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abstract

The purpose of this thesis is to improve conventional exact methods for implementing
fixed-level significance test of equality of several binomial proportions. There are
two conventional exact methods: the conditional and unconditional tests. Many
papers, including Suissa and Shuster (1985) and Mehta and Hilton (1993), have
tried power comparisons between these two exact fixed-level significance tests. Suissa
and Shuster (1985) discussed the advantage of the unconditional test because of its
higher power in testing equality of two binomial proportions. Mehta and Hilton
(1993) extended the comparison to three binomial proportions, with the aid of the
network algorithm introduced by Mehta and Patel (1983), to reduce the discreteness
of a test statistic and observed that the performance of the conditional test was
equal to that of the unconditional test when sample sizes were as large as 80 or
more. They concluded the advantage of the conditional test on the ground that the

computational burden was much less compared with the unconditional test.

The application of these conventional exact methods to fixed-level significance
tests may result in far smaller empirical size than the significance level and, as a
result, lower power for detecting lack of fit of a model, which has been a strong
incentive for adopting asymptotic methods. However, when we look into the behav-
ior of the two exact tests, with the aid of modern computing facilities, we do find
some room for improvement on them. We propose two improvements: one being the
conditional test using a two-dimensional statistic and the other being the uncondi-
tional test using a modified statistic derived from the conditional distribution of a
conventional test statistic. By adopting these improvements, we are able to reduce

the shortage of the conventional exact tests.

Here, we confine our attention to fixed-level testing, rather than significance

testing, i.e. reporting observed level of significance, which is nowadays more popular



among theoretical statisticians. Weerahandi (1995) noted that “In applications such
as those in biomedical experiments fixed-level testing are not appealing even when
they do exist, because the sufficiency of evidence in favor of or against a hypothesis
would depend upon the prevailing circumstances and what being tested, and should
be left for the other experts and decision makers to judge”. Little (1989) argued
that statistical inferences on contingency tables should be conditional and that fixed-
level testing should be avoided on a philosophical ground, citing Cox (1984), Yates
(1984) and so on, to reinforce his argument. However, fixed-level testing remains
valid when rigorous “accept/reject” decision is required, such as when testing the
effect of a new medicine, and therefore the effort to raise the power of fixed-level

significance tests would be worth making.

We do not consider asymptotic approximationsin this thesis, although there still
exist data sets in which exact calculation is infeasible despite of the development of
computing facilities. For such cases, we have no choice but resorting to asymptotic
approximations. Even asymptotic approximations in conditional inferences are dis-
cussed by, for example, Davison(1988). However, we are concerned with such data
sets, where each data point is so expensive and vital, like in biomedical research,
and where the asymptotic properties are not guaranteed. For such data sets, we

should not rely on incorrect asymptotic approximations.

Recent development of computing environment, especially in the last two decades,
has made various impacts on the statistical methodology: Multivariate methods,
which had been computationally infeasible, has become popular, a considerable vol-
ume of statistical tables has been replaced with a set of directives (functions) on
computer soft-wares and the demand for approximation methods that save compu-
tational burden has been decreasing. Now, it would be the time to exploit more
efficient procedures without thinking much of computational load. The test pro-
cedures, we are going to introduce here, are more computer intensive but show
higher performance than conventional exact tests. All the calculation in this thesis

is accomplished on Mathematica, ver.3.

In Chapter 1, we describe preliminary notions of statistical test of hypothesis,
well-used test statistics and conventional exact test procedures. In Chapter 2, we
carry out size and power comparisons among conventional test statistics in the exact

conditional test. In Chapter 3, we carry out size and power comparisons between the



exact conditional and unconditional exact tests employing one of the conventional
test statistics in turn. In Chapter 4 and 5, we propose two improved exact test
procedures to achieve higher power. In Chapter 4, we propose two-dimensional
statistic for use in the exact conditional test. In Chapter 5, we propose modified
statistic for use in the exact unconditional test. At last, in Chapter 6, we propose

modified two-dimensional statistic for use in the exact unconditional test.
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Chapter 1

Introduction

In this chapter, we describe fundamental matters: the hypothesis we are going
to test, conventional test statistics and exact conditional and unconditional test
procedures. We followed, for the most part, the notation of Mehta and Hilton (1993).
Our description has been made utilizing Inagaki (1990), Takeuchi and Fujino (1981)

and Yanagawa (1986) as reference books.

1.1 Hypothesis and test statistics

Let Y7,Y5,---, Y, be a list of independent random variables, where each Y; is dis-
tributed from the binomial distribution B(n;, 7;), and let y = (y1, -+, yx) denote
the observation of Y = (Y7, ---,Y}%). Throughout this thesis, bold face scripts, like
Y and y, refer to vectors and plain scripts refer to scalars. Now, the test of equality

of binomial proportions is written as,

Y

HOI7T1:7T2:"':7TkE7TO
Hy : m; # 7, for some ¢ # j

where 7, is the unknown nuisance parameter. This test is also called as goodness-
of-fit test for independence in a 2 x k contingency table. We carry out the test with
fixed significance level a. We fix our attention at a = 0.05 for our computation
throughout this thesis.

We note that the existence of the sufficient statistic, S = Zle Y; of 7, under
H,, allows the Neyman-Pearson approach to the test. That is, we have a choice of

two alternative approaches, conditional and unconditional test procedures.

9



10 CHAPTER 1. INTRODUCTION

Before explaining exact conditional and unconditional test procedures, we would
like to describe three well-used goodness-of-fit statistics, the Pearson’s X2, the de-
viance, and the power divergence in the specific form for binomial data. For more

general form of these statistics, we refer the readers to Read and Cressie (1988).

Pearson’s X?
This statistic has long been the most frequently used statistic among the three

for discrete data. The Pearson’s X? is written, in the context of binomial trial, as

k
XZ(y7ﬁ-) =

=1

(yi — niﬁi)Q

where 7; is an estimate of m;. The maximum likelihood estimate ( m.le. ) is

commonly used. Under H,, specifically,

X*(y) = % (1.1)

where 7 = s/N; s =30y, and N =38 n,.
Deviance

The deviance is actually the likelihood ratio statistic of postulated and saturated
models and therefore available as long as the sampling distribution is explicitly

specified. We describe the deviance in the context of a binomial trial, following the
notation of Collett (1991), as follows.

D(y,7) = —2[log f,p — log f)s],

where I:,, denotes the maximum likelihood of a postulated model,

k
log L, = Z[ yilog 7t + (n; — y;) log(1 — 7;) +log C(ny, yi) |,

i=1
and L, denotes the of the saturated model,
k

log Ly = Y [ yilogyi + (ni — ;) log(ni — ;) — nilog n; + log C(ns, ;) 1,
i=1
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where 7; is the m.l.e. of m; under the postulated model and C(n,y) denotes the

number of distinct combinations when taking y objects from n distinct objects.
Under H,, D becomes,

k
D(y) = 2 Z[yz log yi + (n; — yi) log(ni — vi)]
i=1
k s N —s
—9 dogn; —2{ slog — + (N — s)1 . 1.2
;n ogn {sogN—l—( s) log } (1.2)

Power divergence

This statistic is a member of the family of power divergence statistics, introduced
by Cressie and Read (1984), for testing goodness-of-fit for discrete multivariate data.
This family, denoted by {PD* X\ € R}, is written in the context of binomial trial
as,

k

PDw.7) = 35 DMl — 1+ (=l — 1) 09

As this family of statistics includes the Pearson’s X?(A = 1) and the deviance
(A = 0 ) as special cases, we are able to relate these two statistics, and moreover
construct a new statistic that might have some optimum properties. We follow the
recommendation of Cressie and Read (1984) of adopting A = 2/3 and call it the

power divergence, PD,

PDy, ) = 3 Sl (PP = 1]+ (s — ) ()25 — 1),

Under H,, p = s/N and PD becomes

PD(y) = 3 S (L — 1]+ (- ) ) (1)

i1 n;m nl(l — ﬁ')

It is a well-known fact that these three statistics are asymptotically equivalent
and the limiting distribution is the 2 distribution with n — 1 degree of freedom,
see for example Read and Cressie (1988). Their performances in small or moderate
sample sizes, however, are considered to be different. We will look into the size
and power difference of these statistics, when sample sizes are small or moderate, in
Chapter 2 and 3.
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1.2 Exact conditional test

This procedure is based on the Neyman-Pearson approach to hypothesis testing.
That is, we carry out the test conditional on the sufficient statistic, S = Zle Y, =
Zle y;, of m, to eliminate the dependence of the distribution of Y on 7, under H,.
Note that the randomized version of the exact conditional test is not adopted, since
decisions should not be based on irrelevant events in practice, which is an usual
principle in the literature.

Let denote the sample space of Y by I' and the conditional reference set by I'y,

i.e. the subset of I' sharing s as the sufficient statistic value,

k
Fs={y|yeTl, Z?Jizs}-
i=1

The conditional distribution of Y on 'y under H 4 is given by,

k ; U

C . C is Ui Yi 1 — i (ni—y:)
Pr(i :y|rs,7r): lelk(TL’y)ﬂ—l ( : ﬂ—) :
Ha > zer, i Cni, 2i) mt (1 —m;)(mimed)

and under H, by,

[15 ., Cni,ys) w5 (1 — 7))
ZZeFS Hf:l C(ni, 2i) m5 (1 — 7TO)(Nis)

Hf:l C(ni, yi)
T )

EE(Y =y |, m)

which is independent of the nuisance parameter 7,.
Let T'=T(Y) be a goodness-of-fit statistic, then the critical value of the test,
ts(c), is derived within each conditional reference set separately. The critical value

for each conditional reference set Iy, t5(), is derived as follows,
ta(s) = min{t € 74 | gr{T(Y) >t|s,m} <al,

where 7, = { T(y) | y € T's }, and sample points whose statistic value is greater or
equal to t5(a) form the rejection set in I's. When we denote the conditional rejection

set in I'y by W,(s), it is written as,

We(s) ={y |y € Ts,T(y) > ts(a)}, (1.6)
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and the overall rejection set of the conditional test, W,, is written by,
N
We = We(s). (1.7)
s=0

The conditional size of the test, a.(s), is written as,
a.(s) = gr{T(Y) > ts(a) | Ty, m}

k
_ T [y C(ni, i)
C(N,s)
{ Yers | T(Y)>ts ()}
As we noted, at the beginning of this section, that we did not adopt any auxiliary
randomization, the conditional sizes are always no more than the nominal signifi-
cance level, o, and feared to be far short of & when nq, ns, - - -, n; are small. Because

the unconditional size function, «.(m) is written as a weighted average of a.(s),

aclm) = 3" als) Pr{S =5 | 7 Hgoe (18)

it is guaranteed to be no more than «. The (unconditional) size of the conditional
test is now obtained by maximizing the (unconditional) size function,
. = sup a(m),
0<n<1
which is also guaranteed to be no more than a.

Thus, the size of the exact conditional test is guaranteed to be no larger than «.
This procedure is less computer intensive than the unconditional test, because we
do not have to treat the test statistic distribution on the whole sample space but on
each conditional reference set. However, this procedure can be conservative for the
same reason just stated.

The power of the conditional test, denoted by f.(7r) , is written as,
Be(m) =Pr{T(Y) > to(s) | Ts,w} - Pr{S =s| m}, (1.9)
HA HA

following the notation by Mehta and Hilton (1993), although ( usually represents
the probability of Type II error.
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1.3 Exact unconditional test

This test is computationally more intensive, compared with the conditional one,
since we must consider the test statistic distribution on the whole sample space when
constructing a rejection set. The maximization approach is adopted to eliminate
the dependence of the test on the nuisance parameter, following Suissa and Shuster
(1985) and Mehta and Hilton (1993). The unconditional critical cutoff value of the

exact unconditional test when 7, = 7 is,

to(m) =min{ t € 7, : Er{ T>t]| e < a}, (1.10)

where 7, is the support of the unconditional distribution of T for a specific value of
7. We are going to eliminate the dependence of the test on 7, by maximizing ¢, (7)

with respect to m,
toa = sup { to(m) }. (1.11)

0<n<1
Then, the rejection set of the unconditional exact test, denoted by W,, is the set of

sample points whose 7' values are no less than ¢,,

Wo = {ylyel,T(y) >ta }. (1.12)
W, is also written as,
N
w. = (JWuls). (1.13)
s=0
where
Wu(s)={y|yelT(y) >ta }. (1.14)

The size function of the unconditional test is,
ay(m) = Er{ T >ty | 7} aor, (1.15)

which is guaranteed to be no larger than «, owing to the maximization in (1.11).

And the size of unconditional test is written as,

y = sup  ay(m), (1.16)
0<n<1
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which is again no larger than «. For the purpose of comparing with the conditional
test, we also define the conditional size of the unconditional test, denoted by v, (s),

as

ay(s) = Pr{T(y) > ta | Ts, 7 }, (1.17)
which is independent of the nuisance parameter m,. Using this definition, the size
function is rewritten as,

N

ou(m) = D 0uls) Pr( S = 5 Ylrur. (1.18)

s=0

The power of the unconditional test is,
Bu(m) = Er{ T(Y)>t,|w}. (1.19)
A

In the next two chapters, we will make some comparison among test statistics

as well as test procedures we have explained in this chapter.






Chapter 2

Comparison in the conditional test

In this chapter, we compare the behavior of the three conventional test statistics,
described in Section 1.1, in the exact conditional test, from the viewpoint of size
and power of the test. We will consider the situation of three samples hereafter, as
in Mehta and Hilton (1993), but we do not confine ourselves to equal sample sizes.
Although their extension to three sample sizes was to reduce the discreteness of a
test statistic on conditional reference sets, their intention was not fully accomplished
because of the equality of sample sizes. From now on, we will remove the restriction
of equal sample sizes, which seems to be more natural in biomedical research. Be-
cause it is unusual to have a data of equal sample sizes in practice. This relaxation
reduces the discreteness of the distribution of a test statistic and, at the same time,

increases the amount of computation, as we shall see in this chapter.

We note that, although our numerical illustrations are confined only to three
sample case, our discussion hereafter is of course applicable to four or more sample
cases. Before implementing size and power calculation in section 2.3, we shall look
into the functional form of the three statistics as well as the relation among the
values of them in section 2.1, and in section 2.2 we present some useful tips for

saving the amount of computation.
The results presented in this chapter are based on Matsuo (1999).

17



18 CHAPTER 2. COMPARISON IN THE CONDITIONAL TEST

2.1 Preliminary survey

At first, we observe the functional form of the three test statistics, as functions of
sample sizes.
When we expand the numerator of the Pearson’s X? given by (1.1), we have

k
1 y? N7
X? = —0 = 2.1

where Zle y? / n; is the only element that may vary on I'y, which means that this
statistic is symmetric with respect to y; and y; if n; = n;. In the extreme case that
sample sizes are identical, the only element which may vary on 'y becomes Zle yZ,
which is symmetric with respect to y.

In the case of the deviance, the only part of (1.2) that varies on Iy is

Z{yz log yi + (n; — i) log(n; — i)}, (2.2)

and if sample sizes are identical, this part becomes

Z{yz logy; + (n — y;) log(n — yi) }, (2.3)

i=1
which is also symmetric with respect to y.

The power divergence is the most complicated of the three. The entire expression,
not a part of it,
9 o Yi n; — Y
PD(y) = - D Al =10+ (- w)l(——=)" -1}, (24)

i1 n;m nl(l — ﬁ')

varies on I'y, and when sample sizes are equal, this becomes,

k
9 Yi \2 n—1Y;
PD(y) = = : B 1+ (n—y)(——)¥2 =1 2.5
)= 3 Dl 1+ -l e
which again is symmetric with respect to y.

That sample sizes are equal intrinsically gives tied statistic values among, at least,
the observations whose combination is identical and therefore makes the statistic dis-

tribution discrete. Another less relevant factor that gives rise to tied statistic values
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is the simplicity of a test statistic. It can be said from the functional forms that the
Pearson’s X? is the simplest and the power divergence is the most complex, which
coincides our computational experiences that the Pearson’s X? tends to give tied
value than the deviance, and that the deviance slightly than the power divergence.

Next, we observe how each test statistic has its values on a conditional reference
set. For this purpose, we give scatter-plot diagrams with a test statistic value being
assigned as x-axis and another as y-value. The following Figure 2.1 show the typical
pattern of the relation among three test statistics when sample sizes are identical.
The readers could observe the overall relationship by looking at the left column of
the figure: the deviance (Dev in short) tends to have larger values compared to both
the Pearson’s X? (PX in short ) and the power divergence (PD in short ), and PD
is slightly larger than PX. We note that, in exact tests, the order of a statistic value
is relevant, unlike in approximation tests, where the value itself is relevant. The
right column of the figure is presented for looking into the points, on which each
statistic values are less than 10, a range anticipated to include the 5% critical value
of the test.
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Figure 2.1: Scatter-plots illustrating the relation among the three test statistics,
when n = {40,40,40} and s = 25.
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We could observe that PX and PD are similar, that is, the points of the third
row plots of Figure 2.1 are almost on the line y = x, while the deviance is different
from the other two statistics. When sample sizes are identical, PD distinguishes ob-
servations that PX doesn’t, which makes PD less discrete than PX. When sample
sizes are distinct, PX, Dev and PD show almost the same degree of discreteness
and PD is expected to show intermediate performance because of its definition.
Figure 2.2 is presented to show the tendency of the three statistics values when
sample sizes are distinct, that is, the discreteness of each statistic distribution is

considerably relaxed.

We could also use minus the log conditional probability, —logPr{Y =y | s},
as a test statistic, following Freeman and Halton (1951). However we have not
adopted this statistic for the two reasons described below, although it is intuitively
preferable to set up an acceptance/rejection set in descending/ascending probability
order, so that we can anticipate the conditional size to be nearer to a fixed signif-
icance level compared to the three statistics. The first reason is that the value of
—logPr{Y =y | Iy} depends on the number of elements in Iy, #I'y, and so this
statistic cannot be used in the context of unconditional test because #I'y varies with
s. The second reason is that, from our computational experiences, the descending
order of —logPr{Y =y | [';} is quite similar to that of the deviance as far as con-
structing acceptance set, and therefore rejection set, which means tests using the
deviance and —log Pr{Y =y | I'y} are similar. Figure 2.3 is presented to show this
consistent phenomenon. The plots of the left column display the overall relation of
the three statistics values and —log Pr{Y =y | [';} values. The plots of the right
column are presented for looking into the points, on which both statistics values
are less than 10, that is, the set of points including the acceptance set of the test.
We can easily observe from the right plot of the second row of Figure 2.3 that the
deviance almost preserves the ascending order given by —logPr{Y =y | I';} in

the acceptance set.

As sample sizes grow larger and s become closer to N/2, the values of the three
statistics should become close together because the three statistics are asymptoti-
cally equivalent. Figure 2.4 is presented to illustrate this fact. The left column of
the figure shows the overall relation among the three statistics values. We can easily

observe from the right column of Figure 2.4 that all the points, on which statistics
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Figure 2.2: Scatter-plots illustrating the relation among the three test statistics,
when n = {39,40,41} and s = 25.
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Figure 2.3: Scatter-plots illustrating the relation among the three test statistics and

minus the log conditional probability, when n = {40, 40,40} and s = 25.
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values are less than 10, lie actually on the line y = =, which indicate the fact that
the distribution functions of the three statistics are very difficult to distinguish up
to 10, and therefore over 10. In other words, the three test statistics yield almost
the same result in the exact conditional test.

Apparent differences in performance, by changing test statistics, could be ob-

served only when sample sizes are relatively small, which is usual in biomedical

research.
Dev Dev
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Figure 2.4: Scatter-plots illustrating the relation among the three test statistics,
when n = {40,40,40} and s = 60.
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2.2 Some useful tips in computation

As seen in the previous section, the discreteness of a test statistics varies depending
on the set of ny,---,ng values. If all sample sizes are equal, any statistic will surely
suffer from discreteness unless the size is large enough, say 80 or more. On the other
hand, if all of them are distinct, much less discreteness is expected. We will fix £ = 3
and focus only on the cases, where ni, no, ng are similar varying from n; = 10 to 50
with the interval of 10.

On each setting of n, we calculate size functions for the three statistics and carry
out power computations for a selection of alternatives, to display them in graphs.
Before listing the alternatives, in the following section, we will give some useful tips
which would save the amount of computation.

First of all, what we construct is not rejection sets but acceptance sets, to save
the amount of computation. The number of elements in an acceptance set is much
smaller than the corresponding rejection set. Note that there is a natural one-to-one
correspondence between I'y and 'y, that is, between y € 'y and n —y € I'y .

Moreover, from the definition (1.3),
PDMy) = PD)(n — y)

holds in the family of power divergence statistics. Together with the equation,

[, Cluyys) _ TIE, Ol i — i)
CIN,5) CIN,N —3)

Pr(y|Ty) =Pr(n —y|T'n_s),

we can conclude that, for any power divergence statistic, the distributions on I'y; and
['y_s are identical. We can, also, derive some properties listed below, which would

help us reduce the amount of calculation.

(pl) Let W2(s) be the conditional rejection set in I'y using PD* as a test statistic
and WA = UN'WA(s) be the over-all rejection set, then W) 3 y = W) 3

u

n — y for any A € R. Together with the equation,
Pr(y|m) = Pr(n —y[1—m),
we have

Pr(y|w) + Pr(n — y|w) = Pr(y|1 —«) + Pr(n — y|1 — ).
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So, we can conclude that the power at a simple alternative, 7r, is identical with
that at 1 — 7.

(p2) When ny = --- = ng, PD”* is constant over the permutations of y, which
means any permutation of y is included in W2, if y € W2. Therefore, it
is enough to carry out power calculations only for the alternatives satisfying
m < my < --- < mp. When nq,---,n, are not equal but slightly different, we
will treat the power difference arises from permuting 7w, mo, -, 7 as trivial

and will report the average power over all the permutations.

(p3) Let a(s) be the conditional size of the conditional test when S = s using
PD*, then o (s) = a}(N — s) holds for any A € R and the unconditional size

(null power) function,

is symmetric at 7 = 0.5 for any A € R.

The number of elements in Iy ( for s < [(N +1)/2], where [z] denotes the largest

integer that is no larger than x ) | [y, is calculated as follows,

ir, = C’(SJkrk—l,k—l)
S O AT
§c<j 2 J ’ )
—YicjaCls—(i+1)—(nj+1)—(mu+1)+k—-1k—1)

with the convention that C'(m,l) = 0 for non-positive m. For k£ = 3 and when
ny, ne, ng are similar, especially,

3

L, =Cl(s+k—1k—1)=) Cls—(ni+1)+k—1k—1).

i=1
We can expect the number of distinct values of the power divergence on I'y to be §I',
by setting nq,---,n; to be distinct. On the other extreme, we would expect only
about one sixth of i'; when we set nq, - - -, n;, to be equal and select the Pearson’s X2.
On the latter setting, Mehta and Hilton (1993) tried to compare the conditional and
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unconditional tests. The result is that the sizes of the conditional tests fall short of
the fixed significance level and, as a consequence, the conditional test has less power

to detect lack-of-fit than the unconditional test, when sample sizes are small.

2.3 Numerical results

We will discuss the following three cases separately: the first case being all sample
sizes are equal, n = (10, 10, 10), (20, 20, 20), (30, 30, 30), (40, 40, 40) and (50, 50, 50)
, the second case being two of three sample sizes are equal, n = (10,10,11),
(20, 20,21), (30,30,31), (40,40,41) and (50,50, 51), and the third case being all of
them are distinct, n = (9,10, 11), (19, 20, 21), (29, 30, 31), (39, 40, 41) and (49, 50, 51).
In the context of the test of equal binomial proportions, they usually treat only the
first case, that is, ny = -++ = ng. So, our setting might be slightly more extensive
than usual ones, and practical as well. The power calculation is carried out at the

collection of simple alternatives, listed below, in the prescribed order.

1:(0.1,0.2,0.2), 2:(0.1,0.3,0.3), 3:(0.1,0.4,0.4), 4:(0.1,0.5,0.5),
5:(0.2,0.3,0.3), 6:(0.2,0.4,0.4), 7:(0.2,0.5,0.5), 8:(0.2,0.6,0.6),
9:(0.3,0.4,0.4), 10:(0.3,0.5,0.5), 11:(0.3,0.6,0.6), 12:(0.4,0.5,0.5),
13:(0.1,0.3,0.4), 14:(0.1,0.4,0.5), 15:(0.2,0.5,0.6), 16: (0.2,0.4,0.5),
17:(0.3,0.5,0.6), 18:(0.1,0.2,0.3), 19:(0.2,0.3,0.4), 20: (0.3,0.4,0.5),
21:(0.4,0.5,0.6), 22:(0.1,0.3,0.5), 23:(0.2,0.4,0.6), 24:(0.3,0.5,0.7),
25:(0.3,0.4,0.7), 26:(0.4,0.4,0.6), 27:(0.3,0.3,0.7), 28:(0.3,0.4,0.6),
29:(0.2,0.3,0.5), 30:(0.2,0.3,0.6), 31:(0.1,0.2,0.5), 32:(0.1,0.2,0.4),
33:(0.4,0.4,0.5), 34:(0.3,0.3,0.6), 35:(0.3,0.3,0.5), 36:(0.3,0.3,0.4),
37:(0.2,0.2,0.6), 38:(0.2,0.2,0.5), 39:(0.2,0.2,0.4), 40:(0.2,0.2,0.3),
41:(0.1,0.1,0.5), 42:(0.1,0.1,0.4), 43:(0.1,0.1,0.3), 44:(0.1,0.1,0.2)

As noted in (pl) and (p2) in the previous section, the power calculated at = =
(0.1,0.2,0.3) is identical to that given at each permutation of (0.1,0.2,0.3) and
(0.7,0.8,0.9). We also omit all the alternatives where

max (7, T, 73) — min(my, T, w3) > 0.5,

because the power differences at such alternatives are found to be trivial.
The alternatives listed above, which are arranged after observing numerical re-

sults, can be classified into 6 groups. The first group consists of 12 alternatives, from
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1:(0.1,0.2,0.2) to 12 : (0.4,0.5,0.5) where m; < w9 = m3. The sixth group consists
of 12 alternatives, from 33 : (0.4,0.4,0.5) to 44 : (0.1,0.1,0.2) where m; = 1y < 73.
There is a 1 — 1 correspondence, e.g., 1 : (0.1,0.2,0.2) and 44 : (0.1,0.1,0.2),
between the first and sixth groups. The second group consists of 5 alternatives,
from 13 : (0.1,0.3,0.4) to 17 : (0.3,0.5,0.6), where 73 — my < my — m;. The fifth
group consists of 5 alternatives, from 28 : (0.3,0.4,0.6) to 32 : (0.1,0.2,0.4), where
w3 — Mg > my — m;. There is a 1 — 1 correspondence, e.g. 13 : (0.1,0.3,0.4)
and 32 : (0.1,0.2,0.4), between the second and fifth groups. The third group
consists of 7 alternatives, from 18 : (0.1,0.2,0.3) to 24 : (0.3,0.5,0.7), where
m3—Ty = me—m1. The fourth group consists three alternatives, from 25 : (0.3, 0.4,0.7)
to 27 : (0.3,0.3,0.7), each of which could be classified into the fifth or sixth group
but has no counter part in the correspondent group.

Now we consider the first case, ny = no = ns, where the discreteness of a
statistic is most feared. Figure 2.5 consists of five portions, n = (10,10, 10), n =
(20,20,20), n = (30,30,30), n = (40,40,40) and n = (50, 50,50), each portion
has two graphs (one graph, located left, is for representing the unconditional size
functions of the three statistics, with solid line representing PX, broken line Dewv
and bold dotted line PD. And the other graphs, located right, is for representing

the power differences,

B (m) = B (m) and BP(m) — 57 (m),

calculated at the simple alternatives in the same order as listed at the beginning of
this section, with 4 representing 87X () — 8PP (m) and * representing P (w) —

B P(m) .
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a () n= ( 50, 50, 50 ) PowerDiffs. n= ( 50, 50, 50 )
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Figure 2.5: Size functions and power differences when n; = ny = nj.

We can easily observe that PD is always more powerful than PX. This supe-
riority of PD over PX is consistently observed from n; = ny = ng = 7 to 55 with
an increment of 2. On the other hand, Dev has a tendency that it is more powerful
than PD at the alternatives in groups 1 and 2 and less powerful in groups 5 and 6.
This tendency is consistently observed around n; = ny = ng = 25 or larger.

Next, we consider the second case, ny = ny = n3 — 1, where the discreteness of a
statistic is less expected than the first case, ny = ny = n3. Figure 2.6, just like Figure
2.5, comsists of five portions, n = (10,10,11) , n = (20,20,21), n = (30, 30, 31),
n = (40,40, 41) and n = (50, 50, 51).
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Figure 2.6: Size functions and power differences when n; = n, = ng — 1.

As sample sizes become larger, discreteness of the three statistics becomes less
serious and size functions of the conditional test grow faster toward the nominal
significance level, o = 0.05, compared to the previous case. PX shows a tendency
of being most powerful in groups 5 and 6, while least powerful in groups 1 and 2.
Dev shows an opposite tendency to that of PX. PD usually shows intermediate
performance over all the alternatives. These tendencies become stable around n; =
25 or larger. The power differences become smaller as sample sizes grow larger.

At last, we consider the third case, n; +1 = ny = ng — 1, where the discreteness
of the statistics is least serious. Figure 2.7, just as in Figures 2.5 and 2.6, consists of
five portions, n = (9,10,11), n = (19, 20,21), n = (29, 30, 31), n = (39,40, 41) and
n = (49,50, 51).
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Figure 2.7: Size functions and power differences when n; +1 =ny =ng — 1.

The tendencies observed in the previous two cases are more clearly seen; size
functions grow faster toward a = 0.05 than the previous two cases, Dev is most
powerful in groups 1 and 2, and PX is most powerful in groups 5 and 6. We can
also observe that the power differences among the three statistics become smaller as
sample sizes become larger. We have carried out additional calculation for the cases
0<ng—mny <b5and 0 < nzg —ny <5, varying from ny = 10 to 50, and observed

similar tendencies among the three statistics.

We anticipated that PD would be the most powerful of the three, because of its
less discreteness owing to its complex functional form. It is true that PD is uniformly
more powerful when ny, no, ng are equal and alternatives are in groups 5 and 6, but
PD failed to attain uniform superiority over Dev, which has a close relationship with
conditional probability. In the context of a conditional test, where only the order
of the statistic values in a conditional reference set is relevant, we did not expect
any power tendency like that found by Taneichi and Sekiya (1995) in the context of
an unconditional test. But after carrying out intensive computation, we found that
there exists a power tendency as below. Dev is most powerful of the three test statis-
tics against the alternatives in groups 1 and 2; especially when « = (0.1,0.2,0.2),
(0.1,0.3,0.3), (0.1,0.4,0.4), (0.2,0.3,0.3), (0.2,0.4,0.4) and (0.2,0.5,0.5). PX is
most powerful in groups 5 and 6; especially when 7 = (0.1,0.1,0.2), (0.1,0.1,0.3),
(0.1,0.1,0.4), (0.2,0.2,0.4) and (0.2,0.2,0.5), except for the cases where serious
discreteness is expected. It is therefore recommended to use Dev or PX depend-
ing on the assumed alternatives. Here we note again that the tendency seen at
7w = (0.1,0.1,0.2)(e.g.) is also seen at all the permutations of 7 = (0.1,0.1,0.2) and
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1—m = (0.9,0.9,0.8), as explained in (pl) and (p2) in section 2.2. The perfor-
mance of PD is, usually, intermediate between the other two, which seems to be a
natural consequence of its functional form. If there is no priority in the choice of
alternative, it is recommended to choose the power divergence as a goodness-of-fit

statistic.






Chapter 3

Conditional versus unconditional
test

In this chapter, we carry out size and power comparisons between the exact con-
ditional and unconditional tests, employing one of the three test statistics in turn.
Suissa and Shuster (1985) carried out a comparison between exact conditional and
unconditional procedures for testing equality of two binomial proportions. Mehta
and Hilton (1993) showed that, by extending the comparison to three binomial pro-
portions with all sample sizes are equal, the power of the conditional test almost
equals to that of the unconditional test when sample sizes are 80 or more. They
concluded that the conditional test was advantageous because of its far lighter com-
putational burden. As in the previous chapter, we remove the restriction of equal
sample sizes, which is more natural in practice. This relaxation reduces the dis-
creteness of the distribution of a test statistic and, at the same time, increases the
amount of computation, as we have observed in the previous chapter.

As discussed in Hilton and Mehta (1993), “The primary factor responsible for
the conservativeness of the conditional test is the discreteness of the conditional dis-
tribution of a test statistic, a factor tending to increase the conditional critical value,
ta(s). The primary factor responsible for the conservativeness of the unconditional
test is the need to eliminate the nuisance parameter by considering the worst-case
scenario for 7, a factor tending to increase the unconditional critical value, t,.” To
verify this statement, we calculate the conditional sizes, size functions and powers of
the conditional and unconditional tests, using each statistic in turn. The settings of

the previous chapter, sample sizes and alternative hypotheses, are again employed

37
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in this chapter.

The exact performance of conventional statistics for small or medium sample
sizes has not been fully investigated, because it had been almost impossible to carry
out the computation and had to depend on asymptotic properties of these statistics.
However, exact inference is becoming much more feasible than it was a decade
ago, owing to enormous improvement achieved recently both in algorithms and in
computer power. The computational results we are going to display are based on
Matsuo (2000a). These results would be informative to practitioners for deciding
which statistic should, or should not, be used in practice.

We can summarize the results as follows: Dewv consistently performs poorly, to
our great surprise, in the unconditional test. On the other hand, PX shows stable
performance in the unconditional test and the performance in the unconditional test
dominates the conditional test even when sample sizes are as large as 50. PD is
expected to show intermediate properties between the above two, as expected from
the definition in the previous chapter. In general, the behavior of PD and PX are
similar, but the behavior of Deuv is different from the other two. We note that Dev

should not be used in the unconditional test.

3.1 Pearson’s X2

We would like to observe the relative performances of the conditional and uncon-
ditional tests, when the Pearson’s X? is employed as a test statistic. It is of great
interest to carry out the comparison, because the Pearson’s X2 has been the best
used goodness-of-fit statistic for analysing discrete data. Sample size settings and
alternative hypotheses are just the same as that presented in section 2.3. The results
of the size and power calculations are displayed in a graphical form, for each sample
sizes four ( 2 x 2 ) graphs are presented: upper-left graphs display the conditional
sizes of the conditional test, upper-right graphs display the conditional sizes of the
unconditional test, lower-left graphs display the size functions of the conditional and
unconditional tests, where thick line represents the unconditional test and thin line
represents the conditional test, and lower-right graphs display the power plots, where
xr—axis represents the conditional test and y—axis represents the unconditional test.

The following Figures 3.1~3.4 are presented to display the results of the case,
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ni = no = ns3, where the discreteness of a test statistic is most feared. Just as
our anticipation, conditional sizes fluctuate heavily under the @ = 0.05 line in the
conditional test, and up and down the line in the unconditional test. That every
conditional size should be no more than the significance level, «;, in the conditional
test, which guarantee the size function to be always no more than «, makes the test
excessively conservative especially in this case. The size functions of the uncondi-
tional test are usually above those of the conditional test, which makes us expect the
unconditional test more powerful. This expectation is verified by the power plots,

in which almost all points are located above the equal power line, y = x.
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Figure 3.1: n = (20, 20, 20).
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Figure 3.3: n = (40, 40, 40).
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Figure 3.4: n = (50, 50, 50).

Next, we consider the case that two of three sample sizes are equal and the
remaining size is larger by 1, ny = ny = n3 — 1, where the discreteness of the
distribution of a test statistic is considerably less marked than the previous case.
The following Figures 3.5~3.8 are presented to display the results. We can observe
that the degree of fluctuation of conditional sizes is far smaller compared to the
previous case, n; = ny = ng, and is smaller in the conditional test compared to
the unconditional one. The size functions of the unconditional test are not always
located above the conditional ones. These observations support the statement, in
Mehta and Hilton (1993), that the performance of the conditional test nearly equals
that of the unconditional test, as the discreteness of a test statistics disappears.
The power plots barely show the power advantage of the unconditional test over the

conditional one.
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Figure 3.5: n = (20,20, 21).
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Figure 3.6: n = (30, 30, 31).
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Figure 3.8: n = (50,50, 51).
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At last, we consider the case that all sample sizes are distinct, ni+1 = ny = ng3—1,
where the discreteness of a test statistic is least expected. The following Figures
3.9~3.12 are presented to display the results. The change, we have observed from
the case, ny = ny = ng, to the case, ny = ny = n3 — 1, is again observed and the
difference in performance between the conditional and unconditional tests becomes
quite trivial, which indicates the disadvantage of the unconditional test because of

its heavy computational burden.
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Figure 3.9: n = (19,20, 21).
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Figure 3.10: n = (29, 30, 31).
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Figure 3.11: n = (39, 40, 41).
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Figure 3.12: n = (49,50, 51).

3.2 Deviance

In this section, we observe the relative performance of the conditional and uncon-
ditional tests, when the deviance, Dev, is employed as a goodness-of-fit statistic.
Because Dev is based on the maximum likelihood principle, it is natural to use Dewv
when maximum likelihood estimate for parameters is used. In fact, in the framework
of the generalized linear models, the use of Dev is recommended. The results we
are going to present would be of great interest for statisticians who are not certain
about the exact performance of Dewv.

Calculations are carried out at the same settings as the Pearson’s X2, PX.
The performance of the conditional test using Dev is almost parallel to that of the
conditional test using PX. The performance of the unconditional test using Dewv,
however, is extremely poor compared to the conditional one. To be more specific,
Dev tend to take relatively small values on the consecutive conditional reference
sets, ['7, I's and 'y, which requires smaller critical values in order to make the size

function to be no more than the significance level, o = 0.05, around = = 8/N. As a
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consequence, the size functions of the unconditional test, displayed with thick curve
in the lower left graph of each Figure 3.13~3.24, have a common shape that the
curves rise rapidly and attain their maximum about = = 8/N, and then decrease
rather slowly towards a(7) = 0.03. This tendency is consistently observed over the
other combinations of sample sizes. It is not too much to say that Dewv should not

be employed in the unconditional test.
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Figure 3.13: n = (20, 20, 20).
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Figure 3.14: n = (30, 30, 30).
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Figure 3.15: n = (40, 40, 40).
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Figure 3.16: n = (50, 50, 50).
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Figure 3.17: n = (20, 20, 21).
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Figure 3.18: n = (30, 30, 31).
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Figure 3.19: n = (40, 40,41).
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Figure 3.20: n = (50,50, 51).
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Figure 3.21: n = (19, 20, 21).
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Figure 3.22: n = (29, 30, 31).
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Figure 3.23: n = (39,40, 41).
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Figure 3.24: n = (49,50, 51).

3.3 Power divergence

The power divergence, PD, is advocated by Cressie and Read (1984), out of the
family of power divergence statistics, on asymptotic grounds. From the functional

form given in (1.4) and from the Figures 2.1, 2.2 and 2.4, we can expect PD has

Cond.

intermediate properties between PX and Dev, more like PX rather than Dewv.

Calculations are carried out at the same settings as PX and Dev. The following

Figures 3.25~ 3.36 are presented to display the results.

The performances of the conditional and unconditional tests using PD are hardly
different from those using PX. As mentioned in the section 2.1, the complex form

of PD prevent from taking tied values, compared to Dev and PX, which may be an

advantage of employing PD.
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Figure 3.26: n = (30, 30, 30).
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Figure 3.28: n = (50, 50, 50).
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Figure 3.30: n = (30, 30, 31).
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Figure 3.32: n = (50,50, 51).



58 CHAPTER 3. CONDITIONAL VERSUS UNCONDITIONAL TEST

a(s) Conditional a(s) Unconditional
0.1 0.1
0.08 0.08
0.06 0.06

10 20 30 40 50 60 10 20 30 40 50 60

Uncond. Power plot

/ Cond.

Figure 3.33: n = (19, 20,21).
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Figure 3.35: n = (39, 40,41).
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Figure 3.36: n = (49, 50, 51).



Chapter 4

Conditional two-dimensional test

In Chapter 3, we compared the conditional and unconditional tests, employing each
of the three statistics in turn. Each test has its own advantages as well as disad-
vantages. Whether the conditional/unconditional test is more powerful than the
unconditional /conditional test depends on sample sizes as well as alternative hy-
potheses. Anyway, the most serious problem is that the both tests have far smaller
sizes than a given fixed significance level when sample sizes are small and identical,

as observed in Chapter 3.

From now on, we would like to stand upon a practical ground and would not
treat the conditional and unconditional tests as competing ones. The purpose of this
thesis is to device test procedures which are more powerful than the conventional
conditional and unconditional tests, while keeping the rule of fixed-level significance
test, that is, the size function of a test should always be no more than the significance
level, . We would like to emphasize that the computational burden needed to
carry out exact methods is becoming lighter, thanks to the modern development of
computational circumstances. Therefore, additional computational burden, caused
by a refinement in statistical inferences, would be acceptable as a cost of the higher

performance.

We are going to explore test procedures for higher power even when sample
sizes are small and identical, hereafter. We note that only PX is considered as a
test statistic for the rest of this thesis, because PD performs just like PX and Dev

performs poorly in the unconditional test.

The content of this chapter is based on Matsuo (2000a).

61
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4.1 Derivation

The procedure we are going to introduce in this chapter is based on one of the
observations in Chapter 2 and 3 that, when sample sizes are of the same scale, we
expect the discreteness of goodness-of-fit statistic distribution to be least serious if
all sample sizes are distinct and most serious if identical. When sample sizes are
identical, a conventional test statistic has a tied value over the permutations of an
observation, as seen in section 2.1. Whether sample sizes are equal or not seems to
be uncritical, it does, however, influence the performance of a test.

To ease the discreteness that arises from the equality of sample sizes, a device,
which gives an order among the observations sharing a tied statistic value, might be
worth considering. The idea is to use a covariate accompanied with an observation.
This covariate needs not necessarily to be of interval scale, but may be of ordered
nominal scale such as the order of anticipated binomial proportions. Once a covariate
x; (i =1,---,k) is specified, we are able to calculate ) x;y; and use it to order the
observations sharing a tied statistic value. Since the statistic ) x;y; is the sufficient
statistic of the scale parameter § when we assume the following logistic regression

model,
_ exp{a+ fz;}
1 +exp{a+ fz;}

it is natural to consider that larger > z;y; value means larger deviation from the null

3

hypothesis, provided [ is assumed to be positive. The procedure described above
is considered as a test using the two-dimensional statistic, ( T(Y),>. z;Y; ). We

would like to refer this test as the conditional two-dimensional test, hereafter.

4.2 Numerical result

Now, we are going to illustrate the relative performance of the conditional two-
dimensional test, to the conventional unconditional test, over the settings of sam-
ple sizes considered in Chapter 2, except for the case that all sample sizes are
distinct. When sample sizes are distinct, there is little effect of introducing the
two-dimensional statistic and therefore we do not consider here. To carry out the
conditional two-dimensional test, we have to specify the values of the covariate z;.

We specify x; = 7, which corresponds to a dummy variable. This specification is
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expected to yield tied > x;Y; values and, as a result, give rise to worse performance
than the case that z;’s are continuous and not equally spaced. That is, our specifica-
tion is not fully favorable to the conditional two-dimensional test and better results
could be expected than those we are going to display, if a continuous covariate were

available.

We consider two cases, one being three sample sizes are equal and another be-
ing two of three sample sizes are equal. For each case, we consider four sample
size settings and, for each setting, we present four graphs. Upper-left graphs are
presented for comparing conditional sizes of the tests, where horizontal axis being
s = Y. y;, thick line represents the conditional two-dimensional test and thin line
represents the ordinary unconditional test. Upper-right graphs are presented for
displaying the size functions, where horizontal axis being 7, thick curve represents
the conditional two-dimensional test and thin curve represents the ordinary uncon-
ditional test. Lower-left graphs are the power plots of the two tests over the 44
simple alternatives, listed in section 2.3. We note here that, even when all sample
sizes are equal, the power of the conditional two-dimensional test varies over the
permutations of an alternative, because of the introduction of the two-dimensional
test statistic that assigns different values among the permutations of an observation.
The powers plotted on these graphs are the average powers over the permutations
of each alternative. Lower-right graphs are the power plots of the 44 alternatives
themselves, that is, we do not consider any permutations at all. What we want
to show, with these graphs, is the performance of the conditional two-dimensional
test when the guess, that the observations are listed in ascending expected binomial

proportion order, is true.

Let us observe the first case that three sample sizes are equal. We consider
the four settings; common sample sizes are 20, 30, 40 and 50. Looking at Fig-
ure 3.1 ~ 3.4, it is clearly observed that the conditional sizes of the conditional
two-dimensional test (abbreviated to “C2D”) consistently come up nearer to o =
0.05 line and show much less fluctuation than both the conventional conditional
and unconditional tests, which explains why size functions of the conditional two-
dimensional test show relatively monotonous behavior. Concerning average powers
over the permutations of simple alternatives, the two tests show quite similar re-

sults, that is, points in the power plots are almost on the diagonal line, y = x, apart
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from the setting n = (20, 20, 20), where points are located a little above the diag-

onal line. The conventional unconditional test sometimes attain power advantage

over the two-dimensional conditional test when sample sizes are small, in this case.

When it comes to the power comparison over the simple alternatives themselves,

the advantage of the conditional two-dimensional test is clearly observed without

exception.
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66 CHAPTER 4. CONDITIONAL TWO-DIMENSIONAL TEST

a(s) Cond. Size

0.1
0.08
0.06

_ o \J\JAV AAAﬁv&f/\A“ |
0. oa| T Py
0.02

20 40 60 80 100 120 140

uc Power Plot

=

0.2 0.4 0.6 0.8

1

C2D

9]

a

i

N

o ()

Size Function

—
f
//

|

uc

0.

1

Power Plot 2

Juny

0.

2

Figure 4.4: n = (50, 50, 50).

0.4 0.6 0.

C2D

Next, we consider the second case that two of three sample sizes are equal and

the other sample size is larger than the other two sizes by 1. That one sample size

differs from the other two has an effect of reducing the discreteness of a test statistic.

We observe from Figure 4.5 ~ 4.8 that the change, we observed when sample sizes

grow larger in the previous case, go on and the two tests show similar performances

as sample sizes grow larger.
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Figure 4.6: n = (30, 30, 31).
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Observing over the whole settings comparing the two tests, the restriction of
conditional tests that each conditional size should be no more than a nominal sig-
nificance level is really disadvantageous, because the stability of conditional sizes of
conditional tests can not overcome, in some settings, the allowance of conditional
sizes of the unconditional test to be larger than the nominal significance level, as

long as the size function does not exceed the nominal significance level.






Chapter 5

Unconditional modified test

As we observed in the previous chapter, that conditional sizes of a conditional test
should be no more than a nominal significance level is really restrictive. In this
chapter, we explore another exact test procedure having the desired properties of
both the conditional and unconditional tests.

This chapter is based on Matsuo (2000b).

5.1 Derivation

The test procedure we are going to introduce is to carry out an unconditional test
using a test statistic whose distribution on the whole sample space, I', is stable
against the change in 7 value.

The reason, why a conditional test is stable against the change in 7 value, is
that it is based on the distribution on the conditional reference set to which an
observation belongs. To be more specific, whether an observation is rejected or not
depends, not on its statistic value itself, but on the order of the statistic value in
the corresponding conditional reference set. Hence, in a conditional test, even if we
replace a conventional test statistic 7(Y) with the modified statistic 7*(Y"),

T*(y) = Pr{ T(Y) < T(y) | Ty } fory €T, (5.1)

we will surely have the same result as that given when the original statistic, T(Y"),
is used.
The critical value of the conditional test using the modified statistic is 1 — a,

which is constant across the conditional reference sets, and observations whose 1™
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values are no less than 1 — « are being rejected.

The advantage of introducing the modified statistic is that it can now be used
in the context of unconditional test. The critical value of the unconditional test
using the modified statistic is always no more than 1 — a. When the critical value
is strictly less than 1 — «, we are able to attain uniformly higher power than the
conditional test using the original statistic. We can also expect this test procedure
would dominate the unconditional test using the original statistic, except for the
odd case that the fluctuation of the conditional sizes of the ordinary unconditional
test accidentally give rise to higher power, as observed in Chapter 3. We would like
to call this procedure as the unconditional modified test, hereafter.

We note that we could use
1-T"(y) = Pr{ T(Y) > T(y) | [, 7, } fory,

instead of T*(Y) and reject H, if it is no more than «. We, however, prefer a

statistic that shows larger discrepancy as its value gets larger. So, we do not adopt
1—=T(y).

5.2 Numerical result

Now, we are going to display the relative performance of the unconditional modified
test to the ordinary unconditional test, over all the settings of sample sizes considered
in Chapter 2. As noted in Chapter 4, we employ only the Pearson’s X2 for the second
half of this thesis. So, we construct the modified statistic from the Pearson’s X2.
We consider three cases, the first case being three sample sizes are equal, the second
case being two of three sample sizes are equal and the third case being three sample
sizes are distinct. For each case, we consider four settings and, for each setting,
we present four graphs. Upper-left graphs are presented for comparing conditional
sizes of the two tests, where horizontal axis represents s = > y;, thick line represents
the unconditional modified test and thin line represents the ordinary unconditional
test. Upper-right graphs display size functions, where horizontal axis represents 7,
thick curve represents the unconditional modified test, and thin curve represents the
ordinary unconditional test. Lower-left graphs are the power plots of the two tests

at the 44 simple alternatives, listed in section 2.3. We note here that the powers of
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these graphs are the average powers over the permutations of each alternative, as in
the previous section. Lower-right graphs are average power-difference plots, which
are presented to show closely the power differences of the lower-left graph, plotted
in the same order as the list in section 2.3.

At first, we consider the case that all three sample sizes are equal, where the
discreteness of a test statistic is most feared. Figures 5.1 ~ 5.4 are presented to dis-
play our calculation. Although, the ordinary unconditional test accidentally shows
superior performance in small sample sizes, we could state that the performance of
the unconditional modified test (abbreviated to “UCM”) becomes better than the
ordinary one, as sample sizes grow larger. From our computational experience, when
sample sizes are small, say less than 30, the relative performance of a collection of
test procedures depends on the specific sample sizes. It is, therefore, very hard to

find a test which is always more powerful over the others with such sample sizes.
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Figure 5.1: n = (20, 20, 20).
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Figure 5.4: n = (50, 50, 50).

Next, we consider the second case that two of three sample sizes are equal and
the other is larger by 1. In this case, the discreteness of a test statistic is expected to
reduce and the tendency we have observed in the previous case continues to develop.
Observing Figure 5.5 ~ 5.8, we could state that our the unconditional modified test
showed stable size performance and higher power as a whole, which is just what we

have expected.
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Figure 5.6: n = (30, 30, 31).
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At last, we consider the third case that three sample sizes are distinct. We expect
the tendency we have observed in the previous two cases would be seen most clearly.
The results are displayed in Fugure 5.9 ~ 5.12. The advantage of the unconditional
modified test is clearly seen except for the setting n = (19,20, 21), where sample
sizes are small and any general rule is likely to hold. We have carried out more
calculation than displayed in this section and observed consistent superiority of the
unconditional modified test over the ordinary unconditional test, when sample sizes

are more than 30 and distinct.
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Chapter 6

Unconditional modified
two-dimensional test

The purpose of this thesis is to contrive test procedures that are less conservative
than the conventional exact tests, in the sense that the empirical size of the test being
virtually a given fixed significance level and having, as a result, higher power. Even
if these contrived procedures require a certain amount of additional calculation, this
is not a critical issue nowadays considering the dramatic development of modern
computing circumstances. Although we have introduced two such procedures in
Chapter 4 and 5 and attained certain improvement over ordinary exact tests, the
ordinary unconditional test accidentally shows higher powers, on a few sample size
settings in the cases , ny = ny = n3 and n; = ny = n3 — 1. In this chapter, we are
going to introduce a test procedure that is most computer intensive but expected
to perform better in the two cases, n;y = ny = n3 and n; = ny = n3 — 1, than the
ordinary unconditional test.
This chapter is based on Matsuo (2001).

6.1 Derivation

We have observed in Chapter 4 and 5 that the performance of the conventional
unconditional test was pretty good, and that we failed to find a procedure that is
uniformly more powerful than that. However, we found that the two procedures
introduced in the previous two chapters were not exclusive but can be used at the

same time. We, at the end of this thesis, would like to propose a test procedure
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that is a combination of two previously introduced procedures; that is, the uncondi-
tional test using a modified two-dimensional statistic. We call this procedure as the
unconditional modified two-dimensional test. This new procedure is guaranteed to
have consistently higher power than the conditional two-dimensional test, because
the critical value of the unconditional modified two-dimensional test is allowed to
be under 1 — o, where « represents a nominal significance level, which is a conse-
quence of introducing the modified statistic (5.1). And, although we can not expect
consistent superiority of this procedure over the unconditional modified test and the
ordinary unconditional test, we would be able to expect better performance of this

procedure than the above two procedures, as a whole.

6.2 Numerical result

Here, we illustrate the relative performance of the unconditional modified two-
dimensional test, to the ordinary unconditional test, over the settings of sample
sizes considered in Chapter 4. As noted in Chapter 4, we employ only the Pearson’s
X? for the second half of this thesis. We construct the modified statistic from the
two-dimensional statistic based on the Pearson’s X2. When sample sizes are dis-
tinct, there is no effect of introducing two-dimensional statistic in the unconditional
modified test. Therefore, in this section, we do not treat the case of equal sample
sizes. To carry out the unconditional modified two-dimensional test, we have to
specify the values of the covariate x;, (i = 1,---,k), as in Chapter 4. We specify
x; = 1, corresponding to a dummy variable, the specification not fully advantageous
to this new procedure, in the same sense explained in Chapter 4.

As in Chapter 4, we are going to consider two cases, first case being three sam-
ple sizes are equal, n; = ny = n3, and second case being two of three sample sizes
are equal, ny = ny = ng — 1. For each case, we consider four settings and, for
each setting, we present four graphs. Upper-left graphs are presented for comparing
conditional sizes of the tests, where horizontal axis is s = »_y;, thick line repre-
sents the unconditional modified two-dimensional test and thin line represents the
ordinary unconditional test. Upper-right graphs are presented for displaying size
functions, where horizontal axis is 7, thick curve represents the unconditional modi-

fied two-dimensional test and thin curve represents the ordinary unconditional test.
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Lower-left graphs are the power plots of the two test procedures at the 44 simple
alternatives listed in section 2.3. As we noted in section 4.2, even when all sample
sizes are equal, the power of the unconditional modified two-dimensional test varies
over the permutations of an alternative, because of the introduction of the two-
dimensional statistic. The powers of these graphs are the average powers over the
permutations of each alternative. Lower-right graphs are the power plots of the 44
alternatives themselves, that is, we do not consider any permutations at all. What
we want to show with these graphs is the performance of the unconditional modified
two-dimensional test when the guess that the observations are listed in ascending
expected-probability order is true.

Let us observe the first case that three sample sizes are equal and common sample
sizes are 20, 30, 40 and 50. Comparing with Figure 4.1 ~ 4.4 and Figure 5.1 ~ 5.4,
it is obviously observed that the conditional sizes of the unconditional modified two-
dimensional test ( abbreviated to "UCM2D”) consistently come up nearer toward
a = 0.05 line than the other two procedures introduced in the last two chapters,
and that, comparing with the ordinary unconditional test, this new procedure show

higher power at almost all alternatives on almost all sample size settings.
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Next, we consider the second case that two of three sample sizes are equal and
the other sample size is larger than the two by 1. That one sample size differs from
the other sample sizes has an effect of reducing the discreteness of a test statistic.
We observe from Figure 6.5 ~ 6.8 that the change, we have observed as sample sizes
grow larger in the previous case, goes on and the two tests show similar performances

as sample sizes grow larger.
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Figure 6.5: n = (20,20, 21).



6.2. NUMERICAL RESULT

87

a(s) Cond. Size o (1) Size Function
0.1 0.05 —
0.08 0.0a //
o LA\T/& Avj\_\jL\ D //
0.04 ; : 0.0“//
0.02 VV VV 0.01/
40 60 80 S 0.1 0.2 0.3 0.4 0.5"
ue Power Plot uc Power Plot 2
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
UCM2D
M
02 02 06 08 - Uc 0.2 0.4 0.6 0.8
Figure 6.6: m = (30, 30, 31).
af(s) Cond. Size o () Size Function
0.1 0.05
0.08 0.04 V/
0.06 0.03
| f\ JYELTN A M4, AAA. .
T VT T
0.04 O'Oq//
0.02 w VV 0 017
S JT
20 40 60 80 100 120 0.1 0.2 0.3 0.4 0.5
ue Power Plot uc Power Plot 2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
UCM2D
UucM
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8
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Figure 6.8: n = (50,50, 51).

Observing the whole figures in this section and Figure 5.9 ~ 5.12, we could state

that our new test procedure would yield higher power than the ordinary uncon-

ditional test except for irregular settings, where the unstable performance of the

ordinary unconditional test accidentally attains higher power.



Chapter 7

Conclusion

In the first half of this thesis, we have investigated the exact behavior of the exact
conditional and unconditional tests, owing to the modern computational circum-
stances. The first discovery is that the deviance performs very poorly in the un-
conditional test. On the other hand, the performance of the Pearson’s X? and the
power divergence in the unconditional test is usually better than that in the con-
ditional test. We have also discovered that, when comparing the exact conditional
and unconditional tests, there was some room for improving the conventional exact

tests.

In the second half of this thesis, following the discovery just above, we have
pursued the possibility of improving the conventional exact conditional and uncon-
ditional tests. We introduced the conditional two-dimensional test, for the case that
some of sample sizes are equal, to order the observations sharing a tied statistic
value resulting from the equality. We also introduced the unconditional modified
test to implement a test that has both the advantages of the conditional and un-
conditional tests. We would like to propose to carry out the unconditional modi-
fied two-dimensional test, which is the unconditional modified test employing the
two-dimensional statistic. We note that, in the case of distinct sample sizes, the
unconditional modified two-dimensional test coincides with the unconditional mod-
ified test. By adopting our proposal, we are able to implement a test that is always
more powerful than the conventional unconditional test, except for some irregular
settings of sample sizes and alternative hypotheses. The stable performance of the

unconditional modified two-dimensional test can reasonably be expected even with
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some settings of sample sizes, where the ordinary unconditional test might show
poor performance like that we have observed with the deviance (although, we have
not encountered such a phenomenon with the Pearson’s X? ).

It is true that the amount of calculation, needed to investigate the performance of
an unconditional modified two-dimensional test, is enormous. However, the amount
of calculation, needed to implement an unconditional modified two-dimensional test,
is far trivial than that. To implement an unconditional modified two-dimensional
test, we at first calculate the value of the modified two-dimensional statistic referring
to the conditional reference set, to which an observation belong. If the value is
no less than 1 — a, we conclude that the evidence against the null hypothesis is
significant. Else if the value is slightly less than 1 — «, we further calculate the
minimum value of the modified two-dimensional statistic that is no less than the
observed modified two-dimensional statistic value in each conditional reference set,
and then draw the graph of the weighted average of the values as a function of r,
just like the size function (1.18). If the function is uniformly no less than 1 — a,
we conclude significant, otherwise not significant. Extra calculation is needed only
when the observation has a subtle evidence against the null hypothesis.

Although we have confined our discussion in fixed-level testing throughout the
thesis, the test procedures introduced in Chapter 4, 5 and 6 can also be utilized to
report the observed significance level (p—value). These p—values are considered to
be more elaborate than ordinary mid p—value. At the end of this thesis, we would
like to emphasize again that our discussion is applicable to four or more sample

cases, in spite of our illustrations being confined to three sample case.
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