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Abstract

In this paper, we introduce the notion ofcannected sum K#? K, of simpli-
cial complexesK; and K,, as well as define atrong connected sum. Geometric-
ally, the connected sum is motivated by Lerman’s symplectit applied to a toric
orbifold, and algebraically, it is motivated by the conmetsum of rings introduced
by Ananthnarayan—Avramov—Moore [1]. We show that the StarfReisner ring of

a connected sunk; #2 K, is the connected sum of the Stanley—Reisner rings of
Ky and K, along the Stanley—Reisner ring &f; N K,. The strong connected sum

K, #° K, is defined in such a way that whef;, K, are Gorenstein, and is a

suitable subset oK1 N Ky, then the Stanley—Reisner ring & #2 K, is Gorenstein,
by work appearing in [1]. We also show that cutting a simpléytape by a generic
hyperplane produces strong connected sums. These algetmaiputations can be
interpreted in terms of the equivariant cohomology of motrargle complexes and
toric orbifolds.

1. Introduction

In this paper, we introduce a notion of tikennected sum of simplicial complexes
abstracting the combinatorial aspect of cutting a simplytppe by a generic hyper-
plane. LetK; and K, be simplicial complexes omj] := {1,...,m} and letZ C W :=
K1N K, be a subset that does not contain the empty set. Assume thatithphborhood
Ok,uk,(Z) of Z in K1 UKj3 is contained inW. In Section 2, we define theonnected
sum K # K, of Ky and K, by

K1 # Ky := Delz (K1 U Ky).
Furthermore, we introduce thetrong connected sum oK; and K, by assuming
(1.2) Z = Kp\ (K1 \ W) = Kz \ (K2 \ W).

We show that ifA, and A_ are simple polytopes obtained by cutting a simple poly-
tope A with a generic hyperplanél,, then the simplicial compleX associated to\
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406 T. MATSUMURA AND W. FRANK MOORE

is a strong connected sum of the simplicial compleKes associated to\.. Interest-
ingly, it is also shown thaK_ is a strong connected sum &, and K.

We then turn to study the algebraic structures of the coordipg Stanley—Reisner
rings in the framework of the&onnected sum of ringmtroduced by Ananthnarayan—
Avramov—Moore [1] (Section 3). Le;, A, andC be rings and/ a C-module. Consider
the following diagram

Vi)Al

(1.2) % k

AZT)C

wheree; ande, are ring homomorphisms ang and ¢, are module homomorphisms.
The connected sum of ringassociated to the diagram (1.2) is defined by

kere
A]_#fAZ =
Im ¢
where
€.:=€1—€: A1PA - C
and

@ 1= (1, 92): V= AL @ Ay,

We show that the Stanley—Reisner ridfK; #° K,] of a connected sunKj #* K,

is the connected sum of Stanley—Reisner ridg&,] and Z[K;] (Theorem 3.5). More
precisely, letZ; be the ideal inZ[K, U K] generated by the monomials corresponding
to the faces inZ. Then

Theorem A (Theorem 3.5) Z[K.#* K,] is isomorphic to the connected sum of
rings, Z[K4] #g Z[K], associated to the diagram

Iz —5— Z[Kq]

(L.3) 9{ lgl

Z[Ko] —5— ZIW],

where all maps are given by the obvious quotient maps of StaRleisner rings cor-
responding to the inclusions of simplicial complexes.

The extra assumption (1.1) for the strong connected sum iwvated by the follow-
ing algebraic fact. 1K, andK, are Gorenstein and/ is Cohen—Macaulay, then assump-
tion (1.1) implies that the idedal; is a canonical module dZ[W]. As a consequence,
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we can show purely algebraically from the work of [1] thaKif and K, are Gorenstein,
K1 #° K, is a strong connected sum, aid is Cohen—Macaulay, thel; #* K, is
Gorenstein (see Corollary 3.10).

We also discuss the Tor algebra of the Stanley—Reisner tirey @nnected sum.
Let [m] be the common vertex set &f;, K, and K so that the corresponding Stanley—
Reisner rings are the quotients Bfxq, ..., Xm] by the ideals generated by monomials
of non-faces. Pick am x m integral matrix B = (B;;) € Mat,m(Z) of rank n and
denote the corresponding map for tori also By T — R. We have a polynomial ring
Z[R*] := Z[uy, ..., up] sitting inside of Z[T*] := Z[X, ..., Xm] Whereu; = Z?‘:l Bij.

In Section 4.3, we show

Theorem B. If Tor'R1(Z[L],Z) = 0 for L = K,Ky,Kz,W, then TorZRN(Z[ K, #2
K2], Z) is isomorphic as a ring taTor“R'N(Z[K], Z) # Tor?R'}(Z[K;], Z) defined by
the diagram

Tor{®(Tz, 2) —;— TorfM1(Z[K4], Z)

y |

Tor®(Z[K), Z) —5— TorRI(zZ[W], Z),

where all the maps are induced froBiagram (1.3)

This analysis bears fruit in Section 4, where we relate thevabesults to the co-
homology of the moment angle complex of a connected sum oplaiial complexes.
The moment angle compleXk associated to a simplicial complék was introduced by
Buchstaber and Panov in [4] as a disc-circle decompositfahen Davis—Januszkiewicz
universal space. It has been actively studietbiic topologyand its connections to sym-
plectic and algebraic geometry, and combinatorics. Sihee(équivariant) cohomology
of moment angle complexes are naturally related to the &tafleisner rings and their
Tor algebras (cf. [3], [11]), we have the corresponding theo More precisely, we can
replace the Stanley—Reisner rings in Theorem A by Thequivariant cohomology of
the corresponding moment angle complexes wherge the m-dimensional torus acting
on the moment angle complexes canonically (Corollary 4\)reover, we can replace
Tor?IR](, Z) in Theorem B by thes-equivariant cohomology of the corresponding mo-
ment angle complexes whe is the kernel ofB: T — R (Proposition 4.4). The con-
nected sum of simplicial complexes can be used to constnteteisting spaces (cf. [7])
and the techniques developed in this paper can be used toutettye (equivariant) co-
homological invariants of these spaces.

Finally, we come back to our original motivation to study tbehomology of a
symplectic cut of a toric orbifold. Since a toric orbifold iepologically nothing but
the quotient stack of a moment angle complex by a torus actimabove results can
be applied. For example, we have
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Theorem C (Proposition 4.7) Let X be a toric orbifold andX, and X_ are
symplectic cuts of oft. Let A, be the toric suborbifold of¥, that corresponds to
the section of the cut. Ldt.: X, — X4 be the inclusion. Then HX; Q) is iso-

morphic to H (X, ; Q) #I H*(X_; Q) where the connected sum of rings is defined by
the diagram

H*(X,; Q) T) H*(X,; Q)

fl fii

H*(X_; Q) — H*(Xs; Q).

If H*(AX,) and H*(X) are concentrated in even degraben the statement holds over
Z-coefficients.

2. Connected sum of simplicial complexes

In this section, we define the (strong) connected s K, of simplicial com-
plexesK; and K, on a vertex setrf] := {1,..., m}. We show that cutting a simple
polytopes produces strong connected sums of simplicialpbexas.

2.1. Connected sums of simplicial complexes.A simplicial complexon the ver-
tex setS is a collectionK of subsets (calledaceg of S such that ifo € K, then all
subsets including the empty of o are inK. A simplicial complexK is calledpure if
all its maximal faces have the same dimension where the diimerof a faceo € K is
lo| — 1. A maximal face is called &acet The set of all facets is denoted by(K). A
vertex x is called aghost vertexf {x} ¢ K. Let Z be a subset of a simplicial complex
K. TheclosureZ of Z in K is the smallest subcomplex containidg The open neigh-
borhood x(Z) of Z in K is the set of allo € K such thato contains some € Z.
Note thatOx(Z) = Z if and only if K \ Z is a subcomplex oK. The star of Z in
K and thedeletionof Z from K are the subcomplexes defined by g{@) := Ok (Z)
and Def(K) := K \ Ok(Z) respectively. IfK; and K, are simplicial complexes on the
same vertex sef, then we can naturally take the intersectiga N K, and the union
K1 U K5 that are also simplicial complexes ¢h

DEFINITION 2.1 (Connected sum). LeK; and K, be simplicial complexes on
[m]:={1,...,m} andW := K; N K,. Let Z C W be a subset such tha ¢ Z and
Ok,uk,(Z) C W. We define theconnected sum K#2 K, of K; and K, along Z by

Ky #2 Ky 1= Delz (K1 U Ky).

ExXAMPLE 2.2 (Connected sum along a facet p.24 [3]). ket F(K;),i =1,2,
be facets of the same cardinaliry. If we identify the vesia# o1 ando, ando :=
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01 = 0, we haveW = {o}. Let Z := {o} and thenOx,uk,(Z) = {0} C K1 N K,. The
connected suniK; # K, := K3 UK, \ {0} is exactly the “connected sum” defined in [3].

ExampPLE 2.3. Letv(Ky) = {a, b, c,d} andv(Ky) = {a, b, ¢, e}. Let F(K;y) =
{abc bcd} and F(K,) = {abcace. Then F(W) = {abc} and letZ = {abc = Ok (2).
This is a connected sum in the sense of [3]. The result is n.pu

DEFINITION 2.4 (Strong connected sum). A connected skm#” K, is called
strongif Ki, K, andW = K; N K, are pure with the same dimension and

Z =W\ (K1 \ W) =W} (Kz\W).

The algebraic justification of Definition 2.4 comes in Secti®.2. Here we only
show the following lemma that will be used later.

Lemma 2.5. Let K be a simplicial complex and W a subcomplex of K. Let
(2.1) Z:={teK|tUo ¢ K, Vo € K\ W}
Then G (Z) =Z and Z=W \ (K \ W).

Proof. Lett € Ox(Z) and lett’ € Z such thatt’ C 7. If there iso € K\ W
such thatt Uo € K, thent"Uoc e K so1' ¢ Z. ThustUo ¢ K for all 0 € K\ W,
i.e. Ok (Z) C Z. Since obviouslyOk (Z) D Z, we haveO(Z) = Z.

We haveZ C W since, ift ¢ W, thent e K\ W andtUrt € K sort ¢ Z.
Furthermore ift € K \ W, then there isr € K\ W such thatr C o. ThereforetrUo €
K so thatt ¢ Z. ThusZ c W\ (K \ W). On the other hand, let € W\ K \ W. If
Tt ¢ Z, then there iss € K \ W such thatr Uo € W. This meansr € stai (K \ W).
However, we have that stafK \ W) = Ox (K \ W) = K \ W. Thust € K \ W which
is a contradiction. Thug € Z and soW\ K\ W C Z. O

2.2. Polytope cutting and connected sum. A polytope A is defined to be the
convex hull of a finite set of points ilR". We can choosée,; € (R")* and n € R,
i =1,...,m such that

A={26Rn|(i,ki)+ni >0,i=1,...,m}.

Let Hj := {X € R" | (X, A} +n = O} be the defining hyperplanes and we cHl|l :=
A N H; afacetfor eachi =1,...,m. If H; is empty, we call it aghost facet A
polytope A is simpleif Hi, i = 1,...m, are in a general position, i.e. if there are
exactly n hyperplanes meeting at each vertex &f For a simple polytopeA with
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facetsH;, i = 1,..., m, the associated simplicial complék, is a simplicial complex
on [m] defined by

cCKa&o=0 or ﬂHi7é®.

ico

DEFINITION 2.6 (Generic cut). LeA C R" be an-dimensional simple polytope.
Suppose that the facets are all non-ghost fadéétsi = 1,..., m. Consider a new
hyperplane

Ho:={X e R"| (X, Ao) +& =0}

and the corresponding closed half spatks, = {(X,A0) +£ > 0} and H<o = {(X, o) +
£ < 0}. A generic cutof A is given by the pair 4, Ho) such thatHo, H1, ..., Hm
are in general position an#ll, := Ho N A # @. In this case,A, := A N Hs, and
A_:= AN H<, are non-empty simple polytopes.

We regard the vertex sets of the simplicial complekes, K., K_ associated to
A, A., A_ to be[m] :=[m] U {0}. More precisely, let

Ka = {acfr?ﬂ oé¢o andﬂHiyéQ}U{@},

ieo

Ky = {a ciml | (YHnAL) # @} U {a},

ieo

K_ = {a cml | (HNnAD)# @} U {@}.

ico

Let (A,H,) be a generic cut of a simple polytope. ForC fr?ﬂ let Fo :={ic, Hi-
First we show thatK, is a strong connected sum &f, and K _.

Lemma 2.7.
(2.2) (Ky UKZ)\ Ka = Ok, uk_(0) = Ok, (0) = Ok_(0),
(2.3) K+ N K_ = stak, uk_(0) = stak, (0) = stak_(0).

Proof. From the definition, it is clear that € (K, U K_) \ K, if and only if
o€ K, UK_andoeo,ie.

(K; UK)\Ka={o c[m|oeo ando € K, UK_} = Ok, uk_(0).

On the other hand(),.,(Hi N A%) = (MNieos H) N Ho = Niep(H N AL) if 0 €0,
Therefore for allo that contain, o € K. if and only if o € K_. Thus Ok, uk_(0) =
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Ok, (0) = Ok_(0). This proves (2.2) and also
star , uk_(0) = stak, (0) = stark_(0).
SinceA, NA_,itisclearthatr e K. NK_ifandonly ife = @ or F, N Hy # @. Thus

KiNK_.={oceK,|oU{o}eKi})={oceK_|oU{o}eK_}. O

stai, (0) stat_ (0)

An immediate corollary is thaK, is a connected sum df, and K_ along Z := {o}.
In fact, it is a strong connected sum, as is shown below.

Theorem 2.8. If (A, Hy) is a generic cutthen K, is the strong connected sum
K, #2 K_ where Z= {0}.

Proof. To show it is a strong connected sum, we must proye (0) = W \
(K+ \ W) whereW := K, N K_. Supposer € Ok, (0). By (2.3), we have{o} Uo ¢
K, for all 0 € K, \ W. Thus we haver U o ¢ K, for all 0 € K, \ W. Then
Lemma 2.5 implies that € W \ (K. \ W). To prove W \ (K, \ W) C Ok, (0), we
show thatW \ Ok, (0) C K; \ W. Since W = stak, (0) by (2.3), we need to show
that € stak, (0) \ Ok, (0) implies T € K, \ stak, (0). Let t € stak,(0) \ Ok, (0),
i.,e.o¢ r and F; N Hy # @. Since the cutting is generid;, has a vertex contained
in Ay but not contained inHy. Let F, be such a vertex. Thea € K, \ stak, (0).

Sincetr C o, 7 € K, \ stak, (0). The same argument may be used to pr@e (0) =
W\ (K_\ W), O

Now we show thatk _ is a strong connected sum &, and K, . Let

Z:={ocC[m|F #@andF, C Ay \ Ho}.

Lemma 2.9.
(2.4) (Ky UKA)\ K- = Z,
(2.5) KiNKy=7Z,
(2.6) Ky \ Z = Ok, (0),
2.7) Ka\Z={oc[m|F, #@ and F, C A_\ Ho}.

Proof. Equation (2.4) is obvious from the fact thgt C A, \ H, if and only
if F, N A_ = @. Now observe thaK, N K, consists ofg and o C [m] such that
F, N A, # @. Itis clear thatZ c K, N K, and henceZ c K, N K,. Leto €
KiNKa. If 0 ¢ Z, thenF, NHy, # @. Sinces € K, so thato ¢ o, there is a vertex
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F. of F, contained inA . \ Ho, which meansr € Z. Thuso € Z. ThusK . NK, C Z.
This proves (2.5). Equation (2.6) follows from the fact that K. \ Z if and only if
oeo andF, # @. Equation (2.7) follows from (2.6) and thate K, \ Z if and only
if F, #@ andF, € A_\ Ho. ]

Theorem 2.10. Let (A, Ho) be a generic cut. Let Z {0 C fr?ﬂ | F, # @ and
F, C Ay \ Ho} as above. Then Kis the strong connected sum, K K, of K, and
KA along Z.

Proof. K_ is a connected sum dk, and K, along Z by (2.4) and (2.5). Let
W := K N K,. First we show thaZ = W \ (K, \ W). Since K; \ W = star, (0)
by (2.6), we must showZ = W \ stak, (0). Supposes € Z. If o € stak, (0), then
there must ber € Ok, (0) such thats C r. Sinceo € 7, we haveF, N H, # @ which
contradictsF, C Ay \ Ho. Thuso € W\ stak, (0). On the other hand, it € W \
stak, (0), thenF, N A, # @ and there is no vertex of, that lies onH,. Therefore
F, C Ay \ Hp, i.e. o € Z. Finally we show thatW \ (K. \ W) = W\ (K, \ W). Let
F#oeWNnKy\W. Theno C [m] and F, N Hy # @. Thus dimF, > 1 and there
is a vertexF, of F, that lies inA_\ H,. Sincer € K, \ Z, we haves € K, \ W. On
the other hand, suppose thait# o €e WN K \ W, thenF, N A, # @ and there is a
vertex of F, that lies inA_\ H,. ThusF, N H, # @ which implieso € stak, (0). [J

3. Stanley—Reisner rings and connected sum

We study the algebraic structure of the Stanley—Reisner ointhe connected sum
K1#? K, defined in the previous section. The algebraic model isctrenected sum of
rings introduced and studied by Ananthnarayan—Avramov—Moore [d]Section 3.1,
we review the definitions and show that the Stanley—Reisingr Z[K, # K] is the
connected sum of the Stanley—Reisner ringkaf and K,. In Section 3.2, we study
the Gorenstein property dt[K; #° K] in terms of the same property df;, K, and
Ky N K, for strong connected sums. Here Corollary 3.10 is our mitimato define
strong connected sums. In Section 3.3, we discuss how those piegpeescend to Tor
algebras of Stanley—Reisner rings.

3.1. Connected sum of rings.

DEeFINITION 3.1 (Fiber product and connected sum of rings). ket A — C,
i =1, 2, be ring homomorphisms. Then tfiber productA; x. A, is the subring of
A1 ® A, defined as the kernel af := ¢; — ¢, i.€.

A1 Xe Az 1= {(X1, X2) € A1 B Az | €1(X1) = e2(Xx2)}.
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Now take aC-moduleV and regard it as &;-module viae; for eachi = 1, 2.
Given a commutative diagram

v—2 A

3.1) Wl lq

AgT)C

where ¢; is a homomorphism oA;-modules fori = 1, 2, we setp := (¢1, ¢2): V —
A1 @ A,. The connected sunof the diagram (3.1) is given by
kere A Xe Az

A A = e = (01(0), 9200)) € AL @ Az [V E V]

REMARK 3.2. Equivalently, one may also view the definition of the rected
sum of rings as arising via the following exact sequences:

(3.2) O—>A1x€A2—>A1®A2i>C,

(33) VLA]_ X€A2—>A1#(£A2—)O

DerINITION 3.3. Let K be a simplicial complex onnf]. The Stanley—Reisner
ring Z[K] is the quotient of the polynomial ring[x,,...,Xm] by the ideal generated by
X5 :=[1ic, X for all non-faces of K. For a monomialp = [T™; x® in Z[x4,..., Xm],
let o :={i € [m] | & # 0}. Let Mk be the set of monomialp such thato(p) does
not contain any non-face oK. We have the canonical choice of representatives of
elements ofZ[K]:

(3.4) ZKl= 6 z-p.

peMk

Theorem 3.4. Let K; and K; are simplicial complexes ofm]. Let W:= K; N
K. Letg;: Z[K;] — Z[W] be the quotient map of Stanley—Reisner rings for the in-
clusion W< K; for each i=1, 2 and letg := g; —g,. Let6: Z[K; U K;] — Z[K;]
also be the quotient map for the inclusion &> K; U K. Then# := (64, 6,) defines
an isomorphism of rings oveZ[Xa, ..., Xml]:

0: Z[Kl U K2] —> Z[K]_] Xg Z[Kz]
Proof. The following short exact sequence is obvious
0 — Z[Ky U Ko] -2 Z[K4] @ Z[K2] - Z[W] — 0.

Indeed, the injectivity of¢ and the surjectivity ofgy are obvious. Also it is obvious
that Ime C kerg. We define the inversé=1: Z[K;] x4 Z[K;] — Z[K;1 U K3]. In the
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notation in Definition 3.3,Mx, N Mgk, = Mw. Therefore for eachr{, r,) € kerg, we
have the unique representatives

= > a-p+ » a-p and rp= Y  a-p+ Y a-p

pe Mk, \Mw peMw pe Mk, \Mw peMw

and we can associate

OrLr2)i= Y. @-p+ Y. @ p+ Y. ap-p.

peMk,; \Mw peMk, \Mw pEMw

Here we note thaMg,uk, = (Mg, \ Mw) LI (Mg, \ Mw) LI Mw and hence this clearly
defines the inverse df. O

Theorem 3.5. Let K; #2 K, be a connected sum introduced Befinition 2.1
Let Z; be the ideal inZ[K; U K] generated by x, o € Z. Then as an algebra over
Z[X4,...,%m], Z[K1#* Ky] is isomophic to the connected sum of ring$K,]#; Z[K],
associated to the diagram

Iz —5— [Ki]

[ T

Z[Ko] —5— Z[W].

Proof. SinceK; #* K, = (K1 U Ky) \ Ok,uk,(Z), we have the following short
exact sequence d[Xy, ..., Xm]-modules

0— Iy — Z[K1 U Ky] — Z[Ky #* Ky] — 0.

By Theorem 3.4, we have the isomorphism of rings d#gxy, ..., Xm]

ker@: Z[K1] ® Z[K2] — Z[W])

Z[K1 # Ky] = Im(6: Zz — Z[K1] ® Z[K2])

To complete the proof, we need to show tlatis a Z[W]-module and thab;: Z; —
Z[K;] is a Z[K;]-module homomorphism with respect tp for eachi = 1, 2. But this
is clear sinceOk,uk,(Z) C W implies that the natural quotient ma@ K, U Ky] —
Z[W] sendsZ; to the ideal inZ[W] which is isomorphic toZ; as aZ[X, - . -, Xml-
module. O

From Theorems 2.8 and 2.10, we have



CONNECTED SUMS OF SIMPLICIAL COMPLEXES 415

Corollary 3.6. Let (A, Hy) be a generic cut of a simple polytope. ThefK,] is
isomorphic to the connected sum BfK ] and Z[K_] associated to the correspond-
ing diagram

Tiop —— Z[K,]

| |

Z[K_] — Z[K, N K_].

MoreoverZ[K_] is isomorphic to the connected sumZffK o] and Z[K ] associated
to the corresponding diagram

I; —— Z[K4]

| |

Z[K,] —— Z[Ks N K,]

where Z= (K, N Ky) \ K_.
3.2. Connected sum of Gorenstein rings. This section explains our algebraic

motivation for Definition 3.1 of the strong connected sumt 1A be a subcomplex of a
simplicial complexK on [m]. Let Zx\w be a kernel of the quotient ma&g[K] — Z[W].

Lemma 3.7. The annihilator(0 :zx; Zk\w) IS generated by x o € W\ (K \ W).

Proof. The annihilator is generated by whereo € K st.o Ut ¢ K, Vr €
K \ W. The claim is a corollary of Lemma 2.5. ]

The following is a basic fact about the canonical module of ahéh—Macaulay
ring [2, Theorem 3.3.7]:

Lemma 3.8. Suppose that W and K are pure with the same dimension. If K
is Gorenstein and W is Cohen—Macayldlgen (0 :zx; Zx\w) is a canonical module
of Z[W].

From [1], we have the following theorem.

Theorem 3.9. In the Definition 3.1,A;# A, is Gorenstein ifA; is Gorenstein for
each i= 1, 2, C is Cohen—Macaulay an¥ is a canonical module of.

As a corollary, together with Lemmas 3.7 and 3.8, we have
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Corollary 3.10. Let K; and K, are simplicial complexes ofm] such that K,
K, and W:= K; U K, are pure with the same dimension. Assume that K, are
Gorenstein and W is Cohen—Macaulay. If # K, is a strong connected syrthen
K, #% K, is Gorenstein.

3.3. Tor algebra of connected sums. Let K; and K, be simplicial complexes
on [m] and K := K3 #? K, a connected sum df; and K, along Z. Let K = K; UK»
and W := K; N Ks. In Theorems 3.4 and 3.5, we see that there are two short exact

sequences of algebras and modules &g, - . ., Xnl:
0 —— Z[K] —— Z[K1] & Z[K;] —— Z[W] 0;
0—— I —— Z[K] Z[K] 0.

Consider an integen x m matrix B of rank n. The choice of suctB corresponds
uniquely to a choice of a surjective map.= U(1)™ — R := U(1)". DenoteZ[T*] :=
Z[X1,...,Xm]. Letu; := Z'J-“zl Bij Xj, and denote&Z[R*] := Z[uy,...,un] C Z[T*]. Recall
that the Koszul complexCZR] is a Z[R*]-free resolution ofZ. Therefore, tensoring
the above short exact sequences wiitHR1 and taking homology, we get the following
long exact sequences:

.. = ToR(z[K], 2) - To"®(Z[K4], Z) ® To" R (Z[K,), Z)

35

(3.9) — Tor'®l(ziw], z) — - -,

(3.6) - — To'® (7, Z) - To"®)(zZ[K], Z) - TR l(Z[K], Z) > ---.
Let

§ := §;, — 0,: ToR)(Z[K4], Z) & TR (Z[K,], Z) — To R} (Z[W], Z);
2 (01, 02): ToE R N7, Z) — Tor!RN(Z[K 4], Z) ® TorRN(Z[K 4], Z)

)

be the induced maps on Tor. The following claims can be eadikerved:

Lemma 3.11. Suppose thaTor”*1(z[w], Z) = 0. Then one hagor“®1(z[K],
Z) = 0 if and only if ToP®1(z[K,], Z) = To"®)(Z[K,], Z) = 0. In this case

Torg™1(2[K], ) = Tog ™ (@[Ky), 2) x5 Tog " (z[Ko), 2),

Proposition 3.12. If TorRY(z[Ky], z) = ToPRV(zZ[K,], Z) = ToR(z[K],
z) = To®l(z[w], Z) = 0, then

To®)(z[K], Z) = Tod®)(2[K4], Z) # o (z[K ], 2).
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REMARK 3.13. By Proposition 2.3 [8], Ter= 0 implies Tor = 0 for all i > O.
Therefore, in the above lemmata, we actually havéTd(z[K],z) = TorZR)(Z[K ], Z)
and TofIR1(z[K], Z) = Tor* ) (z[K], Z).

Lemma 3.14. Let (A, Ho) be a generic cut of a simple polytope as Defin-
ition 2.6. Let W:= K, N K_. Regard K, as the connected sum of,Kand K_ along
Z :={o}. If To'®(z[w], z) = To®)(Z[K ], Z) = 0, then TorR)(z[K ], Z) =
Tor“R(z[K ], Z) = 0. In this casewe have

Tord M (Z[K ), 2) = Tog® (Z[K. ], Z) # Tor ™ (z[K_], 2).

Proof. In this case, observe thaf; =~ Z[W] as Z[T*]-modules.  Thus
ToPR(Z[W], Z) = ToPR(Z[K 4], Z) = 0 implies ToFR(Z[K, UK_], Z) = 0 and
hence Tof!™(z[K.], z) = Tof™(z[K ], ) = 0. O

REMARK 3.15. The converse of Lemma 3.14 is not true; we give an exampl
such that Tof™1(z[w], z) = To®l(z[K,], Z) = TorRl(z[K_], Z) = 0 but
TorR(z[K,], Z) # 0.

Consider the following cutting of a cubet is the cube with the facetsly, ..., Hy
and we cut it by the faceH, to obtain A, and A_ as shown below.

A oe—o o AL e—o o A 0 Orrienn o
Hy + Hy Ha
Hs
Hi Hs Hy . OH; .
Ho .- H H,
o / : / Hs

o— o o ° ® o 0 . °

Hz Hz H,

The following are the corresponding simplicial complexes.
* N \ h \
L8 o3 L&A o3

\ \.2/'."/ J

o) .
KA is a strong connected sum &f, and K_ along Z = {o}.
Consider the following % 5 matrix B:

B_10—20—1
“\o 2 o0 -1 1)

K Kl Kz ) 04.__“
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By direct computation (we useMlacaulay?), we find that

Tor®(z[W], 2) = Tor M (z[K4], 2) = Tor " (z[K5], 2) = 0

but To#*(z[K], Z) # 0.
Note that this example comes from cutting the labeled pplyt@\, b) that corres-
ponds to the direct product of weighted projective spadel, x CP1,.

4. Moment angle complexes and toric orbifolds

4.1. Cohomology of moment angle complexes.We use the following notation
for convenience. LeX be a set and/, Z subsets ofX. Let o C [m] be a subset. Then
Y7 x ZI[M\e = X™ denotes the direct product &f and Z’s wherei-th component isy
ifiecocandZ if i e[m]\o.

DEFINITION 4.1 (Moment angle complexes). L& be a simplicial complex on
the vertex set] := {1,..., m} (with possible ghost vertices). Thmoment angle
complexZg m C C™ is defined by

Z¢ = J D7 xop™ = | ] D7 xaDM\
oeK aeF(K)

whereD = {ze C ||zl <1} anddD = {ze€ C | |zl = 1}. The standard action of
T:=U(1)™ on C™ can be restricted to the one .

In this section, all cohomology rings are taken with integeefficients unless other-
wise specified. The basic fact about thequivariant cohomology ring oEx is

Theorem 4.2 (Davis—Januszkiewicz [5]) There is an isomorphism of graded rings
Z[K] = H{(Z2k;Z). This isomorphism is natural in the sense thatr a subcomplex
W C K, we have the commutative diagram of short exact sequences

0 Ik\w Z[K] Z[W] 0

| -| -|

0 —— H{(Zk, 2w) — H{(Zk) — H{(Zw) —— 0

whereZk\w is the ideal inZ[K] generated by monomials, xo € K \ W and H (2,
Zw; Z) is the relative equivariant cohomology féfy C Zx. The vertical isomorphism
on the left is induced from the other two isomorphisms andstieat exactness of rows.

Theorems 3.5 and 4.2 has an immediate corollary.
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Corollary 4.3. Let K; and K, be simplicial complexes ofm] and let K= K;#*
K, be a connected sum as iefinition 2.1 Let W:= K; N K, and K := K; U
K. As rings over H(BT), H;(Z2k) is isomorphic to I;T(ZKl)#SI H;(Zk,) defined by
the diagram

0*
Hi (2, 2w) —— H{(Zk,)

* 9 *
Hf (Zk,) —— H(2w),

where6;” and g;*’s are the obvious pullback maps aftl:= (9;,65) and g* :=gj —g5.

Let B be an x m integer matrix of rankn wheren < m. Let G be the kernel
of the corresponding map — R. Note that every subgroup af can be obtained this
way. To obtain what corresponds to Proposition 3.12 &eequivariant cohomology,
we use the two long exact sequences, the Mayer—Vietoris andethtive cohomology
sequence:

L HY(ZR) —— HL(E) @ HE(Zk,) —— HE(Bw) —— -+,
- —— HL(Zg, 2k) —— HL(Bg) —— Hi(Bk) —— -+

When these sequences split into short exact sequences, weirite the equivariant
cohomology ofZ¢ in terms of the connected sum of rings.

Proposition 4.4. If HZ(Zk), HE(Zk,), HE(2k,) and Hi(2w) are concentrated in
even degreethen H;(Zx) is isomorphic as a ring to the connected surf(Hk,) #‘;
HZ(Zk,) defined by the diagram

o
HE(Zg, 2k) —— HE(2k,)

l%* lgi

* % *
HG (ZKZ) — HG (ZW)1

where6” and g;*’s are the obvious pullback maps afd:= (9;,65) andg* :=g; —g5.

REMARK 4.5. The assumption in Proposition 3.12 is equivalent to @he in
Proposition 4.4 by [11]. Moreover, it is also true that, foy aimplicial complexK on
[m] and for any subgrougs of T, if Hgdd(ZK) =0, then there is a natural isomorphism
of rings

HE®2k) = Tor® (Z[K], Z).
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Therefore Proposition 4.4 is a direct consequence of Pio@os3.12.

Let (A, Hy) be a generic cut of a simple polytope and regardK, as the con-
nected sum oK, andK_ as in Theorem 2.8. In this case, the relative cohomology of
the pair €x,uk_, Zk,) can be replaced by the cohomology Bfy. Namely, for any

subgroupG of T := (U(1))™, consider the isomorphism

*—2 *—2 o Thom * o
T HE(2w) = HE(Zy) = HZ(Zw, 2w\ 2y)
= HZ (2w, Zpely w) = HE(Zk. uk_r Zk,),

where

25 = | (019 x D\ x (D)
oeF (W)
and all maps except the second one are pullback maps anddbedsene is the Thom
isomorphism. Composing” with the pullback, we have the pushforward map

Qi*l Hé(Zw) — Hé(ZKi).

Let 03 : HZ(Z2k.) — HE(2w) be the pullback maps for the inclusioll — K. As a
corollary of Lemma 3.14, we have

Proposition 4.6. For a generic cui(A, H,) and any subgroup a& C T, if HZ(Z2w)
and Hi(Zk,) are concentrated in even degrahen as rings

HE(2k,) = HE(2k,) #: HE(Zk )

where the connected sum of rings is defined for the diagram

0 *
HE(Zw) —— HE(2k,)

b

HE(Zk ) —— HE(Ew).

4.2. Application to toric orbifolds. A labeled polytopéA,b) is ann-dimensional
rational simple polytop&\ in R" where each facdtl;, i = 1,...,mis labeled by a positive
integerb;. Let py, ..., om be the inward primitive normal vectors to the facets. Bebe
then x minteger matrix by o1, . . ., bmom] and also denote the corresponding surjective
homomorphism of the tori b3: T — R whereT = U(1)™ andR = U(1)". From a labeled
polytope (A, b), a symplectic toric orbifoldt is constructed by the symplectic reduction
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of the complex planeC™ by G := kerB. See [10] for the detail. Topologicallyt’ is
nothing but the quotient stack given by

X = [ZKA/G]

together with the residuak-action.

The cohomology of a quotient stack can be defined as the e@nvaohomology
H*(X) := H{(Zk,) (cf. [6]). For a labeled polytopeX, b), consider a generic cut
of a rational polytopeA by a rational hyperplanél,. The resulting polytopea . are
endowed with labeling where the new fadéy is labeled by 1. The corresponding toric
orbifolds X, are the results of the symplectic cut by the one dimensiomagr®up of
R defined by the rational hyperplarté,. Proposition 4.6 can be rewritten in terms of
the cohomology oft. and the toric suborbifoldt, corresponding to the facéd,.

Proposition 4.7. Letfy: X, — Xy be the inclusion. As graded rings
H*(X: Q) = H* (X, Q) #: H'(X-: Q)

where the connected sum of rings is defined by the diagram

H*(X5; Q) T) H*(X,; Q)

| !

H*(X-; Q) —— H*(Xo: Q).

If H*(X,) and H*(X) are concentrated in even degraben the statement holds over
Z-coefficients.

Furthermore, Proposition 4.4 can be also applied to wrigectthomology ofY in
terms of ¥ and X, as follows. LetU, be a small neighborhood dfi, in A, and let
A’ = A\ Uy Let Y be the suborbifold oft’ defined by the preimage ok, C A
under the projection (or the moment mafy) — A. Also let ), be the preimage of
Hy; C A whereHj := A/, NU,. It is clear thaty and)), are also naturally suborbifolds
of X,. Letf: Y — X andf,.: )Y — X, be the inclusions. Consider the maps

61: H* (), Vo) = H*(Xs: Xo) — H*(XL)
and
92: gl: H*(y, yO) ~ H*(X, X_) N H*(X)

where the first isomorphisms are excisions and the second avapthe pullback maps.
Then we have the following statement that is actually a sppe@ise of what is proved
by Hausmann—Knutson [9] for more general symplectic cuts.
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Proposition 4.8. If f* and f} are surjective withZ-coefficients then as graded

rings,

H*(X) = H*(X) #. H*(X,)

where the connected sum of rings is defined by the diagram

H* (D, Vo) —5—> H*(X)
| |

H*(X,) f_+) H*()).
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