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Abstract
The Wirtinger integral is the uniformization to the upper half plane H of the

hypergeometric function defined on the complex projective line P1. In [5] we estab-
lished the transformation formulas of the Wirtinger integral for the linear fractional
transformations� ! � C 2 and� !�1=� with the aide of the theory of theta func-
tions. As a corollary we obtain the transformation formulasof the Wirtinger integral
for the linear fractional transformations� ! � C 2 and� ! �=(�2� C 1) which are
identified with generators of the principal congruence subgroup � (2) modulo cen-
ter. These formulas correspond to the monodromy matrices ofthe hypergeometric
function for generators of the fundamental group ofP

1 minus three points. The pur-
pose of this paper is to generalize this result, that is, we establish the transformation

formula of the Wirtinger integral for a general element
�

a b
c d

�

of � (2), which cor-

responds to a general monodromy matrix of the hypergeometric function.

1. Introduction

Following the notation of Chandrasekharan [1], we introduce the four theta func-
tions �(v, � ), �i (v, � ) (i D 1, 2, 3) by

�(v, � ) D
1

i

C1

X

nD�1

(�1)ne(nC1=2)2� i �e(2nC1)� i v,

�1(v, � ) D
C1

X

nD�1

e(nC1=2)2� i �e(2nC1)� i v,

�2(v, � ) D
C1

X

nD�1

(�1)nen2
� i �e2n� i v,

�3(v, � ) D
C1

X

nD�1

en2
� i �e2n� i v,

which are defined for all (v, � ) 2 C� H , whereC denotes the complex plane. Mumford
[2] adopts the symbols�00, �01, �10, �11 to denote the theta functions above. The relations
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426 H. WATANABE

between the two notations are as follows:�(v, � ) D ��11(v, � ), �1(v, � ) D �10(v, � ),
�2(v, � ) D �01(v, � ), �3(v, � ) D �00(v, � ). Note that�(v, � ) has a simple zero atv D 0,
�1(v, � ) at v D 1=2, �2(v, � ) at v D �=2, and�3(v, � ) at v D (1C � )=2. In this paper we
also use the following abbreviations:�i (v) D �i (v, � ), �i D �i (0, � ), etc. Moreover we
set T(v)p,q,r,s

D T(v, � )p,q,r,s
D �(v, � )p

�1(v, � )q
�2(v, � )r

�3(v, � )s.
We define two functionsz1(� ), z2(� ), which we calledWirtinger integrals in our

papers [5], [6] (see also [7], [8], [9]), by

z1(� ) D
�

2
3

(1� e4� i�)(1� e4� i (
��))

�

Z ((1=2)C,0C,(1=2)�,0�)

T(v, � )2��1,2
�2��1,2��2
C3,�2��1 dv,

z2(� ) D
�

2
3

(1� e�4� i�)(1� e4� i (��
 ))

�

Z ((1=2)C,0C,(1=2)�,0�)

T(v, � )2��2
C3,�2��1,2��1,2
�2��1 dv,

where we assume that the parameters�, �, 
 satisfy the conditions�,
 ��,
 ��,� �
(1=2)Z, and ((1=2)C, 0C, (1=2)�, 0�) denotes a Pochhammer cycle with base point
v D v0, where argv0 D arg((1=2) � v0) D 0, turning first aroundv D 1=2 once an-
ticlockwisely, second aroundv D 0 once anticlockwisely, third aroundv D 1=2 once
clockwisely, and lastly aroundv D 0 once clockwisely. These functions are the lifts of
Gauss’ hypergeometric functions ofSL type to the upper half plane, and form a fun-
damental system of solutions for the lift of Gauss’ hypergeometric differential equation
of SL type to the upper half plane. Note thatz1(� ) and z2(� ) are transformed to each
other by the involution� defined by�(�,�,
 )D (��
 C2,��
 ,�
 C2). Let � (2) be

the principal congruence subgroup of level 2, and let
�

a b
c d

�

be an element of� (2).

Without loss of generality we may assumec > 0. The problem which we will study
in this paper is as follows:

PROBLEM 1.1. Determine the constantsA and B with respect to� such that
z1((a� C b)=(c� C d)) D Az1((� )C Bz2(� )).

Once Problem 1 is established, we have an analogous formula for z2((a�Cb)=(c�Cd))
by applying the involution� to the formula forz1((a� C b)=(c� C d)). Since the group
� (2) modulo center is isomorphic to the fundamental group of the Riemann sphere
minus three points (which is the defining region of Gauss’ hypergeometric differential
equation), the constantsA, B are identified with entries of the monodromy matrix for

the element of the fundamental group corresponding to the matrix
�

a b
c d

�

.
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Let Z(� ) be a vector-valued function defined by

Z(� ) D

�

2�0(
 )

0(�)0(
 � �)
z1(� ),

2��0(2� 
 )

0(��)0(1C � � 
 )
z2(� )

�

,

where0(z) denotes the Gamma function. According to the results of [5], for any even
integer m, the matricesM0(m) and M1(m) defined by Z(� C m) D Z(� )M0(m) and
Z(�=(�m� C 1))D Z(� )M1(m) are given by

M0(m) D

�

em� i (
�1)=2 0
0 em� i (1�
 )=2

�

and

M1(m) D

2

6

6

6

4

sin�(
 ��) sin�(
 ��)em� i (�C��
C1)=2
�sin�� sin��em� i (
�����1)=2

sin�
 sin�(
 ����)

2� i0(
 �1)0(
 ) sin(m�(�C��
 C1)=2)

0(�C1)0(�C1)0(
 ��)0(
 ��) sin�(
 ����)

2� i0(1�
 )0(2�
 ) sin(m�(�C��
 C1)=2)

0(��)0(��)0(1C��
 )0(1C��
 ) sin�(
 ����)

sin�(
 ��) sin�(
 ��)em� i (
�����1)=2
�sin�� sin��em� i (�C��
C1)=2

sin�
 sin�(
 ����)

3

7

7

7

5

.

Let
�

a b
c d

�

be an element of the principal congruence subgroup� (2). We assume

that d > 1. It is well-known (e.g. [4]) that there exist 2n C 1 even integersm0, m1,
m2, : : : , m2n (n � 1) such that the linear fractional transformation (a� C b)=(c� C d) is
written in the form:

a� C b

c� C d
D m0 �

1

m1 �
1

m2 � ...
�

1

m2n C �

.

This is also written in the form

a� C b

c� C d
D ('m0 Æ  m1 Æ 'm2 Æ  m3 Æ � � � Æ  m2n�1 Æ 'm2n)(� ),

where'm(� )D �Cm and m(� )D �=(�m�C1). SettingZ((a�Cb)=(c�Cd))D Z(� )M
with a two-by-two matrixM, we have

(1.1) M D M0(m0)M1(m1)M0(m2)M1(m3) � � � M1(m2n�1)M0(m2n).
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The coefficientsA and B in Problem 1.1 are given as entries of this matrixM. It
seems, however, to be difficult to derive the explicit formulas of the entries ofM di-
rectly from calculating the product formula (1.1). In the next section we formulate our
idea for giving the explicit formulas of the coefficientsA and B.

2. How to determine the coefficientsA and B

Let
�

a b
c d

�

be an element of� (2) such thatc > 0. The following formulas are

well-known (e.g. [3], [4]):

�

�

v

c� C d
,

a� C b

c� C d

�

D

� c

d

�

e� i (3d�2Cbd�cd)=4

r

c� C d

i
ec� i v2

=(c�Cd)
�(v, � ),

�1

�

v

c� C d
,

a� C b

c� C d

�

D

� c

d

�

e� i (d�4C2cCbd�2cd)=4

r

c� C d

i
ec� i v2

=(c�Cd)
�1(v, � ),

�2

�

v

c� C d
,

a� C b

c� C d

�

D

� c

d

�

e� i (3d�4C2a�abCbd�cd)=4

r

c� C d

i
ec� i v2

=(c�Cd)
�2(v, � ),

�3

�

v

c� C d
,

a� C b

c� C d

�

D

� c

d

�

e� i (3d�3C2aC2c�ab�ad�bcCbd�2cd)=4

r

c� C d

i

� ec� i v2
=(c�Cd)

�3(v, � ),

where
�

c
d

�

denotes Legendre–Jacobi’s symbol. Substitution� ! (a� Cb)=(c� Cd) and
v ! v=(c� C d) makes the integral representation forz1(� ) given in Section 1 into

z1

�

a�Cb

c�Cd

�

D

1

(1�e4� i�)(1�e4� i (
��))
�3

�

0,
a�Cb

c�Cd

�2

�

Z (((c�Cd)=2)C,0C,((c�Cd)=2)�,0�)

T

�

v

c�Cd
,

a�Cb

c�Cd

�2��1,2
�2��1,2��2
C3,�2��1 dv

c�Cd
.

Applying the transformation formulas above for theta functions to the integral repre-
sentation forz1((a� C b)=(c� C d)), we have

z1

�

a� C b

c� C d

�

D

e� id(bCc)=2e� i�e� id(��
 )e� ic(2�d)(
����)=2e� ia(b�2)
 =2
�

2
3

(1� e4� i�)(1� e4� i (
��))

�

Z (((c�Cd)=2)C,0C,((c�Cd)=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

(2.1)

for
�

a b
c d

�

2 � (2) with c > 0. In the rest of this paper we concentrate our attention

on the case0 < c < d. Applying the reasoning for this case to the other oned < c
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which we do not refer to in this paper, we would obtain a resultsimilar to the main
theorem stated later. Noticing that the integersc, d are relatively prime to each other,
we define integersk

�

by

k0 D 0, k
�

D

�

d�

c

�

C 1 (1� � � c� 1), kc D d,

where for a real numberx the symbol [x] denotes the maximal integer not exceeding
to x. The branch cutsL

�

(� D 0, : : : , c) of the integrandT(v)2��1,2
�2��1,2��2
C3,�2��1

of the integral in (2.1) are given as follows. Namely,L0 is the union of two rays on
C defined by the equationv D s for the real parameters such thats � 0, 1=2 � s;
if � � 1, L

�

is the union of two rays onC defined byv D sC (�=2)� for the real
parameters such thats � (k

�

� 1)=2, k
�

=2 � s. We setl
�C1 D k

�C1 � k
�

. Let I
��

, J
�

(0� � � l
�C1 � 1, 0� � � c� 1) be given by

I
��

D

1

(1� "((k
�

C �C 1C �� )=2))(1� "((k
�

C �C �� )=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

dv,

(2.2)

and

(2.3)

J
�

D

1

(1� "((k
�C1C �� )=2))(1� "((k

�C1C (� C 1)� )=2))

�

Z ((�=2)C,0C,(�=2)�,0�)

T

�

v C

k
�C1C ��

2

�2��1,2
�2��1,2��2
C3,�2��1

dv,

where "((m C n� )=2), m and n being integers, denotes the local monodromy of the
function T(v)2��1,2
�2��1,2��2
C3,�2��1 along a small circle turning around the center
v D (mC n� )=2 in the anticlockwise direction, and therefore it coincides with one of
the four quantitiese4� i�, e4� i (
��), e4� i (��
 ), e�4� i� . In the integral representation (2.2)
we take the base pointv D v0 of the cycle ((1=2)C, 0C, (1=2)�, 0�) in such a man-
ner that argv0 D 0 and arg(v0 � 1=2)D � ; in the integral representation (2.3) we take
the base pointv D v0 of the cycle ((�=2)C, 0C, (�=2)�, 0�) in such a manner that
argv0 D arg� and arg(v0� �=2)D arg� C� . Then the integral in (2.1) has the follow-
ing decomposition:

1

(1� e4� i�)(1� e4� i (
��))

Z (((c�Cd)=2)C,0C,(c�Cd)=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

D

c�1
X

�D0

(I
�

C J
�

),

(2.4)
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where

(2.5) I
�

D

l
�C1�1
X

�D0

I
��

.

Thus, Problem 1.1 follows immediately from the following:

PROBLEM 2.1. Determine the constantsP
�

, Q
�

, R
�

, S
�

with respect to� such
that I

�

D P
�

z1(� )=�2
3 C Q

�

z2(� )=�2
3 and J

�

D R
�

z1(� )=�2
3 C S

�

z2(� )=�2
3 .

In fact, the constantsA and B in Problem 1.1 are written by

AD e� id(bCc)=2e� i�e� id(��
 )e� ic(2�d)(
����)=2e� ia(b�2)
 =2
c�1
X

�D0

(P
�

C R
�

),

B D e� id(bCc)=2e� i�e� id(��
 )e� ic(2�d)(
����)=2e� ia(b�2)
 =2
c�1
X

�D0

(Q
�

C S
�

).

We will give the explicit formulas forI
�

and J
�

in Theorems 4.1 and 5.1.

3. Auxiliary formulas

In this section we introduce some auxiliary formulas which are applied to the study
of the integralsI

�

and J
�

.

Lemma 3.1. Let p, q, r, s be complex constants but not integers. Then we have

(3.1)
Z ((1=2)C,0C,(1=2)�,0�)

T(v)p,q,r,s dv D
Z ((1=2)C,0C,(1=2)�,0�)

T(v)q, p,s,r dv.

We omit the proof.

Lemma 3.2. We have:

1

(1� e4� i�)(1� e4� i (��
 ))

Z ((�=2)C,0C,(�=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

D

1� e2� i (��
 )

1� e�2� i 

z1(� )=�2

3 C
e� i (��
 )(e� i�

� e�� i�)

1� e�2� i 

z2(� )=�2

3 ,

(3.2)

1

(1� e�4� i�)(1� e4� i (
��))

Z ((�=2)C,0C,(�=2)�,0�)

T(v)2
�2��1,2��1,�2��1,2��2
C3 dv

D

1� e�2� i�

1� e�2� i 

z1(� )=�2

3 C
e� i (����C
 )

� e� i (��C��
 )

1� e�2� i 

z2(� )=�2

3 .

(3.3)
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Proof. Applying Cauchy’s theorem on the contour integral tothe integration of
T(v)2��1,2
�2��1,2��2
C3,�2��1 along the parallelogram with verices 0, 1=2, (1C � )=2,
�=2, we have

1

(1� e4� i�)(1� e4� i (��
 ))

Z (0C,(�=2)C,0�,(�=2)�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

C

1

(1� e4� i�)(1� e4� i (
��))

Z ((1=2)C,0C,(1=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

�

e2� i (��
 )

(1� e�4� i�)(1� e4� i (
��))

Z ((�=2)C,0C,(�=2)�,0�)

T(v)2
�2��1,2��1,�2��1,2��2
C3 dv

�

e� i (�C��
 )

(1� e�4� i�)(1� e4� i (��
 ))

Z (0C,(1=2)C,0�,(1=2)�)

T(v)2��2
C3,�2��1,2��1,2
�2��1 dv

D 0.

(3.4)

Substitution� ! 
 � � and � ! 
 � � � 2 makes (3.4) into

1

(1� e�4� i�)(1� e4� i (
��))

Z (0C,(�=2)C,0�,(�=2)�)

T(v)2
�2��1,2��1,�2��1,2��2
C3 dv

C

1

(1� e4� i (
��))(1� e4� i�)

Z ((1=2)C,0C,(1=2)�,0�)

T(v)2
�2��1,2��1,�2��1,2��2
C3 dv

�

e�2� i�

(1� e�4� i (
��))(1� e4� i�)

Z ((�=2)C,0C,(�=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

�

e� i (
����)

(1� e4� i (��
 ))(1� e�4� i�)

Z (0C,(1=2)C,0�,(1=2)�)

T(v)�2��1,2��2
C3,2
�2��1,2��1 dv

D 0.

(3.5)

Combining (3.1), (3.4), (3.5), we have (3.2) and (3.3).

One can prove the following lemma similarly.

Lemma 3.3. We have:

1

(1� e4� i (��
 ))(1� e4� i�)

Z ((�=2)C,0C,(�=2)�,0�)

T(v)2��2
C3,�2��1,2��1,2
�2��1 dv

D

e� i (�C��
 )
� e� i (��C�C
 )

1� e2� i 

z1(� )=�2

3 C
1� e2� i�

1� e2� i 

z2(� )=�2

3 ,

(3.6)

1

(1� e4� i (
��))(1� e�4� i�)

Z ((�=2)C,0C(�=2)�,0�)

T(v)�2��1,2��2
C3,2
�2��1,2��1 dv

D

e� i (����C
 )
� e� i (���C
 )

1� e2� i 

z1(� )=�2

3 C
1� e2� i (
��)

1� e2� i 

z2(� )=�2

3 .

(3.7)
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4. The integrals I
�

The explicit formulas for the integralsI
�

are as follows:

Theorem 4.1. (i) We have

(4.1)

I0 D e� i (2��
 )=2

�

cos
�

2
(
 � 2�) �

1� e� i (1�
 )k1

1� e� i (1�
 )

C i sin
�

2
(
 � 2�) �

1� (�1)k1e� i (1�
 )k1

1C e� i (1�
 )

�

z1(� )=�2
3 .

(ii) We have

(4.2)

I1 D �e� i (2��5
 )=2e2� i (�C��
 )e� i (
�1)k1

�

�

cos21 �
1� e� i (1�
 )l2

1� e� i (1�
 )
C i sin21 �

1� (�1)l2e� i (1�
 )l2

1C e� i (1�
 )

�

z2(� )=�2
3 ,

where

21 D �

�

2� � 
 �
(�1)k1

2
(2� � 
 )

�

.

(iii) If � is a positive even integer, then we have

(4.3)

I
�

D e� i (2��
 )=2e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )e� i (1�
 )k

�

�

�

cos2
�

�

1� e� i (1�
 )l
�C1

1� e� i (1�
 )
C i sin2

�

�

1� (�1)l�C1e� i (1�
 )l
�C1

1C e� i (1�
 )

�

z1(� )=�2
3 ,

where

2

�

D �

�

(�1)l� (2� � 
 )C (�1)l�Cl
��1(2� � 
 )C � � � C (�1)l�Cl

��1C���Cl2(2� � 
 )

C

2� (�1)k�

2
(2� � 
 )

�

.

(iv) If � is an odd integer and� > 1, then we have

(4.4)

I
�

D �e� i (2��5
 )=2e�2� i 
 (l
��1Cl

��3C���Cl4Cl2)e2�� i (�C��
 )e� i (
�1)k
�

�

�

cos2
�

�

1� e� i (1�
 )l
�C1

1� e� i (1�
 )
C i sin2

�

�

1� (�1)l�C1e� i (1�
 )l
�C1

1C e� i (1�
 )

�

z2(� )=�2
3 ,

where

2

�

D �

�

2� � 
 C (�1)l� (2� � 
 )C (�1)l�Cl
��1(2� � 
 )C � � �

C (�1)l�C���Cl3(2� � 
 )C (�1)l�C���Cl2(2� � 
 ) �
(�1)k�

2
(2� � 
 )

�

.
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We prove (4.3) only because the other formulas are proved similarly. Let � be a posi-
tive even integer. LetT

�

(v C (k
�

C �)=2 C (�=2)� )2��1,2
�2��1,2��2
C3,�2��1 be the
branches ofT(vC (k

�

C�)=2C (�=2)� )2��1,2
�2��1,2��2
C3,�2��1 analytically continued
on the real rayv � ��=2 minus half periods from the upper side for the plus sign and
from the lower side for the minus sign, respectively, such that they coincide with each
other on the real interval�(�C 1)=2< v < ��=2. Then we have

T
C

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D

1C (�1)�

2
e� i (1�
 )�e� i (2��2
C1)T

�

v C

k
�

� 1

2
C

�

2
�

�2
�2��1,2��1,�2��1,2��2
C3

C

1C (�1)�C1

2
e� i (1�
 )(�C1)T

�

v C

k
�

� 1

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

and

T
�

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D

1C (�1)�

2
e� i (
�1)�e� i (2
�2��1)T

�

v C

k
�

� 1

2
C

�

2
�

�2
�2��1,2��1,�2��1,2��2
C3

C

1C (�1)�C1

2
e� i (
�1)(�C1)T

�

v C

k
�

� 1

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

.

Combining these relations, we have

T
C

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D e� i {�2
�C2��3
C(�1)�(2��
 )}T
�

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

.

Now we have

T
�

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D e� i (�C��
C1)T
C

�

v C

k
�

C �

2
C

� � 1

2
�

�2��2
C3,�2��1,2��1,2
�2��1

.
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Combining the preceding two relations, we have

(4.5)

T
C

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D e� i {�2
�C2��3
C(�1)�(2��
 )}e� i (�C��
C1)

� T
C

�

v C

k
�

C �

2
C

� � 1

2
�

�2��2
C3,�2��1,2��1,2
�2��1

.

By the same argument, we have

(4.6)

T
C

�

v C

k
�

C �

2
C

� � 1

2
�

�2��2
C3,�2��1,2��1,2
�2��1

D e� i {2
 (�Cl
�

)C2�C
C(�1)�Cl
� (2��
 )}e� i (�C��
C1)

� T
C

�

v C

k
�

C �

2
C

� � 2

2
�

�2��1,2
�2��1,2��2
C3,�2��1

.

From (4.5) and (4.6) we have

T
C

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D e� i {2
 l
�

C(�1)�(2��
 )C(�1)�Cl
� (2��
 )}e4� i (�C��
 )

� T
C

�

v C

k
�

C �

2
C

� � 2

2
�

�2��1,2
�2��1,2��2
C3,�2��1

.

Repeating the same procedure, we arrive at the following

Lemma 4.2. For a positive even integer� we have

T
C

�

v C

k
�

C �

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D e� i {(�1)�(2��
 )C(�1)�Cl
� (2��
 )C(�1)�Cl

�

Cl
��1(2��
 )C(�1)�Cl

�

Cl
��1Cl

��2 (2��
 )C���

C(�1)�Cl
�

Cl
��1C���Cl3 (2��
 )C(�1)�Cl

�

Cl
��1C���Cl3Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )T

C

�

v C

k
�

C �

2

�2��1,2
�2��1,2��2
C3,�2��1

.

(4.7)
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Let us compute the integralI
�

for a positive even integer�. Substituting (4.7) into
(2.2) we have

(4.8)

I
��

D e� i {(�1)�(2��
 )C(�1)�Cl
� (2��
 )C(�1)�Cl

�

Cl
��1 (2��
 )C(�1)�Cl

�

Cl
��1Cl

��2 (2��
 )C���

C(�1)�Cl
�

Cl
��1C���Cl3 (2��
 )C(�1)�Cl

�

Cl
��1C���Cl3Cl2 (2��
 )}

�

e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )

(1� "((k
�

C �)=2))(1� "((k
�

C �C 1)=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

C �

2

�2��1,2
�2��1,2��2
C3,�2��1

dv.

Note that

(4.9)

1

(1� "((k
�

C �)=2))(1� "((k
�

C �C 1)=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

C �

2

�2��1,2
�2��1,2��2
C3,�2��1

dv

D

1C (�1)�

2

e� i (1�
 )�

(1� "(k
�

=2))(1� "((k
�

C 1)=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

2

�2��1,2
�2��1,2��2
C3,�2��1

dv

C

1� (�1)�

2

e� i (1�
 )�e� i (2��
 )

(1� "(k
�

=2))(1� "((k
�

C 1)=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

2

�2
�2��1,2��1,�2��1,2��2
C3

dv.

Combining (4.8) with (4.9) and substituting the resulting equality into (2.5), we have
after some calculation

I
�

D e� i (2��
 )e� i {(�1)l� (2��
 )C(�1)l�Cl
��1 (2��
 )C���C(�1)l�Cl

��1C���Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )

�

1

2

�

1� e� i (1�
 )l
�C1

1� e� i (1�
 )
C

1� (�1)l�C1e� i (1�
 )l
�C1

1C e� i (1�
 )

�

1

(1� "(k
�

=2))(1� "((k
�

C 1)=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

2

�2��1,2
�2��1,2��2
C3,�2��1

dv

C e�� i {(�1)l� (2��
 )C(�1)l�Cl
��1 (2��
 )C���C(�1)l�Cl

��1C���Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )

�

1

2

�

1� e� i (1�
 )l
�C1

1� e� i (1�
 )
�

1� (�1)l�C1e� i (1�
 )l
�C1

1C e� i (1�
 )

�

1

(1� "(k
�

=2))(1� "((k
�

C 1)=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

2

�2
�2��1,2��1,�2��1,2��2
C3

dv.

(4.10)
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Now we have

1

(1� "(k
�

=2))(1� "((k
�

C 1)=2))

�

Z ((1=2)C,0C,(1=2)�,0�)

T

�

v C

k
�

2

�2��1,2
�2��1,2��2
C3,�2��1

dv

D

e� i (1�
 )k
�e{1�(�1)k� }� i (2��
 )=2

(1� e4� i�)(1� e4� i (
��))

Z ((1=2)C,0C,(1=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

(4.11)

and

1

(1� "(k
�

=2))(1� "((k
�

C 1)=2))

�

Z ((1=2)C,0C(1=2)�,0�)

T

�

v C

k
�

2

�2
�2��1,2��1,�2��1,2��2
C3

dv

D

e� i (1�
 )k
�e{1�(�1)k� }� i (
�2�)=2

(1� e4� i�)(1� e4� i (
��))

Z ((1=2)C,0C,(1=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv.

(4.12)

Substituting (4.11) and (4.12) into (4.10), we have

I
�

D e� i (2��
 )e� i {(�1)l� (2��
 )C(�1)l�Cl
��1(2��
 )C���C(�1)l�Cl

��1C���Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )e� i (1�
 )k

�e{1�(�1)k� }� i (2��
 )=2

�

1

2

�

1� e� i (1�
 )l
�C1

1� e� i (1�
 )
C

1� (�1)l�C1e� i (1�
 )l
�C1

1C e� i (1�
 )

�

z1(� )=�2
3

C e�� i {(�1)l� (2��
 )C(�1)l�Cl
��1 (2��
 )C���C(�1)l�Cl

��1C���Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )e� i (1�
 )k

�e{1�(�1)k� }� i (
�2�)=2

�

1

2

�

1� e� i (1�
 )l
�C1

1� e� i (1�
 )
�

1� (�1)l�C1e� i (1�
 )l
�C1

1C e� i (1�
 )

�

z1(� )=�2
3 ,

from which (4.3) follows immediately.

5. The integrals J
�

The explicit formulas for integralsJ
�

are as follows:
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Theorem 5.1. (i) We have

(5.1)

J0 D e� i (1�
 )k1e� i� sin[�{
 � (�1)k1(2� � 
 )}=2]

sin�

z1(� )=�2

3

C e� i (1�
 )k1e� i� sin[�{
 C (�1)k1(2� � 
 )}=2]

sin�

z2(� )=�2

3 .

(ii) If � is a positive even integer, then we have

J
�

D e� i {(�1)l�C1(2��
 )C(�1)l�C1Cl
� (2��
 )C���C(�1)l�C1Cl

�

C���Cl3 (2��
 )C(�1)l�C1Cl
�

C���Cl3Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )e� i (1�
 )k

�C1e� i�

�

sin[�{
 C (�1)k�C1(
 � 2�)}=2]

sin�

z1(� )=�2

3

C e� i {(�1)l�C1(2��
 )C(�1)l�C1Cl
� (2��
 )C���C(�1)l�C1Cl

�

C���Cl3 (2��
 )C(�1)l�C1Cl
�

C���Cl3Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )e� i (1�
 )k

�C1e� i�

�

sin[�{
 C (�1)k�C1(2� � 
 )}=2]

sin�

z2(� )=�2

3 .

(5.2)

(iii) If � is a positive odd integer, then we have

J
�

D �e� i {(�1)l�C1(2��
 )C(�1)l�C1Cl
� (2��
 )C���C(�1)l�C1Cl

�

C���Cl2 (2��
 )}

� e�2� i 
 (l
�C1Cl

��1C���Cl4Cl2)e2�� i (�C��
 )e� i (
�1)k
�C1e� i (��3
 )

�

sin[�{
 C (�1)k�C1(
 � 2�)}=2]

sin�

z1(� )=�2

3

� e� i {(�1)l�C1(2��
 )C(�1)l�C1Cl
� (2��
 )C���C(�1)l�C1Cl

�

C���Cl2 (2��
 )}

� e�2� i 
 (l
�C1Cl

��1C���Cl4Cl2)e2�� i (�C��
 )e� i (
�1)k
�C1e� i (��3
 )

�

sin[�{
 C (�1)k�C1(2� � 
 )}=2]

sin�

z2(� )=�2

3 .

(5.3)

In fact, let� be a positive even integer. By the same argument as in Section4, we have

Lemma 5.2. For a positive even integer� we have

T
C

�

v C

k
�C1

2
C

�

2
�

�2��1,2
�2��1,2��2
C3,�2��1

D e� i {(�1)l�C1(2��
 )C(�1)l�C1Cl
� (2��
 )C���C(�1)l�C1Cl

�

C���Cl3 (2��
 )C(�1)l�C1Cl
�

C���Cl3Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )T

C

�

v C

k
�C1

2

�2��1,2
�2��1,2��2
C3,�2��1

.

(5.4)
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Substitution of (5.4) into (2.3) and some calculation makesJ
�

into

(5.5)

J
�

D e� i {(�1)l�C1(2��
 )C(�1)l�C1Cl
� (2��
 )C���C(�1)l�C1Cl

�

C���Cl3 (2��
 )C(�1)l�C1Cl
�

C���Cl3Cl2 (2��
 )}

� e2� i 
 (l
�

Cl
��2C���Cl4Cl2)e2�� i (�C��
 )

�

�

1C (�1)k�C1

2

e� i (1�
 )k
�C1

(1� e4� i�)(1� e4� i (��
 ))

�

Z ((�=2)C,0C,(�=2)�,0�)

T(v)2��1,2
�2��1,2��2
C3,�2��1 dv

C

1� (�1)k�C1

2

e� i (1�
 )k
�C1e� i (2��
 )

(1� e�4� i�)(1� e4� i (
��))

�

Z ((�=2)C,0C,(�=2)�,0�)

T(v)2
�2��1,2��1,�2��1,2��2
C3 dv

�

.

Applying the formulas of Lemma 3.2 to (5.5), we have (5.2) immediately. One can
derive the other formulas (5.1) and (5.3) similarly.
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