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Abstract
The Wirtinger integral is the uniformization to the uppendfhalane H of the

hypergeometric function defined on the complex projective P*. In [5] we estab-
lished the transformation formulas of the Wirtinger intggfor the linear fractional
transformations — t + 2 andt — —1/7 with the aide of the theory of theta func-
tions. As a corollary we obtain the transformation formutéishe Wirtinger integral
for the linear fractional transformations— t + 2 andt — t/(—27 + 1) which are
identified with generators of the principal congruence sabg I"(2) modulo cen-
ter. These formulas correspond to the monodromy matricetheothypergeometric

function for generators of the fundamental groupPdf minus three points. The pur-
pose of this paper is to generalize this result, that is, viabéish the transformation

formula of the Wirtinger integral for a general eleme(n;i:‘ 3) of I'(2), which cor-
responds to a general monodromy matrix of the hypergeoenkiriction.

1. Introduction

Following the notation of Chandrasekharan [1], we intraedice four theta func-
tions 6(v, 1), 6i(v, 1) (i =1, 2, 3) by

1 +o0
5 . .
9(1), ‘E) — I_ § : (_1)ne(n+1/2) mre(2n+1)7r|v,

n=—oo
+o0o
5 . .
91(1), ‘E) — § : e(n+l/2) nlte(2n+1)mv’

n=-—o00

+00
2(v, 7) = Z (—1)ermitedmiv,

N=-—00

+o0
- .
93(0’ ‘E) — Z " 7r|r92nrrlv,

N=-—00

which are defined for ally, r) € C x H, whereC denotes the complex plane. Mumford
[2] adopts the symbol&y, o1, 010, 611 to denote the theta functions above. The relations
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426 H. WATANABE

between the two notations are as follow¥v, ) = —611(v, 1), 61(v, ) = 610(v, 7),
02(v, T) = Bo1(v, T), 3(v, T) = bpo(v, T). Note thatd(v, ) has a simple zero at = 0,
01(v, 7) atv = 1/2, 65(v, T) atv = /2, andbds(v, ) atv = (1 + t)/2. In this paper we
also use the following abbreviations;(v) = 6;(v, ), 6 = 6,(0, t), etc. Moreover we
setT (v)P9"S = T (v, T)P"S = 9(v, T)P1(v, 7)902(v, T) O3(v, T)5.

We define two functiongy(t), z»(r), which we calledWirtinger integralsin our
papers [5], [6] (see also [7], [8], [9]), by

03
Z = - -
1(T) (l _ e47z|a/)(l _ e4n|(yfo¢))
((1/2)+,0+,(1/2)—-,0-)
% / T(U, T)2a71,2y72a71,2ﬁ72y+3,72ﬂfl dv,
92
z(r) = >

(1— e 4ip)(1— ()

/((1/2)+,0+,(1/2)—,0—)

% T(U, r)2,372)/+3,72f371,2zx71,2)/720¢71 dl),

where we assume that the parameterg, y satisfy the conditions:,y —«,y — 8,8 ¢
(1/2)z, and ((¥2)+, 0+, (1/2)—, 0—) denotes a Pochhammer cycle with base point
v = vg, Where argy = arg((1/2) — vo) = 0, turning first aroundv = 1/2 once an-
ticlockwisely, second around = 0 once anticlockwisely, third around = 1/2 once
clockwisely, and lastly around = 0 once clockwisely. These functions are the lifts of
Gauss’ hypergeometric functions &L type to the upper half plane, and form a fun-
damental system of solutions for the lift of Gauss’ hypergetsic differential equation

of SL type to the upper half plane. Note that(r) and z,(r) are transformed to each
other by the involution defined byi(«,8,y) = (B—y +2,0—y,—y +2). Let I'(2) be
the principal congruence subgroup of level 2, and(l%t g) be an element of"(2).

Without loss of generality we may assume- 0. The problem which we will study
in this paper is as follows:

PrROBLEM 1.1. Determine the constantd and B with respect tor such that
zi((ar + b)/(ct + d)) = Az((r) + Bz(1)).

Once Problem 1 is established, we have an analogous formu(f{ar +b)/(ct +d))

by applying the involution to the formula forz;((ar + b)/(ct + d)). Since the group
I’'(2) modulo center is isomorphic to the fundamental grouphaf Riemann sphere
minus three points (which is the defining region of Gauss’'dmigpometric differential
equation), the constant, B are identified with entries of the monodromy matrix for

the element of the fundamental group corresponding to thteixné"é‘ 3)
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Let Z(r) be a vector-valued function defined by

_ 2T (y) 2ral’(2—y)
2e) = (r(a)r(y —o O FCpra T p- y)ZZ(’))’

whereT'(z) denotes the Gamma function. According to the results qof fifg] any even
integer m, the matricesMg(m) and M;(m) defined by Z(z + m) = Z(z)My(m) and
Z(t/(—mt + 1)) = Z(r)M1(m) are given by

Mo(m) = [ emm((;fl)/z emﬂi(?,y)/z }
and
sinm(y —a) sinn(y — B)e™ @ +F—r+112 _sin o sin g femi(r—a—p-1)/2
Mi(m) = sinmy sinw(y —a—p)

2ril(y — I (y) sinmr (e +B—y +1)/2)
Fla+1)r(B+1)0(y —a)T'(y —B) sinz(y —a—B)

27iT(1—y)T(2—) sin(mr (a+ f—y +1)/2)
P (A L+a—y)I(A+B—y)sina(y —a—p)
sinm(y —a) sinz(y —B)e™ v—2=F-1/2 _gin g sin g pemri@+f-y+1)2
siny sinm(y —a—p)

Let (a b) be an element of the principal congruence subgréu@). We assume

cd
thatd > 1. It is well-known (e.g. [4]) that there exisn2+ 1 even integersng, my,
mp,..., My, (N > 1) such that the linear fractional transformatiar ¢ b)/(ct + d) is

written in the form:

at+b_m 1
ct+d 0 1

This is also written in the form

ar +b
ct +d

= ((pmo o Wml o §0mz o 1/fm3 6---0 menfl o §0m2n)(f):

wheregpn(t) = T+m and ¥m(t) = t/(—mr +1). SettingZ((ar +b)/(ct+d)) = Z(z)M
with a two-by-two matrixM, we have

(1.1) M = Mo(mo) M1(my) Mo(mz)M1(ms) - - - M1(Mzn 1) Mo(Mzn).
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The coefficientsA and B in Problem 1.1 are given as entries of this mathk It
seems, however, to be difficult to derive the explicit forasubf the entries oM di-
rectly from calculating the product formula (1.1). In thexhsection we formulate our
idea for giving the explicit formulas of the coefficients and B.

2. How to determine the coefficientsA and B

Let (‘Z‘ 3) be an element of"(2) such thatc > 0. The following formulas are

well-known (e.g. [3], [4]):
i (3d-2+bd—cd)/4 /CT |+ deCnivz/(cr-&-d)e(v, o),

9 v ar+b
ct+d’ cr+d
ori ([d-4+2c+bd-2ca)/4 \/CTIE eeriv/ert g, (y, 7),

— _ _ fct +d L2
em(3d 4+2a—ab+bd—cd)/4 i ecriv /(Cr+d)92(v, ‘L’),
i (3d—3+2a+2c—ab-ad-bc+bd—2cd)/4 [CT + d
[

% ecrri vz/(Cr+d)93(U, ‘L'),

v atr+b
ct+d cr+d

g v ar +b
2\ct+d’ cr +d

01

/N N N

olo olo alo alo
N— N— N— N—

where (§) denotes Legendre—Jacobi’s symbol. Substitutior (ar + b)/(ct 4 d) and
v — v/(ct + d) makes the integral representation ffz) given in Section 1 into

, at+b
1 ct+d

. 1 o-(0 at+b)?

T (l—eti) (1) *\ 7 cr+d
(((ct+d)/2)+,0+,((cT+d)/2)—,0-) v ar+b 200—1,2y—20—1,26—2y +3,-2p-1 dv

/ (C‘r +d’ cr+d )

X

ct+d’

Applying the transformation formulas above for theta fims to the integral repre-
sentation forz;((atr + b)/(ct + d)), we have

2.1)
ar + b eﬂid(b+c)/2enioterrid(afy)erriC(27d)(yfotfﬂ)/26nia(b72)y/29§
l(cf + d) - (1— etrio)(1 — eprilr-a)
/(((Cz+d)/2)+,0+,((cr+d)/2),(F)

% T(v)2-L2-2-126-2y+3-26-1 g,

for (i 3) € I'(2) with ¢ > 0. In the rest of this paper we concentrate our attention
on the cased < ¢ < d. Applying the reasoning for this case to the other ahe c
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which we do not refer to in this paper, we would obtain a resittilar to the main
theorem stated later. Noticing that the integersl are relatively prime to each other,
we define integerk, by

k=0, k, = [d?v}Jrl (1I<v=<c-1), k=d,

where for a real numbex the symbol k] denotes the maximal integer not exceeding
to Xx. The branch cuts, (v =0,...,c) of the integrandT (v)? 12 ~2¢~1,26=2y+3-26—1

of the integral in (2.1) are given as follows. Namely, is the union of two rays on
C defined by the equatiom = s for the real parametes such thats <0, 1/2 < s;

if v>1, L, is the union of two rays orC defined byv = s+ (v/2)r for the real
parameters such thats < (k, — 1)/2, k,/2 <'s. We setl, ;1 = k,4y1 —Kk,. Let I, J,

O<u=l,y1—1 0=5v=c-—1) be given by

2.2)
1

b = e ¥ i L1 v0)2) A ek + 1 07)/2))

((1/2)+,0+,(1/2)-,0-) k 20=1,2y—20—1,2-2y+3,-26-1
x/ T(U+M+gr) dv,
and
3 = 1
2.3) T (@K +v7)/2)(L - e((Kua + (v + 1)7)/2))

dv,

((¢/21+,0+,(z/2)-,0-) Kypq 4 vr |2 b2 2012243261
X / T (v + T — )

where ¢((m + nt)/2), m and n being integers, denotes the local monodromy of the
function T (v)2~1&~2«-1.2-2y+3-26-1 glong a small circle turning around the center
v = (M4 nt)/2 in the anticlockwise direction, and therefore it coincideith one of
the four quantitieg®™', eilr—a) e#i(—y) 4718 |n the integral representation (2.2)
we take the base point = vg of the cycle ((¥2)+, 0+, (1/2)—, 0—) in such a man-
ner that argy = 0 and arg(o — 1/2) = ; in the integral representation (2.3) we take
the base poinbb = vy of the cycle (¢/2)+, O+, (t/2)—, 0—) in such a manner that
argvg = argr and arg(o — r/2) = argt + =. Then the integral in (2.1) has the follow-
ing decomposition:

(2.4)
1 ((cz+d)/2)+,0+,(ct+d)/2)—,0-)

(1 _ e4rria)(1 _ e47ri(y—a))

c-1
= (+ ),
v=0

-|-(U)2a71,2y72a71,2ﬂ72y+3,72ﬁ71 dv
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where

vi1—1

|
(2.5) b= lu.
n=0

Thus, Problem 1.1 follows immediately from the following:

PrROBLEM 2.1. Determine the constan,, Q,, R,, S with respect tor such
that |, = P,z1(t)/62 + Q,2x(7)/62 and J, = R,z1(7)/02 + S,25(t)/62.

In fact, the constant® and B in Problem 1.1 are written by

c-1

A = @"ldb+0)/2griagridla—y)gric(2-d)(y—a—p)/2grialb-2)y /2 Z(P" +R),
v=0
c-1

B = errid(b+c)/2errioteﬂid(afy)enic(Zfd)(yfafﬁ)/Zeﬂia(b72)y/2 Z(QU + S})
v=0

We will give the explicit formulas forl, and J, in Theorems 4.1 and 5.1.

3. Auxiliary formulas

In this section we introduce some auxiliary formulas whicé applied to the study
of the integralsl, and J,.

Lemma 3.1. Let p q,r, s be complex constants but not integers. Then we have

(3.1) T)P4"Sdy =

((1/2)+,0+,(1/2)-,0-)
/ T()*PS" do.

[((1/2)+,0+,(1/2)—,0—)

We omit the proof.

Lemma 3.2. We have

1 ((z/2)+,0+,(z/2)-,0-)
. . T(U)Zufl,2}/72&71,2}372)/4»3,72,371 dv
(3 2) (1 _ e47rla)(1 _ e4m(ﬁ—y))
' 1— i) , el (erih _gmih) )
= H—_zmzl(f)/eg + T 2,(7) /63,
1 (/255,04 (r/2)2.0) 2y—20-1,20—1,-2—1,26-2y+3
(3.3) L= (1= e Ty d
' 1_ g-2ria ,  eriapty) _gritatfy) )
= mzl(f)/es + 1_e 27 25(7)/05.
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Proof. Applying Cauchy’s theorem on the contour integralthe integration of
T(v)212r—20-1.28-2y+3-28-1 glong the parallelogram with verices 0/21 (1+ 1)/2,
/2, we have

(3.4)

1 (0+,(z/2)+,0-,(z/2)-) et 3202825251

(1 — eAria)(1 — eAri(B—7)) T)™ 2-2+3-26-1 ¢,

1 ((1/2)+,0+,(1/2)-,0-) o952 2

+ (1—6’4””‘)(1—64”“1’_“)) [ T 12y —20—1,28-2y+3,-28-1 (4,
e2tila—y) ((t/2)+,0+,(z/2)-,0-)

(1 — e B (1 - etri(r-a)) T (v)? -2 L2 L2182 13 gy
erila+p—y) (0+,(1/2)+,0—,(1/2)-) e 2 2511 -

_ 1= e_4]-[i,3)(1_ e4ni(ﬂ_y)) T(v) B—2y+3,-2p-1,2¢—1,2y 201 4,

=0.

Substitutiona - y —a and 8 — y — B — 2 makes (3.4) into

(3.5)
1 O /20772 2y—20—1,24—1,~26—1,28—2y+3
y—20-1,20—1,-2—1,26-2y
(1 _ e—4nif3)(1 _ e47'ri(y—a)) T(U) dv
1 (WO WD=0D) o au 1201, -25-125-2y+3
+ (1-— e47'ri(y—a))(1 _ e4”i°‘) / T(v) ' ’ ’ dv
g 2rie (=724, 04(/2.0) 20—1,2y—20—1,28—2y+3,—26—1
o (1— e 4ir=A)(1 — eAria) T(v) dv
gri(y—a—p) (0+,(1/2)+,0-,(1/2)-)
_ T(v) L2827 +3 220121
(L= 10 M)(1_ e &ih)
=0.
Combining (3.1), (3.4), (3.5), we have (3.2) and (3.3). ]

One can prove the following lemma similarly.

Lemma 3.3. We have
1 ((x/2)+,0+,(z/2)-,0-)

(1 _ e4ni(ﬂ7y))(1 _ e47ria)

T(v)26-2r+3-26-12-12y-2u-1 g,

(3.6) grila+p=y) _ gri(-a+p+y) ,  1—eip 5
= 1 21(7)/05 + T gy 22(1)/03,
1 (=/20+:0+(e/2-.0) 21,282y +3,2y 201,241
(3.7) (L= &)1 - e i) T @
' gri(—a—p+y) _ grila—p+y) 1_eilr=5H

17 2:(7)/65 + WZZ(T)/%?'
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4. The integralsl,

The explicit formulas for the integralk, are as follows:

Theorem 4.1. (i) We have

— emi(l=y)k
_ ori@n2f cos () — oy L€ 0
lp=¢€" {cos > (y —2a) 1)
(4.1) o 1 (L1yeerit-na ,
+1i sin E(y —200) - 1Treian }21(77)/93.
(i) We have
I, = _ @i (a=5y)/22ni(a+p—y) gri(y—L)k
(4.2) 11—l 1— (—1)2em @1 5
X {cos®1 e +1isin®;q - 14 e }zg(r)/es,
where
1)k
01 = rr{Za—V { 2) (Zﬂ—y)}-
(i) If v is a positive even integethen we have
Iv — ezri(2a7y)/2e2niy(|,,+|\,72+---+|4+|2)e2vni(a+ﬁ*)’)eﬂi(lfy)k\.
(4.3) 1—eri@ M 1— (—1)r+1emi @l )
X {COS@U . W +1sin®, - 14 e@n) }Z]_(‘L')/93,
where

0, = ”{(_1)"’(2;3 — )+ (1) 2e — ) e (=)t )

2— (—1)

T3

@ -},

(iv) If v is an odd integer and > 1, then we have

| = _e:rri (2a75y)/2e727'ri y(|.,,1+|,,,3+---+|4+|2)62wri ((x+ﬂ7y)erri (y—21)k,

(4.4) 1— @@y 1— (—1)eri@phia

Tioenay TN T

x {cos@U . }Zz(f)/9§,

where
0, = ”{2"‘ —y+ (D" @B—y) + (D)2 —y) + -

(-1

+ (=12 — ) + (F1) e - y) - 5

@ -7)}.
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We prove (4.3) only because the other formulas are provedasiyn Let v be a posi-
tive even integer. Lefo(v + (k, + w)/2 + (v/2)r)% - L2r—20-12-2y+3-2-1 he the
branches ofT (v + (k, + u)/2+ (v/2)r)%12r—20-1.26=2y+3-28-1 gnalytically continued

on the real rayw > —u/2 minus half periods from the upper side for the plus sign and
from the lower side for the minus sign, respectively, sudit they coincide with each
other on the real interval(u + 1)/2 < v < —p/2. Then we have

k, + u v
T e
(v 2 2T

)2d—1,27/—2(1—1,2ﬁ—27/+3,—2ﬁ—1

k, —

1+ (-1 1
o 2 2

2y—20—1,22—1,-28—1,28—2y +3
g (I=yngria=2y+1)T ( )
20—

1+(_1)u+1 1,2y—-20—1,28—-2y+3,—-2-1
+—

2

%
3
@+ (4 4 + Y
tar
and

K, & b\ 212201282y +3-2p-1
ot )

=T

2 2
L (-1
B 2

+§‘L’

)2a1,2y2a1,232y+3,231

Kk -1 2y —20—1,2u—1,—2f—1,28—2y+3
eﬂi(V—l)Meﬂi(ZV—za—l)T(v+ v v )

1+ _1M+l
Il e

, k, —1
} T -+ T (U = Y

2

Combining these relations, we have

+ 5T

K, 4 b\ 2 L2y—20-1,26-2y+3-2p~1
T+(v+ v TR 2)

=T

— gTi{=2ypt+2o-3y+(-1)"e—y)) T (v + ko + + v
B 2 2

)2a1,2y2a1,2ﬁ2y+3,2,31

Now we have

T(v +

em(a+ﬂ y+l)-|- (

b\ 212y -20-1.28-2y+3-2p-1
2)

K, + 1 \2F2+3-2p-12-12-2a-1
2 - 2 T)
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Combining the preceding two relations, we have

K, +p v \Z2L¥2e-l2-2y+3-26-1
T - -7
+ (U + 2 + 2 )
(4.5) = @7 =2y +20=3y +(=1y"(2u—y)} grri(e+B-y+1)
K, +p v—1 \P¥He-2p-la-ly-2-1
x Ty (v + = >+ r)

By the same argument, we have

k, + n v—1 2-2y+3,-2—1,2x—1,2y—20—1
T, (U + = > + > r)

(4.6) — g 2y (utl)+2B+y +(-1p v 2By ) i (e +p—y +1)

K o\ 12-22-128-2y+3-2p-1
xT+(v+ ”JZFMJF VZ r)

From (4.5) and (4.6) we have

kp+upu v

T —
+(U+ 2 +2T

— T 2+ (1) Qu—y)+ (=1 (2B~y)) Ari (e +B~)

)2a—1,2y—2a—1,2,3—2y+3,—2ﬁ—1

K, + 1
2 T2

N )2a—1,2y—2a—1,2,6—2y+3,—2[3—1
T

x Ty (v +
Repeating the same procedure, we arrive at the following

Lemma 4.2. For a positive even integer we have

4.7)
ku + v )2u—l,2y—2a—l,2,8—2y+3,—2ﬁ—1
T+ (U +

+ 5T
2 2
— @M L @e—p)+ (-1 (2B —y) (- 1yH oL Qo —y )+ (-2 et =2 (26— p ) -

+(,1)u+lp+l p—1++3 (2a7y)+(71)"+'” Hy_g+etlgz+p (2;‘37)/)}

. . K 4\ 212201282y +3,26-1
x e,27r|y(|v+|L_z-&----+l4-‘r|2)e2v7rl(oz+/3—y)-|—Jr (U + v /«L)
2
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Let us compute the integrdl, for a positive even integep. Substituting (4.7) into

(2.2) we have
I = @ LY Qu—y)+ (1Y (2B—y) + (1) oot (2a—y )4 (1Y 12 (2 —y )+
+(7]_)“+||’+|v—l+"'+|3(2a7y)+(71)l‘+|v+|v—1+'"+|3+|2(2ﬂ7y)}

e27'ri )/(I\,+|.y72+---+|4+|2)e2v71i (a+B-y)

(4.8) %
(1 —e((ky + 11)/2))(1 = e((ky + 1 + 1)/2))
((1/2)+,0+,(1/2)-,0-) K, + 12 20-1,2y—20—1,26—2y +3,-2p-1
X / (v v ) dv.
Note that
1
(I —e((k, + 1)/2))(1—e((ky + 1 + 1)/2))
((1/2)+,0+,(1/2)-,0-) K, + g\ L2l 22y +3-2p-1
x/ T(v + = ) dv
14 (-1 eri(l-y)un
2 (1-e(k/2)A- ek +1)/2))
(4.9) ((1/2)+.0+,(1/2)-,0-) K\ 212 2a-125-2y+3-26-1
x/ T( + —U) dv
1— (-1 @i (l-y)ngri(2e—y)
+

2 (I-e(k/2))(1—e((ky + 1)/2))
((1/2)+,0+,(1/2)—,0-) K\ 27201, 20-1,-28—1, 282y +3
X / T( + —U) dv.

Combining (4.8) with (4.9) and substituting the resultinguality into (2.5), we have
after some calculation

(4.10)
I, =¢€" 12a—y) i {(=1)" (2B=)+ (= 1) =1 2u—y) et (- 1) -1 42 (26 )
X ezniV(ll’+|w—2+"'+|4+|2)e2”7[i(O’+ﬂ7y)

1(1—e @i ] (—])rrrgri@ph 1

X = - -

2{ 1-eml™) 14 el } (1—e(k,/2))(1— (ks + 1)/2))
((1/2)+,0+,(1/2)—,0-) K\ 212 —22=1,26-2y +3,-26-1

<J (%)

dv
+ @ THEL @B=Y)+ (L 1 Qumy) o (F1) a2 28—y )

x ezmy(l.,+I,,,2+---+I4+|2)e2uni(a+ﬂfy)

1 { 1— @b 1 (—1)rreri@rhe } 1

2\ 1—ei@n T 14eiln) (1—s(k/2))(1— e((k, + 1)/2)
/((1/2)+,0+,(1/2),0) K\ 27 —2¢—1,22-1-2—1,28-2y +3
X T ( )

v—l—Ev dv.
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Now we have

(4.11)
1

(1—e(k,/2))(1—e((ks +1)/2))
((1/2)+,0+,(1/2)—,0-) K\ 22-12y—2¢-1,28-2y+3-28-1
< T(v+3)

> dv

gt (V) gll- (-1 Jri 2ey)/2 £ ((1/2)+,0+,(1/2)-,0-)
(1 _ e4rrio¢)(1 _ e4rri(y7a))

T (U)Za—l,Zy—Za—l,Zﬂ—Zy +3,—28-1 dv

and
(4.12)
1
(1 —e(ky/2))(1—e((ks + 1)/2))
((1/2)+,0+(1/2)—,0-) Kk 2y—2a—-1,20—1,-2-1,28—2y+3
X / T (v + V)

dv

el (1-7)k gl1-(-1)}mi(y—2e)/2  ((1/2)+,0+,(1/2)-,0-)

(1 _ e4rria)(1 _ e4rri(y—a))

T (v)Zafl,2y72a71,2,872y+3,72;371 dv.

Substituting (4.11) and (4.12) into (4.10), we have
|, = @ Qe V)i (-1 @By + (1) ha@uey) bt (-1 ot H2(26 )

¢ @271V -+, -arbeerlarHlz) g2ur (a+ B—y) g (L= )k, gl 1~ 1) )i a—y)/2

1(1—e @i ] (—q)errgri@ i )
x E{ 1_ ey 1+ eni(—y) }Zl(f)/93

1 @D @)+ (1) ot @umy ek (1) a2 2 —y))

¢ @17l H-aH+lartla) Q2ur (a+ B—y) et (1= )k, gl 1~(=1) )i (v —20)/2

X
2

1 { 1—ei@=nha 1 (—q)rreri@=rhe

2
1-— eﬂ'i(l—y) - 1 + eﬂi(l—y) }Zl(f)/gsy

from which (4.3) follows immediately.

5. The integrals J,

The explicit formulas for integralg, are as follows:
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Theorem 5.1. (i) We have

sinfr{y — (—1)(2« — y)}/2]

— @ik gric :
- J=¢€" e siny e
. i _ 1\ _
. eﬁi(l_y)klemsm[yr{y + ( .1) (28 -v)}1/2] 23(7) /62,
sinwy

(i) If v is a positive even integethen we have

(5.2)
J = @HED 1 uy)+ (-1 2By ) o (C Lo TS 2y ) (1ot (26 )
, =

x @271y (htlottlatla) 2uai(@+p—y) gri(1-y)kis1 gria

sinfz{y + (=1)f+(y — 2)}/2] 2
X siny zi(7)/03

+ e (1)1 Ru—y)+ (- 1)v+1H 2By )t (— 1)+ 32—y ) (- LYt HaH2 (28— )

x e27ri y(l ,,+IU72+---+|4+|2)62v7ri (a+ﬁ—y)erri (1—y)k\,+1erri a

o Sinfr{y + (=128 —y)}/2]
sinzy

25(7)/02.

(i) If v is a positive odd integethen we have
3 = —@r D)1 @uy)+ (L1 @By ) (-1 2 20y )
, =

x @ 271y (hsrtlimattlatlz) @2uri(a+f—y) i (v = 1)Kor1 i (@ —3y)

sinfr{y + (=1)+(y — 20)}/2] )
X sinty 2y(7)/05

— e”i{(*1)"’+1(201*V)+(*1)'"“*'” (@B—y) -+ (=L)ort 22 —y))

(5.3)

x @ 271y (usrtlimattlatlz) @2uri (e —y) i (v =LK1 77l (0 —3y)

 sinbr(y + (-1 (28 — y)}/2]
sinzy

2)(1) /5.
In fact, letv be a positive even integer. By the same argument as in Settiore have

Lemma 5.2. For a positive even integer we have

Ky 1 v 20—1,2y —20—1,28—2y +3,-28—1
Tolo+ 22+ o7
*( 2 2

(5.4) = @ (L2 Ra—y)+ (Lt @By (FLfr S Qe ) (a2 26 —))

k 20—1,2y —20—1,28—2y +3,-2p-1
s @21ttt la) ui et By T (v n Ll)
2
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Substitution of (5.4) into (2.3) and some calculation malgsnto

3 = @ (D)2 @umy) (1) 2By ) (1) o2 T Qe ) (L) o2 a2 (28—
, =

x leri y(,+ .,7z+---+|4+|2)e2urri (a+B—-y)

14 (=1 @i (1-y)koi1
{ 2 (1—e¥io)(1— eri(B-1))

[((f/2)+,0+,(r/2),(%)

(5.5) % -|-(U)Zafl,2y72a71,2,572y+3,72ﬁ71 dv

1— (=1 @@ rkagri@e—y)
2 (1 _ e—47riﬂ)(1 _ e4rri(y—a))
/((r/2)+,0+,(r/2),m)

% -|—(U)Z;/fzotfl,?afl,fzﬂfl,2,872)/+3 dv}

Applying the formulas of Lemma 3.2 to (5.5), we have (5.2) iethately. One can
derive the other formulas (5.1) and (5.3) similarly.
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