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Abstract

In this paper we consider a symplectic basis of the first callogy group and
the sigma functions for algebraic curves expressed by antealdform using a finite
sequenced, . .., &) of positive integers whose greatest common divisor is ketua
one (Miura [13]). The idea is to express a non-singular algiebcurve by affine
equations oft variables whose orders at infinity are (..., a&). We construct a
symplectic basis of the first conomology group and the sigumatfons for telescopic
curves, i.e., the curves such that the number of definingteEmsais exactlyt —1 in
the Miura canonical form. The largest class of curves for Whsach construction
has been obtained thus far is, €)-curves ([4] [15]), which are telescopic because
they are expressed in the Miura canonical form wits 2, a; = n, anda, = s, and
the number of defining equations is one.

1. Introduction

Recently the theory of Abelian functions is attracting gasing interest in math-
ematical physics and applied mathematics. In particularsigma functions for alge-
braic curves have been studied actively. In this paper westoart sigma functions
explicitly for a class of algebraic curves for which such saction has not been ob-
tained thus far.

Let C be a compact Riemann surface of gegusnd H*(C, C) the first cohomology
group, which is defined by the linear space of second kincewdifftials modulo mero-
morphic exact forms. We say a meromorphic differential®to be second kind if it is
locally exact.

We consider a basis oH!(C, C) consisting of ding HY(C, C) = 2g elements
(cf. [11], pp.29-31, Theorems 8.1 and 8.2). In particularpider to construct sigma
functions explicitly, we wish to construct a basis (sympiedasis) {du;, dri}ig=l of
HY(C, C) such that
1. duy is holomorphic onC for eachi, and
2. duyoduj =drjodrj =0 anddy; odr; = §; for eachi, j,
where the operatos is the intersection form oM (C, C) defined by

non = ;Re{/pn)n/(p)

2010 Mathematics Subject Classification. Primary 14H55p8éary 14H42, 14H50.




460 T. AYANO

for second kind differentialg, n' (the summation is over all the singular points pf
and n’, and Res means taking a residue at a point).

In order to express defining equations ©f we use a canonical form for express-
ing non-singular algebraic curves introduced by Miura [1&iven a finite sequence
(a1, - .., &) of positive integers whose greatest common divisor is etpuane, Miura
[13] introduced a non-singular algebraic curve determibgdhe sequencea, ..., a).
The idea is to express a non-singular algebraic curve byeaé#fqquations of variables
whose orders at infinity area,...,a). Any non-singular algebraic curve is birationally
equivalent to a curve expressed in the Miura canonical fodim[{8]).

Klein [9] [10] extended the elliptic sigma functions to thase of hyperelliptic
curves of genug, which are expressed in the Miura canonical form witk 2, a; = 2,
and a; = 2g + 1. Bukhshtaber et al. [4] and Nakayashiki [15] extended i$esigma
functions to the case of more general plane algebraic cuaksd ), s)-curves, which
are expressed in the Miura canonical form with= 2, a3 = n, anda, = s. In this
paper we give an explicit construction of sigma functions tielescopic curves, i.e.,
the curves such that the number of defining equations is lgxaetl in the Miura ca-
nonical form. The telescopic curves contain tiesj-curves as special cases. Recently
Matsutani [12] constructed sigma functions for (3,4,5)vest which are not telescopic.

The plan of this paper is as follows. In Section 2 we recall deéinition of the
Miura canonical form. In Section 3 we construct the holomarghforms {du;}?_, for
the telescopic curves. In Section 4 we construct the secandl differentials{dr;}_,
for the telescopic curves and show that the {ht;, dri}ig:l is a symplectic basis of
the first cohomology group. In Section 5 we construct signections for the tele-
scopic curves.

Throughout this papemN, N, Z, and C denote the set of non-negative integers,
positive integers, integers, and complex numbers, reispéct

2. Miura canonical form

Miura [13] introduced a canonical form of defining equations &ny non-singular
algebraic curve. Here we recall the definition of the Miuraaraoal form.

Lett > 2, a, ..., & positive integers such that GG&, ..., &} =1, A =
(ag,...,a&) e Nt, and(A;) = 1N +. .. + &N, assuming that the order af,...,a is
fixed. For the mapV: Nt — (A;) defined by¥((my,...,m)) = Z}zlami, we define
the order< in N' so thatM < M’ for M = (my, ..., m) and M’ = (m/, ..., m;) if
1. ¥(M) < v (M) or
2. Y(M)=¥(M)andmy =m, ..., m_g =m_,,m; >m for somei (1=<i <t).
Let M(a) be the minimum element with respect to the orgein N satisfying¥ (M) =
a e (A). We defineB(A;) € Nt andV(A;) € N'\ B(A) by

B(A) = {M(@) | a€ (A)}
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and

V(A)
={LeN'"\B(A)|L=M+N, MeN'"\B(A), NeN'= N=(0,...,0),

respectively.

HereafterC[X] := C[Xq,..., X{] denotes the polynomial ring ove® of t-variables
X1,..., X¢. For A C C[X], Spar{A} and (A) denote the linear space overgenerated
by A and the ideal inC[X] generated byA, respectively. AlsoXM, M = (my,...,my),
denotesxM = X[ ... X{™ for simplicity.

For M € V(A;) we define the polynomiaFy (X) € C[X] by

(1) Fu(X) = XM — xt — > XN, AN eC,
[NEB(A)|W(N)<w(M))

whereL is the element oB(A;) satisfyingW¥ (L) = ¥(M). We assume that the set of
polynomials{Fy, | M € V(A;)} satisfies the following condition:

(2 SpatXN | N € B(A)} N ({Fm | M € V(A)}) = {0}.

Let | =({Fu | M € V(A)}), R=C[X]/I, x the image ofX; for the projection
C[X] — R, and K the total quotient ring ofR. Then we have the following three
propositions. Because there exists no paper where proefsvdtten in English, we
give complete proofs in Appendix.

Proposition 2.1 (Miura [13]). (i) The set{xN | N € B(A)} is a basis of R over
C, where x= (X1, ..., X).
(i) The ring R is an integral domajrtherefore K is the quotient field of R.
(i) The field K is an algebraic function field of one variable og&r
(iv) There exists a discrete valuation, of K such that(xj). = gvs for any i,
where (X )~ denotes the pole divisor of Xcf. [19] p.19).

Let C¥ = {(z1,...,2z) e C'| f(zs,...,2) =0, Vf € 1}. From Proposition 2.1
(ii) (i), C¥" is an affine algebraic curve i@'. Hereafter we assume th@?" is non-
singular. Fork € N we defineL(kvy,) = {f € K | (f) + kvs > 0} U {0}, where (f)
denotes the divisor of, i.e., (f) =), v(f)-v.

Proposition 2.2 (Miura [13]). () R = Ur—o L(Kveo).
(i) The mapg

ca _ {discrete valuation of K\ {va},

p—vp
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is bijective where vy, is the discrete valuation corresponding to @caf (cf. [17],
p.21, 22)

Let C be the compact Riemann surface corresponding¥o From Proposition 2.2
(i), C is obtained fromC2" by adding one point, sayo, where the discrete valuation
corresponding tao is vy,. It is known that any non-singular algebraic curve is bira-
tionally equivalent to suclC for someA; (cf. [13]). Hereafter we represent each curve

C by the sequencé; = (as, ..., &) and call @y, ..., a&)-curve for short.
The sequencéy, = (ay, ..., &) is called telescopic if for any (2 <i <t)
g =il Q-1
— € —N —N, d :=GCD{ay,...,a}.
g S T, Eethan..al

Note thatA; = (a1, ap) is always telescopic.

Proposition 2.3 (Miura [13]). If A; is telescopicthen the condition2) is satis-
fied and we have the following properties.
() B(A)={(my,...,m)eN"[0=<m =<d 1/d —1, 2<i <t}.
(i) V(A) = {(d_1/d)e |2 <i <t}, whereg is the i-th unit vector inZ!.
(i) The genus g of Cis

© {(1 a1)+2(b—) }

Note that # (A;) is the number of defining equations, where # denotes the aumb
of elements. From Lemma C.1 (iv) in Appendix, we obtaMi(#;) >t — 1. If A is
telescopic, then from Proposition 2.3 (ii) we obtai #;) =t —1. On the other hand
Suzuki [18] proved that if ¥(A;) =t —1, then A; is telescopic.

From Proposition 2.3, the defining equations of a telescgic. . ., a)-curve are
given as follows: for 2<i <t,

Fi(X1, ..., Xe) = X/ ]‘[xm” =500 X

where iy, ..., my) € B(A;) such thatZJ Laymij = adi_1/d, A() i, € C, and the
sum is over all {,..., ji) € B(A;) such thatzkzlakjk < gdi_1/d. ASS|gn degrees as

t
degXy = a, deg)»(' j = adi—i/d —Zakjk-

ExamPLE 1. A, =(n,s), n,se N,, GCD{n, s} = 1.
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Since A; = (n, s) is telescopic, from Proposition 2.3 (i), we ha¥g(Az) = {(0, n)}.
Therefore we have

Fa(X1, Xp) = X3 — X5 — Y @, xPxk,

J1. ]2
nji+sjp<ns

which is the {, s)-curve introduced in [2]. In particular we obtain the diigpcurves
if n=2 ands = 3 and the hyperelliptic curves of gengsif n =2 ands = 2g + 1.

EXAMPLE 2. Az = (4, 6,5).

Since Az = (4, 6, 5) is telescopic, from Proposition 2.3 (ii), we hav€As3) = {(0, 2, 0),
(0, 0, 2}. Therefore we have
Fa(X1, X2, X3) = X3 — X3 — )\82,)1,1X2X3 - )‘(12,)1,0X1X2 - )‘(12,2),1X1X3 - A(zz,g),oxi
2 2 2 2
- )‘((),)1,0)(2 - ’\E),z),lx3 - ’\(1,3),0)(1 - ’\E),z),o
and
Fa(X1, Xo, Xa) = X3 — X1 Xz — A5 1 X1 X5 — A% X2 — A8 Xo — A5 1Xs

® ©)
—*10,0X1 ~ %000

3. Holomorphic 1-forms for telescopic curves

Let C be a telescopica, . . ., a)-curve andl’'(C, Q%) the linear space consisting
of holomorphic 1-forms orC. In this section we construct a basis BfC, Q}:). Let
G be the matrix defined by

oF, oF,
0Xq 0 X¢
Gi=| ..o
oF; oF;
0Xq 0 X¢

and G; the matrix obtained by removing tHeth column fromG. Then we have the
following theorem.

Theorem 3.1.
)(]if1 v thl t
i R %Y < k < 20—
P {detGl(x) dx | (ki ... k) € B(A), 0= ;ah <2g 2}

is a basis ofl"(C, Q) over C, wheredetG;(x) denotesdetG(X = x).
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We order the elements d®? in the ascending order with respect to the ordetxat
and write {du, . . ., dug}.
In order to prove Theorem 3.1, we need some lemmas.

Lemma 3.1. If detG;(p) # 0 for p= (p1, ..., p) € C¥f and1 <i <t, then
vp(X — pi) = 1.

Proof. Without loss of generality, we assurne= 1. Supposevp(Xy — p1) > 2.
Then there exist& (2 < k < t) such thatvp(xx — px) = 1. In fact, if vp(Xc — p) = 2
for any k, thenv,(f) > 2 orvp(f) =0 for any f € R. Thenvy(g) > 2 or vp(g) =0
for any g € R,, where R, is the localization ofR at p. This contradicts thaR; is a
discrete valuation ring.

There exist{yj, 8?1)'___’]-‘} € C such that for 2<i <t

t
R(X1 . X) =Y wX—p)+ Y, 5?1) P (Xe = po)t e (Xe = p)™,
-1

jrbet 22

where yi; = (0F /0X;)(p). Since Fi(X1, ..., %) = 0 andvp(Xy — p1) = 2, we have
vp(Xj—2 %1 (X = Pj)) = vp((%— P)(X) 2 i (X — P;)/(% — PK))) = 2. Sincevp(x—

p«) = 1, we haveztj=2 vijbj = 0, whereb; = ((X; — pj)/(X — pP))(p). Therefore
we obtain

b, 0
G| |=1].
b 0
Since by = 1 (# 0), we have deGi(p) = 0. This contradicts the assumption of
Lemma 3.1. Therefore we obtain,(xy — p1) = 1. ]

Lemma 3.2. (i) As an element of Kwe havedetG;(x) # 0.
(i) div(dx./detGi(x)) = (29 — 2)o0.

Proof. Since the differentiadl(F(xy, ..., X)) = 0 for anyi, we have

dX1 0
|  |=
dx 0
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By multiplying some elementary matrices on the left, theva@bequation becomes

W2 Zop Zp3 vt Iy dxq 0
w3 0 zzgz -+ Zz _
Wi 0 s Zyt dX{ 0

Since C2 is non-singular, for anyp € C2 there existsi such that deG;(p) # O.

Therefore we havey, # 0 or z; # 0 as elements oK. Sincev,(Xj) = —a;, we have
Xj ¢ C, thereforedx; # 0 for any j. Since w; dx, = z; d%, we havew; # 0 and
zi¢ # 0. Therefore, by multiplying some elementary matrices om lgft, the above
equation becomes

u)’z Zyp Zp3 0 dX1 0
wé 0 zg3 --- 0 _
Wt 0 Ztt dXI 0
Similarly we obtain
u/z/ Z72 0 vee 0 dX]_ 0
wg 0 Z33 - 0 —
wt” 0 s Zyt dX{ 0
where wy, ..., w{, Z, ..., Zx € K are non-zero. Therefore we obtain @i(x) =

+25,-- -z # 0, which complete the proof of (i).

Next we prove that the 1-formix; /detG;(x) is both holomorphic and non-vanishing
on C2". When deiG;(p) # 0 for p € C, from Lemma 3.1,dx;/detG;(x) is both
holomorphic and non-vanishing @t Suppose dé&B,(p) = 0 for p € C&. SinceC?¥ is
non-singular, there exists(2 <i < t) such that de®;(p) # 0. Sincew;'dx; +z; d% =
0, we havew'zy;---Zj - - -zt dX + Zp2- - -z A% = 0, whereZ; denotes to removg,; .
Therefore we obtain

(—1) 2 detG; (x) dxg + detGy(x) dx = O.
Since deG1(x) # 0 and deGG;(x) # 0, we have

dx
detG; (X)

d X1

_(_1y-1
detGl(x) =D

Therefore, from deGi(p) # 0 and Lemma 3.1,dx;/detG;y(x) is holomorphic
and non-vanishing ap. On the other hand, by Riemann—Roch’s theorem, we have
deg divlx; /detG1(x)) = 2g — 2, which complete the proof of (ii). ]
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Proof of Theorem 3.1. From Lemma 3.2 and Proposition 2.1W#g, have P C
I'(C, Q%) and the elements oP are linearly independent. Since dinff(C, Q%) = g,
it is sufficient to prove # = g. It is well-known that there arg gap values abo
from 0 to Z — 1. Since dim L((29 — 1)vy) = dime L((29 — 2)vs) = g (Riemann—
Roch’s theorem), @ — 1 is a gap value ato. Therefore, from Proposition 2.1 (i) and
Proposition 2.2 (i), we have{#ki, ..., k) € B(A) |0< > ak <29-2} =g,
which complete the proof of Theorem 3.1.

4. Second kind differentials for telescopic curves

In this section we construatr; for a telescopicdy,...,a)-curveC. For 2<i <t
and 1< j <t, let

_ Fi(Yl,...,Yj_]_, Xj, Xj+1,...,Xt)— Fi(Yl,...,Yj_l, Yj, Xj+1,...,Xt)

hi =
! Xj =Y
and

ha, -+ hy
H=| ..............
ht2 et htt

We consider the 1-form
detH(x, y)

e y) = (X1 — y1) detGy(x) X

and the bilinear form (cf. [15], p.181, 2.4)

ey
..... it et Gy (x) detGa(y)

4 DX, y) :=dyQ(X, y) + > _ ¢, dx, dys
on CxC, wherex = (Xg,..., %), Y= (Y1,---, Yt), Cip, vzt € C, (i1,---,0t) € B(A)
satisfying 0< "} _; akik <29 —2, and (1, ..., ji) € B(A).

We take a basi$a;, ﬂi}?:l of the homology groudH:(C, Z) such that their inter-
section numbers are; oaj; = fj o fj = 0 anda; o Bj = §jj.

DEFINITION 4.1 (cf. [15], p.181, 2.4). LetA = {(p, p) | p € C}. A meromor-
phic symmetric bilinear formw(x,y) on CxC is called a normalized fundamental form
if the following conditions are satisfied.

() w(Xx,y) is holomorphic exceptA where it has a double pole. Fgr € C take a
local coordinates around p. Then the expansion ig(x) at s(y) is of the form

w(X,y) = ( + regular) ds(x) ds(y).

__r
(s(x) — s(y))?
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(i) fa, o = 0 for anyi, where the integration is with respect to any one of the e

Normalized fundamental form exists and unique (cf. [15]82)L Then we have the
following theorem.

Theorem 4.1. (i) There exists a set of,C_i:j,.....i such thato(x, y) = o(y, x),

non-zero G, _i:j.,...ji. IS @ homogeneous polynomial {jtI _____ 1) of degree
t d t
Zd— ac— Y ik + ji + 2ax,
k=2 k=1
and G, __ijy,.... = 0 if 23 ,(de_1/d)ac — Yoy ik + Jk + 2)ax < 0.

For a set of ¢
properties.
(i) The bilinear form® satisfies the conditioffi) of Definition 4.1
(iii) For du; := (x¥* ... x{ /detG1(x)) dx;, we define

_____ icin..ji Such thato(x, y) = a(y, x), we have the following

yil - ytj‘
dr = e
o= Z Ciz.kit: it it gt () detGy(y) 4

Then dr is a second kind differential for any and the sefdu;,dr; }ig':l is a symplectic
basis of H(C, C).

Let B be the set of branch points for the mag C — P, (X1,..., %) — [X1: 1]
(cf. [17], p. 24, Example 2.2). Since the ramification inddxtlee mapx; at oo is ay,
we have deg; = a; (cf. [17], p. 28, Proposition 2.6). Fop € C we setx;}(xi(p)) =
{(p@, p®, ..., p@D) with p = p©, where the same is listed according to its
ramification index.

Lemma 4.1. Let U be a domain inC, f(zi, zo) a holomorphic function on
U, and g2) = f(z,2). If g =0 on U, then there exists a holomorphic functiofzf z,)
on U x U such that 1z, z2) = (z1 — z)h(z1, 22).

Proof. Leth(zy, z2) = f(z1, 22)/(z1 — z2). Given z3, h(z;, -) has a singularity
only at z;, where its singularity is removable. Therefdi€z, -) is holomorphic onU.
Similarly h( -, z5) is holomorphic onU. Thereforeh is holomorphic onU xU. [

Lemma 4.2. The 1-form Q(x,y) is holomorphic except U{(p®), p)|i #0, p €
B or pi) € B} UC x {00} U{oc} x C.
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Proof. Sincedx;/detGi(x) is holomorphic onC (cf. Lemma 3.2),Q(X, y) is
holomorphic except U {(p®, p) | p € C,i # 0} UC x {00} U {o0} x C. We prove that
Q(x, y) is holomorphic on{(p®, p) |i # 0, p ¢ B, p® ¢ B}. We have

t
(5) F(Xy, ..., X)) = Zhij -(Xj —Yj) + FYs, ..., Y.
j=1
SetX =x andY =y, then we have
t
> hi(x, y) - (x; —y;) = 0.
j=1

Take (P, p) € C x C such thati # 0, p ¢ B, and p{) ¢ B, then we have

hoy -+ hy pﬁi)— P1 0
hh | o0 = : .
t1 t / x—pi,y=p \ Pt Pt

Since pf) — p1 = 0, we have

_ Py — p2 0
HEY, pf - = - |
) — b 0
Since @ - pa, . .., " = p) # (O, ..., 0), we have deH (p®, p) = 0. Sincep ¢ B
and p® ¢ B, we can take Xy, y1) as a local coordinate aroung{, p). Therefore,
from Lemma 4.1, there exists a holomorphic functiofx;, y1) around %, p) such
that detH (x, y) = (X1 — y2)h(x1, y1). ThereforeQ(x, y) is holomorphic at p@, p). [

Lemma 4.3. Let p¢ B, s a local coordinate around p. Then the expansion of
Q(x, y) in s(y) at s(x) is of the form

QX,y) = ( + regular) ds(x).

1
s(y) —s(x)

Proof. SetY =y in (5), then we have

t
Fi(Xy, ..., X)) = Zhij(X, y) - (X —=yj).

i=1
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Therefore we obtain

IF; :

_ N 9h; C_vlah
B_Xk(xl’ ce X)) = JZ:; B_Xk(x' y) - (X; — ;) + hik(x, y).

Setx =y, then we have

S_Z(Xl’ <2 %) = hik(x, x).
Therefore we obtain dé&;(x) = detH(x, x). On the other hand, sincp ¢ B, we can
take 1, y1) as a local coordinate aroungb,(p). Sincep ¢ B, we have deGi(p) # 0.
In fact, if detG1(p) = 0, thendx;/detG1(x) is not holomorphic aip, which contradicts
Lemma 3.2 (ii). Therefore ded (X, y)/detG;(x) is holomorphic at p, p). Therefore,
from Lemma 4.1, there exists a holomorphic functiofx,, y;) around @, p) such that
detH(x, y)/detGi(x) = 1+ (x; — y1)h(x1, y1). Therefore we obtain Lemma 4.3. [J

Lemma 4.4. When we express

detH(X, Y) = D €mymongn X0 XY VY,

we haved _; ad(my + k) < 3 h, a((dk-1/dk) — 1).

Proof. When we express
m .
Fi(Xe .o X0 =Y R, Xjon Xy XOXE,
k=0

we havehi; = S FOY, 0L Y1 X, X)) 2 XL Y71 Assign degrees
as degdvk = &, thenh;j is a homogeneous polynomial c{)k(jil)’_'_]h, Xk, Y} of degree
ad_1/di —a;. Therefore we obtain Lemma 4.4. O

Lemma 4.5. The meromorphic bilinear formy@(x, y) is holomorphic exceph U
{(pV, p)|i#0, pe B or pl)eB}UC x{oo}.

Proof. It is sufficient to prove thad,(x, y) is holomorphic at o, y), y # oo.
From Lemma 4.4, with respect to, we obtain

t
Voo(detH (X, y)) > — Z ay((dk-1/dk) — 1).

k=2
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If voo(detH(x,Yy)) > — Z}(:Z a((dk_1/dk) — 1), then from Lemma 3.2 (ii) and Propos-
ition 2.3 (i) we obtainv.(2(x,y)) > 0. Thereforedy2(x,y) is holomorphic at o, y).

If voo(detH(x,y)) = —ZL:Zak((dk_l/dk)—l), thenv,(2(x,y)) = —1. Lets be a local
coordinate aroundo, then from Lemma 4.4 there exists a constar{ivhich does not
depend ony) such that

e
Qx, y) = <§ + regulab ds.
ThereforedyQ2(x, y) is holomorphic at o, y), y # oco. ]

Lemma 4.6. Let w be the normalized fundamental form. Then there exist sec-
ond kind differentials & (1 <i < g) which are holomorphic excefibo} and satisfy
the equation

9
(X, ¥) = dyQ(x, y) = D dui(x) di(y).

i=1

Proof. SetB, = {(p®, p)| p € B\ {oo} or p® € B\ {oo}} in the proof of [15]
Lemma 5, then proof of Lemma 4.6 is similar to that of [15] Lean ]

Lemma 4.7. Let Q be the linear space consisting of meromorphic diffiaén
on C which are singular only ato and

S= {(x‘l1 o x/detGy(x) dxq | (i, - . ., it) € B(A)].
Then S is a basis of Q.

Proof. Forn € Q we consider the meromorphic functigr(dx,/detG1(x)). From
Lemma 3.2 (ii), it may have a pole only ab. From Proposition 2.1 (i) and Propos-
ition 2.2 (i), n/(dx;/detG4(x)) is a linear combination 01‘<i11 e xtit with (iq, ..., it) €
B(A;) and the elements d are linearly independent. O

Proof of Theorem 4.1 (i). We have

dy2(x, y)

_ ka1 xa—ya)(@ detH /i) (x, y) detGy(y)} + detGa(y) detH (x, )
(x1—y1)? detG(x) detGa(y)

Xm dyl

Then, deGy, detH, and @ detH /3Yy) are homogeneous polynomials{d]‘jil)_'_]j‘,XJ- Yl

of degreeY i _o(ch-1/d)a — Y ua, 2i_o((ch-1/d) — Lai, and {3 _,((ch-1/dk) —
l)ai} — &, respectively. Let us write

i ity,J j
2 O i X XY W

dyQ(X! y) = (Xl _ y1)2 detGl(X) detGl(y)

dxi dys,
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where {1, ..., it), (jr, - -+, jt) € B(A), and di,, i, jr....iic € C. Thenai,, i jn..ji €

.....

Y iea(ik + jk)ak. Note that if (g, ..., m) € B(A), then g +m,my, ..., my) € B(A)
for m € N. Therefore we obtain

ZCI - Xg-l...xt"yjj-l...ytj‘
vttt gat Gy (x) detGa(y)

(X1 — y1)? detGy(x) detGy(y) :

where (1, ...,it), (j1, - . ., Jt) € B(Ay). Thereforea(x, y) = o(y, X) is equivalent to

= jy,ojtsizeenic = Digremsitijzeji -

By Lemma 4.6, 4.7, the system of the above linear equatioasahgolution. Moreover
it has a solution such that ead, i j,..j is a linear combination ofj; i j; ..j
satisfyingiy + j; = i1+ j1+2, (i Jx) = (i jk) or (ip, jx) = (jk, i) for k=2,...,t. In
particular one can take,, i j,....j such thatc, ... .

St @ik + ik + 2)a < 0 and

t t
dy— . .
degci,, i ji,...jc = 2 Z %ak - Z('k + jk + 2
k=2 k=1

if Gy it jrvenie 7 O -

Proof of Theorem 4.1 (ii). From Lemma 4.@,Q(x, y) is holomorphic except
A UC x {oo} and so is®. Sinced(X,y) = o(y, X), @ is holomorphic excepiA. From
the definition ofdr;, we obtain

g
d—w="_ duX)dn(y) - dfi(y)).
i=1

On the other hand — w is holomorphic exceptA and Z?zldui (X)(dri(y) — dfi(y))
is holomorphic excep€ x {co}. Thereforew — w is holomorphic excepfoo} x {oo}.
Thereforew — w and dr; — df; are holomorphic orC x C and C respectively, which
complete the proof of Theorem 4.1 (ii). O

Proof of Theorem 4.1 (iii). The 1-forndr; is a second kind differential. In fact
dr; —df is holomorphic 1-form as is just proved in the proof of Theord.1 (ii) and
df; is a second kind differential from Lemma 4.6. Proof of Theoré.1 (iii) is similar
to the case of then( s)-curves (cf. [15] Lemmas 7, 8, Proposition 3). ]
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5. Sigma functions for telescopic curves

In this section we construct the sigma function for a telpgcday, . . ., a)-curve
C. First we take the following data.
1. A basis{qj, ,Bi}?:l of the homology groupH;(C, Z) such that their intersection
numbers arey oaj = fj o fj = 0 ande; o Bj = §jj.
2. The symplectic basi¢du;, dri}ig:1 of the first cohomology groupH*(C, C) con-
structed in Sections 3 and 4.
We define the period matrices by

o ([ ) (), e ([ ). ([ )

Then w1 is invertible. Setr = w;la)z, then t is symmetric and Im > 0. By the
Riemann’s bilinear relation

g
27ri770n’=2(/ n/ n’—/ n’/ n),
i=1 @ Bi o Bi
M := (wl wz)
n n2

(5, 30 )

the matrix

satisfies

where |, denotes the unit matrix of degreg Since nw; ! is symmetric (cf. [15]
Lemma 8), we obtain the following proposition.

Proposition 5.1 (generalized Legendre relation)

(S, 8- 8)

Let § = 8 + §” be the Riemann’s constant &f with respect to our choicexf,
{aj, Bi }ig:l). Since the divisor of the holomorphic 1-fortuyg is (29 —2)oo, the Riemann’s
constantd becomes a half period. Then the sigma functiofu) associated wittC is
defined as follows.
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DEFINITION 5.1 (Sigma function). Fou e C9

8/

1
o) =o(u: M) = C'eXp(EtUmwllu)e[ 5

i|((2w1)1u, 7)

_ c-exol Ttunw-t
= P 5 uniw, U

x Y explmvV=1'(n + 8)(n + &) + 27/ =1'(n + §')((201) *u + 8)},

nezs

wherec is a constant.
By Proposition 5.1 we obtain the following proposition.

Proposition 5.2. For any m, m, € Z9 and ue C9, we have

o (U + 2w1my + 2wmy) /o (u) = expr v —1(mym; + 2'6'm; — 2'6"my))

x expl(2n1my + 2n2m2) (U + w1y + wpmy)).

REMARK. In this paper we have constructed sigma functions exiyliéir tele-
scopic curves. On the other hand Nakayashiki [15] showed ttiea first term of the
series expansion around the origin of the sigma functionaforf, s)-curve becomes
Schur function corresponding to the partition determinexinf the gap sequence at in-
finity and the expansion coefficients are homogeneous poliais of the coefficients
of the defining equation of the curve. One will be able to edtémese results to tele-
scopic curves.

A. Proof of Proposition 2.1

Lemma A.l. V(A) + N'=N'\ B(A).

Proof. If M ¢ B(A;) and N € N!, then M + N ¢ B(A;). Therefore we have
V(A) + N' C N'\ B(A;). SupposeV(A;) + Nt ¢ N'\ B(A). Take M; € N'\ B(A)
satisfying M; ¢ V(A) + N'. Since M; ¢ V(A) and M; ¢ B(A:), there existM, €
N\ B(A;) and (0,..,0) # N; € N! such thatM; = M, + N;. SinceM; ¢ V(A;) + N¢,
we haveM, ¢ V(A;) + Nt. Similarly, for the element; € N'\ B(A;) satisfying M; ¢
V(A + N, there existM; ;1 and N; such thatM;; € N'\ B(A), Mi41 ¢ V(A) + Nt
0,...,0)# N; e N', andM; = Mi;1 + N;. Therefore there exists a infinite sequence
W(Mp) > W(My) > --- > W(M;) > ---. This is contradiction. ]

Proof of Proposition 2.1 (i). From (2) it is sufficient to pev

Sparf XN | N € B(A)} + ({Fm | M € V(A)}) = C[X].
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We prove that for anyT € N!
XT e spaf X" | N € B(A)} + ({Fw | M € V(A)})

by transfinite induction with respect to the well-orderin N!. The statement is correct
for the minimal elemenfT = (0, ..., 0). Suppose that it is correct for aty € Nt
satisfyingU < T. Since it is correct forT € B(A;), we assumel ¢ B(A;). From
Lemma A.1, there exisM € V(A;) and Z € N' such thatT = M + Z. Then we have
XT = XMXZ = (XM — Fy)X% 4+ FyXZ. For any monomialXV in (XM — Fy)X?,
we haveU < T. Therefore, by the assumption of transfinite induction, stegement
is correct forT ¢ B(A). O

We define the functiom: R — N U {—o0} by

o fy = | for f =0,
()= max{W(N) | An # 0} for f #£0,

where for f # 0 we expressf = Y AnXN with Ay € C and N € B(A).
Lemma A.2. o(x") = W(T) for any T € N,

Proof. We prove the statement by transfinite induction wéhpect to the well-
order < in Nt. It is correct for the minimal elemenrt = (0, ..., 0) € N!. Suppose
that it is correct for anyJ € Nt satisfyingU < T. Since it is correct folT € B(Ay),
we assumerl ¢ B(A;). From Lemma A.1l, there exis¥l € V(A;) and Z € N' such
that T = M + Z. Then we haveXT = XMX? = (XM — Fy)X? 4+ FyXZ. Since
XM — Fy = X-+ 3" AnXN from (1), we havex™ = (x" + 3 AnxN)x? = x-+7 +
Y nAnxNTZo SinceN+Z < L+Z < T, by the assumption of transfinite induction, we
haveo(x-*%) = W(L + Z) ando(xN*4) = W(N + Z). Sinceo( f 4+ g) = maxo(f),o(g)}
for f, g € R satisfying o(f) # o(g), we haveo(x") = o(x-+% + > AnxN*t2) =
o(x-*%) = W(L + Z) = W(T). O

Lemma A.3. The function o satisfies the following properties
(i) o(f)=—oc if and only if f=0,
(i) o(fg) =o(f)+o(g) for any f,g € R, where we define-oo+(—o0) = a+(—oc) =
(—o0) + a= —o0 for a € N,
(i) o(f + g) < maxo(f), o(g)},
(iv) o(R\ {0}) = (A:), in particular N \ o(R \ {0}) is a finite setand
(v) o(@ =0 forany0#accC.

Proof. (i), (iii), (v), ando(R\ {0}) = (A;) are trivial. Since GCBay,...,a} =1,
N\ (A;) is a finite set (cf. [16], Theorem 5). We prove (ii). f=0 or g = 0, then
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o(fg) = o(f) + o(g) = —oo. Supposef # 0 andg # 0. Then we can express

f =aiuxM+ ZATXT and g=inxN + Zizxz,
T VA

whereim, At, An, Az € C, Am #0, Ay #0, M, T, N, Z € B(A), ¥(T) < ¥(M), and
w(Z) < ¥(N). From Lemma A.2, we have(fg) = o(Aminx"tN) = W(M + N) =
W(M) + W(N) = o f) + 0(q). 0

Proof of Proposition (ii). Takef, g € R satisfying fg = 0. Then, since-oco =
o(fg) = o(f)+o(g), we haveo(f) = —oco or o(g) = —oc. Therefore we obtairf =0
org=0. ]

Lemma A.4. B C N! be a set such that the restriction map uf Nt — (A;) on
B is bijective. Then the s¢&™ | M € B} C R is a basis of R oveC.

Proof. Sinceo(x") = ¥(T) for T € N' and o(f + g) = maxo(f), o(g)} for
f, g € R satisfying o(f) # o(g), the elements of the s¢x™ | M € B} are linearly
independent. Sinc® = SparixN | N € B(A;)}, in order to proveR = Spar{x™ | M €
B}, it is sufficient to prove SpdmN | N € B(A;)} C SparixM | M € B}. We prove
Spar{xN | N € B(A), ¥(N) <m} c Spar{x™ | M € B, ¥(M) <m} for anym e N
by induction. Form = 0 the statement is trivial. Suppose that the statement iecior
for anyi with 0<i <m-—1. If m¢ (A;), then since Spdga™ | M € B, ¥(M) <m} =
SparixM | M € B, ¥(M) <m—1} and SpafxN | N € B(A;), ¥(N) <m} = Spar{xN |
N € B(A), ¥(N) < m-—1}, the statement is correct. Suppases (A;). TakeT € B
satisfying W(T) = m. If T € B(A), then since Spdn™ | M € B, ¥(M) < m} =
Sparix™ | M € B, ¥(M) <m—-1}UC{x"} and SpafxN | N € B(A), ¥(N) <m} =
Spar{xN | N € B(A), ¥(N) < m— 1} U C{x"}, the statement is correct. Suppose
T ¢ B(A). Then we can express’ = A xt + Y AnXxN, where 0# A, Ay € C,
L, N € B(A), ¥(L) =m, and ¥(N) < m— 1. Sincex" = a7*(x" — X AnxN) €
SparfxN | N € B(A), ¥(N) <m-1}UC{x"} c SparixM | M € B, ¥(M) <m-1}U
C{x"} c Spar{xM | M € B, ¥(M) <mj}, we have SpaixN | N € B(A,), ¥(N) <m} C
Spar{xM | M € B, ¥(M) <mj}. O

Lemma A.5. Given i, there exists a set; T NI-1x {0} x N such that#T, = g
and for the set B:= T, + {0}~ x N x {0}!~" the restriction map of¥: N' — (A;) on
B; is bijective.

Proof. Since GCBay,...,a} =1, the sefce ayN+---+a_1N+ag, 1 N+-.-+
&N | c= jmoda} is not empty for anyj with 0 < j <& — 1. Letc; = min{c €
ayN+---+a_1N+a N+ ---+aN|c=jmoda}. TakeN; € N'~1x {0} x N*7
satisfyingW(Nj) =c;. Let T, = {N; |0 < j <& —1}. ThenT,; satisfies the conditions
of Lemma A.5. 0
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Proof of Proposition 2.1 (iii). Since(x") = ¥(T) for T € N* ando(f + g) =
max{o( f),o(g)} for f,g e R satisfyingo(f) # o(g), the elements of the s¢k™ | M €
{01 x N x {0}'"'} C C[x] are linearly independent. Therefore the extension of field
C(x)/C is a simple transcendental extension for anjNext we prove K : C(xi)] < g
for anyi. From Lemma A.4 and Lemma A.5, we haRe= C[xy, ..., X] = Spar{x |
M e T + {0)~1 x N x {0}'~1}. ThereforeC[xy, ..., %] = C[x]fo+ -+ C[x] fa_1,
where f; = xNi (see the proof of Lemma A.5 foN;). Since fo = 1, we obtain the
finite extension of integral domai€@(x;) C C(x;) fo + --- 4+ C(x;) f3_1. SinceC(x;) is
a field, C(x) fo+-- -+ C(x) f5_1 is also a field. Therefore we obta@i(x) fo+--- +
C(xi)fa_1 =K and K : C(x)] < &. ]

Proof of Proposition 2.1 (iv). We define the functiog,: K — Z U {oc} by

fy = Joe for f =0,
vac( )_{—o(f1)+o(f2) for f #0,

where for f # 0 we expressf = f;/f, with f;, f, € R. The definition ofv,, is
well-defined. In fact, if 0# f = f;/f, = 01/, then sincef;g, = 012 € R, we
have o( ;) + 0o(g2) = o(f192) = o(g:1 f2) = o(g1) + o f2). From Lemma A.3, one can
check that the function, is a discrete valuation oK. From Lemma A.2, we obtain
Voo(X) = —&. From [19] p.19 Theorem 1.4.11, we obtail [ C(x)] = degi)so =
deg@iv,,) = &. On the other hand, in the proof of Proposition 2.1 (iii), weved
[K:C(x)] < a. Therefore we obtainx()s = & Vo- O

B. Proof of Proposition 2.2

Proof of Proposition 2.2 (i). It is trivial thaR C |Ji— L(kvs). On the other
hand we have

GL(kvoo)c (N o.c ) Op=R
k=0

VF Voo pecCatft

where O, = {f e K | v(f) >0} and O, = {f € K | vp(f) > O} (see Proposition 2.2
(ii) for wvp). 0

Proof of Proposition 2.2 (ii). It is trivial that the map is injective. We prove
that the mapg is surjective. Letv be a discrete valuation such that# v.,. Since
v(x) > 0 for anyi, we haveR C O,. Let P be the maximal ideal o, andm :=
P N R. Then we have

C—R/m— O,/P.

Since P,/P : C] =1, we haveC ~ R/m >~ O,/P. Thereforem is a maximal ideal.
Let Ry, be the localization ofR with respect tom. Then R, and O, are discrete val-
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uation rings satisfyindRy, C O, and P N Ry, = mR,. Therefore, from [8] p.40 The-
orem 6.1A, we obtainR,, = 0,. Since there existp € C* such thatO, = Ry, we
have O, = O,. Therefore we obtain, = v and the mapp is surjective. ]

C. Proof of Proposition 2.3
Let T(A) = B(A) N ({0} x N,

Lemma C.1. (i) T(A)={M(b)eB(A)|i=0,...,a1—1}, where h =min{b e
N +---+aN | b=imoda}. In particular #T (A;) = &.
(i) B(A) =T(A)+ N x {0}*1,
(i) V(A) C{T(A)+e& |i=2,...,t}\ T(A) C {0} x N*=1,
(iv) The set{0}'~! x N x {0}'" N V(A,) consists of only one element for anya <
i <t).

Proof. We haveM(b)) = (my, ..., my) € {0} x N'"1, In fact, if m; # 0, then we
have W((0,my,...,m)) = b, =i moda; and W ((0,m,,...,m;)) < b;, which contradicts
the definition ofb;. Therefore we havéM () € T(A;). For M, N € {0} x N'~? satisfy-
ing ¥(M) > ¥(N) and (M) —W(N) = ey for someee N,, we haveM ¢ T(A). In
fact, for N':= (g, 0,...,0)+ N, we haveM > N’ and ¥(M) = W(N’), which means
M ¢ B(A;). Therefore we obtain (i).

Next we proveB(A;) C T(A) + N x {0}*L. Let M = (my, ..., m) € B(A),
M1 = (0,my, ..., m), and My = (mg, 0,..., 0). SinceM; + M, € B(A;), we have
M1, My € B(A). Since My € B(A) N ({0} x N1 = T(A), we haveM e T(A) +
N x {0}*"1. SupposeB(A;) < T(A) + N x {0}*"L. Then from (i) there exist (0 <
i <a;—1) and M3 € N x {0}'~? such thatM(ly) + M3 ¢ B(A;). Take N € B(A)
satisfying W (M () + M3) = ¥(N). SinceN € B(A;) C T(A)+Nx{0}'"* and ¥(N) =
i moday, there existsM, € N x {0}'1 such thatN = M () + M. ThereforeMs > My,
M3z, M4 € N x{0}'"%, and ¥ (Ms) = ¥(M,), which is contradiction. Therefore we obtain
B(A) = T(A) + N x {0}*L.

Next we proveV (A;) C {0} xN'1, Let M = (my,...,m;) € V(A,), My = (0,m,,...,
m;), and My = (my, 0,...,0). SinceM ¢ B(A;) and M, € B(A;), we haveM; ¢ B(A,).
From the definition ofV (A;), we obtainM, = (0,...,0). Therefore we obtaiVv (A;) C
{0} x N1,

Let M € V(A,) C {0} x N*"1. SinceM # (0,..., 0), there exisi (2<i <t) and
M; € {0} x N*"! such thatM = M; + g. Since M; € B(A;) from the definition of
V(A), we haveM; € B(A) N ({0} x N'™1) = T(A,). Therefore we obtain (jii).

For 2<i <t, the set{0}' "1 x N x {0}'' N {N'\ B(A,)} is not empty. In fact, since

v(o,...,0,a,0,...,0)=vY(&,0,...,0)=aa,
we have (0,..,0,a,0,...,0)> (&,0,...,0). Let N; be the minimal element of

{0}~ x N x {0}~ N {N!\ B(A,)}. Then we obtain{0}'~* x N x {0}'"' N V(A;) = {N;}.
Therefore we obtain (iv). ]
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Let SMA) = {N; | 2 <i <t} (see the proof of Lemma C.1 (iv) foN;). For F =
Y anXN € C[X], we definemultidegof F by

_ —0 for F =0,
multidegF) = maxN € N' | Ay #£ 0} for F #0.

Also we defineleading termof F by

0 for F =0,
LT(F) = {)q- XT for F#0, whereT = multideg().

For a idealJ c C[X], we define

AQ)=N"\ [ J {multidegF)+ N'}.
FeJ\{0}

Then we have
(6) SpatX™ | M e A(J)} N J = {0}.

Lemma C.2. (i) {Fm | M e SV(A)} is a Grobner basis of the ideal := ({Fu |
M € SV(A)}) with respect to the ordek in N!, i.e, ({LT(F) | F € J}) = ({LT(Fwm) |
M € SMAL))).
(i) Span{XN | N € B(A)} N ({Fu | M € SV(A)}) = {0}

Proof. For M, N € SMA;) (M # N), we have L.C.MLT(Fwy), LT(F\)} =
LT(Fm)LT(Fn). Therefore, from [6] p.102 Theorem 3 and p.103 Proposidonve
obtain (i). From (i) we obtainA(({Fm | M € SMA)})) = Nt \ {SVA) + N'} D
NU\ {V(A) + N'} = B(A;), where the last equality is due to Lemma A.1. Since
SparfXN | N e A(Fw | M € SMADD} N ({Fm | M € SVA)}) = {0} from (6), we
have SpafXN | N € B(A)} N({Fm | M € SV(A)}) = {0}. O

Lemma C.3. If A; is telescopicthen the following properties are satisfied.
i) TA)={O0,my ..., m)eN |O<m <d_y/d—-1,i=2,...,t}.
(i) SMA) = V(A) = {(di-r/d))e |2 =i =t}.

Proof. LetU = {(0O,m,, ..., m)eN' |[O<m <d_y/d—-1,i=2,..., t}. Take
u=(0,uy,...,us) € U andv = (0,vy,...,11) € U satisfyingu # v. First we proveW(u) #
W(v) mod a;. Suppose that there exists an integersuch that¥(u) — ¥ (v) = way.
Let p be the positive integer such thaf # v,, U,11 = vy41,..., U = vr. Without loss
of generality we assume, > v,. Then we haveu, —v,)a, = wa; — Y p—a(Ux — vk)ax
and O< u, —v, < d,_1/d,, which is contradiction. Therefore we obtainu) # ¥(v)
mod a;. Since A; is telescopic, for anyi = (0, Uy, ..., U) € Nt, there existay € U
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such that¥(u) = ¥(u) mod a;. SinceW(u) > W(u') and #J = a;, we have{W(u) |
ueU} ={by,...,bay_1}, whereb; = minfb e &N +---+a&N | b=i moda;}. Finally
we proveu € B(A;) for anyu € U. Takeu € U, then there existsl” = (u7,...,u;) €
B(A:) such thatw(u) = W(u”). Since A is telescopic, we have 8 u{ < dj_,/d; for

2 < j <t. Sinceuj] = 0 from the definition ofly, we obtainu” € U. Therefore we
obtainu = u” € B(A;). From Lemma C.1 (i), we obtain (i). From Lemma C.1 (iii)
(iv) and the definition ofV (A;), we obtain (ii). O

Proof of Proposition 2.3. From Lemma C.2 (ii) and Lemma Ci} fhe con-
dition (2) is satisfied. From Lemma C.1 (i) and Lemma C.3 {i)¢ obtain Prop-
osition 2.3 (i). From Lemma C.3 (ii), we obtain Propositior8 Zii). From Propos-
ition 2.1 (i) and Proposition 2.2 (i), the gap valuescatare N \ (A;). Therefore, from
[16] Theorem 5, we obtain Proposition 2.3 (iii). 0
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