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Abstract
A submanifold of a Riemannian symmetric space is called parallel if its second

fundamental form is parallel. We classify parallel submanifolds of the Grassmannian
GC2 (RnC2) which parameterizes the oriented 2-planes of the Euclidean spaceRnC2.
Our main result states that every complete parallel submanifold of GC2 (RnC2), which
is not a curve, is contained in some totally geodesic submanifold as a symmetric sub-
manifold. The analogous result holds if the ambient space isthe Riemannian prod-
uct of two Euclidean spheres of equal curvature or the non-compact dual of one of
the previously considered spaces. We also give a characterization of parallel sub-
manifolds with curvature isotropic tangent spaces of maximal possible dimension in
any symmetric space of compact or non-compact type.

1. Introduction

Let N be a Riemannian symmetric space. A submanifold1 of N is calledparallel
if its second fundamental form is parallel. D. Ferus [6] has shown that every compact
parallel submanifold of a Euclidean space is a symmetric orbit of some s-representation,
called asymmetric R-space. In particular, such a submanifold isextrinsically symmetric
which means that it is invariant under the reflections in its affine normal spaces. More
generally, every complete parallel submanifold of a space form has this property (see
[2, 7, 25, 26]). This should be seen as an extrinsic analog of the following well known
fact: every complete and simply connected Riemannian manifold with parallel curvature
tensor is already a symmetric space.

Further, increasing the complexity of the ambient space step by step, consider par-
allel submanifolds of rank-one symmetric spaces. Their classification was achieved by
various authors, cf. the overview given in [1, Chapter 9.4].Under slight restrictions,
parallelity of the second fundamental form implies extrinsic symmetry also here. More
precisely, recall that a submanifold is calledfull if it is not contained in any proper to-
tally geodesic submanifold of the ambient space. On the one hand, one can show that
in all simply connected rank-one spaces of non-constant sectional curvature (i.e. the

2010 Mathematics Subject Classification. 53C35, 53C40, 53C42.
1We are implicitly dealing with immersed submanifolds, i.e.we consider isometric immersions de-

fined from a connected Riemannian manifoldM into N. In particular, a “submanifold” may have
self-intersections.
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projective spaces over the complex numbers or the quaternions, the Cayley plane, and
their non-compact duals) there exist one-dimensional complete parallel submanifolds
(so calledextrinsic circles) which are full but not extrinsically symmetric. On the other
hand, it turns out that every complete parallel submanifoldof dimension at least two is
contained in some totally geodesic submanifold as a symmetric submanifold. Hence, at
least every higher-dimensional full complete parallel submanifold of a rank-one space
is extrinsically symmetric.

The classification of symmetric submanifolds in ambient symmetric spaces of higher
rank was finally achieved by H. Naitoh in a series of papers. His result is surprisingly
simple in its statement, but the proof seems rather lengthy.Very roughly said, he con-
siders subspacesW � TpN such that bothW and W? are curvature invariant and de-
cides whether there exists some non totally geodesic symmetric submanifoldM � N
with TpM D W. For this, he uses a case by case strategy which is mainly based on
[22, Lemma 1.1]. In fact, he obtains assertions on a larger class of submanifolds (see
[1, Chapter 9.3]).

In contrast, there is “not much known” about parallel submanifolds of symmetric
spaces of higher rank. As a particular case, the classification of totally geodesic sub-
manifolds is still an open problem. But for ambient rank-twospaces, the classification
was obtained by B. Chen and T. Nagano [3, 4]2 and later by S. Klein [14, 15, 16, 17,
18] using different methods. Thus, one may ask also for the classification of parallel
submanifolds in rank-two spaces.

In this article, we classify the parallel submanifolds of the Grassmannian
GC

2 (RnC2)—which parameterizes the oriented 2-planes of the Euclidean spaceRnC2—
and its non-compact dual, the symmetric space GC

2 (RnC2)�, i.e. the Grassmannian of
time-like 2-planes in the pseudo Euclidean spaceR

n,2 equipped with the indefinite in-
ner productdx2

1 C � � � C dx2
n � dx2

nC1 � dx2
nC2. Note, these are simply connected sym-

metric spaces of rank two ifn � 2.

Theorem 1 (Main theorem). If M is a complete parallel submanifold of the
GrassmannianGC

2 (RnC2) with dim(M) � 2, then there exists a totally geodesic sub-

manifold NM � GC

2 (RnC2) such that M is a symmetric submanifold ofNM. In particular,
every full complete parallel submanifold ofGC

2 (RnC2), which is not a curve, is a sym-
metric submanifold. The analogous result holds for ambientspaceGC

2 (RnC2)�.

We also obtain the classification of higher-dimensional parallel submanifolds in
a product of two Euclidean spheres or two real hyperbolic spaces of equal curvature
(see Corollary 1). Further, we conclude that every higher-dimensional complete parallel
submanifold of GC2 (RnC2) is extrinsically homogeneous (see Corollary 2).

2However, the claimed classification of totally geodesic submanifolds of GC2 (RnC2) from [3] is
incomplete.
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Here, we focus our attention mainly on the Grassmannian GC

2 (RnC2) (and its non-
compact dual). Nevertheless, we also establish a splittingtheorem for parallel sub-
manifolds with curvature isotropic tangent spaces of maximal possible dimension in
any symmetric space (of compact or non-compact type), see Corollary 5.

The proof of Theorem 1 is based on the results given by S. Kleinand B.-Y. Chen–
T. Nagano forN WD GC

2 (RnC2), see above. Namely, recall that these authors actually
classifiedcurvature invariant subspacesof the tangent spaces ofN (since complete to-
tally geodesic submanifolds through a pointp 2 N correspond to curvature invariant
subspaces ofTpN via the exponential map expN

W TpN ! N). Thereupon, we classify
orthogonal curvature invariant pairs. Then we decide case by case on theirintegrabil-
ity. For more details see Section 1.1.

Essentially, this method should work for any ambient symmetric space whose curva-
ture invariant subspaces are known. Hence, one may hope thatit is also possible to classify
parallel submanifolds of the other rank-two symmetric spaces (e.g. the Grassmannians
of complex or quaternionic 2-planes). It would be an interesting question whether some
analogue of Theorem 1 remains true for such ambient spaces.

1.1. Overview and outline of the proof of the main theorem. This section
gives a detailed overview on the results presented in this article, an outline of the proof
of Theorem 1 included. For a Riemannian symmetric spaceN with metric tensorh � , � i
and a submanifoldM, let T M, ?M, hW T M � T M!?M and SW T M �?M ! T M
denote the tangent bundle, the normal bundle, the second fundamental form and the
shape operator, respectively. LetrM and rN denote the Levi-Civita connections of
M and N, respectively, andr? be the usual connection on?M (obtained by orthog-
onal projection ofrN

� along T M for every section� of ?M). Let Sym2(T M, ?M)
denote the vector bundle whose sections are?M-valued symmetric bilinear maps on
T M. Then there is a linear connection on Sym2(T M,?M) induced byrM andr? in
a natural way, often calledVan der Waerden–Bortolotti connection.

DEFINITION 1. The submanifoldM is calledparallel if h is a parallel section of
Sym2(T M, ?M).

EXAMPLE 1. A unit speed curvecW J ! N is parallel if and only if it satisfies
the equation

(1) r

N
�

r

N
�

PcD ��2
Pc

for some constant� 2 R. For � D 0 these curves are geodesics; otherwise, due to
K. Nomizu and K. Yano [24],c is called anextrinsic circle.

Recall that for every unit vectorx 2 TpN and every� 2 TpN with � ? x there exists
a unique unit speed curvec satisfying (1) withc(0)D p, Pc(0)D x andr

�

Pc(0)D �.
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EXAMPLE 2. Let NM � N be totally geodesic (i.e.h NM
D 0). A submanifold of

NM is parallel if and only if it is parallel inN.

DEFINITION 2. A submanifoldM � N is called (extrinsically) symmetricif M
is a symmetric space (whose geodesic symmetries are denotedby � M

p , where p ranges

over M) and for everyp 2 M there exists an involutive isometry�?p of N such that

• �

?

p (M) D M,

• �

?

p jM D �
M
p ,

• the differentialTp�
?

p is the reflection in the normal space?pM.

As mentioned already before, every symmetric submanifold is parallel. However,
in the situation of Example 2, we do not necessarily obtain a symmetric submanifold
of N even if M is symmetric in NM .

Let M be a parallel submanifold of the symmetric spaceN. Then the linear space
?

1
pM WD {h(x, y) j x, y 2 W}

R

is called thefirst normal spaceat p.

QUESTION. Given a pair of linear spaces (W,U ) both contained inTpN and such
that W ? U , does there exist some parallel submanifoldM through p with W D TpM
and U D ?1

pM? In particular, are there natural obstructions against theexistence of
such a submanifold?

Let RN denote the curvature tensor ofN and recall that a linear subspaceV �
TpN is calledcurvature invariantif RN(V � V � V) � V holds. It is well known that
TpM is a curvature invariant subspace ofTpN for every parallel submanifoldM. In
Section 2.2, we will show that also?1

pM is curvature invariant. Moreover, the curva-

ture endomorphisms ofTpN generated byTpM leave?1
pM invariant and vice versa.

This means that (TpM, ?1
pM) is an orthogonal curvature invariant pair, see Defin-

ition 4 and Proposition 1. As a first illustration of this concept, we classify the or-
thogonal curvature invariant pairs (W, U ) of the complex projective spaceCPn, see
Example 3. We observe that here the linear spaceW�U is complex or totally real (in
particular, curvature invariant) unless dim(W) D 1. Hence, following the proof of The-
orem 1 given below, we obtain the well known result that the analogue of Theorem 1
is true for ambient spaceCPn.

In Section 3.1, we will determine the orthogonal curvature invariant pairs ofN WD
GC

2 (RnC2). Our result is summarized in Table 1. Note, even if we assumeadditionally
that dim(W) � 2, there do exist certain orthogonal curvature invariant pairs (W, U ) for
which the linear spaceW � U is not curvature invariant (in contrast to the situation
where the ambient space isCPn, see above). Hence, at least at the level of curvature
invariant pairs, we can not yet give the proof of Theorem 1.

Therefore, it still remains to decide whether there actually exists some parallel sub-
manifold M such that (W, U ) D (TpM, ?1

pM) in which case the orthogonal curvature
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invariant pair (W, U ) will be called integrable. In Section 3.2, by means of a case by
case analysis, we will show that if (W, U ) is integrable and dim(W) � 2, then the lin-
ear spaceW � U is curvature invariant. For this, we will need some more intrinsic
properties of the second fundamental form of a parallel submanifold of a symmetric
space which are derived in Section 2.

Further, note that (orthogonal) curvature invariant pairsof N and N�, respectively,
are the same.3 Moreover, it turns out that all arguments from Section 3.2 remain valid
for ambient spaceN�.

Proof of Theorem 1. Since GC2 (R3) is isometric to a 2-dimensional Euclidean
sphere, we can assume thatn � 2. Given somep 2 M, the curvature invariant pair
(TpM, ?1

pM) is integrable (by definition). Thus, using the above mentioned results,

we conclude that thesecond osculating spaceOpM WD TpM � ?1
pM is a curva-

ture invariant subspace ofTpN. By means ofreduction of the codimension(see [5]),
we obtain that M is already contained in the totally geodesic submanifoldNM WD
expN(OpM). Let Muc and NMuc denote the universal covering spaces ofM and NM ,
respectively. Then the immersion ofM into NM admits a lift Muc

!

NMuc, i.e. Muc

becomes a complete parallel submanifold ofNMuc. By construction,?1
q Muc

D ?q Muc

for all q 2 Muc which means thatMuc is 1-full in NMuc. Thus, Muc
�

NMuc is even a
symmetric submanifold according to Corollary 3. Further, since the caseM D NM is
obvious, we can henceforth assume that dim(NM) � 3. Then, checking the list of isom-
etry classes of symmetric spaces occurring as complete totally geodesic submanifolds
of N from [14, Section 5], we immediately see that any isometry ofNMuc goes down
to NM via the covering map. Hence, according to Definition 2, alsoM � NM is sym-
metric. The same arguments apply to ambient spaceN�.

Next, we consider the Riemannian product Sk
� Sl of two Euclidean unit-spheres

with kC l D n � 2 andk � l . Set 0k WD (0, : : : , 0) 2 Rk. If we choose the metric on
GC

2 (RnC2) in accordance with [17, Section 2] (cf. also Section 3 of this article), then

� W Sk
� Sl
! GC

2 (RnC2), (p, q) 7! {(p, 0lC1), (0kC1, q)}
R

defines an isometric 2-fold covering onto a totally geodesicsubmanifold of GC2 (RnC2)
(see [17, Section 2]). Hence every parallel submanifold of Sk

� Sl is also parallel in
GC

2 (RnC2). Further, the embedding�W Sk
p

2
! Sk

�Sl , p 7! (p=
p

2,p=
p

2) is an isometry

onto its totally geodesic image.

3However, there is no duality between parallel submanifoldsof N and N�, respectively. This is
due to the semi-parallelity condition on the second fundamental form (see (4) withRD RN ) which is
not preserved if one multipliesRN by the factor minus one.
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Corollary 1 (Parallel submanifolds of Sk � Sl ). Let M be a complete parallel
submanifold ofSk

�Sl with dim(M) � 2. Then M is a product M1�M2 of two sym-
metric submanifolds M1 � Sk and M2 � Sl , or conjugate to a symmetric submanifold
of �

�

Sk
p

2

�

via some isometry ofSk
� Sl . In the first case, M is extrinsically symmet-

ric in Sk
� Sl . In the second case, M is not symmetric inSk

� Sl unless kD l and
M � �

�

Sk
p

2

�

. The analogous result holds for ambient spacesHk
�Hl , the Riemannian

product of two hyperbolic spaces of constant sectional curvature �1 ( for 2� k � l ),
and R � Hl , the Riemannian product of the real line and the hyperbolic space.

Proof. Let M be a complete parallel submanifold ofQN WD Sk
�Sl through (p, q)

with dim(M) � 2. Then M is parallel also inN WD GC

2 (RnC2) (via � ). Hence, accord-
ing to Theorem 1 and its proof, the second osculating spaceV WD T(p,q)M�?1

(p,q) M is

a curvature invariant subspace of bothT
� (p,q)N and T(p,q) QN such thatM is contained

in the totally geodesic submanifoldNM WD expN(V) as a full symmetric submanifold.
Further, the curvature invariant spaceT(p,q) QN is of Type (trk,l ). Thus, using the classi-
fication of curvature invariant subspaces inT

� (p,q)N (see Theorem 5 below), we obtain
that there are only two possibilities:
• We haveV D W1�W2 where W1 and W2 are i - and j -dimensional subspaces of
TpSk and TqSl , respectively (Type (tri , j )). Hence, the totally geodesic submanifoldNM
is the Riemannian product of the Euclidean unit-spheres Si and Sj . If i D j D 1, then
dim( NM) D 2 and M D NM . Otherwise, at least one of the factors ofNM is a higher-
dimensional Euclidean sphere. It follows from a result of H.Naitoh (see Theorem 4
below) thatM D M1 � M2 where M1 � Si and M2 � Sj are symmetric submanifolds.
Therefore, the productM1 � M2 is symmetric in QN.
• There exists ani -dimensional linear spaceW0

0 � TpSk and some linear isometry
I 0 defined fromW0

0 onto its imageI 0(W0

0) � TqSl such thatV D {(x, �I 0x) j x 2 W0

0}

(Type (tr0i )). Then, up to an isometry ofQN, we can assume thatM is a complete paral-
lel submanifold of�

�

Sk
p

2

�

, i.e. a symmetric submanifold. Further, it follows from The-

orem 4 thatM is not symmetric in QN unlessi D k D l and M � �
�

Sk
p

2

�

.

The hyperbolic case is handled in a similar way. Our result follows.

Submanifolds in a product of two space forms where recently studied by B. Mendoca
and R. Tojeiro [19]. By means of different methods they whereable to prove a more
general version of Corollary 1.

Recall that a submanifoldM � N is called extrinsically homogeneousif a suit-
able subgroup of the isometry group I(N) acts transitively onM. In [11, 12] we have
dealt with the question whether a complete parallel submanifold of a symmetric space
of compact or non-compact type is automatically extrinsically homogeneous. One can
show that a generic extrinsic circle of any symmetric space of rank at least two is
not extrinsically homogeneous. Further, if the rank of the ambient spaceN is ex-
actly two (e.g.N D GC

2 (RnC2) or N D GC

2 (RnC2)�), then it follows a priori from [12,
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Corollary 1.4] that every complete parallel submanifoldM is extrinsically homogeneous
provided that the Riemannian spaceM does not split off (not even locally) a factor
of dimension one or two (e.g.M is locally irreducible and dim(M) � 3). Moreover,
then M has evenextrinsically homogeneous holonomy bundle. The latter means the
following: there exists a subgroupG � I(N) such thatg(M) D M for every g 2 G and
GjM is the group which is generated by thetransvectionsof M. For ambient spaces
N D GC

2 (RnC2) and its non-compact dual, we obtain by means of our previousresult:

Corollary 2 (Homogeneity of parallel submanifolds). Every complete parallel
submanifold ofGC

2 (RnC2), which is not a curve, has extrinsically homogeneous holo-
nomy bundle. In particular, every such submanifold is extrinsically homogeneous in
GC

2 (RnC2). This result holds also for ambient spaceGC

2 (RnC2)�.

Proof. We can assume thatn � 2. Let M be a complete parallel submanifold
of N WD GC

2 (RnC2) with dim(M) � 2. Then there exists a totally geodesic submanifold
NM � N such thatM is a symmetric submanifold ofNM . In particular, NM is intrinsically

a symmetric space. Furthermore, since the rank ofN is two, the rank of NM is less
than or equal to two. It follows immediately that there are nomore than the following
possibilities:
• The totally geodesic submanifoldNM is the 2-dimensional flat torus. Then we auto-
matically haveM D NM (since dim(M) � 2). Hence, we have to show that the totally
geodesic flat NM has extrinsically homogeneous holonomy bundle: letNi D Nk � Np and
i D k� p denote the Cartan decompositions of the Lie algebras of I(NM) and I(N), re-
spectively. Then [Np, Np] D {0}, since NM is flat. Let NG � I( NM) denote the connected
subgroup whose Lie algebra isNp. Then NG is the transvection group ofNM . More-
over, Np � p, because NM is totally geodesic. Hence, we may takeG as the connected
subgroup of I(N) whose Lie algebra isNp.
• The totally geodesic submanifoldNM is locally the Riemannian productR � QM
where QM is a locally irreducible symmetric space with dim(QM) � 2. Since M � NM
is symmetric, there exists a distinguished reflection�?p of NM whose restriction toM
is the geodesic reflection inp for every p 2 M, see Definition 2. Therefore, these
reflections generate a subgroup of I(NM) whose connected component acts transitively
on M and gives the full transvection group ofM. Thus, it suffices to show that there
exists a suitable subgroup of I(N) whose restriction to NM is the connected component
of I( NM): let Ni D Nk� Np, Qi D Qk� Qp and i D k� p denote the Cartan decompositions of the
Lie algebras of I(NM), I( QM) and I(N), respectively. ThenNk D Qk D [ Qp, Qp] D [ Np, Np], where
the first and the last equality are related to the special product structure of NM and the
second one uses the fact that the Killing form ofQi is non-degenerate. It follows that
Ni D [ Np, Np] � Np. Moreover, we haveNp � p, see above. Hence, every Killing vector field
of NM is the restriction of some Killing vector field ofN.
• The totally geodesic submanifoldNM is locally irreducible or locally the Riemann-
ian product of two higher dimensional locally irreducible symmetric spaces: then we
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haveNi D [ Np, Np]� Np because the Killing form ofNi is non-degenerate. Hence we can use
arguments given in the previous case.
The hyperbolic case is handled in exactly the same way. Our result follows.

2. Parallel submanifolds of symmetric spaces

We establish (or only rephrase) some general facts on parallel submanifolds of
symmetric spaces. If possible, we also give alternative proofs of some results from
[10, 11] which might fit better into the framework developed here.

First, we solve the existence problem for parallel submanifolds of symmetric spaces
by means of giving necessary and sufficient tensorial “integrability conditions” on the
2-jet (see Theorem 2 and Remark 1).4 It remains to find a way to make efficiently use
of those conditions.

Thus, we will derive from the previous that (TpM, ?1
pM) is a curvature invariant

pair for every parallel submanifoldM. Further, we establish a property of the 2-jet of
a parallel submanifold which is related to the linearized isotropy representation of the
ambient space (see Theorem 3 and Corollary 4).

Moreover, we give two results on reduction of the codimension: for parallel sub-
manifolds with curvature isotropic tangent spaces of maximal possible dimension in
any symmetric space of compact or non-compact type (see Proposition 3 and Corol-
lary 5) and for certain parallel submanifolds with 1-dimensional first normal spaces (see
Proposition 4). Note, the first result is apparently new (whereas the second is somehow
well known).

Finally, we recall a result of H. Naitoh on the classificationof symmetric sub-
manifolds in products of symmetric spaces (see Theorem 4).

2.1. Existence of parallel submanifolds in symmetric spaces. It was first
shown by W. Strübing [25] that a (simply connected and complete) parallel sub-
manifold M of an arbitrary Riemannian manifoldN is uniquely determined by its
2-jet (TpM, hp) at some pointp 2 M. Conversely, let a prescribed 2-jet (W, h) at
some pointp 2 N be given (i.e.W � TpN is a subspace andhW W�W!W? is a
symmetric bilinear map). If there exists some parallel submanifold through p whose
2-jet is given by (W,h), then the latter (or simplyh) will be called integrable. Note,
according to [13, Theorem 7], for every integrable 2-jet atp, there exists a unique
simply connected and complete parallel submanifold through p having this 2-jet.

Let U be the subspace ofW? which is spanned by the image ofh and setV WD
W � U , i.e. U and V play the roles of the “first normal space” and the “second os-
culating space”, respectively. Then the orthogonal splitting V WD W � U turns so(V)
into a naturallyZ2-graded algebraso(V) D so(V)

C

� so(V)
�

where A 2 so(V)
C

or

4Note, such conditions were already claimed in [13]. However, the tensorial conditions stated in
[13, Theorem 2] are not very handy.
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A 2 so(V)
�

according to whetherA respects the splittingV D W � U or A(W) � U
and A(U ) � W. Further, consider the linear maph W W! so(TpN) given by

(2) 8x, y 2 W, � 2 W?

W hx(yC � ) D �S
�

x C h(x, y)

(where S
�

denotes the shape operator associated withh for every � 2 U in the usual
way). SinceS

�

D 0 holds for every� 2W? which is orthogonal toU , we actually have

(3) 8x 2 W W hx 2 so(V)
�

.

DEFINITION 3. Let a curvature like tensorR on TpN and an R-invariant sub-
spaceW of TpN (i.e. R(W � W � W) � W) be given. A symmetric bilinear map
h W W �W! W? will be called R-semi-parallelif

(4) hRx,yz�[hx ,hy]zv D [Rx,y � [hx, hy], hz]v

holds for all x, y, z 2 W and v 2 TpN. Here Ru,v W TpN ! TpN denotes thecurvature
endomorphism R(u, v, � ) for all u, v 2 TpN. If W is a curvature invariant subspace of
TpN and (4) holds forRD RN

p , then h is simply calledsemi-parallel.

In the situation of Definition 3, it is easy to see thath is R-semi-parallel if and only
if (4) holds for all x, y, z 2 W and v 2 V .

Clearly, each linear mapA on V induces an endomorphismA� on 32V by means
of the usual rule of derivation, i.e.A�u^v D Au^vCu^Av. Let (A�)k denotes thek-th
power of A � on 32V . Similarly, [A, � ] defines an endomorphism onso(V) whosek-th
power will be denoted by [A, � ]k. Furthermore, every curvature like tensorRW TpN �
TpN � TpN ! TpN can be seen as a linear mapRW 32TpN ! so(V) characterized by
R(u^v)D Ru,v. The following theorem states the necessary and sufficient “integrability
conditions”:5

Theorem 2. Let N be a symmetric space. The2-jet (W, h) is integrable if and
only if the following conditions together hold:
• W is a curvature invariant subspace of TpN,
• h is semi-parallel,
• we have

(5) [hx, � ]k RN
y,zv D RN((hx � )

k y ^ z)v

for all x , y, z 2 W, k D 1, 2, 3, 4and eachv 2 V .

5This result and the following remark were also obtained in anunpublished paper by E. Heintze.
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Proof. In order to apply the main result of [13], consider thespaceC of all curva-
ture like tensors onTpN and the affine subspaceQC � C which consists, by defin-
ition, of all curvature like tensorsR on TpN such thatW is R-invariant andh is
R-semi-parallel. Then we define the one-parameter subgroupRx(t) of curvature like
tensor onTpN characterized by

(6) exp(thx)Rx(t)(u, v, w) D RN(exp(thx)u, exp(thx)v, exp(thx)w)

for all u, v, w 2 TpN and x 2 W. According to [13, Theorem 1] and [13, Remark 2],

the 2-jet (W, h) is integrable if and only ifRx(t) 2 QC for all x 2 W and t 2 R (since
RN is a parallel tensor). Moreover, if (W, h) is integrable, then, by considering ex-
plicitly the corresponding parallel submanifold ofN, one can show thatRx(t)(y, z, v)
is constant int for all x, y, z 2 W and v 2 V (combine [10, Example 3.7 (a)] with
[10, Lemma 3.8 (b)]). Conversely, ifRN

p 2
QC and Rx(t)(y, z, v) is constant int for all

x, y, z 2 W and v 2 V , then Rx(t) in QC for all t for simple reasons.
Let us first assume that (W, h) is integrable. Then the previous implies that

(7) exp(thx)RN
y,z exp(�thx)v D RN

exp(thx)y,exp(thx)zv

Taking the derivatives up tok-th order of (7) with respect tot , we now see that (5)
holds for all k � 1.

Conversely, suppose thatRN
p 2

QC holds. It suffices to show that (5) implies that
the functiont 7! Rx(t)(y, z, v) is constant for allx, y, z 2 W and v 2 V :

Put A WD hx, set6 WD
P3

iD0(A � )i (32W) and note that

A � y ^ zD Ay^ zC y ^ Az,(8)

(A � )2y ^ zD A2y ^ zC 2Ay^ AzC y ^ A2z,(9)

(A � )3y ^ zD A3y ^ zC 3A2y ^ AzC 3Ay^ A2zC y ^ A3z,(10)

(A � )4y ^ zD A4y ^ zC 4A3y ^ AzC 6A2y ^ A2zC 4Ay^ A3zC y ^ A4z(11)

for all y, z 2 W. Since A2(W) � W, we hence see that (A � )4(32W) � 3

2W C
(A � )2(32W). Therefore,A �6 � 6 and, furthermore, since (5) holds fork D 1, 2, 3, 4,
the natural map32TpN ! so(TpN), u ^ v 7! RN

u,v restricts to an equivariant linear

map6 ! so(V), � 7! RN(�)jV with respect to the linear actions of the 1-dimensional
Lie algebraR induced by A � and [A, � ] on 6 and so(V), respectively. Switching
to the level of one-parameter subgroups, we obtain thatRx(t)(�)v is constant int for
all � 2 6 and v 2 V , in particular Rx(t)(y, z, v) is constant int for all x, y, z 2 W,
v 2 V .

In fact, there exist “seemingly more” necessary integrability conditions:
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REMARK 1. In the situation of Theorem 2, suppose that (W, h) is integrable.
Then we even have

(12) [hx1, : : : [hxk , RN
y,z] � � � ]jV D RN

hx1 �����hxk �y^zjV

for all x1, : : : , xk, y, z 2 W (possibly with xi ¤ x j ) for k D 1, 2, : : : .

Proof. Fork D 1, this is simply (7). However, fork � 2, there does not seem to
exist a way to deduce (12) very easily from Theorem 2. Rather,we consider again the
corresponding parallel submanifold. By means of considering suitablek-times broken
geodesics on the submanifold emanating fromp, then adapting the ideas from [10,
Example 3.7] and finally using [10, Lemma 3.9 (b)], we can showthat

(13) g Æ RN
y,z Æ g�1

D RN
gy,gz

holds onV where g WD exp(t1hx1) Æ � � � Æ exp(tkhxk ) for arbitrary (t1, : : : , tk) 2 Rk (one
should note that (7) does not imply (13) since, say forkD 2, exp(t2hx2)y or exp(t2hx2)z
might not be elements ofW). Consideringg as a function of (t1, : : : , tk) and tak-
ing the partial derivatives at zero,�=�t1 � � � �=�tkjt1D���DtkD0 of (13), we immediately see
that (12) holds.

2.2. Curvature invariant pairs. The first crucial concept of this article is
the following:

DEFINITION 4. Let linear spacesW andU both contained inTpN be given. We
call (W, U ) a curvature invariant pairif

RN(W �W �W) � W and RN(W �W �U ) � U,(14)

RN(U �U �U ) � U and RN(U �U �W) � W.(15)

In particular, then bothW and U are curvature invariant subspaces ofTpN. If add-
itionally W ? U holds, then (W, U ) is called anorthogonalcurvature invariant pair.

If U D W?, then (W, U ) is an orthogonal curvature invariant pair if and only if
both W andU are curvature invariant subspaces. But ifU is strictly contained inW?,
then the previous definition requires more.

We obtain the first obstruction against the existence of a parallel submanifold with
prescribed tangent- and first normal spaces (cf. [10, Corollary 13]):

Proposition 1. Let an integrable2-jet (W,h) of the symmetric space N be given.
Set U WD {h(x, y) j x, y 2W}

R

. Then(W, U ) is an orthogonal curvature invariant pair.
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Proof. For (14): recall thatW is a curvature invariant subspace ofTpN and that
h W W � W ! W? is semi-parallel according to Theorem 2. Then (14) immediately
follows.

For (15): using (12) withk D 2, we obtain that

(16) RN
h(x,x),h(y,y)jV D [hx, [hy, RN

x,yjV ]] C RN
Sh(x,y)x,yjV C RN

x,Sh(y,y)xjV

for all x, y 2 W (since h is symmetric). By means of (14), we further have that
RN

x,y(V) � V and RN
x,yjV 2 so(V)

C

. Using (3) and the rules forZ2-graded Lie alge-
bras, we thus see that r.h.s. of (16) defines an element ofso(V)

C

, too, and so does
l.h.s. Finally, becauseh is symmetric,32(U ) D {h(x, x) ^ h(y, y) j x, y 2 W}

R

holds.
We conclude thatRN

� ,�(V) � V and RN
� ,�jV 2 so(V)

C

actually for all � , � 2 U , i.e. (15)
holds. This finishes our proof.

An (orthogonal) curvature invariant pair (W, U ) which is induced by some integrable
2-jet as in Proposition 1 is calledintegrable.

Furthermore, it is known that every complete parallel submanifold of a simply con-
nected symmetric space whose normal spaces are curvature invariant is even a symmet-
ric submanifold (cf. [1, Proposition 9.3]). Hence we see (cf. [10]):

Corollary 3. Every 1-full complete parallel submanifold of a simply connected
symmetric space is a symmetric submanifold.

In order to determine the curvature invariant pairs involving a given curvature in-
variant subspaceW � TpN, note that

(17) hW WD {RN
x,y j x, y 2 W}

R

is a subalgebra ofso(TpN) equipped with a natural representation onW? (by restric-
tion). In view of (14), we aim to determine thehW-invariant subspaces ofW?. For
this, let us recall some basics from linear algebra: given anirreducible representation
� of some real Lie algebrah on the Euclidean spaceV via skew-symmetric endo-
morphisms, the representation is calledreal if V is irreducible even overC, complex
if the complexified spaceV 
 C decomposes into two non-isomorphich-modules and
quaternionic otherwise. Note that in the complex or quaternionic case, there exists
uniquely the underlying structure of a unitary or quaternionic Hermitian space onV
such that�(h) � u(V) or �(h) � sp(V), respectively. Conversely, if�(h) � sp(V), then
� is quaternionic; furthermore,�(h) � u(V) implies that� is not real.

Next we consider the (kC 1)-fold orthogonal direct sum ofV , i.e. the Euclidean
space QV WD

Lk
iD0 V . Thenh acts on QV via skew-symmetric endomorphisms, too. Fur-

ther, the irreducibleh-invariant subspaces ofQV are parameterized by the real projective
spaceRPk (if V is real), the complex projective spaceCPk (if V is complex) or the
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quaternionic projective spaceHPk (otherwise). More precisely, let�i WD V ,!

QV , v 7!
(0,: : : , v

{

i

, : : : , 0) be the canonical embedding onto thei -th factor, chooseK 2 {R,C,H}

according to the type ofV and set�c WD
Pk

jD0 c j� j for every cD (c0, : : : , ck) 2 KkC1.

Then �c(V) is an irreducibleh-invariant subspace ofQV . Using Schur’s Lemma, this
gives the claimed parameterization.

Finally, for any representation� of some real Lie algebrah on the Euclidean space
V via skew-symmetric endomorphisms, there is still some orthogonal decomposition
into h-irreducible subspacesV D

Lk
iD1 Vi . Moreover, after a permutation of the index

set, there exists somer � 1 and a sequence 1D k1 < k2 < � � � < krC1 D k C 1 such
that Vki � VkiC1 � � � � � VkiC1�1 for i D 1, : : : , r but Vki is not isomorphic toVk j for
i ¤ j . Hence, there is also the decompositionV D

Lr
iD1 Vi with Vi WD Vki C VkiC1C

� � � C VkiC1�1. Using again Schur’s Lemma, we see that every irreducibleh-invariant
subspaceU � V is contained in a uniqueV i . Further, we can apply the previous in
order to describe theh-irreducible subspaces ofV i .

EXAMPLE 3 (Curvature invariant pairs ofCPn). Consider the complex projective
spaceN WD CPn of constant holomorphic sectional curvature four. Its curvature tensor
is given by RN

u,v D �u^v� Ju^ Jv�2!(u,v)J for all u,v 2 TpCPn (where J denotes
the complex structure ofTpN and!(u,v) WD hJu,vi is the Kähler form). The curvature
invariant subspaces ofTpN are known to be precisely the totally real and the complex
subspaces. Let us determine the orthogonal curvature invariant pairs (W, U ): if W is
totally real, thenRN

x,y D �x^ y� J x^ J y for all x, y 2W. Hence the Lie algebrahW

(see (17)) is given by the linear space{x ^ yC J x^ J y j x, y 2 W}
R

. In the follow-
ing, we assume that dim(W) � 2. By definition of a totally real spaceW, there is the
decompositionW?

D J W� (CW)? (here (CW)? means the orthogonal complement
of CW in TpN). ThenhW acts irreducibly onJ(W) and trivially on (CW)?. Further,
Equation 14 shows thatU is hW-invariant. Considering also the decomposition ofU
into hW-invariant subspaces, it follows that eitherJ(W) � U or U ? CW. In the first
case, we claim that actuallyU D J(W) (and henceV WDW�U is a complex subspace
of TpN): let QU � (CW)? be chosen such thatU D J W� QU . Clearly, U is not com-
plex, henceU is necessarily totally real, becauseU is curvature invariant. Moreover,
we have dim(U ) � 2, thushU (defined as above) acts irreducibly onJ(U )DW� J( QU ).
SinceW is hU -invariant (see (15)), we see that this is not possible unless J( QU ) D {0}.
The claim follows.

In the second case, we claim thatU is totally real (and thusV is totally real, too):
in fact, otherwiseU would be a complex subspace of (CW)?. Then the Lie algebra
hU is given byRJ � {� ^ � C J� ^ J� j � , � 2 U}

R

. Thus hU acts onU? via RJ.
Further, W is invariant under the action ofhU according to (15) implying thatW is
complex, a contradiction. The claim follows.
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Anyway, the linear spaceV is curvature invariant unless dim(W) D 1. Therefore,
by means of arguments given in the proof of Theorem 1, we see that every higher
dimensional totally real parallel submanifold ofCPn is a Lagrangian symmetric sub-
manifold of some totally geodesically embeddedCPk or a symmetric submanifold of
some totally geodesically embeddedRPk.

If W is a complex subspace ofTpCPn, thenhWjW?

D RJjW? . Hence, if (W,U ) is
an orthogonal curvature invariant pair, then bothU and V WDW�U are complex sub-
spaces, too. This shows that every complex parallel submanifold of CPn is a complex
symmetric submanifold of some totally geodesically embedded CPk.

Note, several conclusions from the previous example can also be made by explicit
calculations but without using the notion of curvature invariant pairs, cf. [23, Propos-
ition 2.3], [23, Lemma 3.2] and [23, Lemma 4.1].

2.3. Further necessary integrability conditions. There remains the problem to
decide on the integrability of a given orthogonal curvatureinvariant pair (W,U ). Recall
that integrability of (W, U ) means by definition that there exists at least one integrable
symmetric bilinear maph W W �W ! W? such thatU D {h(x, y) j x, y 2 W}

R

. We
will see below that there exist certain restrictions on any such h.

The first observation is the following: given a 2-jet (W, h) at p, set

(18) Kern(h) WD {x 2 W j 8y 2 W W h(x, y) D 0}.

Using (2), (3) and (27), we immediately see that

(19) Kern(h) D {x 2 W j h(x) D 0}.

Proposition 2. Let N be a symmetric space and an integrable2-jet (W, h) be
given. ThenKern(h) is invariant under the action ofhW on W.

Proof. This follows from the curvature invariance ofW, the symmetry ofh and
(4) (with RD RN), cf. [21, Proof of Lemma 5.1].

Further, letK denote the isotropy subgroup of I(N) at some fixed pointp, k de-
note its Lie algebra and� W k! so(TpN) be the linearized isotropy representation. Re-
call that

(20) RN
u,v 2 �(k)

for all u, v 2 TpN (since N is a symmetric space). For a symmetric submanifold
with second fundamental formh at p, as mentioned in [22, p. 657], the image ofh
is contained in�(k). For a parallel submanifold, this is no longer true in general.
Nevertheless, there is still some relation betweenh and �(k), as follows.
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Given a 2-jet (W, h) at p, we setU WD {h(x, y) j x, y 2 W}
R

, V WD W�U and

(21) kV WD {X 2 k j �(X)(V ) � V}.

Then � induces a representation ofkV on V . Further, recall that the centralizer of a
subalgebrag � so(V) is given by

(22) Z(g) WD {A 2 so(V) j 8B 2 g W [ A, B] D 0}.

Theorem 3. Let N be a symmetric space and an integrable2-jet (W, h) at p be
given. Set UWD {h(x, y) j x, y 2 W}

R

and V WD W�U. Further, let � W k! so(TpN)
be the linearized isotropy representation. In the following, we view h as a linear map
h W TpM ! so(V)

�

via (2), (3).
(a) For every k� 0 and x1, : : : , xk, y, z 2 W, the skew-symmetric endomorphism of
TpN given by

(23) [hx1, [: : : , [hxk , RN
y,z], : : : ]]

leaves V invariant. The so generated subalgebra ofso(V), denoted byg, is contained
in �(kV )jV . Further, it bears the structure of aZ2-graded subalgebra ofso(V), i.e. gD
g
C

� g
�

with g
C

WD g \ so(V)
C

and g
�

WD g \ so(V)
�

.
(b) Set

(24) h WD hWjV C hU jV .

Thenh is a subalgebra ofg
C

.6

(c) For every x2W there exist Ax 2 g
�

, Bx 2 Z(g)\ so(V)
�

such thathx D AxC Bx.

Proof. For (a): since (W, U ) is a curvature invariant pair, we haveRN
x,y(V) � V

for all x, y 2 W according to (14). Thus (23) leavesV invariant for k D 0 and then
also for k > 0 because of (2). Further, we claim thatg � �(kV )jV : because of (20),
r.h.s. of (12) belongs to�(kV )jV and so does l.h.s. Thus, the restriction toV of (23)
belongs to�(kV )jV for every k, which gives our claim.

Furthermore, applying [hx, � ] to (23) leaves the form of (23) invariant with the
natural numberk increased by one for everyx 2 W. Hence [hx, g] � g. Thus the
restriction toV of (23) belongs toso(V)

C

or so(V)
�

according to whetherk is even
or odd, see (3) and (14). Therefore, we haveg D g \ so(V)

C

� g \ so(V)
�

.
For (b): because (W, U ) is a curvature invariant pair, it is easy to see that the

linear spaceh is actually a subalgebra ofso(V)
C

. Further, recall that the restriction to
V of (23) belongs tog

C

if k is even. In particular, fork D 0, we see thatA(V) � V

6It is actually true thath D g
C

holds, cf. [10, Proof of Theorem 5.2 (b)].
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and AjV 2 g
C

for all A 2 hW. It remains to show that the same is true for eachA 2 hU ,
which follows by means of (16) as in the proof of Proposition 1.

For (c): let Ax denote the orthogonal projection ofhx onto g with respect to the
positive definite symmetric bilinear form onso(V) which is given by� trace(AÆB) for
all A, B 2 so(V). Since the splittinggD g

C

�g
�

is orthogonal andhx 2 so(V)
�

holds,
we immediately see thatAx 2 so(V)

�

(cf. [11, Lemma 4.19]). Furthermore, using the
invariance property of the trace form (i.e. trace([A, B] Æ C) D trace(A Æ [B, C])), we
conclude from [hx, g] � g that Bx WD hx � Ax centralizesg. It also follows thatBx 2

so(V)
�

. This proves the theorem.

Thus, the Lie algebrag from Theorem 3 (a) gives the link between the linear map
h and the Lie algebra�(k). Further, note the Lie algebrah defined in Part (b) of this
theorem depends only on the orthogonal curvature invariantpair in question. Sinceh �
so(V)

C

, restricting the elements ofh to W or U defines representations ofh on W and
U , respectively. Hence, we introduce the linear spaces of homomorphisms

Hom(W, U ) WD {� W W! U j � is R-linear},(25)

Homh(W, U ) WD {� 2 Hom(W, U ) j 8A 2 h W � Æ AjW D AjU Æ �}.(26)

Recall that

(27) so(V)
�

! Hom(W, U ), A 7! AjW

is actually a linear isomorphism inducing an equivalence

(28) Z(h) \ so(V)
�

� Homh(W, U ),

where Z(h) denotes the centralizer ofh in so(V). Further, mapping� to its adjoint��

defines an isomorphism

(29) Homh(W, U ) � Homh(U, W).

Corollary 4. In the situation ofTheorem 3,suppose additionally that�(kV )jV \
so(V)

�

D {0}. Let h be the Lie algebra defined in Part(b) of the theorem. Then

(30) 8x 2 W W h(x, � ) 2 Homh(W, U ).

Proof. Consider the decompositionhx D Ax C Bx described in Theorem 3 (c).
Then, by means of Part (a) of the same theorem,Ax 2 g

�

� �(kV )jV \ so(V)
�

D {0}.
Hencehx D Bx 2 Z(g) \ so(V)

�

� Z(h) \ so(V)
�

according to Theorem 3 (b). We
conclude thath(x, �) 2 Homh(W, U ) for eachx 2W because of (2), (3), (27) and (28).
This finishes our proof.
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“In practice”, having an orthogonal curvature curvature invariant pair (W, U ) de-
scribed in a concrete way, it is not very difficult to determine the linear spaces�(kV )jV \
so(V)

�

and Homh(W, U ) explicitly. However, if W is curvature isotropic, then the last
theorem and its corollary do not provide any further information. Thus, in the next
Section, we will examine this particular situation in case dim(W) D rank(N) (which is
clearly sufficient for ambient rank-2 spaces).

2.4. Parallel submanifolds with curvature isotropic tangent spaces. Let N be
a symmetric space of compact or non-compact type.

DEFINITION 5. (a) A linear subspaceW � TpN is calledcurvature isotropicif
the curvature endomorphismRN

x,y vanishes identically for allx, y 2 W.
(b) Therank of N is the dimension of any maximal curvature isotropic subspace of TpN.

Lemma 1. Suppose that N is of compact or non-compact type. Let a linearsub-
space W� TpN be given. The following is equivalent:
(a) The linear space W is curvature isotropic.
(b) The sectional curvature of N vanishes on every2-plane of W, i.e. hRN(x,y,y),xi D
0 for all x , y 2 W.

Proof. Let iD k�p be the Cartan decomposition of the Lie algebra of I(N) with
respect to the base pointp. Recall thatN is of compact or non-compact type if and
only if the Killing form of i restricted top is negative or positive definite, respectively.
Hence (b)) (a) follows from [9, Chapter V, §3, Equation 1]. The direction (a))
(b) is obvious.

Given a submanifoldM, we thus see that the sectional curvature ofN vanishes
identically on any 2-plane ofTpM for every p 2 M if and only if TpM is curvature
isotropic in TpN for each p. In this situation, if we also assume that the dimension
of M is equal to the rank ofN, then D. Ferus and F. Pedit [8] have shown thatM is
intrinsically flat and hence called it a “curved flat”.

Proposition 3. Let N be a symmetric space of compact or non-compact type,
(W, h) be an integrable2-jet at p and set UWD {h(x, y) j x, y 2 W}

R

. Suppose that
d WD dim(W) is equal to the rank of N and that W is a curvature isotropic subspace
of TpN. Then there exists an orthonormal basis{x1, : : : , xd} of W such that

h(xi , x j ) D 0 whenever i¤ j ,(31)

�i WD h(xi , xi ) satisfies h�i , � j i D 0 whenever i¤ j ,(32)

RN
xi ,x j
D RN

x j ,�i
D RN

�i ,� j
D RN

� j ,xi
D 0 for all i ¤ j .(33)

In particular, both W and U are curvature isotropic.
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Proof. Let a parallel submanifoldM be given such thatTpM D W and hp D h.
SinceW is curvature isotropic, the sectional curvature ofN vanishes on every 2-plane
of TpM and then even identically on any 2-plane of the parallel submanifold M (see
[10, Proposition 3.14]), i.e.M is a curved flat. Thus,RM

x,y D 0 for all x, y 2 TpM

according to [8], implying in the parallel case thatR?

x,y� D 0 for all � 2 U because
of (4). Using the Equations of Gauß, Codazzi and Ricci for a parallel submanifold, i.e.

(34) 8x, y 2 TpM W RN
x,y D RM

x,y � R?

x,y C [hx, hy],

we obtain that [hx, hy] D 0 for all x, y 2 W. Further, we claim that there exists an
orthonormal basis{x1, : : : , xd} of W such that (31), (32) hold: since{hx j x 2 W} is
a set of pairwise commuting, skew-symmetric operators which map W to U and vice
versa, there exist an orthonormal basis{x1, : : : , xd} of W and somed0 � d such that
Kern(h) D {x1, : : : , xd0}R (see (18), (19)), an orthonormal basis{�d0C1, : : : , �d} of U and

linear maps�i W W! R such thathx D
Pd

iDd0C1 �i (x)xi ^ �i . Using the symmetry ofh,

� j (xi )� j D

d
X

lDd0C1

�l (xi )xl ^ �l (x j ) D h(xi , x j ) D h(x j , xi ) D �i (x j )�i .

It follows that �i (x j ) D 0 for i ¤ j . This gives our claim.
Moreover, by means of (31), we have

8i ¤ j W RN
xi ,� j
jV D RN

xi ,h(x j ,x j )jV D �RN
h(x j ,xi ),x j

jV D 0

where the second equality uses (5) (withkD 1), i.e. the curvature endomorphismRN
xi ,� j

vanishes onV wheneveri ¤ j . Furthermore, (16) implies that then alsoRN
�i ,� j

vanishes

on V . Using Lemma 1 once more,RN
xi ,� j

and RN
�i ,� j

both vanish onTpN unlessi D j .

The result now follows.

In the notation of Proposition 3, setVi WD {xi , �i }R for i D 1, : : : , d. Note, (32)
can be rephrased by saying that the linear spacesVi are pairwise orthogonal and (33)
means thatRN(u, v) D 0 holds whenever (u, v) 2 Vi � Vj with i ¤ j .

Lemma 2. Let {Vi }iD1,:::,d be a collection of pairwise orthogonal subspaces of
TpN such that RNu,v D 0 whenever(u,v) 2 Vi �Vj with i ¤ j . Then there exist pairwise

orthogonal curvature invariant subspaces of TpN, denoted byNVi , such that

Vi � NVi for i D 1, : : : , d,(35)

RN
u,v D 0 whenever (u, v) 2 NVi � NVj with i ¤ j .(36)
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Moreover, then also the linear space

(37) NV WD
d
M

iD1

NVi

is a curvature invariant subspace of TpN.

Proof. Consider collections{ NVi }iD1,:::,d of pairwise orthogonal subspaces ofTpN

with properties (35), (36). Such collections exist, since at least one is given byNVi WD Vi .
Hence, for obvious reasons, there exists{ NVi }iD1,:::,d which is maximal in the follow-
ing sense: if{ QVi }iD1,:::,d is another collection of pairwise orthogonal subspaces ofTpN

with properties (35), (36) and such thatNVi � QVi for i D 1, : : : , d, then NVi D QVi holds
for all i .

Suppose that{ NVi }iD1,:::,d is maximal. We claim that the linear spaceNVi is curvature
invariant in TpN for i D 1,: : : ,d: let i be arbitrary but fixed andui ,vi ,wi 2 NVi . Further,
let j with i ¤ j andw j 2 NVj . Then, using a symmetry ofRN ,

hRN(ui , vi , wi ), w j i D hR
N(wi , w j , ui ), vi i

(36)
D 0.

Therefore, the linear spaceQVi WD NVi C RRN(ui , vi , wi ) is contained in the orthogonal
complement of NVj , too. Further, note that

(38) RN(ui , vi , w j ) D �RN(w j , ui , vi ) � RN(vi , w j , ui )
(36)
D 0C 0D 0

by the first Bianchi-identity. Thus, the Jacobi-identity for the Lie bracket oni(N)
shows that

RN
w j ,RN (ui ,vi ,wi )

D �RN
RN (ui ,vi ,w j ),wi

C [RN
ui ,vi

, RN
w j ,wi

] D 0C 0D 0.

Therefore, the curvature endomorphismRN
u,v vanishes whenever (u, v) 2 QVi � NVj for

each j different from i . Consider the collection of linear spaces{ QVj } jD1,:::,d defined

by QVj WD NVj (for j ¤ i ) and QVi WD NVi CRRN(ui ,vi ,wi ). By maximality of { NVj } jD1,:::,d,

we have QVj D NVj for all j . In particular, NVi D QVi , i.e. RN(ui , vi , wi ) 2 NVi . Since
ui , vi , wi 2 NVi were chosen arbitrary, we see thatNVi is curvature invariant. Lettingi
vary, we conclude thatNVi is curvature invariant fori D 1, : : : , d.

Further, we claim that then alsoNV is curvature invariant: letu, v,w 2 NV be given.
We have to show thatRN(u, v, w) 2 NV . For this, we can assume, by multilinearity of
RN , that each of these three vectors belongs to someNVi . If (ui , v j ,wk) 2 NVi � NVj � NVk

with i 62 { j , k}, then RN(ui , v j , wk) D RN(wk, ui , v j ) D 0 by means of (36) and hence
also RN(v j ,wk,ui )D 0 because of the first Bianchi-identity. Therefore,RN(u,v,w)D 0
unless all three vectorsu,v,w belong to the sameNVi in which caseRN(u,v,w) 2 NVi �

NV by the curvature invariance ofNVi .
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Corollary 5. In the situation of Proposition 3,let M be the simply connected
complete parallel submanifold of N through p whose2-jet is given by(W, h). Then
M is contained in some totally geodesic submanifoldNM � N whose universal covering
space NMuc splits as a Riemannian productRd0

�Md0C1�� � ��Md where d0 WD Kern(h).
Moreover, we have M� Rd and there exist extrinsic circles ci into Mi such that the
immersion of M into NM is given by the product mapId

R

d0� cd0C1 � � � � � cd followed
by the covering mapNMuc

!

NM. In particular, the parallel curved flat Md with d D
rank(N) � 2 is never full if N is simply connected and irreducible.

Proof. Following the notation of Proposition 3, setVi WD {xi ,�i }R for i D 1,: : : ,d
such that{x1, : : : , xd0}R is an orthonormal basis of Kern(h). By means of Lemma 2,
there exist curvature invariant spacesNVi � TpN which satisfy (35), (36) fori D 1,: : : ,d.
SinceVi D Rxi is already curvature invariant fori D 1,: : : ,d0, we can assume thatNVi D

Vi for i � d0. Further, consider the totally geodesic submanifoldsNM i WD expN( NVi ) and
their universal covering spacesMi . Thus, Mi � R for i D 1, : : : , d0 andRd0

�Md0C1�

� � � � Md is the universal covering space of the totally geodesic submanifold NM WD
expN( NV) according to (36), (37). Therefore, by means of (31), (32) we haveOpM D
Ld

iD1 Vi � NV which implies thatM is contained in NM (reduction of the codimension).

Further, letci W R! Mi be the extrinsic circle withPci (0)D xi andrMi
�

Pci (0)D �i for
i D d0C1,: : : ,d. Thus, the product map Id

R

d0 �cd0C1�� � ��cd followed by the covering
map NMuc

!

NM defines an isometric immersion ofRd as a parallel submanifold ofNM
whose 2-jet at 0 is identical with the 2-jet ofM at p according to (31), (32). Our
first assertion follows, since a simply connected complete parallel submanifold of NM
is uniquely determined by its 2-jet at one point. In particular, if alreadyN is simply
connected and irreducible and, moreover,M is full in N, then M � R.

2.5. Parallel submanifolds with 1-dimensional first normal spaces. For cer-
tain integrable 2-jets, one implicitly knows that the second osculating space is curva-
ture invariant.

Proposition 4. Let N be a symmetric space, (W, h) be an integrable2-jet and
U WD {h(x, y) j x, y 2 W}

R

. Assume thatdim(U ) D 1 and dim(W) � 2. Suppose add-
itionally that hW acts irreducibly on W. Then VWD W � U is a curvature invariant
subspace of TpN.

Proof. Using Proposition 2, we obtain that Kern(h) D {0}. Thus Qh(x, y) WD
hh(x, y), �i defines a non-degenerate bilinear form onW for any unit vector� 2 U .
Further, in view of Proposition 1, it remains to show thatRN

x,�(V) � V holds. For this,
we may proceed as in the proof of [1, Theorem 9.2.2]: we can assume thatx ¤ 0
in which case there existy, z 2 W with h(x, z) D � and h(y, z) D 0 (since Qh is non-
degenerate and dim(W) � 2). Hence, using (5) withkD 1, we see thatRN

x,� D [hz,RN
x,y]

holds onV . The result follows by means of (2) and the curvature invariance of W.
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2.6. Symmetric submanifolds of product spaces. In order to show that certain
orthogonal curvature invariant pairs of GC2 (RnC2) are not integrable (cf. the proof of
Corollary 20), we will apply the following theorem to ambient space Sk � Sk:

Theorem 4 (H. Naitoh). Suppose that N is a simply connected symmetric space
and that the de Rham decomposition of N has precisely two factors, N D N1 � N2. If
M � N is a symmetric submanifold, then either N1D N2 and MD {(p,g(p)) j p 2 N1}

where g is an isometry of N1 (in particular, then M is totally geodesic) or M is a
product M1 � M2 of symmetric submanifolds Mi � Ni for i D 1, 2.

Proof. In case both factors ofN are of compact type, we can immediately apply [23,
Theorem 2.2]. In case both factors ofN are of non-compact type, we use the duality be-
tween compact and non-compact spaces to pass to the previouscase (note that the results
of [23] are mainly based on [22, Lemma 1.1] which is preservedunder duality). In the
general case, we decomposeN � Nc�Nnc�Ne into its compact, non-compact and Euclid-
ean factor (where one or more factors may be trivial) and showas in [23, p. 562/563] that
M splits as the Riemannian productM D Mc � Mnc � Me of symmetric submanifolds
Mc � Nc, Mnc � Nnc and Me � Ne, which finally establishes Theorem 4.

3. Parallel submanifolds of GC2 (RnC2)

Let n � 2 and consider the simply connected compact 2n-dimensional symmetric
spaceN WD GC

2 (RnC2) of rank two which is given by the oriented 2-planes ofRnC2.
In accordance with [17, Section 2], we choose the metric onN such that the shortest
restricted root has length equal to one forn � 3 and GC2 (R4) � S2

p

2
� S2

p

2
. Further,

set T WD TpN for some fixedp 2 N and let� W k! so(T) be the linearized isotropy
representation. Then one knows (cf. [14]):
• N is a Hermitian symmetric space. Hence, there exists a complex structure JN

compatible with the inner product onT . This turnsT into a Hermitian vector space
of complex dimensionn.
• Recall that a real form< � T is an n-dimensional real subspace ofT with < ?
i<. By a circle of real formswe mean the set{ei'

< j ' 2 [0, 2� ]} defined by some
real form< � T . As a special feature of GC2 (RnC2), there exists a distinguished circle
of real forms ofT , denoted byU , see [14, Section 3].
• Consider the orthogonal splittingv D <(v) C i=(v) into real and imaginary parts
for every v 2 T depending on< 2 U . Then, for any< 2 U , the curvature tensor ofN
can be described via

(39)
8u, v 2 T W

RN
u,v D (h<(v), =(u)i � h<(u), =(v)i)JN

�<(u) ^ <(v) � =(u) ^ =(v).

This is consistent with [14, p.84, Equation (16)] (but therethe inner product gets a
factor 1=2).
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• Further, let the Lie algebraso(<) act onT via Av D A<(v)Ci A=(v). Then�(k)D
{RN

u,v j u, v 2 T}
R

D RJN
� so(<) for any < 2 U .

Recall that a subspaceW � T is called curvature invariant ifRN(x, y, z) 2 W for
all x, y, z 2 W.

Theorem 5 (S. Klein). For N WD GC

2 (RnC2) with n � 2, there are precisely the
following curvature invariant subspaces of T:
Type (ck) Let < 2 U and a k-dimensional subspace W0 � < be given. Then WWD
CW0 is curvature invariant. Here we assume that k� 1.
Type (trk,l ) Let < 2 U and an orthogonal pair of subspaces W1, W2 of < be given.
Then WWD W1� iW2 is curvature invariant. Here the dimensions k and l of W1 and
W2, respectively, are supposed to satisfy kC l � 2.
Type (c0k) Let < 2 U and a subspace W0 � < equipped with a Hermitian structure I0

be given. Then WWD {x � i I 0x j x 2 W0} is curvature invariant. Here k� 1 denotes
the complex dimension of(W0, I 0).
Type (tr0k) Let < 2 U , a subspace W0 � < equipped with a Hermitian structure I0 and
a real form W0

0 of the Hermitian vector space(W0, I 0) be given. Then WWD {x� i I 0x j
x 2 W0

0} is curvature invariant. Here k� 2 denotes the dimension of W00.
Type (ex3) Let < 2 U and an orthonormal system{e1, e2} � < be given. The
3-dimensional linear space WWD {e1 � ie2, e2C ie1, e1C ie2}R is curvature invariant.
Type (ex2) (only for n � 3) Let < 2 U and an orthonormal system{e1, e2, e3} � <

be given. The2-dimensional linear space WWD {2e1 C ie2, e2 C i(e1 C
p

3e3)}
R

is
curvature invariant.
Type (tr1) Let u be a unit vector of T . The1-dimensional spaceRu is curva-
ture invariant.

For a proof see [14, Theorem 4.1]. The corresponding totallygeodesic submanifolds
are described in [14, Section 5] or [17, Section 2.1].

Our notation emphasizes that spaces of Types (ck) and (c0k) both are complex of
dimensionk over C and those of Types (trk,l ) and (tr0k) are totally real of dimensions
k C l and k, respectively. The spaces of Types (ex3) and (ex2) are “exceptional” (in
the sense that they do not occur in a series).

3.1. Curvature invariant pairs of GC

2 (RnC2). In this section, we determine the
orthogonal curvature invariant pairs ofT . Note that (W, U ) is a curvature invariant
pair if and only if (U, W) has this property. Since Theorem 5 provides seven types of
curvature invariant subspaces ofT , there are (7�8)=2D 28 possibilities to consider. Our
approach is briefly explained as follows: given a curvature invariant subspaceW of T ,
we will first determine the Lie algebrahW (see (17)) and thehW-invariant subspaces
of W?. Second, we will determine those skew-symmetric endomorphisms of T which
belong to�(k) and leaveW invariant, see (20). Once this information is available for
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Table 1. Orthogonal curvature invariant pairs of GC

2 (RnC2).

Type Data Conditions
(ck, cl ) (<, W0I <

�, U0) < D <

�, W0 ? U0

(tri , j , trk,l ) (<, W1, W2I <
�, U1, U2) < D ei'

<

�, W1�W2 ? ei'(U1�U2)
(tr j ,k, trl , j ) (<, W1, W2I <

�, U1, U2) < D <

�, W1 D U2, W2 ? U1

(trk,l , trl ,k) (<, W1, W2I <
�, U1, U2) < D <

�, W1 D U2, W2 D U1

(trk,1, tr1,l ) (<, W1, W2I <
�, U1, U2) < D <

�, W1 ? U2, W2 ? U2, W1 ? U1

(trk,1, tr1,k) (<, W1, W2I <
�, U1, U2) < D <

�, W1 D U2

(tr1,1, tr1,1) (<, W1, W2I <
�, U2, U2) < D <

�, W1 ? U1, W2 ? U2

(trk,l , tr1) (<, W1, W2I u) u ? CW1� CW2

(trk,1, tr1) (<, W1, W2I u) u ? CW1, =(u) ? W2

(tr1,1, tr1) (<, W1, W2I u) <(u) ? W1, =(u) ? W2

(ck, c0l ) (<, W0I <
�, U 0, I 0) < D <

�, W0 ? U 0

(c0k, c0l ) (<, W0, I 0I <�, U 0, J 0) < D <

�, W0

? U 0

(c0k, c0k) (<, W0, I 0I <�, U 0, J 0) < D <

�, W0

D U 0, I 0 D �J 0

(c01, tr1) (<, W0, I 0I u) u 2 W

(tr0j , trk,l ) (<, W0, I 0, W0

0I <
�, U1, U2) < D <

�, W0

? U1�U2

(tr0k, tr0l ) (<, W0, I 0, W0

0I <
�, U 0, J 0, U 0

0) < D <�, W0

? U 0

(tr0k, tr0k) (<, W0, I 0, W0

0I <
�, U 0, J 0, U 0

0) < D <�, W0

D U 0, U 0

0 D I 0(W0

0), J 0 D I 0

(tr0k, tr0k) (<, W0, I 0, W0

0I <
�, U 0, J 0, U 0

0) < D <�, W0

D U 0,
U 0

0 D exp(� I 0)(W0

0), J 0 D �I 0

(tr02, tr02) (<, W0, I 0, W0

0I <
�, U 0, J 0, U 0

0) < D <�, W0

D U 0 and there exists
QJ 2 SU(W0, QI ) \ so(W0) such that

U 0

0 D
QJ(W0

0) and J 0 D QJ Æ I 0 Æ QJ�1 (�)
(tr0k, tr1) (<, W0, I 0, W0

0I u) u ? CW0

(ex3, tr1) (<, {e1, e2}I u) u D �(1=
p

2)(e2 � ie1)

(tr1, tr1) (uI � ) u ? �

(�) If W is of Type tr02 defined by (<, W0, I 0, W0

0), then a second Hermitian structure

on W0 is given by QI WD e1^e2C I 0e1^ I 0e2 for some orthonormal basis{e1, e2} of W0

0.
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curvature invariant spaces of Types x and y, we will determine all curvature invariant
pairs of Type (x, y).

Lemma 3. Let W be curvature invariant of Type(ck) defined by the data(<,W0).
(a) We have

(40) hW D RJN
� so(W0).

(b) A subspace of W? is hW-invariant if and only if it is a complex subspace.
(c) Let A2 so(<) and a2 R be given. The linear map aJN

C A leaves W invariant
if and only if A(W0) � W0.

Proof. By means of (39), the curvature endomorphismRN
ix,x is given by JN for

every unit vectorx 2W0. Further,RN
x,y D RN

ix,iy D�x^y for all x,y 2W0 and RN
x,iy D 0

if x, y 2 W0 with hx, yi D 0. Part (a) follows. For (b), note thathWjW?

D RJN
jW? .

Part (c) is obvious.

Corollary 6. Let W and U be curvature invariant of Types(ck) and (cl ) defined
by the data(<, W0) and (<�, U0), respectively. If< D <� and W0 ? U0, then (W, U )
is an orthogonal curvature invariant pair. Conversely, every orthogonal curvature in-
variant pair of Type(ck, cl ) can be obtained in this way.

Proof. Using Lemma 3, the first part of the corollary is obvious. For the last
assertion, since the linear spaceW is determined also by the tuple (ei'

<,ei'W0) for all
' 2 R, we can assume that< D <�. Thus the conditionW ? U implies thatW0 ? U0.

Corollary 7. There are no orthogonal curvature invariant pairs of Types(c j ,trk,l ),
(c j , tr0k), (cj , ex3), (cj , ex2) and (c j , tr1).

Proof. If W is of Type (cj ), then anyhW-invariant subspace ofW? is complex
according to Lemma 3 (b). Since spaces of Types (trk,l ), (tr0k), (ex3), (ex2) and (tr1) are
not complex, this proves the result.

Lemma 4. Let W be of Type(trk,l ) defined by the data(<, W1, W2).
(a) We have

(41) hW D so(W1)� so(W2).

In particular, if k D l D 1, then W is curvature isotropic.
(b) If k, l ¤ 1, then a subspace of W? is hW-invariant if and only if it is equal toiW1,
W2, a subspace of the orthogonal complement ofiW1�W2, or a sum of such spaces.
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If k D 1 and l � 2, then a subspace of W? is hW-invariant if and only if it is equal
to W2, a subspace of W?2 or a sum of such spaces. If kD l D 1, then any subspace
of W? is hW-invariant.
(c) Let A2 so(<) and a2 R be given. The linear map aJN

C A leaves W invariant
if and only if aD 0 and A(Wi ) � Wi for i D 1, 2.

Proof. For (a), see the proof of Lemma 3. For (b), consider thedecomposition
W?

D iW1�W2� (CW1�CW2)? into hW-invariant subspaces. ThenhW acts trivially
on (CW1�CW2)? and irreducibly on both iW1 and W2. In particular, the linear spaces
iW1 and W2 are trivial hW-modules only ifk D 1 or l D 1, respectively. Moreover,
they are non-isomorphichW-modules unlessk D l D 1. The result follows. Part (c) is
straightforward.

Corollary 8. Let W and U be curvature invariant of Types(tri , j ) and (trk,l ) de-
fined by the data(<, W1, W2) and (<�, U1, U2), respectively. If one of the following
conditions holds, then (W, U ) is an orthogonal curvature invariant pair:
• the real number' is chosen such that< D ei'

<

� and ei'(U1�U2) belongs to the
orthogonal complement of W1�W2;
• < D <

�, W2 D U1 and W1 D U2;
• < D <

�, W2 ? U1 and W1 D U2;
• j D k D 1, < D <�, W1 ? U2, W1 ? U1 and W2 ? U2;
• j D k D 1, < D <�, W1 D U2;
• (i , j ) D (k, l ) D (1, 1), < D <�, W1 ? U1 and W2 ? U2.
Conversely, every orthogonal curvature invariant pair of Type(tri , j , trk,l ) can be ob-
tained in this way.

Proof. Obviously, the pairs (W, U ) mentioned above satisfyW ? U . Further, the
fact that they are curvature invariant pairs is verified by means of Lemma 4. Con-
versely, let us see that these conditions are also necessary: we have

u1 D e�i'ei'u1 D cos(')ei'u1 � i sin(')ei'u1,

iu2 D e�i'ei' iu2 D sin(')ei'u2C i cos(')ei'u2,

with ei'u1 2 < and iei'u2 2 i< for all (u1, u2) 2 U1 �U2. Thus, the conditionU ? W
implies that

0D hx1, u1i D cos(')hx1, ei'u1i,

0D hx1, iu2i D sin(')hx1, ei'u2i,

0D hix2, u1i D � sin(')hx2, ei'u1i,

0D hix2, iu2i D cos(')hx2, ei'u2i
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for all (x1, x2) 2 W1 � W2 and (u1, u2) 2 U1 � U2. Hence, in case' � (�=2)Z, the
condition W ? U necessarily implies thatei'(U1�U2) ? W1�W2.

In case' 2 (�=2)Z, interchanging, if necessary,U1 with U2, we can assume that
< D <

�. Clearly, thenW1 ? U1 and W2 ? U2 by the conditionW ? U . Further,
suppose thatj � 2. On the one hand, since (W, U ) is a curvature invariant pair and
hW � so(<) by means of Lemma 4 (a), the linear spaceU1 is anhW-invariant subspace
of W?

1 \ <. Using Lemma 4 (b), we conclude thatU1 ? W1 �W2 or U1 D W2 � QU

for some QU � < which belongs to the orthogonal complement ofW1�W2. We claim
that the second possibility can not occur unlessQU D {0}: since (W, U ) is a curvature
invariant pair andhU � so(<), the linear space iW2 is an hU -invariant subspace of
U?

\ i<. Moreover, the conditionU1 D W2 � QU implies thatk � j � 2. Therefore,
by means of Lemma 4 (b), we haveW2 ? U1 � U2 (which is clearly not given) or
W2 D U1� QW for some QW ? U1�U2. HenceU1 D U1� QW� QU , thus QW D QU D {0}.

We conclude thatU1 ? W1 � W2 or U1 D W2 unless j D 1. Similarly, we can
show thatU2 ?W1�W2 or U2 DW1 unlessi D 1. Clearly, the same conclusions hold
with the roles ofW and U interchanged. This finishes the proof.

Corollary 9. Let W and U be curvature invariant of Types(trk,l ) and (tr1) de-
fined by the data(<, W1, W2) and a unit vector u2 T , respectively. If one of the
following conditions holds, then (W, U ) is an orthogonal curvature invariant pair:
• u belongs to the orthogonal complement ofCW1� CW2;
• l D 1, u ? CW1 and =(u) ? W2;
• k D l D 1, <(u) ? W1 and =(u) ? W2.
Conversely, every orthogonal curvature invariant pair of Type(trk,l , tr1) can be obtained
in this way.

Proof. Note, the pair (W, U ) is an orthogonal curvature invariant pair if and only
if u 2 W? and hW annihilates the vectoru. If k, l ¤ 1, this is equivalent tou ?
CW1� CW2 according to Lemma 4 (b). Further, we can assume thatk � l . If k � 2
and l D 1, we use the same argument as before; however, now it is allowed that<(u)
has a component inW2. In casek D l D 1, the Lie algebrahW is trivial and the only
condition isu 2 W?.

Lemma 5. Let W be of Type(c0k) determined by the data(<, W0, I 0). Further,

let W denote its complex conjugate in T with respect to the real form <.
(a) We have

(42) hW D su(W0)� R(I 0 C k JN).

(b) In case k� 2, a subspace of W? is hW-invariant if and only if it is equal toW,
a complex subspace of(CW0)? or a sum of such spaces. In case kD 1, the previ-
ous statement remains true if we replace the phrase“equal to W” by “contained in
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W” . Anyway, the linear spaceW as well as anyhW-invariant subspace of(CW0)?

is complex.
(c) Let a 2 R and A2 so(<). The linear map aJN C A leaves W invariant if and
only if A(W0) � W0 and AjW0

2 u(W0, I 0).

Proof. For (a), note that

(43) RN
x�i I 0x,y�i I 0y D �2hI 0x, yiJN

� x ^ y� I 0x ^ I 0y

for all x, y 2 W0 because of (39). In particular,

(44) RN
x�i I 0x,y�i I 0y D �2JN

� 2x ^ I 0x

for every unit vectorx 2 W0 and y D I 0x. Similarly, if x, y 2 W0 are unit vectors with
hx, I 0yi D 0, then

(45) RN
x�i I 0x,y�i I 0y D �x ^ y� I 0x ^ I 0y.

It follows from (44), (45) thatA 2 hW if and only if there exists someB 2 u(W0, I 0)
such thatAD �i trace

C

(B)JN
C B (where trace

C

(B) means the complex trace ofB in
(U 0, I 0)). Now (42) is straightforward.

For (b), note that

(46) 8x 2 W0

W i(x � i I 0x) D �I 0x C i x D �(I 0x � i I 0 I 0x) D �I 0(x � i I 0x),

hence JN
jW D I 0jW and JN

jW D �I 0jW. In particular, the linear spaceW is a com-
plex subspace ofT . The fact thatI 0 D �JN on W and part (a) together imply that
hWjW D {0} for k D 1 andhWjW D u(W0, I 0) for k � 2. Further, we haveu(W0, I 0) D
u(W0, �I 0) � u(W) where the second equality uses (46). Therefore, the linearspace
W is an irreduciblehW-module of real dimension 2k for k � 2. Furthermore, the Lie
algebrahW acts on (CW0)? via RJN . Part (b) easily follows.

For (c), recall thatJN
jW D I 0jW according to (46). ThusW is actually complex

and we can assume in the following thata D 0. Since

(47) 8x 2 W0

W A(x C i I 0x) D AxC i AI 0x,

for all A 2 so(<), we see thatA(W) � W if and only if A(W0) � W0 and AjW0

2

u(W0, I 0). Part (c) follows.

Corollary 10. Let W and U be of Types(ck) and (c0l ) determined by the data
(<, W0) and (<�, U 0, I 0), respectively. If< D <� and W0 ? U 0, then (W, U ) is an
orthogonal curvature invariant pair. Conversely, every orthogonal curvature invariant
pair of Type(ck, c0l ) can be obtained in this way.
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Proof. Obviously, the pairs (W, U ) mentioned above satisfyW ? U . Further, the
fact that these are curvature invariant pairs is verified by means of Lemmas 3 and 5,
parts (a) and (c). Conversely, let us see that the conditionsare also necessary: here we
can assume that< D <� (cf. the proof of Corollary 6). SinceU ? W0,

(48) 0D hu � i I 0u, xi D hu, xi

for all u 2 U 0 and x 2 W0, i.e. W0 ? U 0.

Corollary 11. Let W and U be of Types(c0k) and (c0l ) determined by the data
(<, W0, I 0) and (<�, U 0, J 0), respectively. If one of the following conditions holds, then
(W, U ) is an orthogonal curvature invariant pair:
• < D <

�, U 0

D W0 and I0 D �J 0;
• < D <

� and U0

? W0.
Conversely, every orthogonal curvature invariant pair of Type(c0k, c0l ) can be obtained
in this way.

Proof. Note, if<D<�, U 0

DW0 and I 0 D�J 0, thenU DW. Further, if<D<�

and U 0

? W0, then CW0

? CU 0. Thus the fact that these are orthogonal curvature
invariant pairs follows by means of Lemma 5 (b).

Conversely, the Hermitian structureI 0 extends toW0

� iW0 (via complexification)
and the linear spaceW is determined also by the data (ei'

<, ei'W0, I 0jei'W0). Hence,
we can assume that< D <�. In the following, we further suppose thatk � l . If also
k � 2, then by means of Lemma 5, eitherU ? CW0 or U DW� QU with QU ? CW0. In
the first case, obviouslyW0

? U 0. In the second case, we haveQU D {0} (since l � k),
i.e. U D W.

In casek D l D 1, by means of Lemma 5 we haveU D QU � U# for some QU �
W and a complex subspaceU# of the orthogonal complement ofCW0. Thus, since
dim(U ) D dim( NW) D 2, eitherU#

D {0} (and henceU D QU D NW) or U D U#. This
finishes the proof.

Corollary 12. (a) There are no orthogonal curvature invariant pairs of
Type (c0j , trk,l ).
(b) There are no curvature invariant pairs of Type(c0k, tr1) for k � 2.
(c) Let W and U be of Types(c01) and (tr1) determined by the data(R, W0, I 0, W0

0)
and a unit vector u2 T , respectively. Then(W, U ) is a curvature-invariant pair if and
only if u 2 W.

Proof. For (a), letW and U be of Types (c0j ) and (trk,l ) defined by the data
(<, W0, I 0) and (<�, U1, U2). Then we can assume that< D <�, cf. the proof of
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Corollary 6. Therefore, the conditionW ? U implies that

0D hu1, x � i I 0xi D hu1, xi,(49)

0D hiu2, I 0x C ixi D hu2, xi(50)

for all (u1, u2) 2 U1 � U2 and x 2 W0. Thus U1, U2 and W0 are mutually orthogonal
subspaces of<. In particular, the linear spaceU is contained in the orthogonal com-
plement ofCW0. We hence see by thehW-invariance ofU that the latter would be
complex according to Lemma 5 (b), a contradiction.

For (b) and (c), according to Lemma 5 (b), the 1-dimensional subspaceRu of W?

is hW invariant if and only ifk D 1 andu 2 W.

Lemma 6. Let W be of Type(tr0k) determined by the data(<, W0, I 0, W0

0).
(a) The Lie algebrahW is given by

(51) {A 2 u(W0, I 0) j A(W0

0) � W0

0}.

(b) An hW-invariant subspace of W? is contained in the orthogonal complement of
the complex spaceCW0, belongs to a distinguished family of k-dimensional totallyreal
subspaces ofCW0

\W?—which can be parameterized by the real projective spaceRP2

( for k � 3) or the complex projective spaceCP2 ( for k D 2)—or is a direct sum of
such spaces.
(c) Let A2 so(<), a 2 R be given and set BWD aI 0 C A. Then B2 so(<) holds and
the linear map aJN C A leaves W invariant if and only if B(W0

0) � W0

0 and BI0x D
I 0Bx for all x 2 W0

0.

Proof. For (a), we use that the curvature endomorphismRN
x�i I 0x,y�i I 0y is given by

�x ^ y� I 0x ^ I 0y for all x, y 2 W0

0 according to (45). For (b), in order to avoid any
confusion in casekD 2 (see below), we temporarily drop the notation ix for JN x with
x 2 T . Thus, set�0x WD xC JN I 0x, �1x WD JN x and�2x WD I 0x for all x 2 W0

0. Then

�i is an isomorphism ofhW-modules defined fromW0

0 onto W, JN(W0

0) and I 0(W0

0),
respectively. Therefore,

(52) (W0

� JN(W0)) \W?

D W� JN(W0

0)� I 0(W0

0)

is an orthogonal decomposition into three irreducible, pairwise equivalenthW-modules
each being isomorphic toW0

0. Moreover, we note thathWjW0

0
D so(W0

0). Hence the
linear spaceW0

0 is an irreducibleso(W0

0)-module even overC for k � 3. For k D 2,
let {e1, e2} be an orthonormal basis ofW0

0 and consider the Hermitian structure onW0

given by

(53) QI WD e1 ^ e2C I 0e1 ^ I 0e2.
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Then QI extends toW0

� JN(W0) (via complexification byJN) such thathW � u(W0

�

JN(W0), QI ). Further, thenQI (W0

0) � W0

0 and �i commutes withQI for i D 0, 1, 2. There-
fore, as was mentioned in Section 2.2, there exists (c0 W c1 W c2) 2 KP2 with K D R (for
k � 3) or K D C (for k D 2) such that

(54) U D {c0x C c2I 0x C JN(c0I 0x C c1x) j x 2 W0

0}

(where in casekD 2 multiplication with the complex numbersci is now defined viaQI ).
Part (b) follows.

For (c): sinceW is totally real and the complexificationW � iW is of Type (c0k)
defined by the data (<, W0, I 0), we have JN

jW D I 0jW in accordance with (46). In
particular, the linear mapJN

� I 0 leavesW invariant, which reduces the question to
the casea D 0. It remains to determine thoseA 2 so(<) which leave the linear space
W0

0 invariant and satisfyAI 0x D I 0Ax for all x 2W0

0, i.e. those for whichA(W0) �W0,
AjW0

2 u(W0) and A(W0

0) � W0

0 holds. This proves our result.

Corollary 13. Let W and U be of Types(tr0j ) and (trk,l ) defined by the data
(<,W0, I 0,W0

0) and (<�,U1,U2), respectively. If<D<� and the linear space U1�U2 is
contained in the orthogonal complement of W0, then (W,U ) is an orthogonal curvature
invariant pair. Conversely, every orthogonal curvature invariant pair of Type(tr0j , trk,l )
can be obtained in this way.

Proof. Obviously, the pairs (W, U ) mentioned above satisfyW ? U . Further, the
fact that these are curvature invariant pairs is verified by means of Lemmas 4 and 6,
parts (a) and (c). Conversely, let us see that our conditionsare also necessary: suppose
that (W, U ) is an orthogonal curvature invariant pair. Note thatW is defined also by
the data (ei'

<, ei'W0, I 0, ei'W0

0(�')) with W0

0(�') WD {cos(')x � sin(')I 0x j x 2 W0

0}

for every ' 2 R, hence we can assume that< D <�. SinceU is hW-invariant, there
exists a decompositionU D U#

�

QU into hW-invariant subspacesU#
� CW0

\ W?

and QU � (CW0)? according to Lemma 6 (b). We claim that the only possibilities are
U#
D {0}, U#

D iW0

0, U#
D I 0(W0

0) or U#
D I 0(W0

0)� iW0

0: first, the conditionW ? U
implies that 0D hu1, x� i I 0xi D hu1, xi for all u1 2 U1 and x 2W0

0. HenceU1 �W0?

0 ,
thus U1 \ W0

� I 0(W0

0). Similarly, we can show thatU2 \ W0

� W0

0. Thus, on the
one hand,

(55) U#
D U \ CW0

D U1 \W0

� i(U2 \W0) � I 0(W0

0)� iW0

0.

Moreover, according to (51), each of the linear spacesW0, U1 andU2 is invariant under
the action ofhW. Therefore, on the other hand, since (52) gives a decomposition of
CW0

\W? into irreduciblehW-modules, we conclude thatU1\W0

2 {{0}, I 0(W0

0)} and
U2 \W0

2 {{0}, W0

0}. Our claim follows from (55).
Next, we claim thatU#

D {0}: assume, by contradiction, thatI 0(W0

0) � U . Since
dim(W0

0) � 2, there exists an orthonormal pairx, y 2 W0

0. Then {I 0x, I 0y} � U \< D



PARALLEL SUBMANIFOLDS OF THE REAL 2-GRASSMANNIAN 315

U1, henceA WD RN
I 0x, I 0y leavesW invariant (since (W, U ) is a curvature invariant pair).

Further, by means of (39), we haveA D �I 0x ^ I 0y. It follows, in particular, that
A 2 so(W0) and AjW0

0
D 0. Therefore, applying Lemma 6 (c) (witha D 0), we obtain

that A D 0 (sinceW0

0 is a real form of (W0, I 0)), a contradiction. A similar argument
shows that neither iW0

0 is contained inU . We conclude thatU#
D {0}, i.e. U ? CW0.

Clearly, this implies thatU1�U2 ? W0, which finishes our proof.

Spaces of Type (tr0k) are neither 1-dimensional nor do they contain any complex
subspaces. Hence Lemma 5 (b) implies:

Corollary 14. There are no orthogonal curvature invariant pairs(W, U ) of Type
(tr0k, c0l ).

Corollary 15. Let W and U be of Types(tr0k) and (tr0l ) defined by the data
(<, W0, I 0, W0

0) and (<�, U 0, J 0, U 0

0), respectively. Further, in case kD 2, let {e1, e2} be

an orthonormal basis of W00 and QI be the Hermitian structure of W0 defined by(53).
If <D <� and one of the following conditions holds, then (W,U ) is an orthogonal

curvature invariant pair:
• we have U0 ? W0;
• U 0

D W0, I 0 D J 0 and U0

0 D I 0(W0

0);
• U 0

D W0, I 0 D �J 0 and U0

0 D exp(� I 0)(W0

0) for some� 2 R;

• k D l D 2, U 0

D W0 and there exists someQJ 2 SU(W0, QI ) \ so(W0) such that
U 0

0 D
QJ(W0

0) and J0 D QJ Æ I 0 Æ QJ�1.
Conversely, every orthogonal curvature invariant pair of Type(tr0k, tr0l ) can be obtained
in this way.

Proof. In the one direction, in order to see that the given pairs (W,U ) are actually
curvature invariant, we proceed as follows: the caseU 0

? W0 is handled by means of
Lemma 6, (a) and (c). In the other cases, we haveU D JN(W), U D exp(�� I 0)(W)
or U D QJ(W), respectively. IfU D iW, then

(56) hU D {JN
Æ A Æ JN

j A 2 hW} D hW,

where the first equality is straightforward and the second uses thatJN commutes with
any curvature endomorphism ofT . If U D exp(�� I 0)(W), then

(57) hU D {exp(�� I 0) Æ A Æ exp(� I 0) j A 2 hW} D hW D hW,

where the first equality is again straightforward and the second as well as the last one
follow immediately from Lemma 6 (a). IfkD 2, thenhW D R

QI according to Lemma 6
(a) and (53), hence, withU D QJ(W),

(58) hU D { QJ Æ A Æ QJ j A 2 hW} D R QJ Æ QI Æ QJ
QJ2SU(W0, QI )
D R

QI D hW.
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Clearly, if hW D hU , then (W, U ) is a curvature invariant pair (by the curvature invari-
ance of bothW and U ). This shows that the pairs in question are actually curvature
invariant pairs.

It remains to verify thatU ?W. This is straightforward in caseU 0

?W0. Further,
we haveW ? iW (sinceW is totally real) ande�i�W ?W for any � (since evenCW ?
CW, see Corollary 11). Ifk D 2, then f1 WD e1 and f2 WD I 0e1 defines a Hermitian
basis of (W0, QI ). Consider the complex matrix (gi j ) defined by

(59) gi j WD h fi , QJ f j i C ih QI f i , QJ f j i W

Then (gi j ) belongs to SU(2)\ su(2), hence there existt 2 R and w 2 C with t2
C

jwj

2
D 1 such that

(60)

�

g11 g12

g21 g22

�

D

�

it � Nw

w �it

�

holds. Using the skew-symmetry ofQJ and (60), we calculate

hei � JN I 0ei , QJ(ei � JN I 0ei )i D hei , QJei i C hI
0ei , QJ I 0ei i D 0C 0D 0 for i D 1, 2,

(61)

he2 � JN I 0e2, QJ(e1 � JN I 0e1)i D h QI f1, QJ f1i C h QI f2, QJ f2i D =(g11C g22) D 0,

(62)

he1 � JN I 0e1, QJ(e2 � JN I 0e2)i D �he2 � JN I 0e2, QJ(e1 � JN I 0e1)i D 0.

(63)

This shows thatW ? QJ(W).
In the other direction, let (W,U ) be an orthogonal curvature invariant pair of Type

(tr0k, tr0l ) defined by the data (<,W0, I 0,W0

0I<
�,U 0, J 0,U 0

0). Then we can assume that<D
<

� (cf. the proof of Corollary 13). Clearly, we can also supposethat l � k. Therefore,
since U is hW-invariant with dim(U ) � k, either U ? CW0 or there exists (c0 W c1 W

c2) 2 KP2 with K D R (for k � 3) or K D C (for k D 2) such thatU is given by r.h.s.
of (54) according to Lemma 6 (b).

Suppose thatU ? CW0. Then

0D hu � JN I 0u, xi D hu, xi,(64)

0D hu � JN I 0u, JN xi D �hI 0u, xi(65)

for all u 2 U 0

0 and x 2 W0, i.e. we obtain thatW0

? U 0.
We are left with the case that there exists (c0 W c1 W c2) 2 KP2 such thatU is given

by r.h.s. of (54). In particular, thenU � CW0, i.e. U 0

0 � <\CW0

D W0 and J 0(U 0

0) �
W0, henceU 0

D U 0

0� J 0(U 0

0) DW0 since automaticallyk D l in this case. Furthermore,
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we claim that herehW D hU : given A 2 hU , by means of Lemma 6 (a), we have,
in particular, A 2 so(W0). Further, we haveA(W) � W since (W, U ) is assumed to
be a curvature invariant pair. Thus, we obtain from Lemma 6 (c) (with a D 0) that
A 2 u(W, I 0) and A(W0

0) � W0

0. Then A 2 hW again by means of Lemma 6 (a). This
shows thathU � hW holds. The other inclusion is proved in a similar way. This gives
our claim.

For k � 3, we claim thatU D iW or U D ei�W for some� 2 R: taking real and
imaginary parts in (54), we obtain that

(66) u WD c0x C c2I 0x

belongs toU 0

0 for every x 2 W0

0 and

(67) J 0u D �c1x � c0I 0x.

Moreover, anyu 2 U 0

0 can be uniquely obtained from somex 2 W0

0 via (66). Now
assume thatx is a unit vector. Then,

c2
0 C c2

2
(66)
D juj2 D jJ 0uj2

(67)
D c2

0 C c2
1,(68)

� c0c1 � c2c0
(66),(67)
D hu, J 0ui D 0.(69)

Note, c WD c2
0Cc2

1 does not vanish (since otherwisec0 D c1 D c2 D 0 according to (68)
which is not allowed). Thus, we can assume thatcD 1 (because we consider only the
ratio (c0 W c1 W c2)). Then (68) implies

(70) c2
0 C c2

2 D c2
0 C c2

1 D 1.

Therefore, by means of (69), (70), the real matrix (gi j ) defined by

(71)

�

g11 g12

g21 g22

�

WD

�

c0 �c1

c2 �c0

�

belongs to O(2). Ifg 2 SO(2), thenc0 D 0 and c1 D c2 D �1. Hence (66) and (67)
together imply thatU 0

0 D I 0(W0

0) and J 0 D I 0. Otherwise, there exists� 2 R such that
c0 D cos(�) and c2 D �c1 D sin(�), thus J 0 D �I 0 and U 0

0 D {cos(�)C sin(�)I 0x j x 2
W0

0} according to (66), (67). This finishes the proof fork � 3.

For k D 2, we first recall thatQI equips the linear spaceW0 with a second Hermit-
ian structure such thatQI (W0

0) � W0

0 and I 0 belongs to U(W0, QI ). Now it is straightfor-

ward by means of (66), (67) that alsoQI (U 0

0) � U 0

0 and J 0 2 U(W0, QI ). Then it follows
on the analogy of (68)–(70) that

jc0j
2
C jc2j

2
D jc0j

2
C jc1j

2
D 1,(72)

�Nc0c1 � Nc2c0 D 0.(73)
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Thus, the complex matrix (gi j ) defined by (71) belongs to U(2). Moreover, since our
considerations depend only on the complex ratio (c0 W c1 W c2), we can even assume that
(gi j ) belongs to SU(2). Then necessarilyc0 D �Nc0 and c1 D Nc2, hence (gi j ) takes the
form (60) which implies that (gi j ) 2 SU(2)\ su(2). Further, recall thatf1 WD e1 and

f2 WD I 0e1 defines a Hermitian basis of (W0, QI ). Thus, we obtain a unique element of
SU(W0, QI )\ so(W0) via QJ fi WD g1i f1C g2i f2. Then, using the previous and (66), (67),
we conclude thatU 0

0 D
QJ(W0

0) and QJ Æ I 0 D J 0 Æ QJ. The details of this part of the proof
are left to the reader.

Corollary 16. Let W and U be of Types(tr0k) and (tr1) defined by the data
(<, W0, I 0, W0

0) and a unit vector u of T, respectively. Then(W, U ) is an orthogonal
curvature invariant pair if and only if u belongs to(CW0)?.

Lemma 7. Let W be of Type(ex3) defined by the data(<, {e1, e2}).
(a) The Lie algebrahW is the linear space which is generated by JN

C e1 ^ e2.
(b) A subspace of W? is hW-invariant if and only if it is the1-dimensional space
R(e2 � ie1), a complex subspace of the orthogonal complement of{e1, e2}C, or a sum
of such spaces.
(c) Let A2 so(<) and a2 R be given. The linear map aJN

C A leaves W invariant
if and only if A� ae1 ^ e2 vanishes on{e1, e2}R.

Proof. Consider the Hermitian structureI 0 WD e1^ e2 on W0

WD {e1, e2}R and put
x1 WD e1 � ie2, x2 WD e2C ie1 and x3 WD e1C ie2. A straightforward calculation shows
that RN

x1,x3
D RN

x2,x3
D 0. Further, let QW be the curvature invariant space of Type (c0

1)

defined by (<,W0, I 0). ThusWD QW�Rx3, hencehW D h
QW. Now part (a) follows from

Lemma 5 (a) (withk D 1). Clearly, the intersectionCW0

\W? is given byR(e2� ie1).
Thus part (b) follows from Lemma 5 (b) (withkD 1). For (c), sinceJN

C I 0 leavesW
invariant (by means of (a) and sinceW is curvature invariant), we can assume thataD
0. If A leavesW invariant, thenAx1 D Ae1� i Ae2 is necessarily a linear combination
of x2 and x3, say Ax1 D cx2C dx3. It follows that

d D hcx2C dx3, e1i D hAx1, e1i D hAe1 � i Ae2, e1i D hAe1, e1i D 0,

henceAx1 D cx2, i.e. Ae1 D ce2 and Ae2 D �ce1. Thus

W 3 Ax3 D Ae1C i Ae2 D c(e2 � ie1) 2 W?,

henceAx3 2 W \W?

D {0}. It follows that c D 0. This implies thatAe1 D Ae2 D 0
which proves our claim.

Corollary 17. Let W and U be of Types(ex3) and (tr1) defined by the data
(<, {e1, e2}) and a unit vector u of T, respectively. Then(W, U ) is an orthogonal
curvature invariant pair if and only if uD �(1=

p

2)(e2 � ie1).
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Corollary 18. There do not exist any orthogonal curvature invariant pairsof
Types(ex3, c0k), (ex3, tr0k), (ex3, trk,l ) and (ex3, ex3).

Proof. LetW be of Type (ex3) defined by the data (<,{e1,e2}) andU be a subspace
of W? such that (W, U ) is a curvature invariant pair. Recall that thehW-invariance ofU
implies that there is the splittingU D QU � U# into a totally real spaceU#

� R(e2 �

ie1) and a complex subspaceQU of the orthogonal complement of{e1, e2}C according to
Lemma 7 (b).

Hence, ifU is of Type (c0k) defined by the data (<�,U 0, I 0), thenU#
D {0} (sinceU is

complex) and thusU ? {e1,e2}C. Further, we can assume that<� D <. Thus{e1,e2}R ?

U 0 (see (48)). Therefore, we obtain thatW ? CU 0 and whence thehU -invariant spaceW
is complex according to Lemma 5 (b), which is not given.

Furthermore, ifU is of Type (tr0k) or (trk,l ), then QU D {0} (sinceU is totally real)
and henceU is at most 1-dimensional, which is not given.

If U is of Type (ex3), too, defined by (<�, { f1, f2}), then U is defined also by
(ei'
<

�, { f1('), f2(')}) with f1(') WD ei'(cos(') f1 C sin(') f2) and f2(') WD
ei'(� sin(') f1C cos(') f2). Hence we can assume that< D <�. Further, an orthogonal
decompositionU D U#

�

QU into a totally real subspaceU# and a complex subspaceQU
is unique (if it exists). We conclude thatU#

D R(i f2C f1) and QU D { f1�i f2, f2Ci f1}R.
Thus, on the one hand,{ f1, f2}R ? {e1,e2}R. On the other hand, if2C f1 D�(e2� ie1),
a contradiction.

Lemma 8. Let W be of Type(ex2) defined by the data(<, {e1, e2, e3}).
(a) The Lie algebrahW is the linear space which is generated by JN

C e1 ^ e2 C
p

3e2 ^ e3.
(b) A subspace U of W? is hW-invariant if and only if it is the complex spaceC(�e1C
p

3e3C2ie2), belongs to a distinguished family of(real) 2-dimensional subspaces of the
linear space

(74)

�

2e2C i

�

�3e1C
1
p

3
e3

�

, e1C
5
p

3
e3 � 2ie2

�

R

� ({e1, e2, e3}C)?,

or is a sum of such spaces.
(c) Let A2 so(<) and a2 R. The linear map aJN C A leaves W invariant if and
only if A� a(e1 ^ e2C

p

3e2 ^ e3) vanishes on{e1, e2, e3}R.

Proof. For (a), setx1 WD 2e1C ie2 and x2 WD e2C i(e1C
p

3e3). A straightforward
calculation shows that the curvature endomorphismRN

x1,x2
is given by�JN

� e1^ e2�
p

3e2 ^ e3.
For (b), we first verify that the eigenvalues ofA WD RN

x1,x2
(seen as a complex-

linear endomorphism ofT) are given by{i, �i, �3i}. The complex eigenspace for the
eigenvalue�3i is a subspace ofW?, given byC(�e1 C

p

3e3 C i2e2). Furthermore,
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A2
D � Id on the (2n� 4)-dimensional linear space (74), i.e. the linear mapA defines

a second complex structure on (74). This proves (b).
For (c): sinceW is curvature invariant, the endomorphismJN

Ce1^e2C
p

3e2^e3

leavesW invariant. This reduces the problem to the casea D 0. If A(W) � W, then
Ax1 D cx2 and Ax2 D �cx1 for somec 2 R (since A is skew-symmetric andkx1k D
p

5D kx2k). Considering the action ofA on the real and imaginary parts ofx1 and x2,
respectively, this implies thatAe2 D �2ce1 and Ae2 D c(e1 C

p

3e3), a contradiction
unlessc D 0. Thus Ax1 D Ax2 D 0 and henceAj{e1,e2,e3}R D 0 since A 2 so(<). This
finishes the proof.

Corollary 19. If W is of Type(ex2), then there are no orthogonal curvature in-
variant pairs (W, U ) at all.

Proof. Let < 2 U and an orthonormal system{e1, e2, e3} of < be given such
that W is spanned byx1 WD 2e1 C ie2 and x2 WD e2 C i(e1 C

p

3e3). Suppose further,
by contradiction, that there exists some curvature invariant subspaceU of T such that
(W, U ) is an orthogonal curvature invariant pair.

For Type (ck, ex2), see Corollary 7. IfU is of Type (c0k) or (ex3), then W is a
2-dimensionalhU -invariant subspace ofU? but not a complex subspace ofT according
to Lemma 8 (c). However, this is not possible, because of parts (b) of Lemmas 5
and 7, respectively.

Now suppose thatU is of Type (tri , j ) determined by the data (<�, U1, U2). Using
Lemmas 4 (c) and 8 (a), we see thathW(U ) � U does not hold.

Similarly, the case thatU is of Type (tr1) can not occur.
Suppose thatU is of Type (tr0k) determined by the quadruple (<�,U 0, I 0,U 0

0). Then
we can assume that< D <�. Using Lemma 6 (b), the fact thatW is 2-dimensional
linear subspace ofT which is invariant underhU implies that eitherW � CU 0? or W
is a 2-dimensionalhU -invariant subspace ofCU 0.

In the first case, we haveh<(xi ), ui D h=(xi ), ui D 0 for all u 2 U 0 and i D 1, 2.
With i D 1, it follows that he1, ui D he2, ui D 0, then the previous withi D 2 implies
that alsohe3, ui D 0 for all u 2 U 0. Thus Lemma 8 (a) and the fact thathW(U ) � U
show thatU is a complex subspace ofT , a contradiction.

In the second case, we have dim(U 0

0) D 2, hence dim(U 0) D 4. Further, both<(xi )
and =(xi ) belong toU 0 for i D 1, 2. Thus we conclude that{e1, e2, e3}R � U 0. Let
{u1, u2} be an orthonormal basis ofU 0

0. According to Lemma 6, the curvature endo-
morphism RN

u�i I 0u,��i I 0� is given by A WD �u ^ � � I 0u ^ I 0� for all u, � 2 U . Hence,
since (W, U ) is a curvature invariant pair, we obtain thatA(W) � W. Using Lemma 8
(c) (with a D 0), we obtain thatA vanishes on{e1, e2, e3}R. Therefore, sinceA 2
so(U 0), the rank of A would be at most one, which is not possible unlessA D 0,
a contradiction.

Consider the case thatU is of Type (ex2), too. Then there exists some<� 2 U and
an orthonormal system{ f1, f2, f3} of <� such thatU is spanned byu1 WD 2 f1 C i f2
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andu2 WD f2C i( f1C
p

3 f3). Let ' be chosen such thatei'
<

�

D<. In accordance with
Lemma 8, the curvature endomorphismR1,2 WD RN

u1,u2
is given by�JN

C A with A WD

� f1 ^ f2�
p

3 f2 ^ f3. We decomposefi D f >i C f ?i such that f >i 2 e�i'{e1, e2, e3}R

and f ?i ? e�i'{e1,e2,e3}R. SinceR1,2(W)�W, Lemma 8 (c) (withaD �1) shows that

e1 ^ e2C
p

3e2 ^ e3 D f >1 ^ f >2 C
p

3 f >2 ^ f >3

(both sides seen as elements ofu(T)). Comparing the length of the tensors on the left
and right hand side above, we see that

k f >1 k D k f >2 k D k f >3 k D 1,

i.e. ei' fi 2 {e1, e2, e3}R for i D 1, 2, 3. Hence we can assume thatn D 3. SinceU is
hW-invariant but not complex, it follows from Lemma 8 (b) thatU is the linear space
spanned byQu1 WD 2e2C i(�3e1C (1=

p

3)e3) and Qu2 WD e1C (5=
p

3)e3 � 2ie2. A short
calculation shows that the curvature endomorphismRN

Qu1, Qu2
is given by (8=3)JN

�4(e1^

e2C
p

3e2^e3). Thus we obtain thathU does not leaveW invariant. Therefore, (W,U )
is not a curvature invariant pair.

3.2. Integrability of the curvature invariant pairs of G C

2 (RnC2). Let (W, U )
be an orthogonal curvature invariant pair of GC

2 (RnC2) such that dim(W) � 2. It re-
mains the question whether (W, U ) or (U, W) is integrable. By means of a case by
case analysis of the possible pairs (see Table 1), we will show that the answer is “no”
unlessV WD W�U is curvature invariant.

Let k denote the isotropy Lie algebra ofN WD GC

2 (RnC2) and � W k ! so(T) be
the linearized isotropy representation. Recall that�(k) D RJN

� so(<). Further, by
definition, the Lie algebrakV is the maximal subalgebra ofk such that�(kV )jV is a
subalgebra ofso(V), see (21).

Type (ck, cl). Let W andU be of Types (ck) and (cl ) defined by the data (<, W0)
and (<�, U0), respectively. If (W, U ) is a curvature invariant pair, then the only possi-
bility is < D <� and W0 ? U0. Then V is curvature invariant of Type (ckCl ) defined
by the data (<, W0�U0). Thus, there is nothing to prove.

Type (tr i,j , tr k,l). Let W and U be of Types (tri , j ) and (trk,l ) defined by the data
(<, W1, W2) and (<�, U1, U2), respectively. Let' be chosen such that< D ei'

<

�.
Substituting, if necessary, i<� for <�, we can assume that' 2 [��=4, �=4].
• Casei D j D 1. Suppose that (W, U ) is integrable and letM be a simply con-
nected complete parallel submanifold throughp such thatTpM D W and?1

p M D U .

Since W is curvature isotropic, we haveM � R2 according to Corollary 5 and there
exists some totally geodesic submanifoldNM � N, a Riemannian splitting of its uni-
versal covering spaceNMuc

D M1� M2 with simply connected factorsMi of dimension
at least two and there exist extrinsic circlesci W R ! Mi such that the isometric im-
mersion of M into NM is given by the product mapc1 � c2 followed by the covering
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map NMuc
!

NM . In particular, dim(U ) D 2 and hencek D l D 1. Further, recall that
GC

2 (R4) � S2
p

2
� S2

p

2
whereas the symmetric space GC

2 (RnC2) is irreducible if n � 3

(since then its root-system is of TypeBn, see [14]) and that any rank-one symmetric
space is irreducible, too. Therefore, using the classification of totally geodesic sub-
manifolds in N from [14, Section 5], the only possibilities areNMuc

D Sa
� Sb with

a, b � 2 or NM D NMuc
D S2

p

2
� S2

p

2
such thatTp NM is curvature invariant of Types

(tra,b) or (c2), respectively. In the first case, applying reduction of thecodimension to
each factor, we can even assume thata D bD 2. Therefore, dim(NM) D 4 anyway and
henceV D Tp NM is curvature invariant of Types (tr2,2) or (c2).

In the remaining cases, at least one of the indices{i , j } is strictly greater than 1
and hence (possibly after substituting i< for <), we can suppose thati � 2. Then we
have to consider the possibilities< D <� and W1 D U2, or W1 ? ei'U2.
• Casei D l � 2, < D <� and W1 D U2. Here we haveW2 ? U1, or W2 D U1, or
j D k D 1. In caseW2 D U1, the linear spaceV is curvature invariant of Type ckCl

defined by (<, W1�U1). Otherwise, we claim that�(kV )jV \ so(V)
�

D {0}: let a 2 R,
B 2 so(<), set A WD aJN

C B and suppose thatA(V) � V and AjV 2 so(V)
�

holds.
Then A(W) � U and A(U ) � W. We aim to show thatA D 0. Let x2 2 W2. Thus
Aix2 2 U . It follows that ax2 2 U1 and Bx2 2 U2. In the same way,au1 2 W2 and
Bu1 2 W1 for all u1 2 U1. Hencea D 0, sinceW2 D U1 would be a different case.
Further, settingVi WD Wi � Ui for i D 1, 2, we haveAjVi 2 so(Vi )�. Since the maps
so(V1)

�

! Hom(W1, U1), A 7! AjW1 and so(V2)
�

! Hom(U2, W2), A 7! AjU2 both are
linear isomorphisms according to (27), for the vanishing ofA it suffices to show that
AjW1 D 0 and AjU2 D 0: on the one hand,A(W1)D A(U2)�W2 since A 2 so(V2)

�

. On
the other hand,A(W1) � U1 becauseA 2 so(V1)

�

. Hence A(W1) � W2 \ U1. Further,
the linear spaceW2\U1 is trivial if W2 ? U1, or if j D kD 1 andW2¤ U1. Therefore,
AjW1 D 0 unlessW2D U1. Similar considerations show that alsoAjU2 D 0 unlessW2D

U1. This establishes our claim.
Assume thatW2 ¤ U1 and, by contradiction, that (W, U ) is integrable. Thus there

exists an integrable symmetric bilinear maph W W �W! W? whose image spansU .
Further, since the previous discussion shows that�(kV )jV \ so(V)

�

D {0}, Corollary 4
implies thath satisfies (30). According to Lemma 4, the Lie algebrah (24) is given by
so(W1)� so(W2)� so(U1) (note, the last two summands are trivial in casej D k D 1).
Anyway, the direct sum Lie algebraso(W2)�so(U1) gives the direct sum representation
on iW2�U1 whereasso(W1) acts diagonally onW1� iW1 (i.e. A(x1C iy1)D Ax1C i Ay1

for all A 2 so(W1) and (x1, y1) 2W1�W1). In particular, the induced action ofso(W1)
is non-trivial and irreducible on bothW1 and iW1 (since i � 2) and trivial on both
iW2 andU1. Therefore, Schur’s Lemma implies that Homh(W, U ) � Homh(W1, iW1)�
Homh(iW2, U1). We conclude from the previous thath(x, y1) 2 iW1 and h(x, iy2) 2 U1
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for all x 2 W, y1 2 W1 and y2 2 W2, hence

h(W1 � iW2) D h(iW2 �W1) � U1 \ iW1 D {0},(75)

iW1 D {h(x1, x1) j x1 2 W1}R and U1 D {h(ix2, ix2) j x2 2 W2}R.(76)

We claim thatW2 D {0}: let x1, x2 2 W1 �W2 with x1 ¤ 0. Then RN
x1,ix2
D 0 (by the

condition W1 ? W2, see (39)) and hence (5) (withk D 1) yields

(77) 0D
�

hx1, RN
x1,ix2

�

�

V

�

D RN
h(x1,x1),ix2

�

�

V C RN
x1,h(x1,ix2)

�

�

V

(75)
D RN

h(x1,x1),ix2

�

�

V C 0.

Using (76), it follows that

(78) 0D RN
ix1,ix2
jV

(39)
D �x1 ^ x2

for all (x1, x2) 2 W1 �W2. Thus (78) implies thatx1 D 0 or x2 D 0 by the condition
W1 ? W2. Sincex1 ¤ 0, this gives our claim.

But then alsoU1 D {0} by means of (76), henceW2 D U1, a contradiction.
• Casei � 2 andW1 ? ei'U2. The subcasej D k � 2, ' D 0 andW2 D U1 follows
from the previous one (by means of interchangingW with U ). In the remaining cases,
we haveW2 ? ei'U1, or j D k D 1. In case' D 0 and W2 ? U1, we obtain thatV is
curvature invariant of Type (triCk, jCl ) defined by (<, W1 � U1, W2 � U2). Otherwise,
we claim that�(kV )jV \ so(V)

�

D {0}: let a 2 R, B 2 so(<) be given such thatA WD
aJN

C B satisfiesA(V) � V and AjV 2 so(V)
�

. Thus Ax1 2 U for every unit vector
x1 2 W1, i.e. Ax1 D u1C iu2 for suitableu1 2 U1 and u2 2 U2. Since

ei'(Ax1) D ei'(aix1C Bx1) D ai cos(')x1 � a sin(')x1C cos(')Bx1C i sin(')Bx1,

we see that

ei'u1 D <(ei'(Ax1)) D �a sin(')x1C cos(')Bx1,(79)

ei'u2 D =(ei'(Ax1)) D a cos(')x1C sin(')Bx1.(80)

The conditionW1 ? ei'U2 implies that

0D hx1, ei'iu2
(80)
D a cos(')hx1, x1i C sin(')hBx1, x1i D a cos('),

sincex1 is a unit vector andB 2 so(<). ThusaD 0, because' 2 [��=4,�=4]. There-
fore, AD B 2 so(<) anyway. In particular,

cos(')Ax1
(79)
D ei'u1,

sin(')Ax1
(80)
D ei'u2.



324 T. JENTSCH

We conclude that

0D hu1, u2i D he
i'u1, ei'u2i D sin(') cos(')hAx1, Ax1i.

Hence' D 0 or Ax1 D 0 for all x1 2W1. In the same way, we can show that' D 0 or
Ax2 D 0 for all x2 2 W2. By means of (27), we conclude thatAjV D 0 unless' D 0.

In case' D 0 and j D k D 1, setV1 WD W1� U1 and V2 WD W2� U2. Note that
AjV1 2 so(V1)

�

and AjV2 2 so(V2)
�

. Thus, using thatW1 ? U2,

hAx1, x2i D �hx1, Ax2i D 0

for all x1 2 W1 and x2 2 W2. Further, the linear formhx2, � i defines an isomorphism
U1 ! R for every x2 2 W2 which is not equal to zero (sinceW2 ? U1 is a different
case). Therefore, we conclude thatAjW1 D 0 and henceAjV1 D 0, sinceso(V1)

�

!

Hom(W1, U1), A 7! AjW1 is a linear isomorphism according to (27). For the same
reason,AjU2 D 0 and henceAjV2 D 0. We conclude thatAjV D 0. This establishes
our claim.

Assume that one of the casesW2 ? ei'U1 or j D k D 1, but not ' D 0 and
W2 ? U1 holds, and, by contradiction, that (W, U ) is integrable. We have just seen
that this implies that�(kV )jV \ so(V)

�

D {0}. Thus, there exists a symmetric bilinear
map h W W � W ! U whose image spansU and which satisfies (30). Note, the Lie
algebrah defined in (24) is given byso(W1) � so(W2) � so(U1) � so(U2) (in case
j D 1 or k D 1 the second or the third summand, respectively, is trivial)and acts as
a direct sum representation onW1 � iW2� U1 � iU2, whereso(W1) acts non-trivially
and irreducibly onW1 anyway (sincei � 2). Therefore, by means of Schur’s lemma,
Homh(W1, U ) D {0}, i.e. Homh(W, U ) � Hom(iW2, U ). If j ¤ 1, then we even have
Homh(W, U ) D {0}, henceh D 0 which is not possible. Otherwise, ifj D 1, we thus
see thath(x, y)D h(y, x)D 0 for all x 2W1 and y 2W, i.e. h(W�W)D h(iW2� iW2)
which spans a 1-dimensional space, a contradiction (sincekC l � 2).

Type (tr k,l , tr 1). Suppose thatW is of Type (trk,l ) defined by the data (<,W1,W2)
and U is spanned by a unit vectoru.
• Casek D l D 1. Similar as for Type (tr1,1, tr1,1), if (W, U ) is integrable, then
the corresponding simply connected parallel submanifoldM is given by the product of
the real line with an extrinsic circle in the totally geodesic Riemannian product space
NMuc
D R�S2 or NMuc

D R�S2
p

2
followed by a covering map onto some totally geodesic

submanifold NM � N such thatV D Tp NM is of Types (tr2,1) or (ex3).
• Casek � l with k � 2. Let us writeu D u1 C iu2 with u1, u2 2 <. Then we
have u1 ? W1 and u2 ? W1 � W2. Further, if u1 D 0, or if u2 D 0 and u1 ? W2,
then W � U is curvature invariant of Types (trk,lC1) or (trkC1,l ) defined by the triples
(<, W1, W2 � Ru2) or (<, W1 � Ru1, W2), respectively. Otherwise, we claim that the
linear space�(kV )jV \so(V)

�

is trivial: let a 2 R and B 2 so(<) be given and suppose
that A WD aJN

� B satisfiesA(V ) � V and AjV 2 so(V)
�

. Then there exists a linear
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form � on W1 such that

(81) 8x1 2 W1 W Ax1 D aix1C Bx1 D �(x1)(u1C iu2).

Comparing the imaginary parts of the last equation, we obtain that ax1 D �(x1)u2 for
all x1 2 W1, hencea D 0 (sincek � 2). Thus there exists� W W2! R such that

(82) 8x2 2 W2 W iBx2 D �(x2)(u1C iu2).

Comparing the real parts of the previous equation and recalling that u1 ¤ 0, we obtain
that � D 0, i.e. BjW2 D 0. Suppose now, by contradiction, that there existsx1 2 W1

with Bx1 ¤ 0. Then�(x1) ¤ 0 and henceu2 D 0 by means of (81). Further,

(83) 0D hx1, Bx2i D �hBx1, x2i
(81)
D ��(x1)hu1, x2i

for all x2 2 W2. Since�(x1) ¤ 0, we obtain thatu1 belongs to the orthogonal comple-
ment of W2, i.e. we have shown thatu2 D 0 and u1 ? W2, which is a different case.
This proves our claim.

Assume that neither the caseu1 D 0 nor the caseu2 D 0 andu1 ? W2 holds but,
by contradiction, that there exists an integrable symmetric bilinear maphW W�W! U
whose image spansU . Since we have already shown that�(kV )jV \ so(V)

�

D {0},
Corollary 4 implies thath satisfies (30). Note, the Lie algebrah defined in Corollary 4
is given byso(W1)� so(W2) where the first summand acts irreducibly and non-trivially
on W1 (sincek � 2) and trivially onU . Hence Homh(W, U ) � Hom

R

(iW2, U ) anyway.
If l ¤ 1, then Homh(W, U ) is trivial, thus h D 0, a contradiction. This finishes the
proof unlessl D 1. Further, by means of (30), we obtain that

(84) h(W1 � iW2) D h(iW2 �W1) D h(W1 �W1) D {0},

In casel D 1, using the previous equation, there existsx2 2 W2 such that

(85) h(ix2, ix2) D u.

Therefore, by means of (5) and (85), we have for allx1 2 W1

RN
u,x1

�

�

V D
�

hix2, RN
ix2,x1

�

�

V

�

� RN
ix2,h(ix2,x1)

�

�

V D 0� 0

according to (84) and sinceRN
x1,ix2
D 0. Hence,

0D RN
u,x1

x1
(39)
D (hu2, x1iJ

N
� u1 ^ x1)x1

u2?W1
D �(u1 ^ x1)x1 D u1,

for any unit vectorx1 2 W1, thus u1 D 0, a contradiction.
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Type (c0k, c0l). Let W and U be of Types (c0k) and (c0l ) defined by the data

(<, W0, I 0) and (<�, U 0, J 0) with < D <�. If U 0

D W0 and J 0 D �I 0, then U D W
and V D W �W D CW0 is curvature invariant of Type (c2k). If W0

? U 0, then V is
curvature invariant of Type (c0kCl ) defined by (<, W0

�U 0, I 0 � J 0).

Type (c01,tr 1). Let W andU be of Types (c01) and (tr1), respectively, withU �W.
The action ofhW on W is given byso(W) and henceW is an irreduciblehW-module
(see Lemma 5 (a)). Therefore, if (W, U ) is integrable, then the linear spaceW�U is
curvature invariant according to Proposition 4.

Type (ck, c0l). Let W and U be of Types (ck) and (c0l ) determined by the data
(<, W0) and (<�,U 0, I 0) respectively. Suppose further that< D <� and W0 ? U 0 holds.
We claim that�(kV )jV \ so(V)

�

D {0}: let a 2 R and B 2 so(<) be given, setA WD
aJN
� B and suppose thatA(V) � V and AjV 2 so(V)

�

. If x is a unit vector ofW0,
then x, ix 2 W and thus the conditionA(W) ? W implies

0D hAx, ixi D ahix, ixi,

i.e. a D 0. HenceA 2 so(<) and Ax belongs toU \< D {0}, i.e. Aix D i AxD 0 for
all x 2 W0. Therefore,AjV D 0 because of (27).

Further, recall thathW and hU are given byRJN
C so(W0) and R(I 0 C l J N) �

su(U 0, I 0). Hence I 0 can be written asA C B with A 2 hW and B 2 hU . Thus I 0

belongs to the Lie algebrah defined in Corollary 4. Since the action ofI 0 is trivial
on W whereasI 0 is an isomorphism onU , we see that the linear spaces Homh(W, U )
and Homh(U, W) both are trivial. Therefore, Corollary 4 implies that neither (W, U )
nor (U, W) is integrable.

Type (tr j,k, tr 0l). Let (W, U ) be an integrable orthogonal curvature invariant pair
with W and U of Types (trj ,k) and (tr0l ) determined by the data (<, W1, W2) and
(<�, U 0, I 0, U 0

0), respectively. By means of Corollary 13, we can assume that< D <

�

and thatW1 � W2 is contained in the orthogonal complement ofU 0 in <. We claim
that the linear space�(kV )jV \ so(V)

�

is trivial: let a 2 R and B 2 so(<) be given, set
A WD aJN

� B and suppose thatA(V) � V and AjV 2 so(V)
�

holds. If x1 2 W1, then
aix1 is the imaginary part ofAx1. Since Ax1 2 U , we see thatAx1 D a(I 0x1 C ix1).
In particular, aI 0x1 2 U 0

0 � U 0. BecauseW1 \ U 0

D {0}, this implies a D 0, i.e. A
vanishes onW1. In the same way, we can show thatA vanishes on iW2, too. Hence,
we see thatAjV D 0, since (27) is a linear isomorphism. This establishes our claim.

Further, according to Lemma 6 (a), the action ofhU on U is given byso(U ) and
hU acts trivially on (CU 0)?. Thus, Homh(W, U ) D {0}. Therefore, Corollary 4 implies
that neither (W, U ) nor (U, W) is integrable.

Type (tr 0k, tr 0l). Let W and U be of Types (tr0k) and (tr0l ) defined by the data
(<, W0, I 0, W0

0) and (<�, U 0, J 0, U 0

0), respectively. We can assume that< D <�.
If W0 is orthogonal toU 0, thenW�U is curvature invariant of Type (tr0kCl ) defined

by (<, W0

�U 0, I 0 � J 0, W0

0�U 0

0). If U D iW, then W�U is curvature invariant of
Type (c0k) defined by (<, W0, I 0).
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Suppose thatk D l � 3 and U D e�i�W for some� 2 R. We claim that neither
(W, U ) nor (U, W) is integrable. SinceW D e�i�

NU , it suffices to prove the first as-
sertion. In order to explain the idea of our proof, first consider the case� D 0. Then,
the linear spaceV is curvature invariant of Type (trk,k) defined by (<, W0

0, I 0(W0

0)) and
the totally geodesic submanifold expN(V) is the Riemannian product Sk

� Sk through
p D (o, o) and the linear spaceW is given by {(x, x) j x 2 ToSk}. If we assume, by
contradiction, that (W, U ) is integrable, then the corresponding complete parallel sub-
manifold throughp would be contained in Sk � Sk via reduction of the codimension
and, moreover, it would be even a symmetric submanifold of Sk

� Sk according to
Corollary 3. However, this is not possible, since a symmetric submanifoldM � Sk

�Sk

through the pointpD (o, o) with TpM D {(x, x) j x 2 ToSk} is totally geodesic accord-
ing to Theorem 4. In the general case, the linear spaceV is not curvature invariant,
but a similar idea shows that (W, U ) is not integrable, as follows.

DEFINITION 6. Let A 2 so(W0) be given. We say thatA is real, holomorphic or
anti-holomorphic if A(W0

0) � W0

0, A Æ I 0 D I 0 Æ A or A Æ I 0 D �I 0 Æ A, respectively.

Consider the linear mapJ
�

on W0

� iW0 which is given onW0

0� i I 0(W0

0) by J
�

(x�
i I 0x) WD e�i� (xC i I 0x) and J

�

(xC i I 0x) WD �ei� (x � i I 0x) for all x 2 W0

0 and which is
extended toW0

� iW0 by C-linearity (note,W0

0� i I 0(W0

0) is a real form ofW0

� iW0).

Lemma 9. Let W be of Type(tr0k) defined by the data(<, W0, I 0, W0

0). Set UWD

e�i�W and V WD W�U.
(a) J

�

is a Hermitian structure on W0 � iW0 such that W gets mapped onto U and
vice versa. In particular, V is a complex subspace of(W0

� iW0, J
�

) and J
�

jV belongs
to so(V)

�

.
(b) Let A2 so(W0) and suppose that A is real. As usual, we extend both A and I0

to complex linear maps on W0 � iW0 via complexification. If A is holomorphic, then
A commutes with J

�

for all � 2 R. If A is anti-holomorphic, then exp(� I 0) Æ A anti-
commutes with J

�

for all � 2 R.
(c) Let hW be the Lie algebra described in(51). Thenh WD hWjV defines a subalgebra
of so(V)

C

. Moreover, the Lie algebrah acts irreducibly(in case k� 3 even overC)
on both W and U.
(d) Further, let Z(h) denote the centralizer ofh in so(V), see (22). If k � 3, then
Z(h) \ so(V)

�

D RJ
�

jV .

Proof. Let{e1, : : : , ek} be an orthonormal basis ofW0

0 and setxi WD (1=
p

2)(ei �

i I 0ei ). Then {x1, : : : , xk, Nx1, : : : , Nxk} is a Hermitian basis ofW0

� iW0. We define a
unitary mapJ on W0

� iW0 via J(xi ) WD Nxi and J( Nxi ) WD �xi . Further, setI WD I 0 and
K WD I Æ J. Then I 2

D J2
D � Id and I Æ J D �J Æ I by means of (46), i.e. the usual
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quaternionic relations hold. Furthermore,K x D �i Nx for all x 2 W0

� iW0. Note that

(86) J
�

D exp(� I ) Æ J D J Æ exp(�� I ) D exp

�

�

2
I

�

Æ J Æ exp

�

�

�

2
I

�

.

It follows that J
�

defines another Hermitian structure onW0

� iW0. SinceW D {x1, : : : ,
xk}R and W D {Nx1, : : : , Nxk}R, we see from (46) thatJ

�

(W)D e�i�W and J
�

(W)D ei�W,
i.e. J

�

(V) D V and J
�

2 so(V)
�

. This proves the first part of the lemma.
Moreover, if A 2 so(W0) is holomorphic or anti-holomorphic, thenA commutes or

anti-commutes withI on W0

� iW0, respectively. If A is additionally real, then the
same is true forJ instead of I : in fact, sinceA is real, we haveA( Nx) D Ax for all
x 2 W0, henceA Æ K D K Æ A on W0

� iW0 and thus

(87) A Æ J D A Æ K Æ I D K Æ A Æ I D �K Æ I Æ AD �J Æ A,

where the sign� is chosen according to whetherA is holomorphic (C) or anti-
holomorphic (�). Our claim follows.

Therefore, if A is real and holomorphic, thenA commutes with bothJ and I ,
hence A commutes also withJ

�

according to (86). Suppose thatA 2 so(W0) is real
and anti-holomorphic. Using (86) and (87) (with the negative sign), we have

J
�

Æ exp(� I ) Æ A
(86)
D J Æ exp(�� I ) Æ exp(� I ) Æ AD J Æ A

D �A Æ J D �A Æ exp(�� I ) Æ J
�

D � exp(� I ) Æ A Æ J
�

.

Thus, exp(� I 0)ÆA anti-commutes withJ
�

for any real and anti-holomorphicA 2 so(W0).
This gives (b).

For (c): from (51) we immediately obtain thath acts viaso(W) and so(U ) on W
and U , respectively. The result follows.

For (d): recall thatA is real and holomorphic onW0 for each A 2 hW as a con-
sequence of (51). Furthermore, recall thatJ

�

jV 2 so(V)
�

as was shown in part (a).
Thus J

�

jV 2 Z(h) \ so(V)
�

according to part (b). Moreover, sincek � 3, the Lie al-
gebrah acts irreducibly on bothW and U even overC by means of part (c), hence
dim(Homh(W, U )) � 1. Therefore, because of (28) for every subalgebrah � so(V)

C

,
the linear spaceZ(h) \ so(V)

�

is spanned byJ
�

.

Lemma 10. Let W be of Type(tr0k) defined by the data(<, W0, I 0, W0

0). Set UWD

e�i�W for some� 2 R and V WD W�U.
(a) The linear map

(88)
F W W0

0�W0

0! V ,

(x, y) 7!
1

2
[x � i I 0x C J

�

(x � i I 0x)C y� i I 0y � J
�

(y � i I 0y)]
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is an isometry such that the linear spaces{(x, x) j x 2 W0

0} and {(x,�x) j x 2 W0

0} get
identified with W and U, respectively.
(b) By means of(88), the direct sum Lie algebraso(W0

0)� so(W0

0) gets identified with
the Lie algebra�(kV )jV such that(A, A) 2 �(kV )jV \ so(V)

C

and (A,�A) 2 �(kV )jV \
so(V)

�

for every A2 so(W0

0).
(c) The complex structure J

�

jV commutes with every element of�(kV )jV \ so(V)
C

whereas it anti-commutes with every element of�(kV )jV \ so(V)
�

.

Proof. For (a): we haveF(x, x) D x � i I 0x 2 W and F(x, �x) D J
�

(x � i I 0x) D
e�i� (xC i I 0x) 2 e�i�W D U . Since dim(W) D dim(U ) D dim(W0

0), we conclude thatF
is actually a linear isometry ontoV with the properties described above.

For (b): given A 2 so(W0

0), we associate therewith linear mapsOA and QA on W0

defined by OA(x C I 0x) WD Ax C I 0Ax and QA(x C I 0x) WD Ax � I 0Ax for every x 2
W0

0. By definition, both OA and QA are real, further, OA is holomorphic whereasQA is
anti-holomorphic. Furthermore, we consider the second splitting V D V1 � V2 with
V1 D {x � i I 0x C J

�

(x � i I 0x) j x 2 W0

0} and V2 D {x � i I 0x � J
�

(x � i I 0x) j x 2
W0

0}. Note that bothV1 and V2 are naturally isomorphic toW0

0. Hence, this splitting
induces a monomorphism of Lie algebrasso(W0

0) � so(W0

0) ,! so(V). We claim that
this monomorphism is explicitly given by

(89) (A, B) 7!
1

2
[(2AC B)C exp(� I 0) Æ (AA� B)] W

for each A 2 so(W0

0) and all x 2 W0

0 we have

1

2
( OAC exp(� I 0) Æ QA)(x � i I 0x C J

�

(x � i I 0x))

D

1

2
[( Ax� i I 0Ax)C e�i� (AxC i I 0Ax)C e�i� (AxC i I 0Ax)C ei�e�i� (Ax� i I 0Ax)]

D (Ax� i I 0Ax)C e�i� (AxC i I 0Ax),

1

2
( OAC exp(� I 0) Æ QA)(x � i I 0x � J

�

(x � i I 0x)

D

1

2
[( Ax� i I 0Ax) � e�i� (AxC i I 0Ax)C e�i� (AxC i I 0Ax) � ei�e�i� (Ax� i I 0Ax)]

D 0.

This establishes our claim in caseB D 0. For AD 0, a similar calculation works.
Further, we claim that in this wayso(W0

0)� so(W0

0) � �(kV )jV such that (A, A) �
OA 2 �(kV )jV \ so(V)

C

and (A, �A) � exp(� I 0) Æ QA 2 �(kV )jV \ so(V)
�

.
For “�”: we have OA(x�i I 0x)D Ax�i I 0Ax for all x 2W0

0 and A 2 so(W0

0), thus OA

mapsW to W andU to U . Further, OA 2 so(<). This shows thatOA 2 �(kV )jV\so(V)
C

.
Furthermore, QA(x� i I 0x) D Ax� i I 0Ax and I 0(x� i I 0x) D �i(x� i I 0x) for all x 2W0

0,
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thus exp(� I 0) Æ QA mapsW to U and vice versa. Finally, note that exp(� I 0) Æ QA is in
fact skew-symmetric since

(exp(� I 0) Æ QA)� D QA�

Æ exp(� I 0)� D � QA Æ exp(�� I 0) D � exp(� I 0) Æ QA.

Hence exp(� I 0) Æ QA 2 �(kV )jV \ so(V)
�

.
For “�”: conversely, let someA 2 �(kV )jV be given. We distinguish the cases

A 2 so(V)
C

and A 2 so(V)
�

. Anyway, we haveA D aJN
jV C BjV with B 2 so(W0)

and a 2 R. Set B0

WD aI 0jV C BjV . Note that I 0 D JN on WC iW and I 0 D �JN on
WC iW, hence

AD B0 on WC iW,(90)

AD B0

C 2aJN on both W and U .(91)

If A 2 so(V)
C

, then A(W) � W and hence we conclude from (90) thatB0 is real
and holomorphic; thusB0

D C with C WD B0

jW0

0
. In particular, B0(W) � W and hence

B0(U ) � U . Thus a D 0 because of (91) and sinceJN(U ) � U? where U? denotes
the orthogonal complement ofU in T .

If A 2 so(V)
�

, then A mapsW to U and vice versa, henceB0(W) � U because
of (90), thusei� B0(W)�W which shows that the linear endomorphismC WD exp(�� I 0)Æ
B0 is real and anti-holomorphic onW0. HenceB0 is anti-holomorphic, too. Therefore,
also exp(�� I 0)(B0(W))�W, thusB0(U )�W. We conclude thataD 0 according to (91)
(since JN(U ) � WC iW � W?). This establishes our claim. Part (b) follows.

For (c), recall that OA commutes withJ
�

jV whereas QA anti-commutes withJ
�

jV

according to Lemma 9 for everyA 2 so(W0

0). Hence, the result is a consequence of
Part (b) and (89).

Corollary 20. Suppose that W is of Type(tr0k) with k � 3. The curvature in-

variant pair (W, e�i�W) is not integrable.

Proof. SetU WD e�i�W and V WDW�U . Suppose, by contradiction, that (W,U )
is integrable. Letg be the subalgebra of�(kV )jV described in Theorem 3 (a). Recall
that g is a Z2-graded Lie algebra such that the Lie algebrah WD hWjV considered in
Lemma 9 (c) is contained ing

C

according to Theorem 3 (b). Recall further that there
exist Ax 2 g

�

and Bx 2 Z(g) \ so(V)
�

such thathx D Ax C Bx for every x 2 W
according to Theorem 3 (c). First, we claim that for everyx 2 W there exists some
b 2 R such thatBx D bJ

�

jV : we haveZ(g) � Z(h) (sinceh � g), thus Bx 2 RJ
�

jV by
means of Lemma 9 (d). This gives our first claim.

Next, we claim thatbD 0: by definition, we haveRN
y,zjV 2 h for all y, z 2 W and

we also haveAx 2 g
�

. Furthermore,h � g
C

, see above. Therefore, following the rules
for Z2-graded Lie algebras, we have [Ax, RN

y,zjV ] 2 g
�

. Thus, on the one hand, since

g
�

� �(kV )jV \so(V)
�

, the complex structureJ
�

anti-commutes with [Ax, RN
y,zjV ] on V
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for all x, y, z 2 W according to Lemma 10 (c). Assume, by contradiction, thatb¤ 0.
Then, on the other hand,J

�

jV D (1=b)Bx would also commute with [Ax, RN
y,zjV ] by the

very definition of Bx (recall that [Ax, RN
y,zjV ] 2 g). Moreover, sinceJ

�

is a complex

structure, this is not possible unless [Ax, RN
y,zjV ] D 0. But then also

[hx, RN
y,zjV ] D [ Ax, RN

y,zjV ] C [Bx, RN
y,zjV ] D 0C 0.

In other words, since the Lie algebrah is spanned by the endomorphisms ofV which
are given byRN

y,zjV with y, z 2 W, we obtain that

8x 2 W W hx 2 Z(h) \ so(V)
�

D RJ
�

jV

where the latter equality follows from Lemma 9 (d) again. Thus the rank of the linear
map h W W! so(V), x 7! hx is zero or one. In particular, since dim(W) > 1, it is not
possible thath is injective. Therefore, becausehW acts irreducibly onW (see Lemma 9
(c)) and since Kern(h) is a non-trivial proper subspace ofW which is invariant under
the action ofhW on W according to (18), (19) and Proposition 2, we necessarily have
hx D 0 for all x 2 W, a contradiction. Our second claim follows.

Thus Bx D 0, which implies thathx 2 �(kV )jV for all x 2 W. Let us choose some
o 2 Sk, a linear isometryf W ToSk

! W0

0 and consider the Riemannian productQN WD

Sk
� Sk whose curvature tensor will be denoted byQR. On the analogy of (88),

F W T(o,o) QN ! T ,

(x, y) 7!
1

2
[ f (x)C f (y) � i I 0( f (x)C f (y))C J

�

( f (x) � f (y) � i I 0( f (x) � f (y)))]

is an isometry ontoV such that{F�1
Æ AjV Æ F j A 2 �(kV )} is the direct sum Lie

algebraso(ToSk)�so(ToSk). Note, the latter is the imageQ�(Qk) of the linearized isotropy
representation ofQN. Put QW WD F�1(W), Qh WD F�1

ÆhÆ F � F and QU WD {Qh(x, y) j x, y 2
QW}

R

. Then QU D F�1(U ) and henceT(o,o) QN D QW � QU holds. Furthermore, we claim

that ( QW, Qh) is an integrable 2-jet inT(o,o) QN: Let �W Sk
p

2
! Sk

�Sk, p 7! (p=kpk, p=kpk).

Then T(o,o)�
�

Sk
p

2

�

D {(x, x) j x 2 ToSk}, henceF
�

T(o,o)�
�

Sk
p

2

��

D W, i.e. T(o,o)�
�

Sk
p

2

�

D

QW. Further, on the one hand, we have

RN(F(x, x), F(y, y), F(z, z)) D RN( f (x) � i I 0 f (x), f (y) � i I 0 f (y), f (z) � i I 0 f (z))

D � f (x) ^ f (y) f (z)C i( I 0 f (x) ^ I 0 f (y))I 0 f (z)

for all x, y, z 2 QW according to Lemma 6 (a). On the other hand,

F(x ^ yz, x ^ yz) D f (x) ^ f (y) f (z) � i I 0( f (x) ^ f (y) f (z))

D f (x) ^ f (y) f (z) � i I 0 f (x) ^ I 0 f (y)I 0 f (z).
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This shows thatF Æ QRN
(x,x),(y,y)

�

�

QW D RN
F(x,x),F(y,y) Æ F j

QW. Furthermore, (14), (20) and

Lemma 10 (b) show thatQRN
(x,x),(y,y) and F�1

Æ RN
F(x,x),F(y,y) Æ F both belong to Q�(Qk)

C

,

i.e. there existA, B 2 so(ToSk) with QRN
(x,x),(y,y) D A � A and F�1

Æ RN
F(x,x),F(y,y) Æ

F D B � B. Thus, since the direct sum endomorphismA � A is uniquely deter-
mined by its restriction toQW for every A 2 so(ToSk), we conclude thatF Æ QRN

(x,x),(y,y) D

RN
F(x,x),F(y,y)ÆF . Therefore, QW is curvature invariant andQh is semi-parallel in QN. More-

over, sincehx 2 �(kV )jV for all x 2 W, we haveQhx 2 Q�(Qk) for all x 2 QW which shows
that Equation 5 for (QW, Qh) is implicitly given for all k. Hence, by means of Theorem 2,
we obtain that (QW, Qh) is an integrable 2-jet inQN.

Thus, there exists a complete parallel submanifoldQM through (o, o) whose 2-jet
is given by (QW, Qh). The fact thatT(o,o) QN D QW � QU holds implies that QM is 1-full in
QN, i.e. extrinsically symmetric according to Corollary 3. Further, since QM is tangent

to �
�

Sk
p

2

�

at (o, o), there do not exist submanifoldsQM1 � Sk and QM2 � Sk such that

QM D QM1 � QM2. Therefore, by means of Theorem 4,QM is totally geodesic, i.e.h D 0,
a contradiction.

Suppose thatW is of Type (tr02) defined by the data (<, W0, I 0, W0

0). Let {e1, e2}

be an orthonormal basis ofW0

0 and QI be defined according to (53). Further, letQJ 2

SU(W0, QI )\so(W0) be given and setU WD QJ(W). We will show that neither (W,U ) nor
(U, W) is integrable unlessV WD W�U is curvature invariant. First, we claim that it
suffices to prove the first assertion: recall that hereU is also of Type (tr02), defined by

the triple (<, U 0, U 0

0, J 0) with U 0

WD W0, J 0 WD QJ Æ I 0 Æ QJ�1 and U 0

0 WD
QJ(W0

0). Further,

QI D QJ Æ QI Æ QJ�1 (53)
D

QJe1 ^ QJe2C QJ I 0e1 ^ QJ I 0e2 D QJe1 ^ QJe2C J 0 QJe1 ^ J 0 QJe2.

Hence, since{ QJe1, QJe2} is an orthonormal basis ofU 0

0, the Hermitian structureQI may

also be defined on the analogy of (53) via the triple (U 0

0, { QJe1, QJe2}, J 0). Furthermore,

we haveU D QJ(W), hence alsoW D QJ(U ) (since QJ2
D � Id). This proves the claim.

Lemma 11. Suppose that W is of Type(tr02) defined by the data(<, W0, I 0, W0

0).

Let {e1,e2} be an orthonormal basis of W00 and QI be defined according to(53). Further,

let QJ 2 SU(W0, QI )\ so(W0) be given, set U WD QJ(W) and V WD W�U. Then we have
�(kV )jV \ so(V)

�

D R

QJjV unless QJ D �I 0.

Proof. First, we claim thatQJ 2 �(kV ) and QJjV 2 �(kV )jV \ so(V)
�

: we have QJ 2
so(W0) � so(<) � �(k). Further, QJ(W) D U and QJ(U ) D W, hence QJ(V) D V and
QJjV 2 so(V)

�

. This gives our claim.
Conversely, leta 2 R and B 2 so(<) be given such thatA WD aJN

C B satisfies
A(V) � V and AjV 2 so(V)

�

. We aim to show thatA is a multiple of QJjV unless
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QJ D �I 0. With QA WD aI 0 C BjW0 , we have QA 2 so(<) and AjW D QAjW according to
(46), hence

(92) QA(x � i I 0x) 2 { QJ y� i QJ y j y 2 W0

0}

for all x 2 W0. Thus, using (92) and passing to real and imaginary parts, weconclude
that QAjW0

2 so(W0) such that QA(W0

0) � QJ(W0

0). In particular, the endomorphismC WD
QJ Æ QA on W0 is real and holomorphic (see Definition 6). Further,QA�

D �

QA which
implies that

(93) QJ Æ C D C�

Æ

QJ.

We claim thatC D cId for somec 2 R or QJ D�I 0: for this, let RH denote the algebra
of real and holomorphic maps onW0. Note, QI is real and holomorphic, hence there is
the splitting RHD RH

C

� RH
�

with

RH
C

WD {A 2 RH j A Æ QI D QI Æ A},

RH
�

WD {A 2 RH j A Æ QI D � QI Æ A}.

Then RH
C

D {Id, QI }
R

and RH
�

D {� , � Æ QI }
R

, where � denotes the conjugation of
(W0, QI ) with respect to the real form{e1, I 0e1}R. Further, consider the involution on
End(W0) defined byC 7! � QJ Æ C�

Æ

QJ. This map preserves both RH
C

and RH
�

and
its fixed points in RH are the solutions to (93). It follows that a solution to (93) with
C 2 RH decomposes asC D C

C

C C
�

such thatC
�

2 RH
�

and C
�

is a solution
to (93), too.

Then we haveQJ Æ QI D QI Æ QJ D � QI � Æ QJ since QI is skew-symmetric and commutes
with QJ. Hence a solution to (93) withC 2 RH

C

is given only if C is a multiple of Id.
If C 2 RH

�

is a solution to (93), thenC Æ QI is a solution to this equation, too, since

QJ Æ C Æ QI D C�

Æ

QJ Æ QI D C�

Æ

QI Æ QJ

D ( QI � Æ C)� Æ QJ D (� QI Æ C)� Æ QJ D (C Æ QI )� Æ QJ.

Thus, since RH
�

is invariant under right multiplication byQI , the intersection of the
solution space to (93) with RH

�

is either trivial or all of RH
�

. Hence, to finish the
proof of our claim, it suffices to show thatC WD � is not a solution to (93) unless
QJ D �I 0: for this, recall that there existt 2 R andw 2 C with t2

Cjwj

2
D 1 such that

the matrix of QJ with respect to the Hermitian basis{e1, I 0e1} of (W0, QI ) is given by
Equations (59), (60). Clearly,� D ��1 and � � D � . Hence, if (93) holds forC WD � ,
then � Æ QJ Æ � D QJ, i.e.

�

it � Nw

w �it

�

D

�

�it �w
Nw it

�

.(94)
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Thus t D 0 andw D �1, i.e. QJ D �I 0.
This proves our claim. Therefore, ifQJ ¤ �I 0, then QA D �c QJ. Hence AjV D

�c QJjVCa(JN
jV � I 0jV ). It remains to show thata(JN

jV � I 0jV )D 0: we haveJN
jW D

I 0jW and a(JN
jV � I 0jV ) D AjV C c QJjV 2 so(V)

�

. Sinceso(V)
�

! Hom(W, U ), A 7!
AjW is an isomorphism,a(JN

jV � I 0jV ) D 0. This finishes our proof.

Corollary 21. In the situation ofLemma 11,the curvature invariant pair(W,U )
is not integrable unless V is a curvature invariant subspaceof T .

Proof. Note, if QJ D �I 0, then V WD W � U is curvature invariant of Type (c02)

defined by (<, W0, I 0). Otherwise, if QJ ¤ �I 0, then we will show that (W, U ) is not
integrable. Assume, by contradiction, that (W, U ) is integrable but QJ ¤ �I 0. Thus,
there exists an integrable symmetric bilinear maph W W � W ! U such thatU D
{h(x, y) j x, y 2 W}

R

. Further, let{I , J, K } be a quaternionic basis ofsu(V, QI ) de-
fined as follows: setI jW WD QI jW, I jU WD � QI jU , J WD QJjV and K WD I Æ J. Since QI
commutes with QJ, we have I Æ J D �J Æ I and then the usual quaternionic relations
hold, i.e. I 2

D J2
D K 2

D � Id, J Æ K D �K Æ J D I and K Æ I D �I Æ K D J. We
claim thathx 2 {J, K }

R

for all x 2 W: note, the set{ QI , I , J, K } is a basis ofu(V, QI )
and I , QI 2 so(V)

C

whereasJ, K 2 so(V)
�

. Hence

(95) u(V, QI ) \ so(V)
�

D {J, K }
R

.

Moreover, recall thathW D R
QI according to Lemma 6. Therefore, by virtue of The-

orem 3, there existAx 2 �(kV )jV \ so(V)
�

and Bx 2 u(V, QI )\ so(V)
�

with hx D AxC

Bx. Furthermore, sinceQJ ¤ �I 0, we have�(kV )jV \ so(V)
�

D R

QJ as a consequence
of Lemma 11. Thus bothAx and Bx belong tou(V, QI ), hencehx 2 u(V, QI ) \ so(V)

�

for all x 2 W, too. The claim follows by means of (95).
Further,hW acts onW via so(W) which implies thath W W! so(V)

�

is injective
according to (18), (19) and Proposition 2. Hence there exists somex 2 W with hx D

K . Furthermore, sety WD e1 � i I 0e1, z WD e2 � i I 0e2 and recall thatRN
y,z D �e1 ^ e2 �

I 0e1 ^ I 0e2 D � QI . Therefore, withx, y, z chosen as above, Equation (5) withk D 1
means that

(96) [K , QI ] D �RN(K y ^ zC y ^ K z)jV .

Since K belongs tou(V, QI ), l.h.s. of the last Equation vanishes. In order to evaluate
r.h.s. of (96), note thatzD QI y, hence

K y D I J y D �J I y D � QI QJ yD � QJ QI y D � QJ z,

thus zD J K yD �K J y and K zD J yD QJ y, which gives

K y ^ zC y ^ K zD z^ QJzC y ^ QJ y.
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Let c 2 R and A 2 so(<) be given such thatRN(K y^ zC y^ K z) D cJN
C A. Using

Equation (39), the real partA is given as follows,

AD QJe1 ^ e1C QJ I 0e1 ^ I 0e1C QJe2 ^ e2C QJ I 0e2 ^ I 0e2 D �2 QJ,

(the last equality uses that{e1, e2, I 0e1, I 0e2} is an orthonormal basis ofW0 and that
QJ 2 so(W0)). Therefore, since r.h.s. of (96) vanishes, we conclude that 2 QJ D cJN on V .

HencecD�2 (since both QJ and JN
j

CW0 are isometries ofCW0), i.e. QJ D�JN on V .
In particular,�JN

C

QJ vanishes onW. With B WD �I 0 C QJ and a WD �1, Lemma 6
(c) in combination with (46) implies thatB vanishes identically onW0. This shows
that QJ D �I 0, a contradiction.

Type (tr 0k, tr 1). Let (W, U ) be an integrable orthogonal curvature invariant pair
of Type (tr0k, tr1). Since the action ofhW on W is given byso(W) (see Lemma 6 (a)),
Proposition 4 shows that here the linear spaceW�U is curvature invariant.

Type (ex3, tr 1). Let W and U be of Types (ex3) and (tr1) defined by the data
(<,{e1, e2}) and a unit vectoru 2 T , respectively. ThenuD �(1=

p

2)(e2� ie1) and the
linear spaceW�U is curvature invariant of Type (c2) defined by the data (<,{e1,e2}R).
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