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Abstract
M. Kiyota, T. Okuyama and T. Wada recently proved that each 2-block of a sym-

metric group6n contains a unique irreducible Brauer character of height 0.We
present a more conceptual proof of this result.

1. Background on bilinear forms

According to the main result in [6], every 2-block of the symmetric group6n has
a unique irreducible Brauer character of height 0. This is not true for an arbitrary
2-block of a finite group. For example, letB be a real non-principal 2-block which is
Morita equivalent to the group algebra ofA4 and which has a Klein-four defect group
and a dihedralextended defect group(in the sense of [1]). Then one can show thatB
has three real irreducible Brauer characters of height 0. The non-principal 2-block of
((C2 � C2) W C9) W C2 is of this type.

In this note we place the results of [6] in a more general context using the ap-
proach to bilinear forms developed by R. Gow and W. Willems [2]. We use results
and notation from [7] for representation theory, from [5] for symmetric groups, and
from [8] for bilinear forms in characteristic 2.

Let G be a finite group and let (K , R, F) be a 2-modular systemfor G. So R
is a complete discrete valuation ring with field of fractionsK of characteristic 0, and
residue fieldR=J D F of characteristic 2. Assume thatK contains a primitivejGj-
th root of unity, and thatF is perfect. ThenK and F are splitting fields for each
subgroup ofG.

The anti-isomorphismg 7! g�1 on G extends to an involutoryF-algebra anti-
automorphism� W FG ! FG called thecontragredient map. Let V be a right FG-
module. The linear dualV�

WD HomF (V, F) is considered as a rightFG-module via
( f . x)(v) WD f (vx� ), for f 2 V�, x 2 FG and all v 2 V . The Frobenius automorphism
� 7! �

2 of the field F induces an automorphism (ai j ) 7! (a2
i j ) of the group GLF (V).

Composing the module mapG ! GLF (V) with this automorphism endowsV with
anotherFG-module structure. This module is called theFrobenius twistof V , and is
denotedV (2).
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Let V�


V� be the space of bilinear forms onV and let32(V�) be the subspace
of symplectic bilinear formson V ; a bilinear formbW V � V ! F is symplectic if and
only if b(v, v) D 0, for all v 2 V . The quotient spaceV�


 V�

=3

2(V�) is called the
symmetric squareof V� and is denotedS2(V�).

A quadratic formon V is a mapQW V ! F such thatQ(�v)D �2Q(v) and (u,v) 7!
Q(uC v)� Q(u)� Q(v) is a bilinear form onV , for all u, v 2 V and� 2 F . Now if b
is a bilinear form, itsdiagonalÆ(b) W v 7! b(v, v) is a quadratic form. The assignmentÆ
is linear with kernel32(V�). So there is a short exact sequence of vector spaces

(1) 0! 3

2(V�)! V�


 V�

Æ

�! S2(V�)! 0.

We may identify S2(V�) with the space of quadratic forms onV . If Q is a quad-
ratic form, its polarization is the associated bilinear form�(Q) W (u, v) 7! Q(uC v) �
Q(u) � Q(v).

The dual S2(V)� of the symmetric squareS2(V) of V is the space ofsymmetric
bilinear forms on V . As char(F) D 2, each symplectic form is symmetric. Ifb is a
symmetric bilinear form,Æ(b) is additive and hence can be identified with a linear map
V (2)
! F . Thus there is a short exact sequence:

(2) 0! 3

2(V�)! S2(V)�
Æ

�! V (2)�
! 0.

All of these F-spaces areFG-modules, and the maps areFG-module homo-
morphisms. It is a singular feature of the characteristic 2-theory thatS2(V�) and S2(V)�

need not be isomorphic asFG-modules.
Now let b be a bilinear form onV . We say thatb is G-invariant if the associ-

ated mapv 7! b(v, ) for v 2 V , is an FG-module mapV ! V�. We say thatb is
nondegenerateif this map is anF-isomorphism. TakingG-fixed points in (2) we get
a long exact sequence of the form

0! 3

2(V�)G
! S2(V)�G Æ

�! V (2)�G
! H1(G, 32(V�))! � � � .

In particular, if V (2)�G
D 0, then eachG-invariant symmetric bilinear form onV is

symplectic. Now the trivialFG-module equals its Frobenius twist. A simple argument
then shows:

Lemma 1. If V � V�, and V has no trivial G-submodules, then each G-invariant
symmetric bilinear form on V is symplectic.

We will make use of Fong’s lemma:

Lemma 2. Let V be an absolutely irreducible non-trivial FG-module. Then V�
V� if and only if V affords a nondegenerate G-invariant symplectic bilinear form. In
particular dim(V) is even.
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For h 2 G define a quadratic formQh on FG by setting, foru D
P

g2G ugg 2 FG

(3) Qh(u) D

8

�

�

�

<

�

�

�

:

X

{g,hg}�G

uguhg, if h2
D 1,

X

g2G

uguhg, if h2
¤ 1.

Then Qh D Qh�1 and{Qh j {h, h�1} � G} is a basis for the space ofG-invariant quad-
ratic form onFG.

2. Real 2-blocks of defect zero

Assume thatG has even order, and thatB is a real 2-block ofG which has a
trivial defect group. EquivalentlyB is a simpleF-algebra which is a� -invariant FG�
G-direct summand ofFG. Moreover, B has a unique irreducibleK -character� and a
unique simple moduleS.

Let eB be the identity element (or block idempotent) ofB. Then

eB D e1C e2C � � � C ed,

where d D dimF (S) and theei are pairwise orthogonal primitive idempotents inFG.
Eachei FG is isomorphic toS. In particular S is a projectiveFG-module.

Let M be an RG-lattice whose character is� . Then M=J(R)M � S, as FG-
modules. NowM has a quadratic geometry because� has Frobenius-Schur indicator
C1. Thus S has a quadratic geometry.

By [2] there exists an involutiont in G such that the restriction of the formQt

of (3) to e1FG is non-degenerate. It follows thate1 can be chosen so thate1 D et�
1

(where et�
1 D (te1t)� D te�1 t). We note that it can be shown thathti is an extended

defect group ofB and S is a direct summand of the induced moduleFCG(t)"
G.

As eB D et�
B , we haveeB D e1C et�

2 C � � � C et�
d , and eachet�

i is primitive in FG
and e1et�

i D 0D et�
i e1, for i > 1.

Suppose next thatV is a B-module, equipped with a (possibly degenerate)G-
invariant symmetric bilinear formh , i. The G-invariance is equivalent tohux, vi D
hu, vx� i, for all u, v 2 V and x 2 FG. Now e1ei D 0, for i > 1. So

hV e1, V e�i i D 0, for i > 1.

Following [6], we define a bilinear formb on the F-spaceV e1 by

b(ue1, ve1) WD hue1, ve1ti, for all ue1, ve1 2 V e1.

Then b is symmetric, as

b(ue1, ve1) D hue1t, ve1i D hve1, ue1ti D b(ve1, ue1).
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Now consider the radicals of the forms

rad(V) WD {u 2 V j hu, vi D 0, 8v 2 V},

rad(V e1) WD {ue1 2 V e1 j b(ue1, ve1) D 0, 8ve1 2 V e1}.

We include a proof of Lemma 4.5 of [6] for the benefit of the reader:

Lemma 3. rad(V e1) D rad(V)e1 and V e1=rad(V e1) � (V=rad(V))e1.

Proof. Let u 2 rad(V) and ve1 2 V e1. Then

b(ue1, ve1) D hue1, ve1ti D hu, ve1te�1 i D 0.

So rad(V e1) � rad(V)e1. Now let ue1 2 rad(V e1) and v 2 V . Writing v D

Pd
iD1 ve�i ,

we have

hue1, vi D
d
X

iD1

hue1, ve�i i D hue1, ve�1 i D b(ue1, vte1) D 0.

So rad(V e1) � rad(V)e1. The stated equality follows.
We have anF-vector space map�W V e1! (V=rad(V))e1 such that�(ve1)D ve1C

rad(V). Now (v C rad(V))e1 D ve1 C rad(V) as rad(V)e1 � rad(V). So � is onto.
Moreover, ker(�) D rad(V)e1. The stated isomorphism follows from this.

3. Brauer characters of symmetric groups

Let n be a positive integer. Corresponding to each partition� of n, there is a
Young subgroup6

�

of 6n and a permutationR6n-module M�

WD Ind6n
6

�

(R
6

�

). This
module has a6n-invariant symmetric bilinear form with respect to which the permuta-
tion basis is orthonormal. TheSpecht lattice S� is a uniquely determinedR-free R6n-
submodule ofM� cf. [5, 4.3]. ThenS� 
R K is an irreducibleK6n-module and all
irreducible K6n-modules arise in this way.

Now S� is usually not a self-dualR6n-module; the dual moduleS
�

WD S�� is nat-
urally isomorphic toS[1n]


R S�
t

R where �t is the transpose partition to�. Note that
S[1n] is the 1-dimensionalsign module.

SetS� WD S�=J S�. ThenS� is a Specht module forF6n. It inherits an6n-invariant
symmetric bilinear formh , i from S�. This form is nonzero if and only if� is 2-regular
(i.e. if � has different parts).

Suppose that� is 2-regular. ThenD�

WD S�=rad(S�) is a simpleF6n-module, and
all simple F6n-modules arise uniquely in this way. TheD� are evidently self-dual.
Indeed,h , i induces a nondegenerate form onD�, which by Fong’s lemma is sym-

plectic if D� is non-trivial. Note thatS[1n] is the trivial F6n-module, as char(F) D 2.
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It follows that the dual of a Specht module in characteristic2 is a Specht module:

S
�

� S�t .

Let B be a 2-block of6n. Then B is determined by an integerweightw such that
n�2w is a nonnegative triangular numberk(kC1)=2. The partitionÆ WD [k, k�1, : : : ,
2, 1] is called the 2-core of B. Each defect group ofB is 6n-conjugate to a Sylow
2-subgroup of62w.

Recall that the 2-core of a partition� is obtained by successively stripping remov-
able domino shapes from�. We attach toB all partitions ofn which have 2-coreÆ.

Set m WD n� 2w and identify62w �6m with a Young subgroup of6n. Now 6m

has a 2-blockB
Æ

of weight 0 and 2-coreÆ. This block is real and has a trivial defect

group. Moreover,SÆ 
R K is the unique irreducibleK6m-module in B
Æ

and DÆ

D SÆ

is the unique simpleB
Æ

-module. It is important to note thatDÆ is a projectiveF6m-
module and everyF6m-module in B

Æ

is semi-simple.
Let e

Æ

be the block idempotent ofB
Æ

. Following Section 2, choose an involution
t 2 6m and a primitive idempotente1 in F6m such thate1 D e1e

Æ

and et�
1 D e1. Note

that dimF (DÆe1) D 1.
Let � be a 2-regular partition inB. RegardV WD S�e

Æ

as anF62w �6m-module
by restriction. ThenV e1 is an F62w-module, as the elements of62w commute with
e1. Indeed

V � V e1
F DÆ as F62w �6m-modules.

Now S� and henceV affords a62w �6m-invariant symmetric bilinear formh , i such
that V=rad(V) D D�e

Æ

. It then follows from Lemma 3 that we may use the identity
et�

1 D e1 to construct a symmetric bilinear formb on V e1. Moreover,V e1=rad(V e1) �
D�e1. So theF62w-module D�e1 inherits a nondegenerate symmetric bilinear formb.
Reviewing the construction ofb from h , i, we see thatb is 62w-invariant (ast 2 6m

commutes with all elements of62w, and h , i is 6n-invariant).

Lemma 4. Suppose that� ¤ [k C 2w, k � 1, : : : , 2, 1]. Then D�e1 affords a
non-degenerate62w-invariant symplectic bilinear form.

Proof. In view of Lemma 1 and the discussion above, it is enough to show that
D�e1 has no trivial F62w-submodules. Suppose otherwise. ThenF

62w 
F DÆ is a
submodule of the restriction ofD� to 62w � 6m. But D� is a submodule ofS

�

. So
DÆ is a submodule of HomF62w (F

62w , S
�

) as F6m-modules.
We haveF-isomorphisms

HomF62w (F
62w , S

�

) � HomF6n(M
[2w,1m] , S

�

), by Eckmann–Shapiro

� HomF6n(S�, M [2w,1m]), as M [2w,1m] is self-dual.
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As � is 2-regular, it follows from [5, 13.13] that HomF6n (S�, M [2w,1m]) has a basis of
semistandard homomorphisms. The argument of Theorem 4.5 of[4] now applies, and
shows that

HomF62w (F
62w , S

�

) � S�t
n[12w ] as F6m-modules.

Here �t
n [12w] is a skew-partition ofm; it is empty if �1 < 2w (in which case

HomF62w (F
62w , S

�

) D 0). Otherwise its diagram is the set of nodes in the Young dia-

gram of �t not in the top 2w rows of the first column. NowS�t
n[12w ] has anF6m-

submodule isomorphic toDÆ if and only if S�
t
n[12w ]

K has anK6m-submodule isomorphic

to SÆK , as DÆ

D SÆ, and using the projectivity ofDÆ.

The multiplicity of SÆK in S�
t
n[12w ]

K is the number of�n [2w]-tableau of typeÆt
D Æ

which are strictly increasing along rows and nondecreasingdown columns. Suppose for
the sake of contradiction that such a tableauT exists.

We claim that�i � k� i C 2 for i D 2, : : : , k, and�i D 0 for i > kC 1. This is
true for i D 2, as the entries in the second row ofT are different. Suppose thati � 2
and �i�1 � k � i C 3. But �i < �i�1, as� is 2-regular. So�i � k � i C 2, proving
our claim.

On the other hand,�i � Æi D k � i C 1, for i D 1, : : : , k, as � has 2-coreÆ.
It follows that � n Æ consists of the last�1 � k nodes in the first row of�, and a
subset of the nodes (2,k), (3, k � 1), : : : , (k, 2), (kC 1, 1). On the other hand,� has
2-core Æ. So � n Æ is a union of domino shapes. It follows thatT does not exist if
� ¤ [kC2w, k�1, : : : , 2, 1]. This contradiction completes the proof of the lemma.

Suppose thatG is a finite group and thatB is a 2-block ofG with defect group
P � G. Then it is known that [G W P]2 divides the degree of every irreducible Brauer
character inB. Recall that a Brauer character inB hasheight zeroif the 2-part of its
degree is [G W P]2. We now prove the main result of [6].

Theorem 5. Let B be a2-block of 6n. Then B contains a unique irreducible
Brauer character of height0.

Proof. Suppose as above thatB has weightw and 2-coreÆ, and let� be a height
zero irreducible Brauer character inB. Then� is the Brauer character ofD� for some
2-regular partition� of n belonging toB.

Let P be a vertex ofD�. Then P is a defect group ofB. We may assume thatP
is a Sylow 2-subgroup of62w. It is easy to show thatN

6n(P) D P �6m, a subgroup
of 62w �6m.

Let B0 denote the principal 2-block of62w. ThenB0
B
Æ

is the Brauer correspond-
ent of B with respect to (6n, P, 62w � 6m). So the Green correspondent ofD� with
respect to (6n, P, 62w � 6m) has the formU�


 DÆ, whereU� is an indecomposable
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62w-direct summand ofD�e1 which belongs toB0. Moreover,U� is the unique com-
ponent ofD�e1 that has vertexP.

If � D [k C 2w, k � 1, : : : , 2, 1] it can be shown thatU� is the trivial F62w-
module. Suppose that� ¤ [kC 2w, k � 1, : : : , 2, 1]. Lemma 4 implies thatD�e1 has
a symplectic geometry. It then follows from the first proposition in [3] that U� has a
symplectic geometry. In particular dim(U�) is even.

Now the 2-part of dim(U�


 DÆ) divides 2j6mj2 D 2[6n W P]2. A standard result
on the Green correspondence implies that the 2-part of dim(D�) divides 2[6n W P]2.
This contradicts the assumption that� has height zero, and completes the proof.
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ing a visit to Jena in April 2011. S. Kleshchev suggested I look at the restrictions of
dual Specht modules, and D. Hemmer clarified the ‘fixed-pointfunctors’ used to prove
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