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Abstract

M. Kiyota, T. Okuyama and T. Wada recently proved that eaclo2kbof a sym-
metric group ¥, contains a unique irreducible Brauer character of heightVe
present a more conceptual proof of this result.

1. Background on bilinear forms

According to the main result in [6], every 2-block of the syetnic groupX, has
a unique irreducible Brauer character of height 0. This i$ tnoe for an arbitrary
2-block of a finite group. For example, I& be a real non-principal 2-block which is
Morita equivalent to the group algebra 8§ and which has a Klein-four defect group
and a dihedrakxtended defect groufin the sense of [1]). Then one can show tiEat
has three real irreducible Brauer characters of height @& ft¢n-principal 2-block of
((Cax Cy) : Cy) : Cy is of this type.

In this note we place the results of [6] in a more general cdntsing the ap-
proach to bilinear forms developed by R. Gow and W. Willemk [@/e use results
and notation from [7] for representation theory, from [5} feymmetric groups, and
from [8] for bilinear forms in characteristic 2.

Let G be a finite group and letK, R, F) be a 2modular systenfor G. So R
is a complete discrete valuation ring with field of fractioksof characteristic 0, and
residue fieldR/J = F of characteristic 2. Assume thdt contains a primitive|G|-
th root of unity, and thatF is perfect. ThenK and F are splitting fields for each
subgroup ofG.

The anti-isomorphismg — g% on G extends to an involutoryF-algebra anti-
automorphismo : FG — FG called the contragredient map Let V be a right FG-
module. The linear duaV* := Homg(V, F) is considered as a righiG-module via
(f.x)(v) := f(vx?), for f e V*, x € FG and allv € V. The Frobenius automorphism
A+ 22 of the field F induces an automorphisna) — (&%) of the group Gl (V).
Composing the module ma@ — GLg(V) with this automorphism endow¥ with
anotherFG-module structure. This module is called tRebenius twistof V, and is
denotedV @,
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Let V*® V* be the space of bilinear forms on and letA?(V*) be the subspace
of symplectic bilinear form®n V; a bilinear formb: V xV — F is symplectic if and
only if b(v, v) =0, for all v € V. The quotient spac¥* ® V*/A%(V*) is called the
symmetric squaref V* and is denoteds?(V*).

A quadratic formon V is a mapQ: V — F such thatQ(xv) = A?Q(v) and (1,v) —
Q(u 4+ v) — Q(u) — Q(v) is a bilinear form onV, for all u,v € V andi € F. Now if b
is a bilinear form, itsdiagonal §(b): v — b(v, v) is a quadratic form. The assignmeht
is linear with kernelA?(V*). So there is a short exact sequence of vector spaces

1) 0 A2(V*) = V* @ V* 5 S(V*) = 0.

We may identify S?(V*) with the space of quadratic forms oh. If Q is a quad-
ratic form, its polarizationis the associated bilinear form(Q): (u, v) = Q(u + v) —
Q(u) — Q(v).

The dual S(V)* of the symmetric squar&?(V) of V is the space oBymmetric
bilinear formson V. As charf) = 2, each symplectic form is symmetric. lif is a
symmetric bilinear formg(b) is additive and hence can be identified with a linear map
V@ — F. Thus there is a short exact sequence:

) 0— A2(V*) = S(V)* 5> v@* S0,

All of these F-spaces areFG-modules, and the maps af€G-module homo-
morphisms. It is a singular feature of the characteristibébry thatS?(V*) and S?(V)*
need not be isomorphic @&G-modules.

Now let b be a bilinear form onV. We say thatb is G-invariant if the associ-
ated mapv — b(v, ) for v € V, is an FG-module mapV — V*. We say thatb is
nondegeneratéf this map is anF-isomorphism. TakingG-fixed points in (2) we get
a long exact sequence of the form

0— AX(V*)C — P(V)C 5 v@C _ HYG, AZ(VH)) = ---.

In particular, if V@*G¢ = 0, then eachG-invariant symmetric bilinear form o is
symplectic. Now the triviaFG-module equals its Frobenius twist. A simple argument
then shows:

Lemma 1. If V = V*, and V has no trivial G-submodulethen each G-invariant
symmetric bilinear form on V is symplectic.

We will make use of Fong's lemma:

Lemma 2. Let V be an absolutely irreducible non-trivial FG-moduleheh V =~
V* if and only if V affords a nondegenerate G-invariant symiiebilinear form. In
particular dim(V) is even.
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For h € G define a quadratic forn®Q, on FG by setting, foru = dee ugg € FG

> Uglng if h?Z=1,
{g.hg G

> UgUng, if h2#1.

geG

®) Qn(u) =

Then Qp = Qn-: and{Qn | {h,h™} € G} is a basis for the space @-invariant quad-
ratic form onFG.

2. Real 2-blocks of defect zero

Assume thatG has even order, and th& is a real 2-block ofG which has a
trivial defect group. EquivalenthB is a simpleF-algebra which is ar-invariant FG x
G-direct summand ofFG. Moreover, B has a unique irreducibl& -charactery and a
unique simple modules.

Let eg be the identity element (or block idempotent) Bf Then

e =€ + &+ - +e

whered = dimg(S) and theg are pairwise orthogonal primitive idempotents FiG.
Eache FG is isomorphic toS. In particularS is a projectiveFG-module.

Let M be anRGHlattice whose character ig. Then M/J(R)IM =~ S, as FG-
modules. NowM has a quadratic geometry becaysehas Frobenius-Schur indicator
+1. ThusS has a quadratic geometry.

By [2] there exists an involutiont in G such that the restriction of the for®;
of (3) to e;FG is non-degenerate. It follows th@ can be chosen so thaj = etl"
(whereel” = (tegt)” = teft). We note that it can be shown thét) is an extended
defect group ofB and S is a direct summand of the induced modtﬂ@e(t)TG.

As eg = €, we haveeg = e; + € +---+ €y, and eache!” is primitive in FG
andee’ =0=¢"¢, fori > 1.

Suppose next thaV is a B-module, equipped with a (possibly degeneraBe)
invariant symmetric bilinear forr{ , ). The G-invariance is equivalent tdux, v) =
(u, vx?), for all u,v € V andx € FG. Now e;g =0, fori > 1. So

(Ve,Ve) =0, for i>1.
Following [6], we define a bilinear fornb on the F-spaceV e by
b(ue, vey) := (ue, vert), for all ue, ve € Ve.
Thenb is symmetric, as

b(uey, ver) = (uet, ver) = (vey, ueit) = b(vey, uey).
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Now consider the radicals of the forms

radV):={ueV |(u,v) =0, Vv eV},
radVVe) := {ue, € Ve | b(ue, ve)) =0, Yve, € Vel

We include a proof of Lemma 4.5 of [6] for the benefit of the ead
Lemma 3. rad(Ve) =rad(V)e; and Veg/radVe) = (V/rad(V))e;.
Proof. Letu e rad(V) andve; € Ve. Then

b(uei, ver) = (ue, vert) = (u, veitel) = 0.

So rady{ e) 2 rad(V)e;. Now letue € radVe) andv € V. Writing v = Z?:l ve’,
we have

M=

(ue, v) = (uey, ve) = (uey, ve]) = b(uey, vtey) = 0.

i=1

So rad{/ e) C rad(V)e;. The stated equality follows.

We have anF-vector space map: Ve — (V/rad(V))e; such thatp(ve)) = ve; +
rad(V). Now (v + rad(V))e; = ve; + rad(V) as rad{)e; € rad(V). So ¢ is onto.
Moreover, ker$) = rad(V)e;. The stated isomorphism follows from this. O

3. Brauer characters of symmetric groups

Let n be a positive integer. Corresponding to each partitioof n, there is a
Young subgroupx; of %, and a permutatiorRX,-module M* := Indg)"(Rz.A). This
module has a,-invariant symmetric bilinear form with respect to whictetpermuta-
tion basis is orthonormal. Th8pecht lattice Sis a uniquely determinedR-free RX,-
submodule ofM* cf. [5, 4.3]. ThenS* ®k K is an irreducibleK £,-module and all
irreducible K ,-modules arise in this way.

Now S* is usually not a self-duaRZ,-module; the dual modul§, := S** is nat-
urally isomorphic toF'"! ®g Sé; where A! is the transpose partition to. Note that
g is the 1-dimensionasign module

SetS := S/JS. ThenS: is a Specht module foF =,. It inherits an,-invariant
symmetric bilinear forn{ , ) from S*. This form is nonzero if and only if is 2-regular
(i.e. if A has different parts).

Suppose that is 2-regular. TherD* := S*/rad(S) is a simpleF =,-module, and
all simple FX,-modules arise uniquely in this way. TH&* are evidently self-dual.
Indeed,{ , ) induces a nondegenerate form @t, which by Fong's lemma is sym-
plectic if D* is non-trivial. Note thatS1" is the trivial F £,-module, as chaR) = 2.
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It follows that the dual of a Specht module in characteri&tits a Specht module:
S ~ 9,

Let B be a 2-block ofz,. ThenB is determined by an integeveight w such that
n—2w is a nonnegative triangular numbletk + 1)/2. The partitions := [k, k—1,...,
2, 1] is called the zore of B. Each defect group oB is Z,-conjugate to a Sylow
2-subgroup ofXy,.

Recall that the Zore of a partition is obtained by successively stripping remov-
able domino shapes froth. We attach toB all partitions ofn which have 2-cores.

Setm:=n—2w and identify X,,, x ¥, with a Young subgroup o&,. Now X,
has a 2-blockB; of weight 0 and 2-coré. This block is real and has a trivial defect
group. Moreover,S’ ®g K is the unique irreducibl =,-module in Bs and D? = S
is the unique simpleéBs-module. It is important to note thdd?® is a projectiveF Xp,-
module and everyr £,-module in Bs is semi-simple.

Let e; be the block idempotent oB;. Following Section 2, choose an involution
t € T, and a primitive idempoteng; in F X, such thate; = eje; and €’ = e;. Note
that dim:(D%e;) = 1.

Let 1 be a 2-regular partition irB. RegardV := Ste; as anF X, x Z,-module
by restriction. ThenVe is an FX,,-module, as the elements af,, commute with
€. Indeed

V =Ve ® D' as FX,, x Zm-modules.

Now S* and henceV affords aX,, x Tp-invariant symmetric bilinear forng , ) such
that V/rad(V) = D*e;s. It then follows from Lemma 3 that we may use the identity
e‘l" = e, to construct a symmetric bilinear forimon V e;. Moreover,V e /rad(V e;) =~
D*e;. So theF X,,-module D*e; inherits a nondegenerate symmetric bilinear fdrm
Reviewing the construction df from ( , ), we see thab is X, -invariant (ast € X,
commutes with all elements df,,, and( , ) is Zn-invariant).

Lemma 4. Suppose thap # [k + 2w,k —1,..., 2, 1] Then D‘e affords a
non-degenerate,,, -invariant symplectic bilinear form.

Proof. In view of Lemma 1 and the discussion above, it is ehowegshow that
D*e; has no trivial F Xy,-submodules. Suppose otherwise. THen, ®¢ D% is a
submodule of the restriction dd* to X5, x X,. But D* is a submodule OE. So
D? is a submodule of Homzh,(FEm,g) as FX,,-modules.

We haveF-isomorphisms

Homes,, (Fs,,, S.) = Homes, (MP¥Y1S)) by Eckmann—Shapiro

=~ Homgy, (¢, MB» 1Ty as M2 s self-dual.
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As u is 2-regular, it follows from [5, 13.13] that Hogg, (S#, M2»1") has a basis of
semistandard homomorphisms. The argument of Theorem 4[8] afow applies, and
shows that

Homes,, (Fx,,, S.) = $*\!*]1  as F X,,-modules.

Here u! \ [1%“] is a skew-partition ofm; it is empty if u1 < 2w (in which case
Homes,, (Fx,,, S.) = 0). Otherwise its diagram is the set of nodes in the Young dia-
gram of u! not in the top 2 rows of the first column. Nows*\!*1 has anF X,-
submodule isomorphic t®? if and only if Sf\[lzw] has anK Z,-submodule isomorphic
to S, asD’ = S, and using the projectivity oD®.

The multiplicity of § in S‘f\[lzwl is the number ofx \ [2w]-tableau of typest = §
which are strictly increasing along rows and nondecreadmgn columns. Suppose for
the sake of contradiction that such a tabléawexists.

We claim thatu; <k—i+2fori =2,...,k, andu; =0 fori > k+ 1. This is
true fori = 2, as the entries in the second row Dfare different. Suppose that> 2
and i1 <k—i+ 3. But uj < uj_1, aspu is 2-regular. Souj <k —i + 2, proving
our claim.

On the other handy; > 6 =k -1+ 1, fori =1,...,k, asu has 2-cores.

It follows that u \ 6 consists of the lasi; — k nodes in the first row ofu, and a
subset of the nodes (R), (3,k—1),..., (k, 2), K + 1, 1). On the other hand; has
2-cores. Sou \ 8 is a union of domino shapes. It follows that does not exist if
u#[k+2w,k—1,...,2,1]. This contradiction completes the proof of the lemmal

Suppose thaG is a finite group and thaB is a 2-block ofG with defect group
P < G. Then it is known that® : P], divides the degree of every irreducible Brauer
character inB. Recall that a Brauer character B hasheight zeroif the 2-part of its
degree is G : P],. We now prove the main result of [6].

Theorem 5. Let B be a2-block of X,. Then B contains a unique irreducible
Brauer character of heigh®.

Proof. Suppose as above tHathas weightw and 2-cores, and letd be a height
zero irreducible Brauer character B1 Then# is the Brauer character d* for some
2-regular partitionu of n belonging toB.

Let P be a vertex ofD*. Then P is a defect group oB. We may assume thd®
is a Sylow 2-subgroup oEjy,. It is easy to show thaNy (P) = P x X, a subgroup
of Yow X 2m.

Let By denote the principal 2-block df,,,. ThenBy® B; is the Brauer correspond-
ent of B with respect to E,, P, 2o, X ). So the Green correspondent Bf* with
respect to £, P, », x ) has the formU* ® D?, whereU* is an indecomposable
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3o, -direct summand oD*e; which belongs toBy. Moreover,U* is the unique com-
ponent of D*e; that has vertexP.

If w=1[k+2w,k—-1,...,2,1] it can be shown that* is the trivial F X,,-
module. Suppose that # [k + 2w, k—1,..., 2, 1]. Lemma 4 implies thaD"e; has
a symplectic geometry. It then follows from the first propiosi in [3] that U* has a
symplectic geometry. In particular ditd(*) is even.

Now the 2-part of dim{* ® D?) divides 2Zm|, = 2[Z, : P]. A standard result
on the Green correspondence implies that the 2-part of Dihdivides 2=, : Pl..
This contradicts the assumption thtathas height zero, and completes the proof[]
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