003 + 1.28824 - O.411z7 ( 4-th order polynomial )
v, = 2, ( 2-nd order polynomial )
Vg = 2, ( 4-th order polynomial )
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( 1-st order polynomial )

The second layer:

2
z, = 0.063 + 0.874y, + 0.288y, + 0.053y;y, = 0.042y5
Zy = - 0.005 + 0.913}7l + 0.2_89}75
23 TN

2
z, = 0.350 + 0.946y, + 0.046y,y, - 0.056y5
27 = 93

The first layer:

y, = = 0.070 + 0.775x, - 0.202x,
y, = = 0.078 + 0.595x,
y, = - 0.067 + 0.487x,
ys = 0.701 + 0.395x, - 0.005x, - 0.005x;

2
y, = 0.757 + 0.364x‘5 - O.OOSX6 - O.OOSX6
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where X, = x(t+1-7) (Z=1,2,+++,7). The final model is constructed as an

average of six polynomials obtained in the third layer.

B. The comparison with the prediction results obtained by the basic

GMDH

Heuristics used in the basic GMDH is as follows: As the partial
polynomial,
2

X,

X.x, +b 5%

=b,+bx, +b,x, +Db x? + b
i 275 371i7j i

Yk T P07 Pq 4

is used, and seven variables are selected as intermediate variables
in each layer. We use the following two divisions.
Division I : (Tf.) odd-numbered data
(Ch.) even—pumbered data
Division II : (Tr.) data of 1~7-th days
(Ch.) data of 8~10-th days
Figure 4.14 shows the prediction error of SO2 from the actual data at
three hours in advance obtained by the basic GMDH, and the prediction
error is compared with that obtained by the revised GMDH. Here, the
predictionvmodel I1 is used and the data of 10 days are used for
modeling. We find from Fig. 4.14 that the complete polynomials
constructed by the basic GMDH are very unstable in both divisions, as
seen from very large prediction errors for June 5 and 8. 1In the basic
GMDH algorithm, the structure of the partial polynomials is fixed to‘

a predetermined description, therefore the partial polynomials obtained
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Fig. 4.14 Comparison of the prediction error at three hours
in advance for the revised GMDH model and the

basic GMDH model
are not the optimal regression equations. Hence, the complete polynomial
is no longer an optimal regression equation, and it sometimes becomes
very unstable. Table 4.3 shows the input variables selected in the
basic»GMDH and the maximum order. The models obtained by the basic
GMDH are very complex compared with the models obtained by the revised
GMDH. Since the basic GMDH needs to divide the original data into

training data and the checking data, the identified results depend

heavily on this division.

C. The comparison with the prediction results obtained by the linear

statistical models

The prediction results obtained by the revised GMDH are compared

with the results obtained by the linear statistical models such as a
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Table 4.3 Input variables selected in the basic GMDH
and the maximum order
(a) Division procedure I
Variagiz 1 2 3 4 5 6 7 8 91011 12 13 14 15
x; O oNoNONONONOXONONONo RO NONONO)
2 O 00O
*3 O O 0000
x, O O000 O00O0 ONON®),
*x |00 000 O O 0O
*6 OXNONO) O O O0o o
X7 OO0 OO0O0OO0OO0OO0O0 OO0
poNImm | 416 2323264 4 8 464 21616 4 4
(b) Division procedure II
venabaY|1 2 3 4 5 6 7 8 9101112 13 14 15
X ONoRoNoNONoNoNoNoNoXoNoNoNo X
) ojoNoNONONOROROXO) @)
*3 ONONONON) @
4 O 00O @) O
s O o o©
*6 O0O0O O O
7 o)e)
ooxlmum f2 4 08 464 43216 8 2 2 2 2 4 4
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regression model and an autoregressive model. Precise description of the
linear statistical models can be found in [8]. TFigure 4.15 shows the
comparison of the prediction error incurred by the revised GMDH model
with that by the linear models. We can see from Fig. 4.15 that the
revised GMDH gives better performance than the linear models. The
average computation time for constructing a revised GMDH model to predict
the values of 24 hours is about 17 seconds, where NEAC 2200/700 of

the Computation Center in Osaka University was used. The revised GMDH
needs much more computation time for model building than the linear
statistical model building, but the computation time is not too large

for the practical use.

1500 -

&--A Regression model
- ¥——x Autoregressive model
o—o Revised GMDH

1000 -

500~

Mean square error of 802 (pphm)

Day

Fig. 4.15 Comparison of the prediction error at
three hours in advance for the revised

GMDH model and linear models
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4.4 Concluding Remarks

In this Chapter, the revised GMDH algorithm developed in Chapter 2
is applied to two air pollution problems of identifying steady state
and unsteady state air pollution models.

In 4.2, a method of identifying a steady state spatial pattern
of air pollution concentration in a large area, is developed. By
comparing three models, the effectiveness of the combined model of the
source-receptor matrix and the revised GMDH is justified. A steady
state ( monthly or yearly average ) large-spatial model developed in
4.2 would be useful for regional environmental planning and environmental
impact assessment, since it could help to find
(a) Relationship between the environmental capacity and the level of

pollution sources
(b) Allocation of the level of each pollution source to each polluter
for regulating total amount of air pollution.

In 4.3, nonlinear statistical models for short—~term prediction of
air pollution concentration are identified by the revised GMDH algorithm.
Comparing the prediction results of the revised GMDH model with those'
of the linear statistical models and the basic GMDH model, the following
results are obtained.

(a) The suitable length of data used for short-term predictions in
Tokushima is about 10 days.

(b) For the prediction at three hours in advance, the prediction model
II gives better performance than the prediction model I. Furthermore,

we cannot expect the improvement of the prediction accuracy by using
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()

(d)

the information of wind direction and wind velocity at the concerning
point only.

The models obtained by the basic GMDH become very unstable in some
dayé, however, the models obtained by the revised GMDH are always
stable. Furthermore, the revised GMDH model is much simpler and gives
better performance than the basic GMDH model.

Although it takes longer computation time for modeling, the revised
GMDH model gives better performance than the linear statistical

models as well,

From these prediction results, the effectiveness of the nonlinear models

obtained by the revised GMDH is justified for short-~term prediction of

air pollution concentration.
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CHAPTER 5 APPLICATION TO RIVER POLLUTION PROBLEM

5.1 Introduction

In the river quality system, there are many complex phenomena such
as biochemical reaction, thermal behavior, sedimentation, and
photosynthetic oxygen production, therefore the structure of the
physical model considering the influences of these phenomena is becoming
very complex [1,3]. DParameter estimation procedure of the physical
model, which has been used for predicting pollution levels of the river
quality, is a very complicated one.

In this Chapter, nonlinear statistical modeling of steady state
river quality system is developed. The methodology used for modeling is
the revised GMDH algorithm of generating optimal intermediate polynomials
which is discussed in Chapter 3 [2]. By using measured data of river
quality such as BOD and DO concentrations in Bormida river, Italy [3],
we intend to construct two kinds of steady state models of river quality.
In steady state model I, we intend to discover a suitable structure of
the Bormida river by using no a priori information of the system structure.
It is shown that the structure of the revised GMDH model depends on the

statistical properties of the data used for modeling. Furthermore, the
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prediction accuracy obtained by the revised GMDH model is compared with
that obtained by the physical model which is called as Streeter-Phelps
model. It is shown that the revised GMDH model gives much better
perforﬁance for DO concentration compared with the physical model.

In steady state model II, we intend to approximate the Bormida river
system as a polynomial of input variables. But it is shown that it is
difficult to approximate the DO part of the model as a polynomial of
input variables, because the system structure for the DO concentration

is very complex.

5.2 Modeling of the Steady State River Quality {[3,4]

BOD and DO concentration have been widely acceﬁted as the important
indexes of organic river quality. The dynamic behavior of these levels

is described as a generalized Streeter-Phelps model

k., (V)

By (1 () + —2—)D (5.1.a)
k. (T,Q) k

de ac 272 4

3t + Vv ‘B—Z" = - kl(‘.)b + H(Q) (CS(T) -c) + . (5.1.b)

where, b is the BOD concentration (mg/l), c is the DO concentration
(mg/1), cg is the saturation level of DO concentration (mg/l), kl is the
deoxygenation rate (1/day), kz is the reoxygenation rate (m/day), k3

is the suspended BOD sedimentation rate (mz/day), k4 is the photosynthetic
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oxygen production rate ((mg/Z)(mz/day)), t is the time (day), . is thé
distance (km), T is the water temperature (°C), A is the cross sectional
area (mz), Q is the flow rate (103 m3/day), V ( = Q/A) is the average
stream velocity (km/day) and H is the mean river depth (m). Here, for
simplicity, it is assumed that the cross sectional area A is not varying
along the river and the velocity V is constant in space and time. Then,

the steady state BOD and DO concentrations satisfy the differential

equations
db
F=- Kl(T’Q)b (5.2.a)
€8 = - K, (T,Qb + Ky (T,Q) (e -¢) + K, (Q) (5.2.b)

where the functions Kh (h=1,2,3,4) depend upon the two independent

variables Q and T, i.e.

K (T,Q) = k (T)/V(Q) + ky (V(Q)I/Q (5.3.a)
K, (T,Q) = k; (1)/V(Q) (5.3.b)
Ky(T,Q) = ky(T,0Q)/ (H(QV(Q)) (5.3.c)
K, (@ =k,/Q . (5.3.d)
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The solution to eq. (5.2) is well known and is obtained as

-K, 7

_ 1
b(Z,Kl,bO) = bOe (5.4.a)
—K3Z
c(Z, K K K3,K4,b0,c0) = cg + 1<4/K3 - [cs+(K4/K3)—cO]e
-Klz —KBZ
+ [Rybo/ (KK l[e ~ -e ] (5.4.b)

where bOAand ¢, are BOD and DO concentrations near the discharge point,

and it is assumed that there is no discharge inside of the subject range.
Data are measured for n different steady states. The i-th steady .

state is characterized by the flow rate Qi and the temperature Ti.

BOD and DO concentrations are measured at r points along the river as

shown in Fig. 5.1. Suppose the following measured data are available.
(b 0: C )9 (i=1,2,++*,n) . (5.5.a)

i i . .
( bJ, CJ- )9 (1-132""311; 3—1,2,"',1‘.') : (5°5°b)

5.2.1 Parameter estimation of the physical model [3]

Here, the estimation method of parameters contained in eqs. (5.4.a)
and (5.4.b) is introduced briefly. This method is proposed by Rinaldi,
et al. [3]. The structures of functions Kh (h=1,2,3,4) contained in

eqs. (5.4.a) and (5.4.b) are assumed as
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Discharge
i

Temperature T

Superfix i denotes the i-th

steady state in the river.

Fig. 5.1 The variables measured in a river

K o=K(8,T, 2), (h=1,2,3,4)

where (h=1,2,3,4) denote the parameters contained in Kh' By using

8,
measured data (5.5.a) and (5.5.b), parameters §h (h=1,2,3,4) are

estimated so as to minimize the criterion

1 .
g= 7 J (5.6.a)

. iy . P
A T S G I N i 0<rgl (5.6.b)
. C == ==
j=1
ji 14, 142
E:‘b —’ [ b(Zj’Kl’bo) bj ] (5.6.(1)
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ji _ i, A.di 4 i .2 |
e, = [ c(Zj,Kl, ,K4,b0,c0) cj ] (5.6.4)

ji
b

of the i-th steady state at the j-th point and the estimated value by

and € is a square error between the measured value of BOD concentration

eq. (5.4.a). eil is a square error for DO concentration, and A is a
weight for the BOD concentration. It is very difficult to estimate
parameters Qh (h=1,2,3,4) directly so as to minimize J in eq. (5.6.a)

because the dimension of Qh is very high. Therefore, the following

procedure is used to estimate O Firstly, by using the data measured

8y -
in each steady state, functions Kﬁ (h=1,2,3,4; +=1,2,°***,n) are

estimated so as to minimize J (i=1,2,***,n). Then, by using the

. , i ‘ . sos s
estimated values of K » parameters 9, are estimated so as to minimize

4 . . .
(K (8,7, - &P )2, (5.7)
i=1 hgl Kh Kh

J' =

I o~18

More precise description of this procedure can be found in [3].

5.2.2 Modeling of the steady state system by the revised GMDH [4]

Here, the steady state model of the river quality is comstructed
by the revised GMDH algorithm developed in Chapter 3. 1In this revised
GMDH algorithm, optimal intermediate polynomials, which express the
direct relationship between the input and output variables, are

generated automatically in each selection layer so as to minimize AIC
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and the complete polynomial is obtained from the optimal intermediate
polynomial remained in the final layer. By using the revised GMDH

algorithm, the following two steady state models are constructed.

A. Steady state model I

Steady state model in the form of eq. (5.2) is éonstructed. Two
variables b(j+1) and c(j+l) are used as output variables and five
variables b(j), c(j), Q—l, Q—-O'5 and T are used as input variables.

Here, it is assumed that the measuring points of BOD and DO concentrations
are equally spaced along the river. The steady state model to be
identified by the revised GMDH is

0.5

b(j+1) ,T) (5.8.a)

]

£.(b(3),e(3),Q 50

c(j+1)

Il

£,(0(1),e(i),0 Q7% 1) . (5.8.b)

Equation (5.8) can be transformed to

il T S CYCHRTCHI B i DI YC I S CIC IS

c(j+l) - c(j) 0

= =L 03,1, 00T - e T (5.9.5)

In eqs. (5.9.a) and (5.9.b), if the left hand sides of the equations are

approximately replaced by db/dl and dc/dl, respectively, steady state
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model in the form of eq. (5.2) can be obtained.

B. Steady state model II

Steady state model in the form of eq. (5.4) is constructed,
Two variables b(Z) and c(l) are used as output variables and seven
variables bo, e Z, Z_l, QO'S, Q—O'5 and T are used as input variables.
In this case, the physical interpretation of the model constructed by
the revised GMDH is not possible; because eq. (5.4) cannot be described
as a physically meaningful polynomial in terms of these input variables.
That is, a revised GMDH model obtained is a nonphysical model. The
steady state model to be identified by the revised GMDH is

-1 0.5 _-0.5

b(Z) gl(' bO’ CO’ Z, 17, Q s Q s T ) ‘ ‘ »(5.10.3)

8,0 bgs cgo L 15, %2, 0%, 1) L (5.10.b)

c(l)

For constructing this model, measuring points of BOD and DO concentrations

are not necessarily equally spaced along the river.

5.3 Modeling of the Steady State Bormida River Quality [3,4]

The steady state model of the Bormida river shown in Fig. 5.2 is
constructed by applying the revised GMDH algorithm to the data shown
in Table 5.1 and the predicted results obtained by the revised GMDH model

are compared with those obtained by the physical model estimated by
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Rinalddi, et al.

The data measured in the Bormida river are used [3], where four
variables, BOD concentration b, DO concentration ¢, flow rate Q and
temperature T are measured as shown in Table 5.1. Data of BOD and DO
concentrations are the daily average value and measured at six points
which are located with the interval of about 10~15 km along the river.
Here, the data at the fourth point is not the measured value but the
value obtained by a linear interpolation. Data of the temperature are
the average values obtained at six points but the measurement time is
different for each steady state, and therefore it is difficult to find a
significant interpretation for the data. We simply neglected the
effect of the temperature variation. Fifteen steady states are
measured (n=15). Among them thirteen steady states data are used for

modeling and two steady states data are used for model validation.

Flow rate gauging
station

‘ Reservoir

Fig. 5.2 The Bormida river and locations of

measurement stations [3]
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Table 5.1 The data used for modeling and model validation [3]

Station number 0 1 2 3 ( 4 ) 5 Flow rate Water Temperature(©°c)
Distance [Km] 4.20 14.00 25.00 40,00 (54.00) 65,00 (10% m3/day] Average Range
Steady state
1 200.0 118.0 64.0 38.0 24.0  10.0 55 17.5 5.2
0.0 4.5 5.5 6.5 7.8 9.0
2 120.0 92.0 72,0 ss.0 410 a4 60 9.0 5.1
3.0 5.5 9.0 9.5 9.5 9.5
3 162.0 126.0 120.0 66.0 >0 4000 125 0.5 5.0
1.0 3.0 5.0 6.5 8.5 10.5
4 105.06 84.0 70.0 44,0 41.0 3¢ 100 19.0 3.0
2.0 5.0 5.5 6.0 6.8 7.5 i
5 125.0 78.0 46.0 18.0 6.0 140 75 18.0 3.2
1.5 3.5 4.5 5.5 6.3 7.0
6 125.0 86.0 70.0 46.0 33.0 29,0 80 17.0 3.3
2.0 5.0 6.0 6.0 6.3 6.5 '
7 68.0 56.0 50.0 34.0 29.0 24,0 X
2.0 6.0 7.0 9.5 10.8 12.0 225 5.0 2.5
8 145.0 72.0 68.0 30.0 23.0 16.0
0.0 1.2 2.2 3.6 4,7 5.8 100 25.0 3.7
9 200.0 104.0 98.0 60.0 59.0 58.0 55 16.0 8.9
0.0 4.0 6.0 6.0 6.5 7.0
10 90.0 70.0 68.0 58,0 40.0 22.0 200 1.8 3.5
4.0 4.0 8.0 9.0 9.0 9.0
11 80.0 60.0 5G.0 36.0 30.0 24.0
6.0 8.0 10.0 10.5 11.0 250 3.5 2.4
10.8 ,
12 135.0 100.0 85.0 62.0 56.0 50,0
6.5 4.0 5.0 6.0 7.0 8.0 125 1L.8 2.4
13 70.0 60.0 44,0 46.0 34.0 22,0
3.0 6.0 7.0 7.5 7.8 8.0 200 6.0 2.5
14 85,0 70.0 55.0 40,0 30.0 299 200 11.5 5.5
3.0 6.0 7.0 9.0 9.3 9.5
15 80.0 40.0 30.0 20.0 16.0 12.0 150 16.0 6.0
2.5 5.0 7.0 8.5 8.8 9.0

5.3.1 Results of parameter estimation of the physical model [3]

Parameters of physical model are estimated by using the procedure
described in 5.2.1. The data of the 1~13-th steady states are used

for modeling. The structure of Kh (h=1,2,3,4) are assumed as

e
~ h2
Kh( _@_.9 Q ) = ehlq (5.11)

where, ﬁh = { ahl’ @hZ ¥
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\ i . . .
Functions Kh (h=1,2,3,4; i=1,2,+++,13) are estimated so as to minimize

J* (i=1,2,+°*,13) in eq. (5.6.b) and as the result

is obtained.

s K, =0 (5.12)

This result shows that BOD and DO concentrations in the

Bormida river can be described as the Streeter-Phelps model. Then

parameters g1 and ﬁs are estimated so as to minimize J' in eq. (5.7) and

is obtained.

—0.43b

0.2 Q (5.13.a)

0.2 Q"°‘43b + 16.4 Q—o.s(cs_c) (5.13.b)

5.3.2 Results of modeling by the revised GMDH [4]

A. Steady state model I

Four variables b(j), c(i), Q—l and Q_O'5 are used as input

variables.

Parameters used in the revised GMDH are

1) BOD model identified by the revised GMDH
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BOD models identified by the revised GMDH are shown in Table 5.2.
The fourth model is identified by using all the data of 15 steady states.
From Table 5.2, we can see that the structure of the model is varying
slightly according to the measured data used for modeling. In the
revised GMDH, the structure of the model is determined gy using only the
measured data, and therefore the dependence of the structure of the
model on the statistical characteristics of the measured data cannot
be avoided. But, if sufficiently many data can be used, the dependence

can be reduced. The third model

b(441) = = 4.22 + 0.920b(4) + 0.000037b(i)% - 0.013307° b ()2

(5.14)

is identified by using the measured data of 1~13-th steady states.

This model can be transformed to

PAHD = B L L ¢ - 427 - 0.080b(5) + 0.000037b(3)°

- 0.0133Q“°'5b(j)2 }o. \ (5.15)

Since Al = 10 km, eq. (5.15) can be approximatély reduced to

db . 0.422 - 0.0080b + 0.0000037b2 - 0.00133Qm0'5b

2
dl )

(5.16)

We can find that the second order terms of BOD concentration are
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contained in eq. (5.16), and the structure of the model is a little more
complex than the physical model (5.2.a).

effectiveness of eq.

In order to verify the

(5.14), the prediction errors for the l4-th and

15-th steady states of eq. (5.14) are compared with those of the

physical model (5.2.a).
is predicted by using the measured data bO’ and the BOD concentrations

b(j+1) for j=1~4 are obtained by using the predicted values for j=0~3.

In eq. (5.14), the BOD concentration b(1l)

Predicted results for the 1l4-th and 15-th steady states are shown in

Figs. 5.3 and 5.4.

It can be seen that the prediction accuracy

obtained by the revised GMDH model (5.14) is identical with that

obtained by the physical model (5.2.a).

Table 5.2 Structures of the BOD model I
Model gé“ggégtion constant b b2 b Q“O' bZQ-O -
1 4 ‘5 -5.84 0.960 -0.00040 * ~0.011
2 9, 10 -2.38 1.027 ~-0.00070 ~-2.06 *
3 14 , 15 -4.,22 0.920 0.00004 * -0.013
4 0 -3.82 0.900 0.00008 * -0.013

- 119 ~




4 Physical model A Physical model

o Revised GMDH model O Revised GMDH model
= 70t 70t
2 | s
il 50L = 60t
§ 50t E 50F P
é‘ 40 é’ 4071 2
3 30+ S 307 (o]
A
a 20} g 20r 2
2 R
10 101
10 20 30 40 sO 60 70 10 20 30 4‘0 SJO 6.0 7‘0
BOD measured [mg/Z] BOD measured [mg/Z]

Fig. 5.3 Measured and computed Fig. 5.4 Measured and computed

values of BOD for l4-th values of BOD for 15-th
steady state by model steady state by model
I-3 I-3

2) DO model identified by the revised GMDH

Identified Dd model is shown in Table 5.3. The fourth model is
identified by using all the data of 15 steady states. From Table 5.3,
we can see that the structure of the model is varying remarkably
according to measured data used for modeling. In particular, the terms
concerned with the flow rate Q is remarkably varied. The reason for
this is that the number of different measurement data for the flow rate
are very few compared with the number of the terms contained in the
model, and therefore the information contained in the input variable Q

is not fully taken out from the data. The third model
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0.5 ...2
CGHLY = 6.72 + 0.431c(§) - 0.000203b(3)2 + 0.00222Q " >b(4)
= 46,1073 + 3.0107° 7 () (5.17)

is identified by using the measured data of 1~13-th steady states.

Table 5.3 Structures of the DO model I

Predicti -0. -

Model pi?nt: ton constant c b2 bZQ 0.5 b2Q 1

1 4, 5 2.39 0.895 0.00003 * *

2 9 , 10 7.75 0.993 -0.00020 0.0024 *

3 14 , 15 6.72 0.431 -0.00020 0.0022 *

4 0 10.3 '0.553 -0.00008 * 0.0080

-0.5 -1 -0.5 -1

Model Q Q c Q c Q

1 * * -1.19 *

2 -54.2 * -10.4 78.6

3 -46.1 * 3.91 *

4 -118. 382. * 18.3
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This model can be transformed to

C(i+l)AZ c(d) _ Zlf{ 6.72 - 0.569¢(j) - 0.000203b(j)>

+0.002229 0% ()2 - 46.107°°° + 3,910 % (i) ¥ . (5.18)
Using AZ = 10 km, eq. (5.18) can be approximately reduced to

de _ 9.672 - 0.0569c - 0.0000203b% + 0.0002229 2"

5.2
a7 b

- 4.61Q°°"% + 0.3919070"%¢ . (5.19)

From this model, we can find that the second order terms b2 and
Q—O'sz are contained in both BOD model (5.16) and DO model (5.19).

The te'rnis'Qmo'5 and Q_O'Sc are similar to'Q—O'Syand Q—O'Sd contained

in the physical model (5.2.b), respectively. In order to verify the
effectiveness of eq. (5.17), the prediction efrors for the 1l4-th and
15-th steady states of eq. (5.17) are compared with those of the
physical model (5.2.b). 1In eq. (5.17), the DO concentration c(l) is
predicted by using the measured data bo and s and the DO concentration
c(j+1) for j=1~4 are obtained by using the predicted values for j=0~3.
Predicted results for the 1l4-th and 15-th steady states are shown in
Figs. 5.5 and 5.6. From Fig. 5.5, it can be seen that the revised

GMDH model (5.17) gives much better prediction accuracy for the l4-th

steady state than that of physical model (5.2.b). From these prediction
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Fig. 5.5 Measured and computed Fig. 5.6 Measured and computed
values of DO for l4-th values of DO for 15-th
steady state by model steady state by model
1-3 I-3

results, we can see that the steady state model I identified by the
revised GMDH algorithm is fairly reliable as the prediction model.
Furthermore, the structure of the steady state model I is a little more
complex than that of the physical model but they are very similar.

This shows that the statistical analysis of the input and output data
by the revised GMDH algorithm of using intermediate polynomials enables
to give the important information concerned with the structure of the

system which is very complex and completely unknown.

B. Steady state model II

Six variables of bO’ Cqs L, Z—l, QO'5 and Q_O'5 are used as input

variables. Parameters used in the revised GMDH are as follows.
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1) BOD model identified by the revised GMDH

By using the measured data of the 1~13-th steady states, BOD model is

identified as
b(1) = 28.9 - 0.0268b,7 - 0.02172% + 1.5237 + o.ooozslboz2

—O.SZ—l 2.0.5 -0.5

+ lO.ZbOQ + O.OOO4bOQ + 0.87lbocoQ

0.5

- 0.000042b%c (5.20)

001
We can see that the structure of eq. (5.20) is more complex than the
steady state model I (5.14). In order to verify the effectiveness of
eq. (5.20), the prediction errors for the 1l4-th and 15-th steady states
of eq. (5.20) are compared with those of the physical model-(S.ﬁ.a).
Predicted results for the l4-th and 15-th steady states are shown in
Figs. 5.7 and 5.8. We can see that the revised GMDH model (5.20) has

the same prediction accuracy as the physical model (5.4.a).

2) DO model identified by the revised GMDH

By using the measured data of the 1~13-th steady states, DO model is

identified as
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c(2) = - 34.8 + 1.74Q°°° - 11.627% - 0.001042% + 189970+

-0.5

+9.26c,Q +0.0106Q°°°7 - 0.000436b.c 7

070

+ 0.000004b07,2 + 0.000003b§c 7. (5.21)

0
We can see that the structure of eq. (5.21) is also more complex than

the steady staté model I (5.17). 1In order to verify the effectiveness

of eq. (5.215, the prediction errors for the l4~th and 15-th steady

states of eq. (5.21) are compared with those of the physical model (5.4.b).
Predicted results for the 1l4-th and 15-th steady states are shown in

Figs. 5.9 and 5.10. From Fig. 5.10, the revised GMDH model (5.21) gives
worse prediction accuracy for the 15-th steady state than the physical
model (5.4.b). The reason fbr this is that the structure of the system
for the DO concentration 1Is very complex and cannot be described as

a polynomial approximation of six input variables used in steady state
model II. From these prediction results, we cannot expect a good

prediction accuracy for DO concentration in the steady state model II.

5.4 Concluding Remarks

In this Chapter, two kinds of steady state river quality models are
constructed by applying the revised GMDH algorithm to the measured data

in the Bormida river. By comparing the revised GMDH model with the
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physical model estimated by Rinaldi, et al., the following results are

obtained.

(a)

(b)

(c)

(d)

(c)

Steady state model I identified by the revised GMDH gives the same
prediction accuracy as the physical model for BOD concentration

but gives better prediction accuracy than the physical model for

DO concentration.

In the revised GMDH models identified for the DO concentration,

the steady state model I gives better prediction accuracy than the
steady state model II. The reason for this is that the structure
of the system for the DO concentration is very complex and cannot
be described by a polynomial approximation of six input variables
used in the steady state model II.

The structure of the revised GMDH model is heavily dependent upon
the statistical properties pf the data used for modeling, because
the structure of the model is determined by using only input-output
data. In the case of the Bormida river, the terms of the flow rate
in the revised GMDH model is particularly dependent on the data
because of the lack of information contained in only a few different
flow rate data.

For the steady state model II identified by the revised GMDH
algorithm, second order terms of BOD concentration are contained

in both BOD and DO models. The other terms are similar to those

of the physical model.

In the physical model, the computation for estimating the parameters

is quite complex, but in the revised GMDH model it is not.
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From these investigations, the effectiveness of the revised GMDH

algorithm is justified for constructing steady state models of river

quality.

REFERENCES

[1]

(2]

(31

[4]

Beck, B.: A comparative case study of dynamic models for DO-BOD
algae interaction in-a freshwater river, International Institute
for Applied System Analysis, Working Paper No. WP-78-16,

(May 1978)

Kondo, T. and H. Tamura: Revised GMDH algorithm of self-selecting
optimal intermediate polynomials using AIC, (in Japanese) Trans.
Soc. Instr. Control Engineers. (forthcoming)

Rinaldi, S., P. Romano and R. Soncini-Sessa: Parameter estimation
of a Streeter-Phelps type water pollution model, Proc. 4th IFAC
Sympo. on Identification and System Parameter Estimation, Tbilisi,
U.S.S.R (1976)

Tamura, H. and T. Kondo: Nonlinear modeling for the steady state
river quality by a revised GMDH, (in Japanese) Trans. Soc. Instr.

Control Engineers. (submitted)

- 128 -



CHAPTER 6 CONCLUSION

In this thesis, two kinds of new revised GMDH algorithms are
developed and applied them to modeling of air pollution and river
rollution problems.

In Chapter 1, the fundamental concept of GMDH which is called the
heuristic self-organization is described. Then, the algorithm of the
basic GMDH proposed by Ivakhnenko is shown, and the advantages,
disadvantages and heuristics involved in the basic GMDH are discussed.
Then, the improvements, which have been made on the basic GMDH algorithm,
are briefly surveyed, and the motivation to this thesis research is
clarified.

In Chapter 2, a revised GMDH algorithm of generating optimal partial
polvnomizls under the prediction error criterion is developed in which
we do not require to divide the available data into two groups; the
training data and the checking data. 1In this algorithm, all the data
can be used not only as the training data but as the checking data,
that is, the prediction error such as PSS and AIC calculatec from all
the data is used as a criterion for selecting intermediate variables

and for stopping the multilavered computations. Therefore, the
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identified results do not depend on the heuristics of dividing the data
into two groups. Furthermore, the revised GMDH developed in Chapter 2
generates optimal partial polynomials automatically in each selection
layer. The revised GMDH, therefore, has much better flexibility than
that of the basic GMDH in constructing a complete polynomial. The
revised GMDH algorithm is applied to a simple illustrative example

and compared with the results obtained by the basic GMDH algorithm.
Many advantages of the revised GMDH algorithm compared with the basic
GMDH algorithm are clarified.

In Chapter 3, a revised GMDH algorithm of generating optimal
intermediate polynomials under the prediction erro? criterion is
developed. This revised GMDH algorithm generates optimal intermediate
polynomials in each selection layer, which express the direct
relationship between the input and output variables, so as to
minimize the prediction error c&iterion evaluated by using all the
data. Therefore, physically meaningful structures can be identified
when the characteristics of the system are well reflected in the data.
The revised GMDH algorithm is applied to the input-output data observed
in a simple kinetic system, and we tried to discover the Newton's
second law of motion. The result obtained is compared with that
obtained by the revised GMDH of using partial polynomials. The
effectiveness of the revised GMDH algorithm of using intermediate
polyndmials for identifying physically meaningful structure between
the input and output variables is justified.

In Capter 4, the revised GMDH algorithm developed in Chapter 2 is

applied to two kinds of air pollution problems, the steady state
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modeling and unsteady state modeling of air pollution. In steady state

modeling, a method of identifying a steady state spatial pattern of air

pollution concentrétion in a large area, is developed. By comparing

three ﬁodels, the effectiveness of the combined model of the source-

receptor matrix and the revised GMDH is justified. The combined model

of this kind would be useful for regional environmental planning and

environmental impact assessment. In unsteady state modeling, nonlinear
statistical models for short-term prediction of air pollution concentration
are.developed. By comparing the prediction results of the revised GMDH
model with those of the linear statistical models and the basic GMDH

model, the following results are obtained.

(a) Suitable length of data used for short-term predictions in Tokushima
is about 10 days.

(b) We cannot expect the improvement of the prediction accuracy by using
the information of wind direction and wind velocity at the concerning
point only, |

(c) The revised GMDH model is very stable and simple, and furthermore
it gives better performance than the basic GMDH model and the linear
statistical models.

From these prediction results, the effectiveness of the nonlinear models

obtained by the revised GMDH is justified for short~term prediction of

air pollution concentration.
In Chapter 5, nonlinear models for steady state river quality is
developed by the revised GMDH proposed in Chapter 3. By comparing the

revised GMDH model with the physical model developed by Rinaldi, et al.,
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the

(a)

(b)

(c)

(d)

following results are obtained.

Steady state model identified by the revised GMDH algorithm gives
better prediction accuracy for DO concentration compared with the
physical model.

In the GMDH model, second order terms of BOD concentration are
appeared both in BOD and DO models, while in the physical model only
linear terms are taken into account. The linear terms in the GMDH
model appeared are similar to those in the physical model.

The structure of the revised GMDH model depends on the statistical
properties of the data used for modeling, therefore, it is necessary
that the characteristics of the concerning system are well reflected
in the data used for modeling.

In the physical model,»the computation for estimating the parameters
is quite complex, but the computation for obtaining the revised GMDH

model is fairly simple.

From these results, the effectiveness of the revised GMDH algorithm is

justified for constructing steady state river quality models.

The advantages of the revised GMDH algorithms developed in this

thesis are now clarified both from the methodological point of view and

from the practical point of view. Finally, it should be noted that

we need further researches to develop

(a)

(b)

Multivariate GMDH for identifying nonlinear multi-input multi-output

systems
On-line recursive GMDH for updating the model whenever new time

series data are obtained in the concerning nonlinear dynamical

system.
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