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Abstract
In this paper we obtain thé& P-boundedness for the maximal functions and the
singular integrals associated to surfacgs¢(|y|)) with rough kernels, k p < oo.
The analogue estimate is also established for the corrdsmprmaximal singular
integrals.

1. Introduction

Let K: R" — R be a Calderén—-Zygmund standard kernelRf (n > 2), that is,
K(y) = Q(y)/]y|" with y # 0, whereQ(y) satisfies

Q(y) € C®(S™h,
Q(y) = Q(y), +>0,

and
1.1 d =0.
(L) [, 2t ey

LetT: R" — R™ be a smooth map. Then, we define the singular integfatssociated
with T' by the principal-value integral

(12) TH(x) = pu. /R Hx- T ) dy,

wherex e R™ and f € .(R™). Similar to the case of classical singular integrals the-
ory, one can define the corresponding maximal functions as

1
MF(x) = sup— / | f(x = T(y)l dy.
h=0 N" Jiyj<n

The boundedness of the two operat@rsand M above onLP(R™) has been well
studied. We begin with the classical results by Stein, wiiah be found in [15].
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Theorem A (See [15]) If T is any polynomial map froriR" to R™, then the op-
erators 7 and M are both bounded on {(R™) for 1 < p < oo.

Moreovey if T is a smooth mapping from the unit ball R" to R™, and of finite
type at the originthen7 and M are bounded operators onPR™) for 1 < p < co.

Later, the theorem above was extended. That is, even in the<zas rough, the
two results above still holds (see [9] and [10]). Furthere)df is bounded orFY9 for
1< p,g<ooanda €R, whereQ is rough andrl’ is a polynomial map or a smooth
mapping of finite type. More details can be found in [6] and [12]

For T'(y) = (v, ¢(ly])), y € R" and ¢ € C(R*), Kim, Wainger, Wright and Ziesler
proved the following result in [11].

Theorem B (See [11]) Let ¢(t) be a C function on[0, co), and assume thap
is convex and increasing o, co), and ¢(0) = 0. Then for 1 < p < oo, there exists
a positive constant Asuch that

ITfllee < Apllfllee and  [MFlle = Apllflie (f € LP).

In this case, thd_P-boundedness for the singular integrals in (1.2) with rokgh
nel is studied by Chen—Fan [5] and Lu—Pan-Yang [13].
Let P(t) be a real-valued polynomial dfin R, and assume that satisfies

y € C?[0, 00), convex on [0pc) and y(0) = 0.

In this paper, we consider the hypersurface parameteriged:[R" — R"*1, wherel’
is given by

r(y) = (y, Pz(IyD)), yeR"

Then, the operator§” and M above take the form

(1.3) Tf(u) = p-V-/Rn f(x—y,s=P(yD)K(y)dy
and
1
(1.4) Mf(u) = sup o / [ f(x =y, s= P (yD)I12(y)l dy,
h>0 lyl<h

wherex e R", se R andu = (X, s), K is the Calder6n—-Zygmund standard kernel as
before.

For the LP-boundedness of the singular integrdfs in (1.3) and the maximal
functions M in (1.4), Bez proved the following theorem in [1].
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Theorem C (See [1]) For 7 in (1.3)and M in (1.4),if '(0) > 0, 2 € C>®(S"™Y),
then for 1 < p < oo, there exists a positive constant C only dependent on, pr and
the degree of P such that

ITfle <Cliflee and [IMFlLe <Clfle (f eLP).

REMARK 1.1. One may notice that there is a little difference betwt®nmax-
imal function in (1.4) and that in Bez’s paper [1], we reprgsine maximal function in
this form just for convenient. But Bez’s results still hoklnce C>(S" 1) ¢ L>*(S"1).

Besides the operators and M above, we also consider the corresponding max-
imal singular integrals

(1.5) T () = SU%/l f(x =y, s=P(r(yND)K(y) dy|.
y|ze

>0

Appropriate estimates for the maximal singular integrale ghe pointwise existence
of the principle value singular integrals.

REMARK 1.2. Forn = 1, if T satisfies a ‘finite type condition’ at origin in
R™, the LP-estimates for the Hilbert transform, the maximal functiand the max-
imal Hilbert transform can be found in the survey [14] of fésuhrough 1978. For
other one-dimensional curvds, there are considerable results about theestimates
for the Hilbert transform and the maximal function, see [Z], and [8] for example.
Specially, the maximal Hilbert transform has been disodissedetail in [8].

The purpose of this note is to study the’-boundedness foff in (1.3) and M
in (1.4), also, the analogue estimate for the maximal segirtegrals7™* in (1.5) is
considered. Main results are presented as follows.

Theorem 1.3. Let7 and M be given as in(1.3) and (1.4), respectively. 1f’(0) >
0 and © € L9(S"?) for somel < q < oo, then7 and M are bounded on B(R"t1)
for 1< p < 0.

REMARK 1.4. Note thatC>®(S™?%) c L9(S"?) for 1 < q < oo, so, Theorem 1.3
improves and extends Theorem C. Also, Theorem B is a speafd of Theorem 1.3
for P(t) = t. Further, theLP-boundedness foAM can be proved by using Calderon—
Zygmund’s rotation method witl2 € LY(S"Y), if either
(1) P'(0)=0, or
(2) P’(0) # 0 andy’(rt) = 2)'(t) for somex > 1.

Theorem 1.5. Let 7* be given as in(1.5). If ¥/(0) > 0 and € L9(S"?) for
somel < q < oo, then 7* is bounded on P(R"*?1) for 1 < p < oo.
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This paper is organized as follows. In Section 2 we list somg roperties con-
cerning polynomials of one variable and give some fundaaidatmmas for the proof
of main results. The.P-boundedness oM and 7 is proved following the arguments
of Bez [1] and Carbery et al. [2] in Section 3 and Section 4peetively. The last
section contains the proof of Theorem 1.5, where we use thasidf Cordoba and
Rubio de Francia [8].

2. Preliminaries

Without loss of generality, we suppose thaft) = Zg;l peté, whered > 2. Let
71, 2o, -+ , Zq be thed complex roots ofP ordered as

O=|z| =|zo| =+ = |zg].

Let A > 1, whose value we fix in Lemma 2.1. Defir®; = (Alzj], Azj41]]
if it is nonempty for 1< j <d and Gq = (A|zg], 00). Let J = {j: G; # 0}, then,
(0,00) \ Ujcs Gj can be decomposed &g, Dk, where Dy is the interval between
Gk and adjacenGy,, for somel > 1, it it obvious thatDy’s are disjoint. Then, we
can split (0,00) as

0,00)= [ J r %G ulJr (D,

jeT keC

wherey (1) = {t € (0, 0): y(t) € I}.
The properties of® on Dy and G; are important for our proof, the following re-
lated lemma can be found in [1] and [3].

Lemma 2.1. There exists a constantyC- 1 such that for any A= C4 and any
jed, _
(1) [P@®] ~ |pjl [t for [t| € Gj;
(2) P'(t)/P(t) >0 forteGj, P'(t)/P(t) <O for —t € Gj;
(3) [P'(t)/PM)] ~ 1/t] for |t| € Gj;
(4) P’(t)/P(t) > 0 and P'(t)/P(t) ~ 1/t2 for |t| € Gj, j € T\ {1}.

The following trivial fact follows the proof of Lemma 2.1 (841]), that is, we can
chooseA > 0 such that for|t| € Gj,

i 1 i , . i
(2.1) IPOI=2pl t]' and Zjlp;lt] LIPO)] < 2)lpy] It

Let p =n+ 2, for | C(0,00), M, and 7, are given by

1
M @) = sup-r | [T =y, 5= PO(YD)] [2y)] dy,
kez P lyley=2(1)N(ok, pk+1]
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and

T ) =f f(x—y,s— PR(yD)K(y)dy.
lyley=X(I)

ForkeZ andj € J, let

,Ok o --- 0
0 p¢ 0 0
Ak,j = : : . 0 !
. . . A ) k
0 0 - Ipjlyi(p") (n+1)x(n+1)

then, A satisfies Riviere condition, that {A}, | Acjll <o < 1. In fact,

oL, 0 _
Ad1i A = 0 ( v (p¥) )’ :
y (pk*1)

Note thaty is convex,y(t)/t < y(s)/s for 0 <t <'s, therefore,

( v (o) )< 1y
vy ) —p T

We choosep € C®(R™1) such thatp(¢) = 1 for [¢| <1 and¢(¢) = 0 for || > 2.
Forke Z and j € 7, the multiplierm, ; is defined by

M (6) = (AL 0) = (A1),
where Al ; is the adjoint of Aij. Then, we define the operat&; by
(S0 @) = Mk () f(©).
In the next proposition, we state a useful result for futiegerence.
Proposition 2.2. For any je J, if mij(¢) # 0 for some Kkl € Z, then
(2.2) AL cl=Cp™, 1 <0
and

(2.3) |Ac1Cl <Cp™, 1>0.
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Proof. If miyj(¢) # O, then|A’, ;¢| =2 and A, ;¢ > 1. Forl <O, by
the convexity ofy,

1<|AYki¢l = p'”IAE,,-e“I.
that is (2.2). Wher > 0,
2= [A ¢l = /0|71|AE+1,J'§|:
then, (2.3) is obtained. O

We need the following Littlewood—Paley theorem, which cas found in [2]
and [4].

Lemma 2.3. For m; and & ; above we have the following properties
(i) for each¢ at most G of the m;(¢) are not zero
(i) for eachs #0, >\, M j(¢) = 1;
(i) [ (Crez!Sci T3 o < Coll flls, 1< p < o0;
(iv) ”Zkez S fk”LP = Cp” (ZKEZ|S<J fk|2)l/2HLP' l<p<co

3. The LP-boundedness formM

It is trivial that

Mf(u)fC[ZMDkf(u)+ZMGj f(u)].

kelC jeg

Note that the cardinalities of and 7 are less tharl, so we just need to verify that
Mp, and Mg, are LP-bounded for eactk € £ and j € J.

3.1. TheLP-bounedness forMp,. For anyu € R"™1, there exists an integer
j(u) such that

2
Mp, f(U) = —

e / [ x =y, s— PO (YD)l 1)) dy.
P lyley—1(Dx)N(pI M, piW+1]

Then, by Minkowski's inequality, thé_P-norm of Mp, f can be dominated by

= P 1/p
(/ [ nj(u) / v [f(x=y,s—PyD) 1Y) dy} du)
Rt P lyley 1D )N(piW, pi@+1]

< IQ(Y)I( (v s p oy )1/pd
_/weyl(ok) ly[" /R| (x—y,s=P(r(yDh)I* du y

1
§C||f||Lv||Q||L1(sH)/ y );dr-
rey—1(Dg
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Let Dy = (A7Yzj], Alzj|] for some 2< j <d and 0<| <d — |, then
A_1|Zj| = A_1|Zj+l| S Alzj| =--- = Alzjul < A_1|Zj+l+1|
and

A2< A|Zj+l| < A|Zj+l| < A2|+2
T AT T ATz T

Notice thaty is convex andy(0) = 0, so, y(t) < ty’'(t) for t > 0. Thus,

1 Y HAIZia) Alzj 4| 1
/ Par= / Far= / o i O
rey-1(Dy) I y HA Yz r Az Y )y’ (y1r))

Alzi+l 1
5/ —dr <2dIn A,

Az r

where y~(t) is the inverse function of(t).
According to the calculation above, the’-bounedness foMp, is established,

[Mp, fllLe < C| f]lLe, for 1< p<oo, kek.

3.2. The LP-bounedness forMg,. Next, we verify thatMg, is LP-bounded
for j € J. The maximal operatora{g; can be expressed as

Mg, f(u) =sup | f(x = oy, s— P (1Y) I2(y)| dy.
keZ Jlylep ™y 1(G)N(Lr]

Setly; = (1, p] N p~*y~XGj), and define the measuye; by
i) = [ Wy PGSR0 dy
yi€lj
for v € .Z(R"1). Then, forj € 7, Mg, f also can be rewritten as
Me, (u) = suppu; * | f1(u).
kezZ
We also need to define the measutg by

(okj,» ¥) = i ©) ¥ (u) du,

| Act+1,i Bl Ja. B

where B = {u € R™?!: |u| < n + 1}.
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3.2.1. Fourier transform estimates for related measures.

Proposition 3.1. For j € 7 and ke Z, then there exists G 0 and g8 > 0 in-
dependent of j and k such that

(3.1) |, ()1 161 (2)] < Cmax| AL 217 A 217
and
(3.2) ik, (8) = 6k, ()] = ClA 1, ¢

Proof. The main idea of the following proof comes from the kvof Bez (see
[1]). For completeness, we show more details.
Let ¢ = (&, 1), where§ e R" andn € R. Forke Z and j € 7, we have

i, (9)] =

[ eii[pky_g“,p(y(pny\))]|Q(y)| dy‘
yl€lk,;

S/
|k*l

Setly(t) = [g1 e 7Y E|Q(y)| do(y), by Holders inequality,

dt.

/ eV |Q(y)| do(y)
Sn—l

s @F =C [ P dt

< C/ 12y |Q(Z')|‘/ gritEy=2) dt‘ do(y') do(Z).
(2 Ik,

By van der Corput’s lemma, for any € (0, 1), we have

&MV dt) < Cminfl, o4 - (y — 2)Y)

I,
< CMENIE" - (y = 2) ™.

If g = o0, itis trivial, we setp = 1/2. Forq € (1,00), specially, we choose a positive
constanta so thataq’ < 1. By Hoélder’s inequality, we get

do(y’) do(Z)
&y = 2Z)I*

1/q
= e ([, 2o e@i do(y) o))

do(y) do(2) )1/‘*’
: (/(s‘) & - (y = Z)|d

= ClIRIF o) (016D

|k (6)1? = C(pklél)"[( 1)ZIQ(y’)I 1Q(2)
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Finally, there exists a constagte (0, 1/(29’)) such that
(3.3) i ()] = Co"ED .

CAsE 1. j € J\ {1}. If ¢ satisfies #¥|&| = |pjly!(o")|nl, then, |AL ¢l <
V1T7p*[€|. Therefore, (3.3) impliesiu j(¢)] < C|A;;¢| 7.

If ¢ satisfies #%|&| < |pjly!(0")|n|, in order to estimatéii ;(¢)|, we need the
following lemma which is Lemma 2.2 in [1].

Lemma 3.2. For all j € 7\ {1}, the function
t = P"(y (1) (0"t + P'(y (")) ¥ (1)
is singled-signed ony];.

On the other hand,

g = [ |[[ etrremooon ooy doty)

Ik

For fixed y’ € S, let h(t) = p*ty’ - £ + nP(y(p*t)). Fort € Iy, by (2.1) and the
convexity of y, we have

Ihi )] = 10*P'(r (0*0) ¥/ (o t)n| — | 0¥ |
(34) 1 k., j-1/ k 7 K Kk 1 j k k
> §J|pj|:0 Y DY (0 )Inl = o"1El = Silpjly!(0%)Inl — P I&].

Note that 4*|5| < |p;ly!(0)Inl and |A; ;¢| < (VI7/IpiDy! (k). Hence,

/ 1 j *
(3.5) I = Z1pj ¥ (o) Inl = At

=
V7
For j € 7\ {1}, h,(t) is monotone orlyj by Lemma 3.2. By van der Corput's lemma
and (3.5), we get

|k, (] = ClQlley Py [y (D)D) = CIAL ¢l

CASE 2. | = 1. If ¢ satisfies|g| > (1/4)|p.]y’(0¥)|nl|, by the convexity ofy,
then, pX|&] > (1/4)| pa|y (0¥)In| and |A; 1¢| < V/17p |€|. According to (3.3), we obtain

()] < CIAG L7
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If ¢ satisfies|&| < (1/4)|p1]y (0")|n], (3.4) implies

/ l I 1 ’ 1 ’
(3.6) Ih(®I= Elpllpky (V)| — p*E] = lellp"y (0"O)In| = lellpky ().
Integration by parts and (3.6) show that

‘[ i [Pty E+nP( (P D)] dt‘ — ‘/ e‘”"ﬂ(‘)hf((t)i
s hi(t)

h//
< 8(pilo*y (D) + /. [|h/k((tt))1|2 dt.
k,1 k

Essentially, we just need to consider the second term, wtechbe dominated by

20l 1P (D)l (040) ol 1P () (012
/ ()2 aer / 0

lk1

dt:= a1 + ao.

In order to estimate the terma;, we definegy(t) = pkt|€| + |p1ly (p*t)|n|, then,
or(t) = pNIE| + | p1l oy (0*V)|nl. By (3.6), fort € I 1, it is obvious that

/ 5 ! /
3.7) IOl < Zlpuly (PO pX|n| < Bh ().

On the other hand, for € Iy 1,

/ / 3 !
(3.8) lor@®)] = [palo®y’ (0 1) In] — p¥|E| = lellpky (P t)In].

Also, by (2.1), fort € Iy,

4 " 1 / "
(3.9) oL (t) = |pulp®y (V)| = Epz"lnl [P/ (v (0 t) 1y (0 1).

Thus, in view of (3.7), (3.9) and (3.8), we have

(3.10) a1 <C /| ;k(it))z
k1 Tk

For ay, by (3.6) and (2.1),

2k P// kt / kt2
WZSC/ el |P"(y (p*D)]y'(0"t)
1

dt < C(palo*y' (o) Inl) .

[Ipalo*y (pkO) nl]?

1
<C [ |pd P (r (o) Yy (p*t) ————— dt
(3.11) il | b2l %7 (O]

= C(Ipllpky’(pk)lnl)_lfG | pa|~HP"(1)] dt
1

< C(Ipalo Y ()t
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Note that| A} ;¢| < (v17/4)| palo*y'(0*)Inl. Then, (3.10) and (3.11) imply
| 1(2)] < CIA: |

For 6y j, we have

i i (0 Cas
ok, ()] = (O / e VA du
’ Bl |/s

<CIA; ;¢

According to the estimates fqiy ; and 6 ; above, we obtain (3.1). (3.2) can be
proved as follows,

|2k, (€) = 0w, (O] = 1, (§) = f Q) + [k )] 16,5 (€) — 1

< / |e—i[p"y-§+nP(V(pk|yD)] — 1] |2(y)| dy
‘y|€|k,J

i ||Q||L1(s”*1) /|e—iu-A;m§ —1|du
|B| B

= CIAG ¢l 0

3.2.2. TheLP-norm of Mg, f. For the maximal operatord1g,, it can be dom-
inated by

Mg, f(u) < supoy,j * f(u) + sup(uk,j — ok j) * fl(u)
keZ keZ

< Msf(u) + iuzﬂ(ﬂk,j —oy,j) * f|(u),

where Mg denotes the strong maximal function.
We first consider thd_2-estimates forMg,. It is known thatMs is LP bounded

for 1 < p < oo, thus, it suffices to consider the?-norm of sup.|(ukj — okj) * fl.
In view of Lemma 2.3, we have

|(iei,j — o) * T

> (kj = 0j) * Sk f

312) =D huej * S F| + D o) * Sy f| +
<0 1<0 I1=1
= Axj + Byj +Ckj-

The L?-norm of the supremums Qfly j, By,; and Cy; are considered separately.
Now, the supremum ofdy ; is controlled by

1/2 0
fUpAk,j <) sufpkj * Sik fl < Z(ZWKJ * Sk, f|2) =) &;f.
€Z

I<0 K€Z 1<0 \kezZ l=—00
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For each integet < 0, by Plancherel’s theorem, (3.1) and (2.2),
R 1/2
(3.13) &, flle = <Z /R Iﬁk,;(§)|2|m|+k,j(§)|2|f(§)I2d§) < Cp|| f]|.e.
keZ i

Then, by the triangle inequality ih?, we have

(3.14) supAk,j

keZ

= Cl fll.
L2

The L2-norm of sup.; Bk,j can be considered in the same way, therefore,

(3.15) <C| e

L2

SupBy,
keZ

Similarly, for sugey Ck,j, we have

o0
supCy,j <
keZ ;

2 o
<Z|(Mk,j —0k,j) * Sk f|2) = Z]:I,j f.

kez =1

For each integed > 1, by Plancherel's theorem, (3.2) and (2.3)F;f|l2 <
Cp7'|| f||L2. Furthermore,

(3.16)

supCy,
kez

< CJ| e
L2

Then, combining (3.12), (3.14), (3.15) with (3.16), we have
(3.17) Mg, flle = C|I fllL2.

For theLP-boundedness oM, with p # 2, we need the following lemma, which
is Lemma 4 in [8].

Lemma 3.3. Suppose that JSf = ux = f is a sequence of positive operators uni-
formly bounded on ¥ and U*f = sup.;|uk * f| is bounded on L then for p >
2r /(1 +r), there exists a positive constant, Guch that

1/2 1/2
H (Dukfuz) (D fk|2>
keZ keZ

=Cp
Lp

. {fi) € LP(1?).
Lp
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By (3.17), Lemma 3.3 and Lemma 2.3, for> 4/3, we get

1/2
&l = ' (ZWk,j * Sk, | f|2>
keZ LP
(3.18) 2
<C (Z|S+k,;f|2) < C|l s
kez LP

Interpolation between (3.13) and (3.18), and the triangeguality inLP imply that

3
(3.19) =Cllflle, p> 7

SUpAk, j
kez

Lp

For sup.z Bk,j and sup.; Cx j, by the same argument as we used for, spply j,
we obtain
(3.20)

3
<C|f|l» and <Clf P>

SupBy supCy,
keZ keZ

Lp Lp

So, according to theLP-boundedness ofM, (3.19) and (3.20), we have
Mg, flle = C| flL» for p> 4/3.
Finally, by a bootstrap argument, we can apply Lemma 3.3dtikly to show that

Mg, fliLe = Cl fllLe, 1< p<oo.

4. The LP-boundedness for7T”

Similar to the maximal functiongA, the singular integral§ can be decomposed as

THu) =D To fu)+ Y T, ().

kelC jeJg

Then, theL P-boundedness fofp, and 7, will be considered separately for eakhe
KandjeJ.

4.1. ThelLP-bounedness for7p,. Fork e K, by Minkowski’s inequality, we have

1T, f 1o s/

(4.1) lyley (D) .
< ”f”LP/ 12(y)| do(y') —dr.
Sn—l

rey=i(by) I

1/p
KO [ 110y s=PoyDP du) dy

As the LP-estimates forMp, in Subsection 3.1, we get theP-bounedness ofp,,

7o fllLe =CJl[fllLe, 1< p<oo.
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4.2. ThelP-bounedness for7g. Forj e J, Tg, f can be rewritten as

To, F(0) = 3wy # (0,

kezZ

where the measure,; is given by
(vj, ¥) = /| | Yo"y, Py (1o Y1) K (y) dy
yl€lj

for v € Z(R"Y).
For the estimates ofy j, we have the following proposition.

Proposition 4.1. For j € J and ke Z, then there exists G 0 and g > 0 in-
dependent of j and k such that

(4.2) |9, (0)] < Cmax{| AL 275 AL ¢17F)
and
(4.3) Ik, (0] = ClA 1, ¢I-

Proof. (4.2) can be proved by using the same method as (3tlis ttivial to
verify (4.3). In fact, by (1.1),

1D (€)= / [efi[p"y-HnP(y(\yl))] — e MPYMK (y) dy
ly|€lk,j
< [ e - gkl dy = Clllg e
[yl€lk,j
SCIA;H’J-;L ]

By Lemma 2.3, we can decompo9g, as

44 Tg f = ZZVk,j * Sk f +ZZVK,J' *Skjf =D +Gj.

kez 1>1 kezZ 1<0

By the triangle inequality inL? and Lemma 2.3, we have

(4.5) 1Dy < 3

1=1

Z‘)k,j * Sj f

keZ

<CY IHijlur,

LP 1>1
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whereH, ; = (Zkezh)kyj * Sk f|2)1/2. Plancherel’'s theorem, (4.3) and (2.3) give
1/2
4.6) M jlle= <Z/ |m|+k,,-(§)|2|ﬁx,j(§)|2|f(c)lzdé) < Co7' e
KeZ RN+1

On the other hand, note théy ; * g| < Cpuy; * [g]. For 1< p < oo, by the
L P-boundedness aMg,, Lemma 3.3 and Lemma 2.3, we obtain

1/2
(Z|S+k,j f|2)

keZ

(4.7) IH,illr =C < Clfce.

LpP
Interpolation between (4.6) and (4.7), and (4.5) imply that
(4.8) DjllLe = C|[fllLe, 1< p < o0.

The LP-norm of G; can be obtained in the same way. Fot O, using Plancherel’s
theorem, (4.2) and (2.2), we havg4 jll.z < Cp” | f|l.2. Further, (4.7) still holds.
Interpolation and the triangle inequality In® show that
(4.9) IGjllLe = Cll fllLe, 1< p < o0.

Combining (4.8) and (4.9), we prove the’-boundedness fo7g; .

5. The LP-boundedness for7*

Let £ and J be given as in the second section. Then, we have the following
majorization

(IOEDY su#
kek €0
/ Fx—y.s— PO YD)KY) dy‘
yley 1(Gj)n{t=¢}

—i—Zsu%
J-6‘76>O |

=Y T )+ > 78 ).

keKC jeT

[ fx—y,s— P(y(|y|)))K(y)dy‘
lyley=1(Dx)N{t=¢}

In the same way, we just need to show tifgt and 7}3*1 are LP bounded fork € K
andj € J.
For k € K, let e(u) be some measurable function fraRi*! to R* such that

5 f(u) < 2‘/ f(x =y, s— P((yD)K() dy

lyley H(Di)N{tze(u)}
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Then, theL P-boundedness fo7 5, can be proved in the same way as (4.1).
For j € J, it is trivial that

76, f(u) = Mg, f(u) + _su%z i F(U)

ieZ k=i

By the LP-boundedness foMg,, it suffices to consider the latter term. Leéte
Z(R") be such thatb(¢) = 1 for |¢] <1 and ®(¢) = 0 for |§| > 2. Write & (&) =
d(p'€), and denote by convolution in the firstn variables. Fori € Z, the truncated
singular integrals can be split as

kayj x f Z(Di*(,]zajf_zvk,j * f>+(8_q>i)*zvk,j % f =Z,£Z/i’j —I—@i,j,

ki k<i ki
where$ is the Dirac measure iR". Then, we just need to estimate sy ;| and
SUR.z |%i ;| for j e J.

5.1. ThelLP-estimates of sup.;|<7; j|. By a linear transformation and (1.1), we
observe that

RS ERI()

k<i

:/Rn <1>i<x—y)Z_/| fy=25= P (K@ dzdy
Zjep®lk,j

k<i
B k2<|: /Z|€/7k|k,j @ /I‘&n ®i(x—y=2)f(y,s—Ply(z]))dy dz
- kZ /z@klk,j K@) /Rnld% (x—y—=2) = ®i(x =y f(y, s P(r(1z])) dy dz

Note that® € .(R"), then, for anyN > 0,

D% v (u)

k<i
<[ K@) 40"y, s— ()] dy dz
~ J17e0.01ny1(G)) re PM(L+ o7 x —yON ,
p " 1 / |2(2)]
< - . — f(y,s—P z ——dzdy
/Rn I+ [p7x—=p7yPN p! |Z\€(O,pi]ﬂy’1(Gj)| b 2D |z|n=2 Y

For the inner integral irg, by a rotation,

1 Q(2)
S (TN =
P' Jizle0.01ny4(G;) |z|

dz < |2l .yey N Fy, 9),
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where N is defined by

iez P

1
Nig(s) = sup— [ | l9(s— PO ®))] dt.
te(0,0']Ny~1(Gj)

Thus, we obtain

(6.1 S%ﬂ’ﬂfiﬂ < CllI) g ) (U) + (Tg; ) (),

where f*(x, s) is the Hardy-Littlewood maximal function of (y, s) in the first n
variables.

Proposition 5.1. For j € 7, Nj is a bounded operator on A(R), 1 < p < cc.

Proof. We denoteP(y(t)) by Y(t) for short, then, Y (t) = P’(y(t))y'(t). Note
that P(s) has no null point orGj, then, it is singled-signed. Fdre y 1(G;), y(t) €
Gj, by (2) of Lemma 2.1,P'(y(t)) is also singled-signed op(Gj). By y'(0) >0
and the convexity ofy, y'(t) > 0 for t > 0. Then, Y(t) is monotonous ory (G;).
Suppose thafr(t) is increasing ony 1(G;), then

1

1
e red= [
P Jte©p1ny1(G)) P Jre@x(pnP@)

:=/0 (s — Dl (1) .

dt

|g(5—t)|m

For j € J \ {1}, by Lemma 3.2,Y(t)’ is monotonous ony~}(G;). If Y'(t) is
increasing ony~Y(G;), then, fori € Z, ¢ ;(t) is nonnegative and decreasing Bi(G).
Furthermore, one should note that

o 1 dt
i) dt < — —— =1
/o % (1) o' /te(O,T(pi)] T(T-4(t))

Therefore, fori € Z, we have

i lg(s — Y (t))] dt < CMg(s).

P Jte(.01ny(G))

If Y'(t) is decreasing ory~(G;), write

[e%s) o) N 0 B
/ lg(s— Dldi ;1) dt = / 1S + 1) (—t) dt = [ 1G(s — )l (©) it
0 0 o)
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where § denotes the reflection aj. Notice thatq},—(t) is nonnegative and decreasing
on —P(Gj). Also, || ;[ < 1. Similarly,

1 .
— lg(s — Y (1))] dt < CMG(—s).
P Jte(0,0 1Ny -1(G))

For j =1, note thatY'(t) and y(t) are increasing oy ~1(G;) andR™, respectively.
Then, P(s) is increasing onG;, that is, P/(s) > 0. According to (2.1), (12)|p1| <

P’(t) < 2|py1|, furthermore, (12)|ps1|t < P(t) < 2| p1|t for t € G;. Therefore, combining
the convexity ofy, we get

& [ L

P Jte NPy T'(T(t)

<= 9s— 1) a
P Jre©,2pily (0)IN2 p1l Gy (1/2)| puly’(y~1(2| p1|~11))

1 t|p1|) dt ( 2 )
gls— < CMg —s],
( 2 )1y (i) N
where gjp,1/2(t) = g( palt/2).

<=
Thus, for j € 7, Nj is bounded onLP(R), 1< p < oo. O

P Jte,4 (o) n4G,

Finally, by Lemma 5.1 and thé P-boundedness fofg,, we obtain

< Cl[ flLe.
Lp

sup.a ;|
i€Z

5.2. ThelP-estimates of sup.;|%i j|. sup.z|%i, ;| is dominated by

_SUH,%)iyjl =< Z_SUH((S_q)i)*VHi,j * f| = Z R
i€z

1=0 €7 1>0
The maximal operator? ; is uniformly bounded orLP, 1 < p < oo, since
Aj = C(Meg, ).
On the other hand, fop = 2, we have

172
(Z|(5 — D) * vy * f|2>

ez

12 il <

L2

ez

1/2
= (Z /R - é(pi5)|2|mi,,-(c)|2|f“(;)|2d;>
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1/2
=¢ (Z /R X t=n @l e 1 f @)Fd;)

ez
1/2
SC,O_lﬂ(/l > |piél‘zﬂ|f(:)lzdc>
B0 i <ig)
=Co | fllee,

where the faci j(¢)| < C(p¥|&))~* can be proved in the same way as (3.3).
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