<table>
<thead>
<tr>
<th>Title</th>
<th>SH(3)-MOVE AND OTHER LOCAL MOVES ON KNOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kanenobu, Taizo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 51(2) P.439-P.457</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-04</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/29197</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/29197</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
SH(3)-MOVE AND OTHER LOCAL MOVES ON KNOTS

TAIZO KANENOBU

(Received May 1, 2012, revised September 14, 2012)

Abstract

An SH(3)-move is an unknotting operation on oriented knots introduced by Hoste, Nakanishi and Taniyama. We consider some relationships to other local moves such as a band surgery, \(\Gamma_0 \)-move, and \(\Delta \)-move, and give some criteria for estimating the SH(3)-unknotting number using the Jones, HOMFLYPT, Q polynomials. We also show a table of SH(3)-unknotting numbers for knots with up to 9 crossings.

1. Introduction

An SH(3)-move is a local change for an oriented link diagram which preserves the number of components as shown in Fig. 1. This move is a special case of an SH(\(n \))-move introduced by Hoste, Nakanishi and Taniyama [6], where \(n \) is odd. Then they showed that each of these moves are unknotting operation, that is, any knot can be deformed into a trivial knot by a sequence of SH(\(n \))-moves. So, we may define an SH(\(n \))-Gordian distance between two knots and an SH(\(n \))-unknotting number for a knot. In this paper, we mainly consider an SH(3)-Gordian distance and an SH(3)-unknotting number.

For an SH(3)-Gordian distance, Taniyama and Yasuhara [29] have given some interpretations (Proposition 2.1), which suggest the importance of the SH(3)-move particularly from 4-dimensional point of view and also give several estimations of an SH(3)-Gordian distance (Propositions 2.2, 2.3, 2.5, 2.6). Since an SH(3)-move is realized by a sequence of two coherent band surgeries (Fig. 2), we may apply some criteria by the Jones, Q, and HOMFLYPT polynomials for a band surgery ([9, 10]) to obtain some criteria on an SH(3)-Gordian distance (Theorem 3.1).

We then consider some relations of an SH(3)-move with other local moves such as a crossing change, a \(\Gamma_0 \)-move, and a \(\Delta \)-move. They are also unknotting operation, and we may obtain several relations among a usual Gordian distance, \(\Gamma_0 \)-Gordian distance, \(\Delta \)-Gordian distance, and SH(3)-Gordian distance (Propositions 4.1, 4.3). These relations are useful to decide an SH(3)-unknotting number, and are also efficient to give a lower bound of an \(\Delta \)-unknotting number (Example 4.8). Lastly, we give a table of an SH(3)- and \(\Gamma_0 \)-unknotting numbers for knots with up to 9 crossings (Tables 1, 2); we can decide the SH(3)-unknotting numbers completely, but cannot decide the \(\Gamma_0 \)-unknottings number for 12 knots.

1991 Mathematics Subject Classification. Primary 57M25; Secondary 57M27.
This paper is organized as follows: In Section 2, we present some interpretations for an $SH(3)$-Gordian distance due to Taniyama and Yasuhara. In Section 3, we give some criteria for an $SH(3)$-Gordian distance by the special values of the Jones, Q, and $HOMFLYPT$ polynomials. In Section 4, we give some relations among several Gordian distances by a crossing change, a Γ_0-move, a Δ-move, and an $SH(3)$-move. In Section 5, we give a table of an $SH(3)$- and Γ_0-unknotting numbers for knots with up to 9 crossings. In Section 6, we remark that our method is also acceptable for the pass move and sharp move.

For knots and links we use Rolfsen notations in Appendix C in [26].

2. Some interpretations of an $SH(3)$-Gordian distance

For an $SH(3)$-Gordian distance Taniyama and Yasuhara [29] have given some interpretations, which is useful to give several estimations of an $SH(3)$-Gordian distance and an $SH(3)$-unknotting number.

Let K and K' be two oriented knots in S^3. We denote the $SH(3)$-Gordian distance of K and K' by $sd_3(K, K')$, and the $SH(3)$-unknotting number of K by $su_3(K)$. The C-distance of K and K', $d_C(K, K')$, is the minimal genus of an embedded oriented surface in S^3 whose boundary is the two knots K and K'. In other words, the C-distance of K and K' is the minimal genus over all 2-components links whose components are K and $-K'$, where $-K'$ is the knot K' with reversed orientation. The concordance distance of K and K', $c(K, K')$, is half of the least number of elementary critical points on an oriented surface in $S^3 \times [0, 1]$ connecting K in $S^3 \times \{0\}$ to K' in $S^3 \times \{1\}$, that is, a concordance between the two knots, whose projection to $[0, 1]$ is a Morse function.

The following is the main theorem of [29].

Proposition 2.1. The $SH(3)$-Gordian distance, the C-distance, and the concordance distance between two knots are equal; $sd_3(K, K') = d_C(K, K') = c(K, K')$.

The C-distance is an interpretation for the $SH(3)$-Gordian distance from a 3-dimensional point of view, which implies the following ([6, Theorems 3* (2)], [29, Theorems 3.1]):

Proposition 2.2. For a knot K, we have:

\begin{equation}
su_3(K) \leq g(K),
\end{equation}
Fig. 2. An $SH(3)$-move is realized by a sequence of two coherent band surgeries.

where $g(K)$ is the genus of K.

The concordance distance is an interpretation for the $SH(3)$-Gordian distance from a 4-dimensional point of view, which implies Propositions 2.3 and 2.5 below. For two oriented knots K and K', we define the coherent band-Gordian distance, $d_{\text{band}}(K, K')$, to be the minimum number of band surgeries needed to deform K into K'. We define the coherent band unknotting number of K to be the coherent band-Gordian distance of K and the trivial knot U, $u_{\text{band}}(K) = d_{\text{band}}(K, U)$. Then we have:

Proposition 2.3. For two oriented knots K and K', we have:

\[d_{\text{band}}(K, K') = 2 \text{sd}_3(K, K'). \]

In particular, we have:

\[u_{\text{band}}(K) = 2 \text{su}_3(K). \]

Proof. An $SH(3)$-move is realized by a sequence of two coherent band surgeries as shown in Fig. 2; see [6, Fig. 4], and so $d_{\text{band}}(K, K') \leq 2 \text{sd}_1(K, K')$. Conversely, suppose that there exist a sequence of oriented links $L_0 = K$, L_1, \ldots, L_{n-1}, $L_n = K'$ such that L_i is obtained from L_{i-1} by a coherent band surgery for each i, $1 \leq i \leq n$. Then there exists an oriented surface in $S^3 \times [0, 1]$ connecting K in $S^3 \times \{0\}$ to K' in $S^3 \times \{1\}$, the number of whose elementary critical points is n. Then $2c(K, K') \leq n$, and so by Proposition 2.1 we have $2 \text{sd}_3(K, K') \leq d_{\text{band}}(K, K')$, completing the proof.

Example 2.4. Let $K = 3_1!\#5_1$. Then K is deformed into H_-, the negative Hopf link, by a band surgery along the band as shown in Fig. 3. Since H_- is band-trivializable, that is, it can be deformed into the trivial knot by a band surgery, by Proposition 2.3 we have $su_3(K) = u_{\text{band}}(K)/2 = 1$. Similarly, we have $su_3(9_8) = su_3(9_{31}) = 1$. In fact, the knots 9_8 and 9_{31} are deformed into $4_1^2!$ with linking number -2 and $5_2\#H_+$, respectively by a band surgery along the bands as shown in Fig. 3, where $4_1^2!$ with linking number -2 is the torus link of type $(2, 4)$ with anti-parallel orientation and H_+ is the positive Hopf link; these links are easily seen to be band-trivializable; cf. [10, Lemma 4.3].
We define the 4-distance of two oriented knots K and K', $d_4(K, K')$, to be the minimum genus of a concordance in $S^3 \times [0, 1]$ between K and K'. In particular, the 4-distance of K and the trivial knot U is the 4-ball genus of K, $g^*(K) = d_4(K, U)$. Then $d_4(K, K') = g^*(K \# (-K'))$. We obtain the following ([29, Theorems 1.2 and 3.1]):

Proposition 2.5. For two oriented knots K and K', we have:

\[(4)\] $d_4(K, K') \leq s_3(K, K')$.

In particular, we have:

\[(5)\] $g^*(K) \leq s_3(K)$.

A knot with 4-ball genus zero is usually called a slice knot. Namely, a slice knot K in S^3 bounds a properly embedded locally flat disk in $S^3 \times [0, \infty)$. A ribbon knot is a slice knot bounding a disk in $S^3 \times [0, \infty)$ whose critical points consist of maximum and saddle points. We define the ribbon-fusion number of a ribbon knot to be the least number of such saddle points. More precisely, a ribbon knot of m-fusions is a knot obtained from a trivial $(m + 1)$-component link by doing band surgery along m bands. So, it has the form

\[(6)\] $S_0^1 \cup S_1^1 \cup \cdots \cup S_m^1 \cup \bigcup_{i=1}^{m} f_i(I \times I) - \text{int} \bigcup_{i=1}^{m} f_i(I \times \partial I),$

where $S_0^1 \cup S_1^1 \cup \cdots \cup S_m^1$ is a trivial m-component link and $f_i: I \times I \to S^3$ ($i = 1, 2, \ldots, m$) are disjoint embeddings such that

\[(7)\] $f_i(I \times \partial I) \cap S_j = \begin{cases} f_i(I \times \{0\}), & \text{if } j = 0; \\ f_i(I \times \{1\}), & \text{if } j = i; \\ \emptyset, & \text{otherwise}. \end{cases}$

By a ribbon knot we mean a ribbon knot of m-fusions for some m; see [30]. The least number of such m is the ribbon-fusion number of K, which we denote by $\text{rf}(K)$; see
Then the following is immediate from the equation $sd_3(K, K') = c(K, K')$, which is a generalization of Example 3.2 (1) in [29].

Proposition 2.6. If K is a ribbon knot, then

\[su_3(K) \leq rf(K). \]

In particular, if K is a ribbon knot with ribbon-fusion number one, then $su_3(K) = 1$.

Example 2.7. Let $K = 9_{41}$, which is a ribbon knot with 1-fusion [13, Appendix F.5], and so by Proposition 2.6, we obtain $su_3(K) = 1$. Note that the inequalities in Proposition 4.5 below do not work to decide this.

We denote by $\Sigma_m(L)$ the m-fold cyclic covering space of S^3 branched over an oriented link L in S^3, and by $\Sigma(K)$ the infinite cyclic covering space of the complement of an oriented knot K in S^3. Let $e_m(L)$ be the minimum number of generators of $H_1(\Sigma_m(L); \mathbb{Z})$, and $e(K)$ the minimum number of generators of $H_1(\Sigma(K); \mathbb{Z})$ as a $\mathbb{Z}[t, t^{-1}]$-module. Then $e(K)$ is equal to the Nakanishi index of K; see [13, p. 72]. For an $SH(3)$-Gordian distance we have the following:

Proposition 2.8. For two oriented knots K and K' in S^3, we have the following:

\[|e_m(K) - e_m(K')|/2(m - 1) \leq sd_3(K, K'), \]
\[|e(K) - e(K')|/2 \leq sd_3(K, K'). \]

Proof. Equation (9) can be proved in a similar way to [6, Theorem 4*], and Equation (10) is given in [29, Theorem 1.2], which is essentially due to Nakanishi [21].

For an $SH(3)$-unknotting number we have the following:

Proposition 2.9. For an oriented knot K in S^3, we have the following:

\[e_m(K)/2(m - 1) \leq e(K)/2 \leq su_3(K). \]

Proof. The first inequality, $e_m(K)/(m - 1) \leq e(K)$, is given in [13, Corollary 5.5.2], and the second one follows from Equation (10), which is also given in [29, Theorem 3.1].

Remark 2.10. The inequality $e_m(K)/2(m - 1) \leq su_3(K)$ is given in [6, Theorem 4*].
3. Special values of some polynomial invariants of knots

We consider the special values of the Jones, Q, and HOMFLYPT polynomials of knots, which allow us to estimate an $SH(3)$-Gordian distance and an $SH(3)$-unknotting number in some cases. First we remember the definitions of several polynomials.

The Conway polynomial $\nabla(L; z) \in \mathbb{Z}[z]$ [3], the Jones polynomial $V(L; t) \in \mathbb{Z}[t^{1/2}, t^{-1/2}]$ [7], and the HOMFLYPT polynomial $P(L; v, z) \in \mathbb{Z}[v^{\pm 1}, z^{\pm 1}]$ [4, 25] are invariants of the isotopy type of an oriented link L, which are defined by the following formulas:

\begin{align}
(12) & \quad \nabla(U; z) = 1; \\
(13) & \quad \nabla(L_+; z) - \nabla(L_-; z) = z\nabla(L_0; z); \\
(14) & \quad V(U; t) = 1; \\
(15) & \quad t^{-1}V(L_+; t) - tV(L_-; t) = \left(t^{1/2} - t^{-1/2}\right)V(L_0; t); \\
(16) & \quad P(U; v, z) = 1; \\
(17) & \quad v^{-1}P(L_+; v, z) - vP(L_-; v, z) = zP(L_0; v, z),
\end{align}

where U is the unknot and (L_+, L_-, L_0) is a skein triple, that is, three links that are identical except near one point where they are as in Fig. 4.

For an oriented link L, the Conway and Jones polynomials are related to the HOMFLYPT polynomial by:

\begin{align}
(18) & \quad \nabla(L; z) = P(L; 1, z); \\
(19) & \quad V(L; t) = P(L; t, t^{1/2} - t^{-1/2}).
\end{align}

The Conway polynomial of a knot K is of the form

$$\nabla(K; z) = 1 + \sum_{k=1}^{n} a_{2k}(K)z^{2k},$$

where $a_{2k}(K) \in \mathbb{Z}$.

The Q polynomial $Q(L; z) \in \mathbb{Z}[z^{\pm 1}]$ [1, 5] is an invariant of the isotopy type of an unoriented link L, which is defined by the following formulas:

\begin{align}
(20) & \quad Q(U; z) = 1; \\
(21) & \quad Q(L_+; z) + Q(L_-; z) = z(Q(L_0; z) + Q(L_\infty; z)),
\end{align}

where U is the unknot and L_+, L_-, L_0, L_∞ are four unoriented links that are identical except near one point where they are as in Fig. 5.

Some special values of these polynomials are closely related with some finite cyclic covering spaces of S^3 branched over a link. Let $\Sigma_m(L)$ be the m-fold cyclic cover of S^3 branched over an oriented link L, $c(L)$ the number of the components of L, \ldots
\[d = \dim H_1(\Sigma_2(L); \mathbb{Z}_3), \ f = \dim H_1(\Sigma_2(L); \mathbb{Z}_5), \text{ and } h = \dim H_1(\Sigma_3(L); \mathbb{Z}_2). \] Further, put \(\omega = e^{i\pi/3} \) and \(\rho(L) = Q\left(L; (\sqrt{5} - 1)/2 \right) \); we consider \(L \) an oriented link in \(\rho(L) \).

Then have:

\[
V(L; \omega) = \pm i^{\varepsilon(L)-1}(i\sqrt{3})^d;
\]

\[
\rho(L) = \pm \sqrt{5}^f;
\]

\[
P(L; i, i) = (i\sqrt{2})^h,
\]

where \(V(L; \omega) \) means the value of \(V(L; t) \) at \(t^{1/2} = e^{i\pi/6} \), whence \(t^{1/2} - t^{-1/2} = i \); see [8, 15]; cf. [14, Table 16.3].

Theorem 3.1. If two knots \(K \) and \(K' \) are related by an SH(3)-move, then:

\[
V(K; \omega)/V(K'; \omega) \in \{ \pm 1, \pm i\sqrt{3}^\pm 1, 3^{\pm 1} \};
\]

\[
\rho(K)/\rho(K') \in \{ \pm 1, \pm \sqrt{5}^\pm 1, 5^{\pm 1} \};
\]

\[
P(K; i, i)/P(K'; i, i) \in \{ 1, -2^{\pm 1}, 4^{\pm 1} \}.
\]

In particular, if \(su_3(K) = 1 \), then:

\[
V(K; \omega) \in \{ \pm 1, \pm i\sqrt{5}, 3 \};
\]

\[
\rho(K) \in \{ \pm 1, \pm \sqrt{5}, 5 \};
\]

\[
P(K; i, i) \in \{ 1, -2, 4 \}.
\]

Proof. If two knots \(K \) and \(K' \) are related by an SH(3)-move, then there is a 2-component link \(L \) such that \(L \) is obtained from each of \(K \) and \(K' \) by a coherent band.
surgery. Then by Theorems 2.2 and 3.1 in [9] and Proposition 2.4 in [10] we have:

\[(31) \quad V(K; \omega)/V(L; \omega), V(L; \omega)/V(K'; \omega) \in \{\pm i, -\sqrt{3} \pm 1\};\]

\[(32) \quad \rho(K)/\rho(L), \rho(L)/\rho(K') \in \{\pm 1, \sqrt{5} \pm 1\};\]

\[(33) \quad P(K; i, i)/P(L; i, i), P(L; i, i)/P(K'; i, i) \in \{1, -2 \pm 1\},\]

which imply Equations (25), (26), (27), respectively. This completes the proof.

Example 3.2. Let \(K = 9_{37}, 9_{48}\) or \(3_1! \neq 6_1\). Then \(V(K; \omega) = -3\), and so by Theorem 3.1, we have \(s_3(K) > 1\). On the other hand, since \(u(K) = 2\) (see [2, 28]), by Equations (35) and (37) below we obtain \(s_3(K) = u_{\Gamma_0}(K) = 2\). Notice that since \(|\sigma(K)| = g^*(K) = 1\), Equation (5) does not work. (These knots and \(3_1! \neq 3_1\) are the only knots with \(V(K; \omega) = -3\) up to 9 crossings.)

4. Relations with other local moves of knots

A \(\Gamma_0\)-move is a local change in an oriented link diagram as shown in Fig. 6, which was introduced by Shibuya [27]. Note that in [27] the first move in Fig. 6 is defined as a \(\Gamma_0\)-move, but we consider the second one a \(\Gamma_0\)-move as well since these moves are equivalent. A \(\Gamma_0\)-move is an unknotting operation. In fact, a crossing change is realized by a \(\Gamma_0\)-move as shown in Fig. 7. Then for oriented knots \(K\) and \(K'\), we may define the \(\Gamma_0\)-Gordian distance from \(K\) to \(K'\), \(d_{\Gamma_0}(K, K')\), and \(\Gamma_0\)-unknotting number of \(K\), \(u_{\Gamma_0}(K)\), in a usual way. Then since a \(\Gamma_0\)-move is realized by two crossing changes, we obtain:

Proposition 4.1. Let \(K\) and \(K'\) be knots. Then we have:

\[(34) \quad d_{\Gamma_0}(K, K') \leq d(K, K') \leq 2d_{\Gamma_0}(K, K').\]

In particular, we have:

\[(35) \quad u_{\Gamma_0}(K) \leq u(K) \leq 2u_{\Gamma_0}(K).\]

Shibuya [27] also introduced a similar local change as shown in Fig. 8, which is called a \(\Gamma_0'\)-move. Then \(\Gamma_0'\)-move is equivalent to \(\Gamma_0\)-move, that is, a \(\Gamma_0'\)-move is realized by a \(\Gamma_0\)-move, and vice-versa as shown in Fig. 9

Murakami and Nakanishi [19] and Matveev [16] introduced a local change in an oriented link diagram called a \(\Delta\)-move as shown in Fig. 10, where the orientations of strings are irrelevant.

A \(\Delta\)-move is known to be an unknotting operation; see [19, Lemma 1.1]. Then for oriented knots \(K\) and \(K'\), we may define the \(\Delta\)-Gordian distance from \(K\) to \(K'\), \(d_{\Delta}(K, K')\), and \(\Delta\)-unknotting number of \(K\), \(u_{\Delta}(K)\), in a usual way. A \(\Delta\)-move has
Fig. 6. A Γ_0-move.

Fig. 7. A crossing change is realized by a Γ_0-move.

Fig. 8. A Γ_0'-move.

Fig. 9. A Γ_0'-move is realized by a Γ_0-move, and vice-versa.

Fig. 10. A Δ-move.
Proposition 4.2. (i) For two knots K and K', we have: $d_{\Delta}(K, K') \equiv a_2(K) - a_2(K') \pmod{2}$.
(ii) If two knots K and K' are related by a single Δ-move, then $|a_2(K) - a_2(K')| = 1$. In particular, we have $u_\Delta(K) \equiv a_2(K) \pmod{2}$ and $u_\Delta(K) \geq |a_2(K)|$.

Proposition 4.3. Let K and K' be knots in S^3. Then we have:

\[(36) \quad sd_3(K, K') \leq d_{\Gamma_0}(K, K') \leq d_{\Delta}(K, K').\]

In particular, we have:

\[(37) \quad su_3(K) \leq u_{\Gamma_0}(K) \leq u_\Delta(K).\]

Proof. The first inequality of Equation (36) is deduced from [29, Proposition 2.1]. In fact, a Γ_0-move is realized by an $SH(3)$-move as shown in Fig. 11; cf. [29, Fig. 2.7]. The second inequality of Equation (36) is due to Shibuya [27, Theorem 1.3]. In fact, a Δ-move is realized by a Γ_0-move as shown in Fig. 12 [27, Fig. 6].

Remark 4.4. Combining Equations (34) and (36), we obtain Theorem 2.1 in [19]: for any knots K and K', the following hold:

\[(38) \quad d(K, K') \leq 2d_{\Delta}(K, K');\]
\[(39) \quad u(K) \leq 2u_{\Delta}(K).\]

We summarize several estimations on the $SH(3)$-unknotting number.
Proposition 4.5. For a knot K, we have:

\begin{align}
|\sigma(K)|/2 & \leq g^*(K) \leq su_3(K) \leq g(K); \\
e_m(K)/2(m - 1) & \leq e(K)/2 \leq su_3(K) \leq u_{\Gamma_0}(K) \leq u(K), u_\Delta(K).
\end{align}

Example 4.6. Let $K = 9_{35}$. Then $u(K) = 3$ (see [2, 24]), and so by Equation (35), we have $u_{\Gamma_0}(K) = 2$ or 3. On the other hand, since $g(K) = 1$, by Equation (40) we obtain $su_3(K) = 1$.

Example 4.7. For the knot $K = 10_{103}$, we have:

$|\sigma(K)|/2 = g^*(K) = 1; \quad su_3(K) = u_{\Gamma_0}(K) = 2; \quad g(K) = u(K) = u_\Delta(K) = 3$.

Proof. From Table F.3 in [13, p. 103] we have $|\sigma(K)|/2 = g^*(K) = 1$ and $g(K) = 3$. In fact, performing the band surgery along the band as shown in Fig. 13 (a), we obtain the 2-component link $H_\ast \# 8_8^!$, the composition of the negative Hopf link and the mirror image of the knot $8_8^!$. Since the $8_8^!$ knot is a ribbon knot, we have $g^*(K) \leq 1$.

Performing the Γ_0-move at the 2 crossings near the marks \ast indicated in Fig. 13 (b), K becomes the knot 5_2, which has unknotting number one, and so $u_{\Gamma_0}(K) \leq 2$. On the other hand, since $\rho(K) = -5$, we have $su_3(K) > 1$. Therefore, $su_3(K) = u_{\Gamma_0}(K) = 2$.

The Δ-unknotting number, $u_\Delta(K) = 3$, is taken from the table in [20]. In fact, performing the Δ-move around the region containing the mark Δ in Fig. 13 (c), K becomes the knot 5_2, which has Δ-unknotting number two [22], and so $u_\Delta(K) \leq 3$. On the other hand, since $a_2(K) = 3$, $u_\Delta(K) \geq 3$.

The following example shows that the estimation for an Δ-unknotting number by using an $SH(3)$-unknotting number is effective, which is also similar for the composite knot $3_1^! \# 6_1$; see Example 3.2.
Example 4.8. Let K be the alternating 12 crossing knot $12a177$ as shown in Fig. 14; see [2]. Then we have $u_\Delta(K) = 3$, which cannot be obtained from only the previous methods as in Proposition 4.2 and the inequalities: $|\sigma(K)|/2 \leq g^*(K) \leq u_\Delta(K)$, $e(K)/2 \leq u_\Delta(K)$.

First, we have:

$$V(K; z) = 1 - z^2 - 3z^4 + 2z^6;$$

$$V(K; t) = t^{-9}(1 - 3t + 7t^2 - 14t^3 + 20t^4 - 25t^5 + 28t^6 - 25t^7 + 21t^8 - 15t^9 + 8t^{10} - 3t^{11} + t^{12});$$

$$\sigma(K) = 2.$$

By applying the Δ-move around the region containing the mark Δ, K is deformed into the knot 1067, whose Δ-unknotting number is 2 [20], and so $u_\Delta(K) \leq 3$. Since $|a_2(K)| = 1$, by Proposition 4.2 we have $u_\Delta(K) \equiv 1 \pmod{2}$ and $u_\Delta(K) \geq 1$. However, since $V(K; \omega) = -3$, by Theorem 3.1 $su_3(K) > 1$, and thus by Proposition 4.3 we obtain $u_\Delta(K) = 3$.

Furthermore, we have $u(K) = u_{\gamma_0}(K) = 2$ and $g^*(K) = 1$. In fact, by changing the 2 crossings near the marks \ast, K is unknotted, and so $u(K) \leq 2$. Then using the inequalities in Proposition 4.5, we obtain $su_3(K) = u_{\gamma_0}(K) = u(K) = 2$. Lastly, by performing a band surgery along the band as shown in Fig. 14, we obtain the composite link $6_1 \# 4_1 \# H_-$. Then since 6_1 is a ribbon knot and $4_1 \# H_-$ is band-trivializable by [10, Lemma 4.3], the 4-ball genus of this link is zero, and so $g^*(K) \leq 1$. Since $\sigma(K) = 2$, we obtain $g^*(K) = 1$.

5. Tables of $SH(3)$- and Γ_0-unknotting numbers of knots with up to 9 crossings

Table 1 lists the 4-ball genus, g^*, $SH(3)$-unknotting number, su_3, Γ_0-unknotting number, u_{γ_0}, unknotting number, u, Δ-unknotting number, u_Δ, and genus, g, of prime knots with up to 9 crossings. We have a complete list of the 4-ball genus, unknotting number and genus for prime knots with up to 9 crossings in [2]. For the Δ-unknotting number we have a table of prime knots with up to 8 crossings in [22], and one for up to 10 crossings in [20].
Fig. 15. Knots with Γ_0-unknotting number one.

For some knots the $SH(3)$- and Γ_0-unknotting numbers are already given in Examples, which are indicated in the last column in Table 1, and for the remaining knots the marks (I), (II) indicate the methods for deciding these numbers. Then we can completely decide the $SH(3)$-unknotting number, but for 11 knots the Γ_0-unknotting number is undecided; in Table 1 1-2 means $u_{\Gamma_0}(K) = 1$ or 2, and 2-3 means $u_{\Gamma_0}(K) = 2$ or 3.

(I) The inequalities $g^* \leq su_3 \leq u_{\Gamma_0} \leq u_\Delta$ and $su_3 \leq g$ in Proposition 4.5 give the $SH(3)$- and Γ_0-unknotting numbers. Notice that for a nontrivial knot, $su_3 > 0$. Also, in some case we cannot obtain definite numbers; for example, for the knot 7_4 we have $su_3 = 1$ since $g = 1$, but $u_{\Gamma_0} = 1$ or 2, undecided, since $u = 2$ and $u_\Delta = 4$.

(II) Fig. 15 shows $u_{\Gamma_0}(K) = 1$, where each knot is transformed into the trivial knot by performing a Γ_0-move at the 2 crossings near the marks \ast.

Remark 5.1. Recently, Yoshiaki Uchida has pointed out an error in the figure for giving $u_\Delta(9_{29})$ in [23, p. 59], from which the number $u_\Delta(9_{29})$ in [20] is taken. So, in Table 1 we list $u_\Delta(9_{29}) = 1$ or 3.
Table 1. $SH(3)$- and Γ_0-unknotting numbers of prime knots with up to 9 crossings.

<table>
<thead>
<tr>
<th>K</th>
<th>g^*</th>
<th>su_3</th>
<th>$ur_{1/2}$</th>
<th>u</th>
<th>u_Λ</th>
<th>g</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>(I)</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>(I)</td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>37</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>38</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>44</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>48</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>(I)</td>
</tr>
<tr>
<td>9</td>
<td>49</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>(I)</td>
</tr>
</tbody>
</table>

K. G. T. Kanenobu
Table 2 lists the 4-ball genus, the $SH(3)$-unknotting number, the Γ_0-unknotting number, the unknotting number, the Δ-unknotting number, and the genus, together with the half of the absolute value of the signature, $|\sigma|/2$, and the absolute value of the coefficient of z^2 of the Conway polynomial, $|a_2|$, of composite knots with up to 9 crossings and $3_1 \# 3_1 \# 4_1$, $3_1! \# 3_1 \# 4_1$ (Example 5.5). The genus, signature, and a_2 are definitely obtained. The unknotting numbers are taken from the table in [28]. An upper bound of the Δ-unknotting number of a composite knot is given by

\[u_\Delta(J \# K) \leq u_\Delta(J) + u_\Delta(K), \]

and we also use Proposition 4.2. In order to find an upper bound of the Γ_0-unknotting number of a composite knot we use the formula:

\[u_{\Gamma_0}(J \# K) \leq u_{\Gamma_0}(J) + u_{\Gamma_0}(K), \]

and also the following proposition, which is trivial, but useful.

Proposition 5.2. Suppose that a knot J' is obtained from a knot J by changing a positive crossing to a negative one and a knot K' is obtained from a knot K by changing a negative crossing to a positive one. Then the composition $J' \# K'$ is obtained from $J \# K$ by performing a single Γ_0-move.

In particular, suppose that J and K are unknotting number one knots such that J is unknotted by changing a positive crossing to a negative one and K is unknotted by changing a negative crossing to a positive one. Then $u_{\Gamma_0}(J \# K) = 1$.

Example 5.3. Let $K = 4_1 \# 5_1$. Then the knot 5_1 is transformed into 3_1 by changing a negative crossing to a positive one, and 4_1 is unknotted by changing a positive crossing to a negative one, and so by the proposition above K is deformed into 3_1 by a Γ_0-move. Then we have $u_{\Gamma_0}(K) \leq 2$. Since $\sigma(K)/2 = 2$, we obtain $g^*(K) = su_3(K) = u_{\Gamma_0}(K) = 2$.

Example 5.4. Let $T_{p,q}$ be the composition of p copies of 3_1, the left-hand trefoil, and q copies of $3_1!$, the right-hand trefoil; $T_{p,q} = (\#^p 3_1) \# (\#^q 3_1!)$. We assume $0 \leq p \leq q$. Then $T_{p,q} = \#^p(3_1 \# 3_1!) \# (\#^q-^p 3_1!)$ and $3_1 \# 3_1!$ is a square knot, which is a ribbon knot. Then we have:

- Since $\sigma(3_1) = 2$, we have $\sigma(T_{p,q}) = -2(q - p)$.
- Since $g^*(3_1) = 1$, we have $g^*(T_{p,q}) = q - p$.
- Since the double branched covering space $\Sigma_2(3_1)$ is the lens space of type $(3, 1)$, $H_1(\Sigma_2(T_{p,q}); \mathbb{Z}) \cong \mathbb{Z}_3 \oplus \cdots \oplus \mathbb{Z}_3$ ($p + q$ summands); thus, $e_2(T_{p,q}) = p + q$.
- By Proposition 5.2 we have $u_{\Gamma_0}(3_1 \# 3_1!) = 1$, and so $u_{\Gamma_0}(T_{p,q}) \leq q$.

Therefore, by Proposition 4.5 we have

\[\max\{(p + q)/2, q - p\} \leq su_3(T_{p,q}) \leq q. \]
In particular, if \(q = p, \ p + 1, \ p + 2 \) or \(p = 0 \), then \(\text{su}_3(T_{p,q}) = q \). In fact, since \(V(3_1;\omega) = -i\sqrt{3}, \ V(T_{p,p+2};\omega) = -3^{p+1} \), and so by Theorem 3.1, \(\text{su}_3(T_{p,p+2}) = p+2 \); see [29, Examples 3.2 (3) and 4.3].

EXAMPLE 5.5. Let \(K = 3_1 \# 3_1 \# 4_1 \) and \(K' = 3_1! \# 3_1 \# 4_1 \). Then since \(P(3_1;\omega) = P(4_1;\omega) = -2 \), we have \(P(K;\omega) = P(K';\omega) = -8 \), which implies \(\text{su}_3(K), \text{su}_3(K') > 1 \) by Theorem 3.1, and \(u(K), u(K') \geq 3 \) by [17, Theorem 1.1], which implies \(u(K) = u(K') = 3 \); see [28, Appendix 1]. Since \(\text{ur}_u(3_1 \# 4_1) = 1 \), we have \(\text{ur}_u(K), \text{ur}_u(K') \leq 2 \), and so \(\text{su}_3(K) = \text{ur}_u(K) = \text{su}_3(K') = \text{ur}_u(K') = 2 \). Therefore, we obtain \(u(K) = u(K') = 3 \) by Equations (37) and (45). Further, since \(|\sigma(K)|/2 = 2 \), we have \(g^*(K) = 2 \), and since \(3_1! \# 3_1 \) is a ribbon knot and \(g^*(4_1) = 1 \), we have \(g^*(K') = 1 \).

In Table 2 the marks \((I')\), \((II')\) indicate the methods for deciding the numbers \(g^*, \text{su}_3, \text{ur}_u, u_\Delta \) as for Table 1.

(I') The inequalities \(|\sigma|/2 \leq g^* \leq \text{su}_3 \leq u_\Delta \) and \(\text{su}_3 \leq g \) in Proposition 4.5 and Equation (45) give \(g^*, \text{su}_3, \text{ur}_u, \) and \(u_\Delta \).

(II') Proposition 5.2 gives \(u_\Delta(K) = 1 \). Note that the knots \(3_1! \# 3_1 \) and \(4_1 \# 4_1 \) are ribbon knots with 1-fusion and the others are not slice because the signature is not

Table 2. \(SH(3) \)- and \(\Gamma_0 \)-unknotting numbers of composite knots with up to 9 crossings and \(3_1 \# 3_1 \# 4_1, \ 3_1! \# 3_1 \# 4_1 \).

| \(K \) | \(g^* \) | \(\text{su}_3 \) | \(\text{ur}_u \) | \(u_\Delta \) | \(g \) | \(|\sigma|/2 \) | \(|u_\Delta| \) | Method |
|---|---|---|---|---|---|---|---|---|
| \(3_1 \# 3_1 \) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | \((I')\) |
| \(3_1! \# 3_1 \) | 0 | 1 | 1 | 2 | 2 | 2 | 0 | 2 | \((II')\) |
| \(3_1 \# 4_1 \) | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 0 | \((II')\) |
| \(3_1 \# 5_1 \) | 3 | 3 | 3 | 3 | 4 | 4 | 3 | 4 | \((I')\) |
| \(3_1! \# 5_1 \) | 1 | 1 | 1-2 | 2-3 | 4 | 3 | 1 | 4 | Example 2.4 |
| \(3_1 \# 5_2 \) | 2 | 2 | 3 | 2 | 3 | 2 | 3 | \((I')\) |
| \(3_1! \# 5_2 \) | 1 | 1 | 1 | 2 | 3 | 2 | 0 | 3 | \((II')\) |
| \(3_1 \# 4_1 \) | 0 | 1 | 1 | 2 | 2 | 2 | 0 | 2 | \((II')\) |
| \(3_1 \# 3_1 \# 3_1 \) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | \((I')\) |
| \(3_1! \# 3_1 \# 3_1 \) | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | Example 5.4 |
| \(3_1 \# 6_1 \) | 1 | 1 | 1 | 2 | 1/3 | 2 | 1 | 1 | \((II')\) |
| \(3_1! \# 6_1 \) | 1 | 2 | 2 | 2 | 3 | 2 | 1 | 1 | Example 3.2 |
| \(3_1 \# 6_2 \) | 2 | 2 | 2 | 3 | 1 | 1 | 1 | 1 | \((I')\) |
| \(3_1! \# 6_2 \) | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | \((II')\) |
| \(3_1 \# 6_3 \) | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | \((II')\) |
| \(4_1 \# 5_1 \) | 2 | 2 | 2 | 3 | 2/4 | 3 | 2 | 2 | Example 5.3 |
| \(4_1 \# 5_2 \) | 1 | 1 | 1 | 2 | 1/3 | 2 | 1 | 1 | \((II')\) |
| \(3_1 \# 3_1 \# 4_1 \) | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | Example 5.5 |
| \(3_1! \# 3_1 \# 4_1 \) | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | Example 5.5 |

1. Note that the knots \(3_1 \# 4_1 \) have up to 9 crossings and \(3_1 \# 4_1 \).
zero or the determinant is not a square integer.

6. Final remark

The pass move [12] and the sharp move [18] are other local moves on oriented knots and links as shown in Fig. 16. Since the sharp move is an unknotting operation, we can define a sharp unknotting number. However, the pass move is not an unknotting operation; two knots K and K' are related by a sequence of pass moves if and only if $a_2(K) \equiv a_2(K') \pmod{2}$. Then, we may define a pass-unknotting number for all knots with even second coefficient of the Conway polynomial (or knots with Arf invariant zero).

Since the pass move is realized by a sequence of two coherent band moves and the sharp move is realized by a sequence of two $H(2)$-moves [6], we may give a lower bound for a pass-unknotting number and a sharp-unknotting number using an $SH(3)$-unknotting number and an $H(2)$-unknotting number, respectively, which provide a new estimation. Namely, denoting by $u_\#(K)$, $u_{pass}(K)$, $u_2(K)$ the sharp-, pass-, $H(2)$- unknotting numbers of a knot K, we have $u_2(K) \leq 2u_\#(K)$ and $su_3(K) \leq u_{pass}(K)$.

Example 6.1. Let us consider the two knots $K_1 = 10_{103}$ and $K_2 = 10_{74}$. Since $u_2(K_1) = 3$ [11, p. 453] and $u_\#(K_1) \equiv a_2(K_1) = 3 \pmod{2}$ [18, Theorem 3.5], we obtain $u_\#(K_1) \geq 3$. Conversely, since we may show $u_\#(K_1) \leq 3$, we obtain $u_\#(K_1) = 3$, which cannot be obtained by using the signature [18, Theorem 3.2]. Next, since $\nabla(K_2) = 1 - z^4$, we may consider the pass-unknotting number for K_2. Since $V(K_2, \omega) = -3$ and $g(K_2) = 2$, we have $su_3(K_2) = 2$. By the 4-move, we may transform K_2 into the knot 6_1, which is further transformed into the trivial knot by a 4-move, and so $u_{pass}(K_2) \leq 2$. Thus we have $u_{pass}(K_2) = 2$, which cannot be obtained by using the signature; in general $|\sigma(K)|/2 \leq u_{pass}(K)$ for a knot K and $|\sigma(K)| = 2$.

In a forthcoming paper we will make a detailed report on these moves.

Acknowledgements. The author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (No. 21540092), Japan Society for the Promotion of Science.
References

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-8585
Japan
e-mail: kanenobu@sci.osaka-cu.ac.jp