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Abstract

Poincaré proved existence of meromorphic function sautba certain kind of
system of multiplication formulae and claimed that the sla$ those functions is
new. In this paper we exemplify Poincaré’s meromorphic fioms being truly new
in a rigorous sense. We prove that those functions cannoxfressed rationally (nor
algebraically) by solutions of linear difference equasipnhe exponential function
e, the trigonometric functions cos and sinx, the Weierstrass functiop(x) and
any other functions satisfying first order algebraic diéfere equations, where the
transforming operator of the difference equations is ormalisg y(x) to y(2x), not
to y(xX + 1).

1. Introduction

In his paper [8] Poincaré studied meromorphic functionscitgatisfy a system of
difference equations,

@1(MX) = Ra(¢1(X), 92(X), - - -, ¢n(X)),
o) p2(MX) = Ra(¢1(X), 92(X), - - -, ¢n(X)),

en(MX) = Ra(p1(X), g2(X), - - ., ¢n(X)),

whereRy, ..., R, are rational functions ove€ andm € C satisfiesjm| > 1. He proved
existence of meromorphic function solution of the syster (dder a certain condi-
tion and claimed that the class of these functions is new. guestion is whether the
system (1) can define “new functions”. In Section 5 we answdayiintroducing an
example which defines “new functions” in the sense explaiiaéer.

In this paper we study systems of difference equations @itibimal form such as

2 Yoy =
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and
_A@)
5 yiy = %
© _Ch
7 Dy’

where A, B, C and D are polynomials overC(x), A and B are relatively prime and
C and D are relatively prime. The symbolg, and z; denote the first transforms of
y and z respectively such ag(x + 1), y(mx) or y(x?) for y(x), andy, denotes the
second transform of.

It would be worth to mentiorg-Painlevé equations which were presented by B.
Grammaticos, A. Ramani and other authors (see [2, 9, 10,2]})., According to the
paper [12] by H. Sakai, 8 of 1§-Painlevé equations have the form (2) or (3) with
maxXdegA, degB, degC, degD} < 2. For example,

q-P(A7): y2y = a(l——zyl)
Y1
and
(z—Dby)(z—bp)
(z—bs)(z—bs)’ _ bybobrbg
(yi—abs)(y1 —qbe) 7 Dabybsbo’
(y1—b7)(y1 —bg)

y1y = brbg
g-P(As):

217 = b3b4

wherey = y(t), y1 = y(qt), y» = y(g%), z = z(t), z1 = z(qt) and a and b’s are
parameters.

In Sections 3 and 4 we respectively show that the equationis(2yeducible if
max{degA, degB} > 2 and that the system (3) is irreducible if

max{degA, degB} - max{degC, degD} > 4.

Here the irreducibility is in the sense of the decomposabkersion defined in the
Definition 2 and implies that each transcendental functiommonent of any vector
solution cannot be expressed rationally (nor algebraigcély solutions of linear differ-
ence equations and solutions of first order algebraic @iffee equations. The precise
explanation of the decomposable extension will be seen ati@®e2 (cf. [4, 5, 6, 7]).

In Section 5 we introduce the theory of Poincaré and studyfdhewing system
of difference equations,

y(mx) = Cy(x), z(x)), C(Y,2) = % —
4) 3
( BV, 2) _

z(mx) = D(y(x), z(x)), D(Y, Z2) = B,

Z+B
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wherem € C with |m| > 1, @, 8 € C* and A and B are non-zero polynomials oveé
such that deg\ - degB > 4, A(0) = «?, B(0) = 82 and

A(0)B'(0)  (m+ 1y
af N m

A’ and B’ are the derivatives oA and B respectively. This system is derived from

{(y(mx) + a)(Y(X) + ) = A(z(x)),
(z(mx) + B)(z(x) + B) = B(y(mX)).

For the system (4), we obtain a meromorphic function safultip the method of Poincaré.
We show that the solution cannot be contained in any decoaf®xtension. For ex-
ample, in the casm = 2, this implies that the solution cannot be expressed ralliptnor
algebraically) by solutions of linear difference equasiptihe exponential function‘ethe
trigonometric functions cas and sirnx, the Weierstrass functiop(x) and any other func-
tions satisfying first order algebraic difference equatioiWe note that the above functions
respectively satisfy the following equations which can égarded as first order algebraic
difference equations,

e2X — (eX)Z,
cos X = 2(cosx)? — 1,
(sin 2)? = —4(sinx)* + 4(sinx)?,

o) — L. 16909 + 8020097 + 32050() + &
16 4p(x)% — g2 (X) — O3 .

NOTATION. Throughout the paper every field is of characteristic zékhen K
is a field andr is an isomorphism oK into itself, namely an injective endomorphism,
the pairK = (K, ) is called a difference field. We catl the (transforming) operator
and K the underlying field. For a difference field, K often denotes its underlying
field. Fora € K, an element"a € K, n € Z, is called then-th transform ofa and is
frequently denoted bw, if it exists. If tK = K, we say thatC is inversive. IfK /tK
is algebraic, we say thdt is almost inversive. For difference fields = (K, ) and
K' = (K’, "), K'/K is called a difference field extension K’'/K is a field extension
and t'|x = 7. In this case we say thdt’ is a difference overfield ofC or K is a
difference subfield ofC’. For brevity we sometimes us& (') instead of K, 7/|k).
We define a difference intermediate field in the proper wayt Kebe a difference
field, £ = (L, ) a difference overfield ofC and B a subset ofL. The difference
subfield I(B) » of £ is defined to be the difference fiel& (B, B, 2B, ...), r) and
is denoted bylC(B) for brevity. A solution of a system of difference equationgiok
is defined to be a tuple of elements of some difference overbélC which satisfies
the equations (cf. the books [1, 3]).



144 S. NISHIOKA

2. Preliminaries

We begin this section by introducing the decomposable siden

Lemma 1. Let £ = (L, ) be a difference field antl an algebraic closure of L.
Then there is an isomorphism of L into itself such thatC = (L, 7) is a difference
overfield of £. We call £ an algebraic closure ofZ. If there is an almost inversive
difference subfieldC = (K, t|k) of £ such thattr.degL /K < oo, then £ is inversive.

Proof. There exists an isomorphism of L onto L C L satisfying7|, =t
(cf. the book [13], Chapter Il, 814, Theorem 33). Supposd thare is an almost
inversive difference subfield = (K, t|x) of £ such that tr.ded./K < oco. Since
tr.degL /K = tr.degrL /7K, the extensiorlL/zL is algebraic, which impliesL = L.
ThereforetL = L. O

The following is the definition of the decomposable extensidlthough it is dif-
ferent from the one in the preceding paper [6], they are edgnt.

DEFINITION 2 (decomposable extension). Lkt be a difference field, and an
algebraically closed difference overfield &f satisfying tr.degC/K < co. We define
decomposable extensions by induction on tr. 4¢g.

(i) Iftr.degL/K <1, thenL/K is decomposable.

(i) When tr.degl/K > 2, L/K is decomposable if there exist difference fields £
and M such thati/ is an algebraically closed difference overfield 6f £ is a dif-
ference intermediate field @f//C, tr.degE/K < oo, £ and L are free overkC, M is

a difference intermediate field of£/E, tr.degLE/ M > 1, tr.degM/E > 1 and both
LE/M and M/E are decomposable, wheg€ and M are the algebraic closures of
LE and M in U respectively.

REMARK. For any first order algebraic difference equation over gedihce field
K, each of its solutions, say, generates a decomposable extensi@f )/, where
K(f) is any algebraic closure of(f). In fact, f and its first transformf; satisfy
P(f, f;) = 0 for some non-zero polynomidaP(X, Y) € K[X, Y], which implies that

fi,1 is algebraic over'K(f;) ¢ K(f;) for all i > 0. Hence we conclude that
tr.degkC(f)/K = tr.degk(f)/K = tr.degK(f)/K < 1.
We also have the following propositions.

Proposition 3 (Corollary 8 in [6]) Let K be a difference field

%) Yn+an-1Yn1+---+ay=>b
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be a linear difference equation ovét, where n> 1, and f a solution of(5). Then

K(f)/K is decomposable for any algebraic closue f) of (f).

Proposition 4 (Proposition 3 in [6]) Let K be a difference fieldand £/K and
N/L be decomposable extensions. THeRK is decomposable.

Putting together the facts mentioned above, we find thatafgr tower of differ-
ence field extensions generated by solutions of linearréiffee equations and solutions
of first order algebraic difference equations, its algebrelbsure is a decomposable
extension.

The following two lemmas are used in proofs of irreducikilitThe former is a
modification of the corresponding lemma concerned only witigle equations in the
paper [6]. The latter is what we use in the following sections

Lemma 5. Let K be a difference fieldD a decomposable extension &f and
B C D. Suppose that for any difference overfiéldf K of finite transcendence degree
and for any difference overfieltd of £ such thatK(B)p C U, the following holds
tr.degL(B)y/L < 1= any f e B is algebraic over L.
Then any fe B is algebraic over K.
Proof. The proof is almost the same as the proof of Lemma 9Jin [6 O
Lemma 6. Let K be an almost inversive difference fiel? a decomposable ex-
tension ofC and B C D. Suppose that for any inversive difference overfiélaf
and for any difference overfielt of £ with KC(B)p C U, the following holds
tr.degL(B)y /L < 1= any f e B is algebraic over L.
Then any fe B is algebraic over K.
Proof. LetL be a difference overfield of of finite transcendence degree aid
a difference overfield ofZ with (B)p C U.
We show

tr.degL(B),/L <1 = any f € B is algebraic over.

Suppose tr.deg(B);/£ < 1. Letl an algebraic closure dff and £ the algebraic
closure of£ in U. Note thatZ is inversive. We find

tr.degL(B);;/L = tr.degL(B)y /L < 1,
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which implies that anyf € B is algebraic overL. Therefore anyf € B is algebraic
over L.
By Lemma 5 we conclude that anfy € B is algebraic ovelK. [l

We also need the following.

Lemma 7. Let L be a fieldm,neZ-; and AB,P,R, R, S S € L[X]\ {0}
polynomials over L such that A and B are relatively prime

max{degR, degR/, degS, degS} < n,
A"R = PS and B'R' = PS. ThendegA < 2n/m anddegB < 2n/m.

Proof. It is sufficient to prove that deg< 2n/m. For polynomialsC,D € L[X]\
{0} we let C, D) denote the monic greatest common divisor@fand D. PutC =
(A™, S). From AR = P S we obtain

(A"/C)R = P(S/C), A"/C, S/C e L[X].

Since A™/C and S/C are relatively prime, we findA™/C) | P, which implies

m

deg@A™, P) > deg% = mdegA — degC

> mdegA—degS> mdegA—n.

We obtain A", P) | B"R from B™R' = PS and (A™, P) | P. Since A™, P) and B™
are relatively prime, we findA™, P) | R, which implies

deg(A™, P) < degR <n.
Therefore we conclude that dég< 2n/m. ]

3. Single equation of birational form

In this section we study irreducibility of the single eqoati

_ An)
B(y1)'

Y2y

where A and B are polynomials.



FUNCTIONS SATISFYING POINCARE’'S MULTIPLICATION FORMULA 147

Proposition 8. Let £ = (L, r) be an inversive difference field and f a solution
of the equation over,
Bynyzy = A(ya),

where A B € L[X] \ {O} are polynomials over L such that A and B are relatively
prime andmaxXdegA, degB} > 2. Then it follows that

tr.degl(f)/L < 1= f is algebraic over L.

Proof. To obtain tr.deg (f)/L # 1 we assume tr.deg(f)/£ = 1. Then f; is
transcendental ovel for anyi > 0. Since it follows that tr.deg(f, f1)/L = 1, there
exists an irreducible polynomid over L,

No ny )
F=Y > aYY eL[Y, Y]\ {0}, a;elL,
i=0 j=0

such thatF(f, f;) =0, no =deg, F > 1, ny =deg, F > 1 anday,, € {0, 1}. Put

Fy = (Y B(Y))™F* (Yl, YAéZ;i)),
B A
Fo = (YiBOY))™F (—YIB(Y), Y).

where F* = >, 3™ (a;) Y'Y/, It is seen thatF;, Fy € LY, Y1] \ {0}. We find

Fi(f, f1) = (fB( fl))an*(fl’ fAEE(f;i))

= (fB(fy))"F*(f1, f2) =0

and

A(fy)

— No

Folfs, 1) = (B F gy 1)
= (f,B(f1))™F(f, f1) =0,

which imply F | F; and F* | Fo. Therefore we obtain

no= deg, F < deg, F; < n;= deg, F* < deg, Fo< no,

and song =ng. Putn=ng =n; > 1.
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Let P € L[Y, Y1] \ {0} be a polynomial satisfyind~ = PF. We find P € L[Y,]
by deg, P = deg, F1 —deg, F = 0. We have

_ n oy Vi ﬂ j
Fr = (Y B(Y1) ; 12::0 (@ )Yl(Y B(Yl))

=2 3 @) Yi(Y BO)" I A(Yy)

i=0 j=0

=Y t@n VI ANYD)"B(Y)Y!

i=0 j=0

n n
=> {A(Yl)”j B(Y)! > f(ai,n_,»)Y{}Yi
j=0 i=0
and
n n ) . n n o n n _ _
PF=PY > aVYY = ZZajivlvizz{PZajivi}w.
i=0 j=0 j=0i=0 j=0 i=0

From F; = PF we obtain

(6) A" Y t(@n)Yi=P Y agY; (#0),
i=0 i=0

(@) BYD)" ) t@aYi =P ) ai¥; (#0).
i=0 i=0

By Lemma 7 we find ded\ < 2 and ded < 2, which imply
maxXdegA, degB} < 2,
a contradiction. Therefore we conclude that tr.déd)/L # 1, which yields
tr.degl(f)/L£ < 1= f is algebraic over,
the required. O

Theorem 9. Let K be an almost inversive difference field” a decomposable
extension ofC and f e N a solution inA\ of the equation ovel,

B(y1)y2y = A(ya),
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where A B € K[X] \ {0} are polynomials over K such that A and B are relatively
prime andmaxdegA, degB} > 2. Then f is algebraic over K.
Let £ be an inversive difference overfield & andi/ a difference over-

Proof.
field of £ with IC(f)» C U. Then by Proposition 8 we obtain

tr.degL(f)y/L <1= f is algebraic ovel.
Therefore we find thaff is algebraic ovelK by Lemma 6.

4. System of two equations of birational form
In this section we study irreducibility of the system of etjoias,

A9
yly - %l

_ C(y)
“2= Dy’

where A, B, C and D are polynomials.

Lemma 10. Let £ = (L, r) be an inversive difference field arfgt, z) = (f, g) a
solution of the system of equations ow&r

{B(Z)yly = A®2),
D(y1)z1z = C(y1),

where AB,C,D € L[X]\ {0} are polynomials over L such that A and B are relatively
prime C and D relatively primedegAB > 1 and degCD > 1. Then

tr.degL(f)/L = tr.degL(g)/L = tr.degL(f, g)/L.
If we supposer.degL(f, g)/L = 1 then we find that there are polynomials over L

with indeterminates Y and ,Z
No Ny
ajj € L,

F = ZZO[”YIZJ € L[Y, Z]\{O},

i=0 j=0

G=)Y > AYZ eLlY, Z]\ (0}, ByjelL,

i=0 j=0
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PelL[Z]\ ({0} and Qe L[Y]\ {0} such that Kf, g) = G(f1,g) =0, both F and G
are irreducible

np = deg, F = deg, G > 1,
n, =deg, F =deg, G > 1,
C‘fnonlu ,Bnonl € {Ol 1}!

No

=0 i=0
and
9) i{c:(v)“l—i D(Y)! i BinjY' } Zl = i{Q i (eij) Y } zl.
j=0 i=0 i=ol =0
Proof. (1) Firstly, we prove
tr.degL(f)/L = tr.degL(f, g)/L.

g is a zero of the polynomiaf; f B(X)— A(X) € L(f, f1)[X] becauseB(g) f1 f = A(Q).
If we assumef, f B(X) — A(X) = 0 then we find thatA(X) and B(X) has a common
divisor in L(f, f1)[X], a contradiction. Therefore we have f B(X)— A(X) # 0, which
implies thatg is algebraic over_(f, f;). We obtain the required from

tr.degL(f, g)/L = tr.degL(f, g}/L(f) + tr.degL(f)/L
= tr.degL(f)/L.

(2) Secondly, we prove
tr.degL(g)/L = tr.degL(f, g)/L.

f1 is a zero of the polynomiat;;gD(X) — C(X) € L(g, 91)[X] becauseD(f1)g:10 =
C(fq1). If we assumeg;gD(X) — C(X) = 0 then we find thatC(X) and D(X) has a
common divisor inL(g, g1)[ X], a contradiction. Therefore we hagggD(X) —C(X) #
0, which implies thatf; is algebraic ovelL(g, gi).

We may suppose that is transcendental ovdr because we have

tr.degl(f, g)/L = tr.degL(f, g)/L(g) + tr.degL(q)/L.

Since £ is inversive, we find thatf; is also transcendental ovér, which implies that
g is transcendental ovdr. Then fromB(g) f; f = A(g) we obtain

A(9)

= B(g) f]_ € L(f1! g),
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and so

tr.degL(f, g)/L = tr.degL(fy, g)/L
= tr.degL(f1, 9)/L(g) + tr.degL(g)/L
= tr.degL(q)/L,

which yields the required.

(3) Finally we suppose tr.degy f,g)/L = 1. By (1) and (2) we find thaf; and
g are transcendental ovdr for all i > O, where note thail is inversive. Since it
follows that tr.ded-(f, g)/L = 1, we find that there exists an irreducible polynomial
F e L[Y, Z] \ {O} overL,

No Ny

F = ainiZj, oij eL,

i=0 j=0

such thatF(f,g) =0, np =deg, F > 1, n; =deg, F > 1, anday,, € {0, 1}. By
tr.degL(f1, g)/L = 1 there exists an irreducible polynomi@ € L[Y, Z]\ {0},

Nz N3

GZZZ,BiniZj, ,Bij € L,

i=0 j=0

such thatG(fy, g) = 0, n, = deg, G, n3 = deg, G and Bn,n, € {0, 1.
For anyP = Y, pX' € L[X] we define P* as P* = Y, =(p)X', and for any
P=>,pY'Z, we defineP* asP* =}, ; 7(p;j)Y'Z). Put

C(Y)
" ZD(Y)
A*(2)
Y B+ (2)’

Fi={Z D(Y)}"IF*(Y ) e L[Y, Z]\ {0},

Gi={Y B*(Z)}”ZG*( z) e L[Y, Z]\ {O}.

Then we have

— Ny * C(fl))
Fi(f1. @) = (gD(f))™ F ( o
— (gD(f)}™ F*(f, g) = 0

and

o % No % A*(gl)
Ga(f1, 1) = {f1B*(9)}™G (le*(gl), 91)

= {f1B*(91)}"?G"(f2, q1) = 0,
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which imply G | F; and F* | G; respectively. Put

Fo={Y B(Z)}”OF(YAé(ZZ)), Z) e L[Y, 21\ {0},

c(Y)
' ZD(Y)

Go=1{Z D(Y)}”3G(Y ) e LY, Z] \ {0}.

Then we have

. o A(9)
Fo(f1, 9) = {f1B(9)} F( fB(g)’ g)

= {f1B(9)}F(f,g) =0

— N3 C( fl)
Go(f1, 91) = {91 D(f1)} G(fl’ ng(fl))

= {g:D(1)}"™G(f1,9) =0,
which imply G | Fg and F* | G respectively. Therefore we fimth = ny andn; = n3 by

and

nozdeg(F*Sdeg(Glfnzzdeg(GSdeg(Fofno
and
n]_:degzF*fdegZGofngzdengSdegzl:lfnll

Let P,Q € L[Y, Z]\ {0} be polynomials such thd, = PG and Go = QF*. Since
we have
deg, P = deg, Fp —deg, G =0,

and
deg, Q = deg, Gop—deg, F* =0,

we obtainP € L[Z] and Q € L[Y]. CalculateFy and PG as follows,

Fo— IYBZI™ 0 3 a (f&zz)))

i=0 j=0
=) i AZ) Z)(Y BZ)™
i=0 j=0

Ny

=D > i A Z(Y B(Z))

i=0 j=0
i{A(Z)”O 'B(2) Zano VA }Y'

i=0 j=0

No

PG = onzlﬁijvizi :Z{leﬂijzj}w-
j=0

i=0 j=0 i=0
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Then we obtain the equation (8). To obtain the equation (9caleulateGy and QF*
as follows,

_ L S \ORY
Go = {ZD(Y)}™ > > BijY (ZD(Y))

i=0 j=0
=Y BY'C(YV)(ZD(Y)™
i=0 j=0

D Bini YICY)™ 1 (ZD(Y))
0 j=0

-3 {C(Y)“” D(Y)! Zoﬂi,nl_,-vi}zj,

j=0 i=0

=}

QF* =Q> > t(aj)Y'Z! =Z{Q2f(aij)vi}zj. O

i=0 j=0 j=0 i=0

Proposition 11. Let £ = (L, ) be an inversive difference field arg,z) = (f,Q)
be a solution of the system of equations oxer

{ B@yiy = A®2),
D(y1)z1z = C(y1),

where AB,C,D € L[X]\ {0} are polynomials over L such that A and B are relatively
prime C and D relatively prime and

max{degA, degB} - max{degC, degD} > 4.
Then it follows that

tr.degL(f, g)/L <1= f and g are algebraic over L.

Proof. To obtain tr.deg(f, g)/L # 1 we assume tr.de§(f, g)/L = 1. By
Lemma 10 there exist polynomials, G, P, Q € L[Y, Z] \ {0} over L such that

No ny
F = ZZO{iniZj, ojj € L,
i=0 j=0

No N

G=ZZ,3iniZj, Bij €L,

i=0 j=0
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P eL[Z], Qe L[Y], F(f,g)=G(f;,g) =0, F andG are irreducible,
ng =deg, F =deg, G > 1,
ny =deg, F =deg, G > 1,
nony» Bron, € {0, 1},

(10) i{A(Z)no_i B(Z) 21: i, Z/ }Yi - ZO:{ 3 i Bij Z! }Yi
=0

i=0 j=0 i=0

and
(12) Zl{cm“” DY) Y ﬁi,m_;vi}zi = Z{ QY toy)Y } zl.
j=0 i=0 j=0 i=0

From the equation (10) we obtain the following two equatjons

(12) AZ)™ Z anojZ) =P Z BoiZ) (#0),
i=0 j=0

(13) B(Z)™ Z ;2! = P Z Broi 2 (#0).
j=0 j=0

From the equation (11) we obtain the following two equatjons

(14) c(Y)™ Z; BinY' = Q ZO t(@o)Y' (#0),

(15) D(Y)™ iﬂioYi =Q Zo (@in)Y' (#0).

By Lemma 7 we find that

degA < ﬂ, degB < ﬂ,
0 0
No
degC < —, degbh < —,
1 1
which imply
2n; 2
maxdegA, degB} - max{degC, degD} < % . % = 4,
0 1

a contradiction. Therefore we conclude tr. d&df, g)/L # 1, which yields

tr.degL(f, g)/L < 1= f andg are algebraic ovet,
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the required. Ll

Theorem 12. Let K be an almost inversive difference fielt” a decomposable
extension ofC and (y, z) = (f, g) a solution in A/ of the system of equations ovk,

{B(Z)Yﬂ/ = A(2),
D(y1)z1z = C(y1),

where AB,C,D € K[X]\{0} are polynomials over K such that A and B are relatively
prime, C and D relatively prime and

maxdegA, degB} - maxdegC, degD} > 4.
Then f and g are algebraic over K.

Proof. LetZ be an inversive difference overfield & andi/ a difference over-
field of £ with IC(f, g)»r C U. By Proposition 11 we obtain

tr.degL(f, 9)y/L <1= f andg are algebraic oveL.
Therefore by Lemma 6 we conclude thatand g are algebraic oveK. []

5. “New” functions of Poincaré

In this section we exemplify Poincaré’s functions beinglytrnew in a rigorous
sense. First of all, we introduce the theory of Poincaré. tdeisd the following sys-
tem of difference equations [8],

p1(MX) = Ry(p1(x), g2(X), - . ., n(X)),
(16) p2(MX) = Ra(¢1(X), g2(X), - . ., n(X)),

¢n(Mx) = Ra(p1(X), @2(X), - - ., ¢n(X)),

where Ry, Ry, ..., Ry € C(Xy, Xz, ..., X;) are rational functions ove€ andm e C
satisfies|m| > 1. We additionally suppos& (0, 0,...,0)=0 for all i and put

IR

,Bik = a—)(k(o, 0,. [P O)
We define
puu—s Pz ... B1n

F(o) = /3.21 ,322‘— s . ,3.2n

Bn1 Bn2 ... PBan—=S5S
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and suppose that défm) = 0 and deE(mP) £ 0 for all p € Z>,. We take {11,021, ...,
an1) € C"\ {0} such that

11
21
Fm] . |[=0
an1
and inductively defineryp, aop, ..., anp for all p > 2 by
A1p Yip
a2p Y2p
=—F)| |
Qnp Ynp

where y;, is the coefficient ofxP of
p-1 p-1
R <2 ot Zankxk).
k=1 k=1

Putg? = >0 axX for alli =1,2,...,n. Then the following theorem holds.

Theorem 13 (Poincaré [8]) ¢?,¢?,...,¢0 satisfy the syster{l6) as formal power
series and converge. Moreover there exist meromorphictifume overC, ¢1,¢2,...,¢n,
which satisfy the systefl6) and their power series representations@toincide with
99, 99, ..., @2 respectively.

From here, we deal with the following system of equations,

A(Z
y(mx) = C(y(x), z(x)), C(Y, 2) = % Ca

(17)
z(mx) = D(y(x), z(x)), D(Y, Z) = %Yﬁz» B,

wherem € C with |m| > 1, «, 8 € C* and A and B are non-zero polynomials ové&
such that ded\ - degB > 4, A(0) = «?, B(0) = 82 and

A(0)B'(0)  (m+ 1)
af m

A’ and B’ are the derivatives oA and B respectively. Any solution satisfies

18 { (Y(MX) + @)(y() + ) = AzX),
(2(m) + B)(2() + B) = B(y(mMX)).
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Proposition 14. The systen{17) satisfies Poincaré conditions.

Proof. We findC(0, 0)= D(0,0)=0

aC _ AQ2) aC _
W(Y’ Z)= Nt a) —(0- 0)=
oC A2 A’(O)
ﬁ(Y, Z)= V1o (0 0)=
oD _ B(C(Y, Z2))(aC/aY)(Y, Z) . B’(0)
v (A= Z+B ’ W(O’O)_ B
and
aD B'(C(Y, Z2))(dC/0Z)(Y, Z)(Z + B) — B(C(Y, Z))
— . 2)=
9z (Z+B)?
oD _ A(0)B'(0)
ﬁ(o, 0)= T —1.
Hence we have
FO=| B ~oBO
B ap
Its determinant is
detF(s) = (s+ 1)? — %ﬁB/(O)(er 1) + %}5@)
=(s+17°— (m+ 1)25
m

:(s+1)2—(m+2+1)s
m
=52—(m+%)s+1
=(s—m)(s—m7),

and so defF(m) = 0. Since we supposelan| > 1, we find that defF(mP) # 0 for all
p (S] Zzz. D

Therefore, by Theorem 13, there exist meromorphic funstiower C, y(x) and
Z(x), which satisfy the system (17y(0) = z(0) = 0 and §’(0), Z(0)) # (0, 0). For this
solution §/(x), z(x)), we find the following.
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Theorem 15. Let K = (C(x), X = mX). K(y, z) cannot be contained in any de-
composable extension @f.

Proof. To use the results in Section 4, we put

f(x) =y(X) +a, 9(x)=2zx)+ 8.

Since {/(x), z(x)) satisfies the system (18), we obtain

{f(mX)f(X) = A(9(x) = B).
9(mx)g(x) = B(f(mx) — a).

By Theorem 12 we find that for any decomposable extengionf I, £(f, g) Cc N
implies that f and g are algebraic ove€(x). Therefore, for any decomposable exten-
sion VV of K, K(y, z) c N implies thaty and z are algebraic ove€(x).

AssumeK(y, z) ¢ N for some decomposable extensidn of . Theny and z
are algebraic oveC(x). Sincey and z are meromorphic functions, it follows that
and z are rational functions, namely, z € C(x). Expressy and z as

P R
y= 6 zZ= 3 P, Q, R, Se C[x],
where Q and S are non-zero monic polynomial® and Q are relatively prime andR
and S are relatively prime. From the system (18) we obtain

(P(Mx) + aQ(MX)(P(X) + a Q(x)) S(x)**9*

- A=A 0 ),

(R(MX) + BMX))(R(X) + BS(x)) Q(mx)?9®

B de P(mx)

— SmYsQmy“ree( S ).

Since S(x)?9A and S(x)9AA(R(X)/S(x)) are relatively prime, S(x)9€9” divides
Q(Mx)Q(x), which yields

(29) degA-degS < 2 degQ.

Since Q(Mx)%€98 and Q(mx)e9BB(P(mx)/Q(mx)) are relatively prime,Q(mx)d4e98
divides S(mx)S(x), which yields

(20) degB - degQ < 2 degS.
Hence we obtain

degA-degB-degQ - degS < 4 degQ - degS.
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Recalling degA - degB > 4, we find degQ - degS = 0. If degQ = 0 then we obtain
degS = 0 by (19). If degS = 0 then we obtain de@® = 0 by (20). Therefore we
conclude that de@ = degS = 0. Since we supposed th& and S are monic, this
implies Q = S=1.

Now we have

= {(P(mx) + @)(P() + @) = A(RKX)),

(R(Mx) + B)(R(X) + B) = B(P(MX)).

Note thaty(x) = P(x), z(x) = R(x), y(0) = z(0) = 0 and §’(0), Z(0)) # (0, 0). If we
assumeP = 0, then we obtainR # 0, degR > 1 and

(RMX) + B)(R(X) + B) = B(0) = p* € C,

which yield a contradiction. Hence we find # 0, and so ded® > 1. If we assume
R = 0, then we obtain

(P(MxX) + @)(P(x) + ) = A0) = «* € C,

a contradiction. Hence we fin® # 0, and so de® > 1. By the equations (21) we
obtain 2 ded? = degA-degR and 2 dedgR = degB - degP, which imply

2degP 2degR
degR degP

degA-degB =

a contradiction. Therefore we conclude that for any decaaple extensioo\ of K,
K(y, z) is not contained in\/, the required. O]
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