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Abstract
In this paper, we study the gradient estimates for positifeti®ns to the follow-
ing nonlinear parabolic equation

ou
— = Afu+cu®
ot U+

on complete noncompact manifolds with Bakry—Emery Riccivature bounded
below, wherew, ¢ are two real constants and> O.

1. Introduction

Let (M", g) be ann-dimensional complete noncompact Riemannian manifold. Fo
a smooth real-valued functiofi on M, the drifting Laplacian is defined by

At =A—-VF-V.

There is a naturally associated meastdre= e " dV on M, which makes the operator
A self-adjoint. TheN-Bakry—Emery Ricci tensor is defined by

1
Ric} = Ric +V?2f - df @df

for 0< N < oo andN = 0 if and only if f = 0. HereV? is the Hessian and Ric is
the Ricci tensor.

Recently, there has been an active interest in the study adfigmt estimates for
the partial differential equation. Wu [16] gave a local LavY'type gradient estimate
for the positive solutions to a general nonlinear parabetjcation

Ui = Au—VeVu—aulogu—qu

in M x [0, z], wherea € R, ¢ is a C2-smooth function andy = q(x, t) is a func-
tion, which generalizes many previous well-known gradiestimates results. Zhu [18]
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246 L. ZHAO
investigated the fast diffusion equation

(1.0 U = Au®
and the author got the following results:

Theorem 1.1(Zhu [18]). Let M be a Riemannian manifold of dimensiorer2
with Ric(M) > —k for some k> 0. Suppose that = —(a/(x — 1))u*~! is any positive
solution to the equatiofl.1) in Qg1 = B(Xo, R) X [to—T,to] C M x(—00,00). Suppose
also thatv < M in Qr1. Then there exists a constant€ C(«, M) such that

|V (1 1
Eol<eM?( =+ — + vk
7 < = _T+f

in Qr/2,7/2-
Later, Huang and Li [5] considered the generalized equation
U = Asu®

on Riemannian manifolds and got some interesting gradistimates. Zhang and
Ma [17] considered gradient estimates for positive soltitm the following nonlinear
equation

(1.2) Afu+cu®*=0

on complete noncompact manifolds. When N is finite and kh@akry—Emery Ricci
tensor is bounded from below, the authors in [17] got a gradéstimate for positive
solutions of the above equation (1.2).

Theorem 1.2(Zhang and Ma [17]) Let (M, g) be a complete noncompact
n-dimensional Riemannian manifold with N-Bakry—EmerycRiensor bounded from
below by the constantK =: —K(2R), where R> 0 and K(2R) > 0 in the metric
ball Byr(p) around pe M. Let u be a positive solution of1.2). Then
(1) if ¢ > 0, we have

[Vul? —(a+1)
e TS

(N+n)(N+n+2)cf  (N+n)(N+n-1c +c]
RZ + RZ
N (N 4+ n)/(N + n)Kcy
R

+2(N + n)K.
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(2) if c <0, we have

Vul|2 . = (N+N[N+n=1)c +c¢
%-{-CU_(WH)S(A-}- \/K)|c|( inf u) + (N WIN + o + G
u Bp(2R) R2

N + n)c? n+ N N + n)+/(N + n)Kc

R2 2VA R
1
+1{2+ — )(n+ N)K,
( ﬁ)( )

where A= (N + n)(« + 1)(@ + 2) and g, ¢, are absolute positive constants.

For interesting gradient estimates in this direction, wa cafer to [1] [2] [7]

[8] [9].

Recently, a simple Lichnerowicz equation
Au=uPt -y Pt

where p > 1, was studied by Ma [10]. The author obtained a Liouville typsult
for smooth positive solutions for the Lichnerowicz equatio a complete non-compact
Riemannian manifold with the Ricci curvature bounded froslolv. Later, Sun and
Zhao [14] studied a generalized elliptic Lichnerowicz etipra

B(x)

AU(X) + h(x)u(x) = AX)uP(x) + ua(x)

on compact manifold M1, g). The authors in [14] got the local gradient estimate for
the positive solutions of the above equation. Moreover, tbeysidered the following
parabolic Lichnerowicz equation

U (X, t) + Au(x, t) + h(x)u(x, t) = AX)UP(x, t) + B(x)u 9(x, t)

on manifold M, g) and obtained the Harnack differential inequality.

From the above work, we can see gradient estimates for ywsitilutions to non-
linear heat equations are interesting subjects to reseactGradient estimates often
lead to Liouville type theorems and Harnack inequalitiesr Ronlinear heat equations
with drifting Laplacians on manifolds, to get good controfssuitable Harnack quan-
tities (depending on nonlinear terms), one may need the &werl bounds assumption
about Bakry—Emery Ricci curvatures. Without the driftirgrnd, the nature assump-
tions are about the Ricci curvatures. These are the main gteiondifferences caused
by drifting terms. A new research direction is the nonlinbaat equation with nega-
tive power, which has its root from the Einstein-scalar biefowicz equation. In this
paper, we study the following parabolic equation

au

1.3 — = Afu+cu®,
(1.3) ot U+
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wherea, ¢ are two real constants ard> 0, f is a smooth real-valued function dvi.
We state our main results as follows.

Theorem 1.3. Let (M, g) be a complete nhoncompact n-dimensional Riemannian
manifold with N-Bakry—Emery Ricci tensor bounded from Wely the constant-K =:
—K(2R), where R> 0 and K(2R) > 0 in the metric ball Br(p) around pe M. Let u
be a positive solution of1.3). Then
(1) if ¢ > 0, we have

Vul? N N 2 1
pIVU | ey B NAD (N+mer a1y,
u? u - 21-98)B\458(1—pB)R? t

(2) if c <0 and u@b < M for all (x,t) € Bor(p) x [0, o0). We have

|Vu|2 (et Ut
+cou@th_ =
p u2 u

N +n (N +n)cz («+2-8) - 1

< A- T PeM@ + 1)+ = ),

< 2= 5 wha= p 2a-p) DY

where A= ((n — 1+ +v/nKR)c1 + ¢ + 2¢2)/R?, ¢, Cp, § are positive constants with
0<8<1andp =e?K,

Let R — oo, we can get the following global gradient estimates for toalimear
parabolic equation (1.3).

Corollary 1.4. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with N-Bakry—Emery Ricci tensor bounded from wehy the constant-K,
where K> 0. Let u be a positive solution of1.3). Then
(1) if ¢ > 0, we have

|Vul? @i W N+n 1
B 2 +cu - —=

u - 2(1-8pt’

(2) if c <0 and u@d <M for all (x,t) € M x [0, c0). We have

ﬂlvu|2+cu_(“+l)—ﬂ< N +n (_(a+2—/3)
u2

u— 21-9)p 2(1-8)

~ 1
cM(x + 1) + {),
here0 <8 < 1 and g = e X,

As an application, we get the following Harnack inequality.
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Theorem 1.5. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with Ric'f“ > —K, where K> 0. Let u(x, t) be a positive smooth solution to
the equation

U = AU

on M x [0, +o0). Then for any pointgxy, t;) and (xz, t;) on M x [0, +00) with 0 <
t1 < tp, we have the following Harnack inequatity

) (N+n)/2

u(xXa, t1) = u(xz, tz)(t—) gt tu) T8

1
where ¢(x1, Xz, t1, t) = inf, fttf 4e?Kt|y|2dt, B = (N + n)/2)(€*2 — e*1) and y is
any space time path joiningxy, to) and (xz, tp).

REMARK 1.6. The above Theorem 1.5 has been proved in [6], we can &iso g
this result by lettingc = 0 ands — 0 in Corollary 1.4. We can refer to [6] for de-
tailed proof.

2. Proof of Theorem 1.3
Let u be a positive solution to (1.3). Set = Inu, thenw satisfies the equation

(2.1) wy = Ajw + |Vw|? 4+ cew@+D),

Theorem 2.1. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with N-Bakry—Emery Ricci tensor bounded from welhy the constantK =:
—K(2R), where R> 0 and K(2R) > 0 in the metric ball Bg(p) around pe M. For a
smooth functionw defined on Mx [0, +00) satisfies the equatio(®.1), we have

3
(Af—a)F > _2Vw-VF

2 F\?
+t{N—fn((,3—1)|Vw|2—T) Fe(p+a)a +1)e—w<“+l>|Vw|2}
—w(a+1) F
+c(a+1)e F— T
where
F =t(8|Vw|* + ce D —uy),
and g = e 2Kt,

Proof. Define
F =t(B|Vw|® + ce @ — ),
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where 8 = e 2!, It is well known that for theN-Bakry—Emery Ricci tensor, we have
the Bochner formula:

A¢|Vwl? >

Nt n|Afw|2 + 2VwV(Atw) — 2K |[Vuw|?.

Noticing A fwy = (Ajw)y = —2VwVw, + c(a + 1)e @+ Dy + wy and

Ajw = —|Vw|? — ce @) 4y

1 F
— (1 _ E)(_Ce—w(a+1) + wt) _ E'

we have
AfF =t(BA{|Vw]? +cAe @) — Acwy)

=t(BA{|Vw|?) + te((o + 1)2e @D Vw|? — (@ + 1)e @ VAtw) —tAwy

2
> t{ N f . |Asw|? + 28VwV(A1w) — 2K B|Vw|? + c(a + 1)%e "+ |vw|?

—oa + 1)ew<“+1>[(1 - %)(—cew(a“) + wy) — g]

— (—2VwVw; + c(a + 1)e @ Dy, + wtt)}

2 F\*> 2
= t{ N f - ((ﬁ —1)|Vw|? - T) - {VwVF + 28VwVuy
+[(2B + « — 1)c(a + L)e @D — 2K ]| Vw|?

-1
rernlt 3 g 2vletd

+ (o + 1)(% - 2) wy — wye + (o + 1)ew(a+l)%}

and
Fo = (BIVw] + ce @+ —wy)
+1(28VwVw; — c(a + 1)e™ @Dy — wy — 2K B|Vw[?)

F
=7 + t(28VwVw; — (e + 1)e @ Dy — wy — 2K B|Vw)?).
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Therefore, it follows that

0
(-3
ot

2 (5_1yvwz_FY
> _2VwVF +t{N+n((ﬂ 1)|Vw| t)

+ (28 + a — 1)c(a + 1) )| Vw|?
-1 -1
+ o + 1)’3—e*2w@*+1> + 'B—C(a + 1)e“’(“+1)wt}
B B
F F
+ ol + Db _

Bt

__ 2 (5 _myvwp- T
= —-2VwVF +t{N+n(('3 1|Vuw] t)

—w(a+1)
+((B — Do + 1)ew<““>)[ww|2 + % - %wt]
+ (B + a)c(a + 1)e"’("‘+1)|Vw|2}

+ ol + 1)e“"(°‘+1)E _F

Bt

__ 2 (5 myvwpr- T
= —-2VwVF +t{N+n((ﬂ 1)|Vuw| t)

+ (B + a)c(a + 1)e e vw|?

+ (6= Dofa + e e

F F
c 1 e—w(a+1)_ _
+ cla + 1) 51

o 28 (00 ._FY?
2Vw VF+t{N+n((ﬂ 1)|[Vw| t)

+ (,B + a)C(a + 1)e—m(a+1)|vw|2}

F
+ c(a + 1)e @ rUF - T

We complete the proof of Theorem 2.1.
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We take aC? cut-off function defined on [0Opo) such thatp(r) = 1 for r €[0,1],
o(r) =0 forr €[2, 0), and 0< ¢(r) < 1. Furthermorep satisfies

g'(r)
RGO
and

P'(r) = —¢

for some absolute constants, ¢, > 0. Denote byr (x) the distance betweer and p

in M. Set
o0 =3("2)

Using an argument of Cheng and Yau [3], we can assuf¢ € C%(M) with support
in Bp(2R). Direct calculation shows that oB,(2R)

Vo> _ cf

2.2) T

It has been shown by Qian [13] that

4Kr?
As(r?) < n<1+ V1+ - )

Hence, we have

A(r)

1
o (D119 = 2|Vr %)

<n—2_'_n 14 /1_|_4Kr2
- 2r n

n-1
+ vnK.

r

It follows that

_9"O)Ivr? n gr)aer - (n—1+VnKR)ei + ¢
= . _

2.3 A
(2.3) 1% RZ R 2 R

ForT >0, let (x,s) be a point inB,r(p) x[0, T] at which ¢ F attains its maximum
value P, and we assume tha& is positive (otherwise the proof is trivial). At the point
(X, s), we have

V(pF) =0, Af(pF)=<0, F=>0.



GRADIENT ESTIMATES FOR A LICHNEROWICZ EQUATION

It follows that
eAtF +FAtp—2Fp Y Vep|? <0.

This inequality together with the inequalities (2.2) and3f2%yields

(2.4) pAtF < AF,
where
A=(n—1+\/nKR)c1+cz+ZC§
R2 '
At (X, s), by Theorem 2.1, we have
A+F > —29VwVF +s 2p (B—1)|Vw|? FY’
_ w _r — wl? — —
poit =T v N +n S

+ (B + a)c(a + l)e‘w(“+1)|Vw|2}

F
+ cp(a + 1)e e+ DE o5

20, 28 F\2
> QYR |V —1)|Vw]? - —
- ¢ Fl w|+S¢{NJrn (B —DIVwl” -

+ (,B + a)C(a + 1)e—w(ot+1)|vw|2}
—w(a+1) F
+ cp(a + 1)e F—(pg,
where the last inequality used

2c
—2¢pVwVF = 2FVwVg > —2F|Vuw| [Vg| > —§¢1/2F|Vw|.

Therefor, by (2.4), we obtain

2spp , FY)?
(- viwr- %)

2c
< ?1<p1/2F|Vw| + AF — (B + a)csp(a + 1)e @D vy

F
— cp(ar + 1)e @ VE ¢ ‘%.

Following Davies [4] (see also Negrin [12]), we set

_|Vw|2
==

253
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Then we have

2p2
20B((f —L)sp —1)°F° _ @(pl/zul/zlza/z + AF —(

N+ 1) =5 B + a)csp(a + 1)e Y@y F

=
—cpa + 1)e vetDE 4 %

Next, we consider the following two cases:

1) ¢c>0;
(2) c<O.
(1) Whenc > 0, then we have
208((B —L)spu —1PF? _ 201 15 1003 pF
<= F¥2 4+ AF + —,
(N +n)s =R H * + s

multiplying both sides of the above inequality 8y, we have

28((B — 1)sp — 1)2 2
B((B . _25:: ) (0F)? < %¢1/2M1/2(¢F)3/2 + AspF + oF
258((B — Vs — 1 _, (N + n)c2s?u
= N+ n WF)Y+ 258(F — s — 12R2Y

+ AspF + ¢F.

So, it follows that

N +n (N + n)c?s?u
P = 20— 0A(F —Dsu 17 (28/3((;3 “Tysu _1pre T AT 1)'
Since
(B—Dsu—17=2(1—B)su + 1= 2(1— B)su,
we get

N +n ( (N + n)c?s

= 2a-sp\apa-pre T 1)'

Now, (1) of Theorem 1.3 can be easily deduced from the inéguabove.
(2) Whenc < 0, then we have

20B((B — 1)sp — 1°F2 _ 2c; 12 1/23/2 7
<= F32 + AF — c )MuF
N+ s =g + (B + a)esp(a + L)Mu

_ F
— cM(a + 1)gF + %,
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multiplying both sides of the above inequality By, we have

2B((B — 1)sp — 1)?
N +n

(pF)?

Z—S(pl/zul/z(wF)?’/z + AspF — (8 + a)C82<p2(ot + 1)'\7“1,':
—cM(a + 1)psF + ¢F
25B((B — L)sp — 1) (N+neis’n -
N +n 26B((6 — s — 1eRe?
+ AspF — (B + a)cSp(a + I)MuF —cM(a + 1)psF + ¢F.

IA

(pF)* +

So, it follows that

N+n [ (N+n)cs (@ +2-p)
P= 2(1—6)ﬂ(465(1—ﬁ)R2 AT p)

Similarly, we can obtain (2) of Theorem 1.3.

cM(« +1)s+1).
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