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Abstract
Given a unicuspidal rational curveC � P

2 with singular pointP, we study the
unique pencil3C on P2 satisfying C 2 3C and Bs(3C) D {P}. We show that the
general member of3C is a rational curve if and only ifQ�(C) � 0, where Q�(C) de-
notes the self-intersection number ofC after the minimal resolution of singularities.
We also show that ifQ�(C) � 0, then3C has a dicritical of degree 1. Note that all
currently known unicuspidal rational curvesC � P

2 satisfy Q�(C) � 0.

Introduction

A unicuspidal rational curveis a pair (C, P) whereC is a curve andP 2 C sat-
isfies C n {P} � A1. We call P the distinguished point ofC.

Let C � P2 be a unicuspidal rational curve with distinguished pointP. In Sec-
tion 1 we define an infinite family of linear systems onP2 determined by (C, P) in
a natural way. We are particularly interested in two of theselinear systems, denoted
3C and NC, where3C is a pencil andNC is a net. In fact3C has the following
characterization:
(1) 3C is the unique pencil onP2 satisfying C2 3C and Bs(3C) D {P}

where Bs(3C) denotes the base locus of3C on P2. The existence of this pencil was
pointed out to us by A. Campillo and I. Luengo in a friendly conversation. It appeared
to us that it would be interesting to understandhow the properties of C are related to
those of3C; this is the underlying theme of the present paper.

Given a curveC � P2, let QP2
! P

2 be the minimal resolution of singularities ofC
(this is the “short” resolution, not the “embedded” resolution; see 3.2); letQC � QP2 be
the strict transform ofC, and let Q�(C) denote the self-intersection number ofQC on QP2.
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For a unicuspidal rational curveC � P2, we show (cf. Theorems 4.1, 4.6 and 6.2):
(2) The general member of3C is a rational curve if and only ifQ�(C) � 0.
(3) The general member of NC is a rational curve if and only ifQ�(C) > 0.
(4) If Q�(C) � 0 then3C has either1 or 2 dicriticals, and at least one of them has
degree1.

In view of these results, it is worth noting thatall currently known unicuspidal
rational curves C� P2 satisfy Q�(C) � 0. See Remark 4.3 for details.

The proofs of the above statements (2) and (3) make use of results from [3], where
we solved the following problem: given a curveC on a rational nonsingular projective
surfaceS, find all linear systemsL on S satisfyingC 2 L, dimL � 1, and the general
member ofL is a rational curve.

In statement (4) we claim, in particular, thatif Q�(C) � 0 then3C has a dicritical
of degree1 (see 6.1 for definitions). It seems that the existence of such a dicritical is
not an easy fact. Indeed, the proof of this claim takes more than half of the present
paper (all of Sections 5 and 6). Note, however, that the graphtheoretic tool developed
in Section 5 is susceptible of being useful in other settings.

For a survey of open problems related to cuspidal rational plane curves, the reader
is referred to [6].

CONVENTIONS. All algebraic varieties are over an algebraically closed field k
of characteristic zero. Varieties (so in particular curves) are irreducible and reduced. A
divisor D of a surface isreducedif D D

Pn
iD1 Ci whereC1, : : : , Cn are distinct curves

(n � 0). We write eQ(C) for the multiplicity of a pointQ on a curveC.

1. Definition of �C and NC

A unicuspidal rational curveis a pair (C, P) whereC is a curve andP is a point
of C such thatC n {P} � A1. We call P the distinguished point, and we consider that
the sentence “C is a unicuspical rational curve with distinguished pointP” is equiva-
lent to “(C, P) is a unicuspical rational curve”. We allow ourselves to speak of a uni-
cuspidal rational curveC without mentioningP, but keep in mind thatC always comes
equipped with a choice of a pointP (that choice being forced whenC 6� P1).

The aim of this section is to define, given a unicuspidal rational curveC � P2, an
infinite family of linear systemsXl , j (C) on P2. This is done in Proposition 1.2. We
are particularly interested in two of these linear systems,the pencil3C and the net
NC, defined in Definition 1.3, Corollary 1.4 and Definition 1.5.

NOTATIONS 1.1. Let C � P2 be a unicuspical rational curve with distinguished
point P. If D is an effective divisor inP2, let i P(C, D) denote the local intersection
number ofC and D at P (which is defined to beC1 if C is a component ofD).
Let 0 D 0(C,P) � N denote the semigroup of (C, P), i.e., the set of local intersection
numbersi P(C, D) where D is an effective divisor such thatC 6� supp(D). We also use
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the standard notation for intervals, [a, b] D {x 2 R j a � x � b}.

Proposition 1.2. Let C � P2 be a unicuspidal rational curve of degree d and
with distinguished point P. For each pair(l , j ) 2 N2 such that l> 0 and j � ld, let
Xl , j (C) be the set of effective divisors D ofP2 such thatdeg(D)D l and iP(C, D) � j .
(a) Xl , j (C) is a linear system onP2 for all l , j , and dim Xl , j (C) � 1 whenever l� d.
(b) For each j2 N such that j� d2, the dimension of the linear system Xd, j (C) is
equal to the cardinality of the set[ j ,d2]\0, where0 D 0(C,P). In particular, for each
integer j such that(d � 1)(d � 2)� j � d2, dim Xd, j (C) D d2

� j C 1. Consequently,
Xd,d2(C) is a pencil and Xd,d2

�1(C) is a net.
For each l2 N n {0}, define the abbreviation Xl (C) D Xl ,ld (C). Note that the above
assertions imply that Xd(C) is a pencil and thatdim Xl (C) � 1 whenever l� d. More-
over, if l 2 N is such that0< l < d then the following hold:
(c) Xl (C) contains at most one element and if Xl (C) ¤ ¿ then ld2 0.
(d) j0 \ [0, ld]j � (l C 1)(l C 2)=2, and if equality holds and ld2 0 then Xl (C) ¤ ¿.

REMARK . The proof below is an elaboration of the proof of Proposition 2 of [5];
moreover, the inequality in assertion (d) is part of the cited result.

REMARK . C 2 Xd, j (C) for all j , becausei P(C, C) D1 > j .

Proof of Proposition 1.2. Choose coordinates (X, Y, Z) for P2 such thatP D (0 W
0 W 1). Let k[X,Y, Z]l denote the vector space of homogeneous polynomials of degree l
and, givenG 2 k[X,Y, Z]l n{0}, let div0(G) be the effective divisor onP2, of degreel ,
with equation “GD 0”. Let F 2 k[X,Y, Z]d be an irreducible homogeneous polynomial
of degreed whose zero-set isC. Let x(t), y(t) 2 tk[[ t ]] be a local parametrization of
C at P. Then F(x(t), y(t), 1)D 0 and, for anyl 2 N n {0} and G 2 k[X, Y, Z]l n {0},
Bezout’s theorem gives

(1) ordt G(x(t), y(t), 1)D i P(C, div0(G))

�

2 0 \ [0, ld], if G 2 k[X, Y, Z]l n (F),
D 1, if G 2 k[X, Y, Z]l \ (F)

where (F) is the principal ideal ofk[X, Y, Z] generated byF . Define a sequence of
k-linear mapsLn W k[X, Y, Z] ! k (for n 2 N) by the conditionG(x(t), y(t), 1) D
P

n2N Ln(G)tn for any G 2 k[X, Y, Z].
Fix a pair (l , j ) 2 N2 such thatl � 1 and 0� j � ld. Consider the linear map of

k-vector spaces

Tl W k[X, Y, Z]l ! kj0\[0,ld]j, G 7! (Ln1(G), : : : , Lnp(G)),

where n1 < � � � < np are the elements of0 \ [0, ld], and define the subspaceEl , j of

kj0\[0,ld]j by

El , j D {(0, : : : , 0, �1, : : : , �e) j �1, : : : , �e 2 k},
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where e D j0 \ [ j , ld]j. Note that (1) has the following two consequences: firstly,
kerTl D k[X, Y, Z]l \ (F), so

(2) dim(kerTl ) D

�

0, if l < d,
1, if l D dI

secondly,

T�1
l (El , j ) n {0} D {G 2 k[X, Y, Z]l n {0} j ordt G(x(t), y(t), 1)� j }

D {G 2 k[X, Y, Z]l n {0} j i P(C, div0(G)) � j },

so

(3) Xl , j (C) D {div0(G) j G 2 T�1
l (El , j ) n {0}}.

In particular,

(4) Xl , j (C) is a linear system of dimension dimk(T�1
l (El , j )) � 1.

If l � d then ker(Tl ) D k[X, Y, Z]l \ (F) has dimension equal to dimk[X, Y, Z]l�d D

(l � d)(l � dC 3)=2C 1, so

dim Xl , j (C) D dim T�1
l (El , j ) � 1�

(l � d)(l � dC 3)

2
.

Hence, dimXl , j (C) � 2 wheneverl > d, and Xl , j (C) ¤ ¿ when l D d. To finish the
proof of assertion (a), we still need to show that dimXl , j (C) � 1 when l D d.

Consider the casel D d. It is known (cf. [1] or [8]) that the numberÆ D
(d � 1)(d � 2)=2 satisfies 2Æ C N � 0 as well asÆ D jN n 0j. As 2Æ < d2, it follows
that d2

CN � 0 and

j0 \ [0, d2]j D d2
C 1� Æ D (d2

C 3d)=2D dimk k[X, Y, Z]d � 1,

so dim(V) D dim(W) C 1 where we writeV D k[X, Y, Z]d and W D kj0\[0,d2]j. As
Td W V !W is a linear map and dim(kerTd) D 1 by (2), it follows thatTd is surjective
and that (for anyj � d2) dim T�1

d (Ed, j ) D 1C dim Ed, j D 1C j0 \ [ j , d2]j, so

(5) dim Xd, j (C) D j0 \ [ j , d2]j.

As d2
2 0\ [ j ,d2], it follows in particular that dimXd, j (C) � 1, which finishes the proof

of (a). In the special case where 2Æ � j � d2 we have [j , d2] \N � 0, so (5) gives

dim Xd, j (C) D d2
� j C 1.

In particular dimXd,d2(C) D 1 and dimXd,d2
�1(C) D 2, so (b) is proved.
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From now-on assume that 0< l < d.
Since Tl is injective by (2), and since the definition ofEl , j implies

(6) dim El ,ld D j0 \ {ld}j D

�

1, if ld 2 0,
0, if ld � 0,

we have dimT�1
l (El ,ld ) � 1, so (3) implies thatXl (C) D Xl ,ld (C) contains at most one

element. Moreover, ifXl (C) ¤ ¿ then dimT�1
l (El ,ld ) D 1, so dimEl ,ld D 1 and (6)

implies thatld 2 0. This proves (c).
To prove (d) note that the fact thatTl W k[X, Y, Z]l ! kj0\[0,ld]j is injective im-

plies that

(7) j0 \ [0, ld]j � (l C 1)(l C 2)=2.

Suppose that equality holds in (7); thenTl is bijective, and if we also assume that
ld 2 0 then dimEl ,ld D 1 by (6), soT�1

l (El ,ld ) has dimension 1 and (3) implies that
Xl (C) ¤ ¿. This completes the proof of (d), and of the proposition.

DEFINITION 1.3. Let C � P2 be a rational unicuspidal curve, with distinguished
point P. We define3C D Xd(C) D Xd,d2(C), whered D deg(C). By Proposition 1.2
(b), 3C is a pencil onP2. The definition ofXd,d2(C) and Bezout’s theorem yield the
following explicit description of3C:

3C D {C} [ {D 2 Div(P2) j D � 0, deg(D) D deg(C) and C \ supp(D) D {P}}.

The pencil3C can also be characterized as follows:

Corollary 1.4. Let C � P2 be a unicuspidal rational curve with distinguished
point P. Then3C is the unique pencil onP2 satisfying C2 3C and Bs(3C) D {P}.

Proof. From the explicit description of3C given in Definition 1.3, it is clear that
C 2 3C and Bs(3C)D {P}. To prove uniqueness, consider a pencil3 on P2 such that
C 2 3 and Bs(3) D {P}. Let D be any element of3 other thanC. Then (since3 is
a pencil) any point of supp(D)\C is in fact a base point of3; so supp(D)\C D {P}.
Using again the explicit description of3C given in Definition 1.3, this givesD 2 3C.
This shows that3 � 3C and hence that3 D 3C.

DEFINITION 1.5. Let C � P2 be a rational unicuspidal curve, with distinguished
point P. Define NC D Xd,d2

�1(C), whered D deg(C). By 1.2, NC is a net. Observe
that3C � NC and that

Bs(NC) D

�

{P}, if degC > 1,
¿, if degC D 1.
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Also note that the linear systems3C and NC are primitive (i.e., their general member
is irreducible and reduced), becauseC is irreducible and reduced and is an element of
each of them.

REMARK . We shall restrict ourselves to studying the pencil3C and the netNC

associated to a unicuspidal rational curveC � P2, but the other linear systems defined
in Proposition 1.2 also deserve some attention. For instance, consider the setSC D

{l 2 N j 0� l < d and Xl (C) ¤ ¿}, whered D deg(C). Parts (c) and (d) of the above
proposition indicate thatSC is closely related to the semigroup0(C,P), and one can see
that SC is also related to the reducible elements of3C. Something interesting can be
said about these relations, but this theme is not developed in this paper.

REMARK . The objectsXl , j (C), Xl (C), 3C and NC should really be denoted
Xl , j (C, P), Xl (C, P), 3C,P and NC,P, as they depend on the choice ofP in the non-
singular case.

2. Preliminaries on P1-rulings on rational surfaces

In this section,S is a rational nonsingular projective surface.

DEFINITION 2.1. A pencil3 on S is called aP1-ruling if it is base-point-free
and if its general member is isomorphic toP1. If 3 is a P1-ruling of S then by a
sectionof 3 we mean an irreducible curve6 � S such that6 � D D 1 for any D 2 3
(it then follows that6 � P1).

The following is a well-known consequence of the Riemann–Roch theorem forS:

Lemma 2.2. If C � S satisfies C� P

1 and C2
D 0 then the complete linear

systemjCj on S is aP1-ruling.

2.3. Recall that, givenk 2 N, there exists a triple (Fk, Lk, 1k) where Fk is a
nonsingular projective rational surface,Lk is a base-point-free pencil onFk each of
whose elements is a projective line, and1k is a section ofLk satisfying12

k D �k.
Moreover, (Fk, Lk, 1k) is uniquely determined byk up to isomorphism. The surface
Fk is called the Nagata–Hirzebruch ruled surface of degreek.

2.4. By anSNC-divisorof S we mean a divisorD D
Pn

iD1 Ci whereC1, : : : ,Cn

(n � 0) are distinct curves onS and:
• eachCi is a nonsingular curve;
• for every choice ofi ¤ j such thatCi \ C j ¤ ¿, Ci \ C j is one point and the
local intersection number ofCi and C j at that point is equal to 1;
• if i , j , k are distinct thenCi \ C j \ Ck D ¿.
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The dual graph of an SNC-divisorD D
Pn

iD1 Ci of S is the weighted graph defined
by stipulating that the vertex set is{C1, : : : ,Cn}, that distinct verticesCi , C j are joined
by an edge if and only ifCi \ C j ¤ ¿, and that the weight of the vertexCi is the
self-intersection numberC2

i .

For the following fact, see for instance [9, Chapter 2, 2.2] or [7, Section 2].

Gizatullin’s Theorem 2.5. Let 3 be a P1-ruling on S. Then3 has a section
and the following hold:
(a) Let D2 3. Then each irreducible component of D is a projective line and supp(D)
is the support of an SNC-divisor of S whose dual graph is a tree. If supp(D) is irre-
ducible then D is reduced. Ifsupp(D) is reducible then there exists a(�1)-component
0 of supp(D) which meets at most two other components ofsupp(D); moreover, if 0
has multiplicity1 in the divisor D then there exists another(�1)-component ofsupp(D)
which meets at most two other components ofsupp(D).
(b) Let 6 be a section of3. Then there exist a nonsingular projective surfaceF and
a birational morphism� W S! F satisfying:

• the exceptional locus of� is the union of the irreducible curves C� S which
are 3-vertical1 and disjoint from6;
• the linear systemL D �

�

(3) is a base-point-free pencil onF each of whose
elements is a projective line, and the curve1 D �(6) is a section ofL;
• F D Fk for some k2 N; moreover, if 62

� 0 then62
D �k and (F , L, 1) D

(Fk, Lk, 1k).

3. Rational linear systems; uniresolvable curves and linear systems

We continue to assume thatS is a rational nonsingular projective surface.

DEFINITION 3.1. We say that a linear systemL on S is rational if dim L � 1
and the general member ofL is an irreducible rational curve.

DEFINITIONS 3.2. In the following definitions we consider sequences

(8) SD S0
�1
 � S1

�2
 � � � �

�n
 � Sn

where, for eachi D 1, : : : , n, �i W Si ! Si�1 is the blowing-up of the nonsingular pro-
jective surfaceSi�1 at a point Pi 2 Si�1.
(a) Let C � S be a curve. Theminimal resolution of singularitiesof C is the shortest
sequence (8) satisfying:

the strict transform of C on Sn is a nonsingular curve.

1A curve C � S is said to be3-vertical if it is included in the support of an element of3.
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The minimal embedded resolution of singularitiesof C is the shortest sequence (8)
satisfying:

�

�1(C) is the support of an SNC-divisor ofSn,

where� D �1 Æ � � � Æ �n W Sn ! S.
(b) Let C � S be a curve. Consider the minimal resolution of singularities X ! S of
C, let QC be the strict transform ofC on X, and let Q�(C) denote the self-intersection
number of QC in X. When Q�(C) � 0 (resp. Q�(C) > 0), we say thatC is of nonnegative
type (resp. of positive type). We also consider the minimal embedded resolution of
singularitiesY! S of C, and defineQ�emb(C) to be the self-intersection number of the
strict transform ofC on Y. Clearly, Q�emb(C) � Q�(C).
(c) We say that the sequence (8) is achain if �i�1(Pi ) D Pi�1 for all i such that 2�
i � n.
(d) A linear systemL on S is uniresolvableif dim L � 1, L is without fixed compo-
nents and there exists a chain (8) with the property that the strict transform ofL on
Sn is base-point-free.
(e) A curve C � S is uniresolvableif there exists a chain (8) with the property that
the strict transform ofC on Sn is a nonsingular curve.

Let C � S be a curve. It follows from [3, Theorem 2.8] that the existence of a
rational pencil3 on S satisfyingC 2 3 is equivalent toC being rational and of non-
negative type. Let us now be more precise in the special case whereC is uniresolvable.

Note that ifC � S is uniresolvable then there exists at least one pointP 2 C such
that Sing(C) � {P}.

Theorem 3.3. Let C � S be a uniresolvable curve and let P2 C be such that
Sing(C) � {P}. Then the following are equivalent:
(a) C is rational and of nonnegative type;
(b) there exists a rational linear systemL on S satisfying C2 L;
(c) there exists a rational and uniresolvable pencil3 on S such that C2 3 and
Bs(3) � {P}.

Proof. It follows from [3, Theorem 2.8] that (a) is equivalent to (b), and it is
clear that (c) implies (b); so it suffices to prove that (a) implies (c). Assume that (a)
is satisfied. Then there exists a chain (8) satisfying:
• the strict transformCn � Sn of C is nonsingular and satisfiesC2

n D 0;
• P1 D P and, for eachi � 2, Pi lies on the strict transformCi�1 � Si�1 of C.
By Lemma 2.2,jCnj is a P1-ruling on Sn. Define3 D �

�

jCnj, where� D �1 Æ � � � Æ

�n W Sn ! S0. Then3 is a rational pencil onS satisfyingC 2 3. The strict transform
of 3 on Sn is jCnj, which is base-point-free. This has two consequences:
(i) all infinitely near base points of3 are among{P1, : : : , Pn}, so in particular
Bs(3) � {P};
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(ii) since (8) is a chain,3 is uniresolvable.

Let us also mention the following related fact:

Lemma 3.4. Let 3 be a pencil on S and C� S an irreducible component of the
support of some member of3. If 3 is rational and uniresolvable, then C is rational
and uniresolvable.

Proof. Consider the minimal resolution (8) of the base points of 3; since3 is
uniresolvable, (8) is a chain. Let3n (resp.Cn) be the strict transform of3 (resp. of
C) on Sn. As 3 is rational, the general member of3n is isomorphic toP1, so 3n

is a P1-ruling. As Cn is included in the support of some element of3n, Gizatullin’s
Theorem 2.5 implies thatCn is nonsingular and rational. SoC is rational and (since
(8) is a chain) uniresolvable.

4. Rationality of �C and NC

Given a unicuspidal rational curveC � P2 we consider the pencil3C and the net
NC defined in Definition 1.3, and ask when these linear systems are rational (in the
sense of Definition 3.1).

Theorem 4.1. For a unicuspidal rational curve C� P

2, the following are
equivalent:
(a) C is of nonnegative type
(b) 3C is rational.
Moreover, if these conditions hold then3C is uniresolvable.

Proof. The fact that (b) implies (a) follows from either one of [3, 2.8] or The-
orem 3.3. Conversely, suppose that (a) holds and letP be the distinguished point of
C. Then, in particular,C is uniresolvable andP 2 C is such that Sing(C) � {P}. By
Theorem 3.3, there exists a rational and uniresolvable pencil 3 on P2 such thatC 2 3
and Bs(3) � {P}; then Bs(3) D {P}. By Corollary 1.4,3C is the unique pencil on
P

2 satisfyingC 2 3C and Bs(3C)D {P}. Thus3D 3C. Consequently,3C is rational
and uniresolvable.

REMARK 4.2. LetC � P2 be a unicuspidal rational curve of nonnegative type, and
let C0

� P

2 be an irreducible component of the support of some member of3C. Then
the curveC0 is rational and uniresolvable. (This follows from Theorems4.1 and 3.4.)

REMARK 4.3. In view of 4.1, it is interesting to note:
(a) All unicuspidal rational curvesC � P

2 satisfying N�(P2
n C) < 2 are of non-

negative type.
(b) All currently known unicuspidal rational curvesC � P2 are of nonnegative type.
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Indeed, letC � P2 be a unicuspidal rational curve and considerN� D N�(P2
n C), the

logarithmic Kodaira dimension ofP2
nC. Then it is a priori clear thatN� 2 {�1,0,1,2}.

• If N� D �1 then [10] implies thatQ�emb(C) � �1, and it follows thatQ�(C) > 0.
• The caseN� D 0 cannot occur by a result of Tsunoda [14].
• The caseN� D 1 is completely classified in [12], and the multiplicity sequences
are given explicitly. A straightforward computation usingthese sequences shows that
Q�(C) 2 {0, 1}, where the two cases occur.
• The caseN� D 2 is not classified. The only known examples here are two fam-
ilies of curves (denotedC4k and C�

4k, k D 1, 2, : : :) found by Orevkov in [11]. For
these examples the multiplicity sequences are known explicitly, and a straightforward
computation shows thatQ�(C) 2 {1, 4} where the two cases occur.
This justifies assertions (a) and (b). Regarding the last case we also mention:
• Let C � P2 be a unicuspidal rational curve withN� D 2. Then Q�emb(C) � �2 by a
result of Yoshihara [15]. Moreover, Tono [13] showed thatQ�emb(C) D �2 if and only
if C is one of Orevkov’s curvesC4k or C�

4k for somek.
One should also remark that the sets

{Q�(C) j C � P2cuspidal rational},

{Q�emb(C) j C � P2 unicuspidal rational,N�(P2
n C) D 1}

are not bounded below, as can be deduced from [4] and [12], respectively.

The next paragraph will be used as a reference, when we want toestablish
the notation:

NOTATIONS 4.4. Let C � P2 be a unicuspidal rational curve with distinguished
point P. Then (C, P) determines an infinite sequence

(9) P

2
D S0

�1
 � S1

�2
 � S2

�3
 � � � �

of nonsingular projective surfaces and blowing-up morphisms such that, for eachi � 1,
�i W Si ! Si�1 is the blowing-up ofSi�1 at the unique pointPi 2 Si�1 which lies on the
strict transform ofC and which is mapped toP1 D P by �1Æ � � �Æ�i�1W Si�1! S0. Let
Ei D �

�1
i (Pi ) � Si and, if i < j , let the strict transform ofEi on Sj be also denoted

by Ei � Sj . Let Ci � Si be the strict transform ofC0 D C on Si , and let3i be the
strict transform of30 D 3C on Si . By definition of the sequence (9), it is clear that

(10) Ci�1 \ Ei�1 D {Pi } in Si�1, for all i � 2.

Let n � N be the natural numbers satisfying:
• Sn ! S0 is the minimal resolution of singularities ofC;
• SN ! S0 is the minimal embedded resolution of singularities ofC.
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Finally, let r i D ePi (Ci�1) (see Conventions) for alli � 1, and letd D deg(C). Then
the invariantsQ�(C) and Q�emb(C) defined in Definition 3.2 are given by

Q�(C) D C2
n D d2

�

n
X

iD1

r 2
i and Q�emb(C) D C2

N .

It is clear that ifC is singular thenN D nC rn and henceQ�emb(C) D Q�(C) � rn, and
that if C is nonsingular (i.e.,d � 2) then N D n D 0 and Q�emb(C) D Q�(C) D d2.

REMARK . If Q�(C) � 0, the natural numberm defined in Proposition 4.5 (below)
is to be added to the set of notations introduced in Notations4.4. Note that the in-
equality n � min(N, m) always holds, and that the three casesm < N, m D N and
m> N can occur.

Proposition 4.5. Let C� P2 be a unicuspidal rational curve with distinguished
point P, and let the notation be as inNotations 4.4. If C is of nonnegative type, then
the following hold.
(a) There exists a natural number m� n such that Sm! S0 is the minimal resolution
of the base points of3C.
(b) Ci 2 3i for all i 2 {0, : : : , m}.
(c) 3m is a P1-ruling of Sm (cf. Definition 2.1).
(d) Cm � P

1 and C2
m D 0.

(e) For all i 2 {1, : : : , m}, the following hold in Sm:

Ei is horizontal� Ei \ Cm ¤ ¿ � PmC1 2 Ei .

Here we say that a curve in Sm is vertical if it is included in the support of a member
of 3m, and horizontal if it is not vertical. The point PmC1 is defined by(10).
(f) Em is horizontal and at most one i< m is such that Ei � Sm is horizontal.
(g) Em is a section of3m if and only if C is of positive type.

Proof. Let SD Y0
�1
 � Y1

�2
 � � � �

�m
 � Ym be the minimal resolution of the base

points of3C, where, for 1� i �m, �i W Yi ! Yi�1 is the blowing-up of the nonsingular
surfaceYi�1 at a point P�

i 2 Yi�1. As C is of nonnegative type, Theorem 4.1 implies

that3C is rational. Let QC � Ym (resp. Q3C) be the strict transform ofC (resp. of3C)
on Ym. By [3, 2.7 (b)], the fact that3C is rational implies thatQC 2 Q3C and that QC is
nonsingular. FromQC 2 Q3C, we deduce that for eachi the base pointP�

i lies on the
strict transform ofC on Yi�1; as P�

i is infinitely near P (because Bs(3C) D {P}), it
follows that (P�

1 , : : : , P�

m) D (P1, : : : , Pm). Thus Sm! S0 is the minimal resolution of

the base points of3C. As we have observed,QC D Cm is nonsingular; it follows that
m� n, so (a) is proved.

Then Bs(3i�1) D {Pi } for all i 2 {1, : : : , m}, and Bs(3m) D ¿.
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We already noted thatQC 2 Q3C, which we may rewrite asCm 2 3m. It follows that
assertion (b) holds. As3C is a rational pencil, so is3m; as3m is base-point-free, its
general member is aP1, so (c) holds. ByCm 2 3m and Bs(3m) D ¿, we getC2

m D 0,
so assertion (d) holds.

The fact thatCm 2 3m and that3m is base-point-free implies that ifC0

� Sm is a
curve distinct fromCm then C0 is horizontal if and only ifC0

\Cm ¤ ¿. In particular,
(e) is proved, and (f) immediately follows.

To prove (g), note thatEm is a section of3m if and only if Em � Cm D 1, if
and only if Cm�1 is nonsingular; asC2

m�1 > C2
m D 0, this is equivalent toC being of

positive type.

Theorem 4.6. For a unicuspidal rational curve C� P

2, the following are
equivalent:
(a) C is of positive type;
(b) NC is rational;
(c) the rational map8NC W P

2
Ü P

2, corresponding to the net NC, is birational.
Moreover, if the above conditions hold then the Cremona map8NC transforms C into
a line, and3C into a pencil of“all lines through some point” .

Proof. The fact that (c) implies (b) is trivial. If (b) holds then parts (e) and (f)
of [3, 2.8] imply that the linear systemLC defined in [3, 2.5] satisfiesNC � LC and
dimLC D Q�(C) C 1; then Q�(C) > 0, which shows that (b) implies (a). There remains
to show that if (a) holds then8NC is birational and transformsC into a line and3C

into a pencil of all lines through some point.
Suppose thatC is of positive type and let the notation be as in Notations 4.4and

Proposition 4.5. By Proposition 4.5 (g),Em is a section of3m. Then Gizatullin’s The-
orem 2.5 implies that there exists a birational morphism�W Sm! F1 whose exceptional
locus exc(�) � Sm is a union of3m-vertical curves inSm and exc(�)\Em D ¿. More-
over, in the notation of 2.3,�

�

(3m) is the standard rulingL1 of F1 and �(Em) is the

(�1)-section of that ruling. As the exceptional loci of the twomorphismsSm�1
�m
 �

Sm
�

�! F1 are disjoint, we have the commutative diagram

P

2
D S0 � � � Sm�1 Sm

P

2
F1

!

�1 !

�m!

�m�1

!

N�

!

�

!

N�m

where N�m W F1! P

2 is the contraction of�(Em). Define the birational map8W P2
Ü

P

2 as the composition

S0 Sm�1 P

2,!

(� 0)�1

!

N�
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where� 0 D �1 Æ � � � Æ �m�1 W Sm�1! S0. It is clear that8 transformsC into a line in
P

2. Also, 8 determines a netN on P2 (without fixed components); let us show that
N D NC.

Consider the group homomorphisms

Div(S0)
�

0

�

 � Div(Sm�1)
N�

�

 � Div(P2)

where N�� is the operation of taking the total transform with respect to N� and� 0
�

takes
direct image with respect to� 0. Let QD N�(Pm) 2 P2 and letL be the linear system on
P

2 consisting of all lines throughQ. Then the strict transform ofL on Sm�1 (via N�) is
3m�1. As N� restricts to an isomorphism from a neighborhood ofPm to a neighborhood
of Q (because exc(�) \ Em D ¿), the strict transform ofL coincides with the total
transform ofL, so N�� transformsL into 3m�1 and consequently� 0

�

Æ N�

� transformsL
into 3C. Now we note that� 0

�

Æ N�

� transformsM into N, whereM is the linear system
of all lines in P2. As L � M, it follows that 3C � N (in particular the elements of
N have degreed D degC).

Let MÆ be the set ofM 2M such thatQ � M and N��1(M) is an irreducible curve
in Sm�1. Then the image ofMÆ via �

0

�

Æ N�

� is a dense subset ofN. Since N and
NC have the same dimension, in order to show thatN D NC it suffices to show that
�

0

�

Æ N�

� mapsMÆ into NC. Let M 2MÆ and consider the curveD D (� 0
�

Æ N�

�)(M) D
�

0( N��1(M)) � S0.
Let L D N�(Cm�1) 2 L and note thatN� restricts to an isomorphism from a neigh-

bourhood ofCm�1 to a neighbourhood ofL. As (M � L)
P

2
D 1 and the pointM \ L is

not Q, it follows that

( N��1(M) � Cm�1)Sm�1 D 1

and that the pointN��1(M) \Cm�1 D {R} belongs toCm�1 n Pm, so R � exc(� 0). Con-
sequently,D \C � {� 0(R), P} and i

�

0(R)(D, C) D 1, where the point� 0(R) is distinct
from P. By Bezout,i P(D, C) D d2

�1, so D 2 NC. This shows that� 0
�

Æ N�

� mapsMÆ

into NC; it follows that N D NC, as desired.
So 8NC D 8 and consequently8NC is birational. We already noted that8 trans-

forms C into a line and that� 0
�

Æ N�

� transformsL into 3C, so the last assertions follow.

5. Intermezzo: erasable weighted pairs

The aim of this section is to prove Proposition 5.15, which isneeded in the proof of
Theorem 6.2. Our proof of Proposition 5.15 makes use of a theory of “erasable weighted
pairs” which we develop in this section; in fact Proposition5.14 is the only fact from
this graph theory which is needed, but its proof requires several preliminary lemmas.

We stress that the present section is completely self-contained. Except for the fact
that Proposition 5.15 is used in the proof of Theorem 6.2, this section is completely
independent from the rest of the paper.
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Our graphs have finitely many vertices and edges, edges are not directed, no edge
connects a vertex to itself, and at most one edge exists between a given pair of vertices.
A weighted graphis a graph in which each vertex is assigned an integer (calledthe
weight of the vertex). Note that the empty graph is a weightedgraph. We assume
that the reader is familiar with the classical notion of blowing-up of a weighted graph,
and refer to 1.1 and 1.2 of [2] for details. In particular, recall that there are three
ways to blow-up a weighted graphG: one can blow-upG at a vertex, or at an edge,
or one can perform thefree blowing-upof G (in the last case, one takes the disjoint
union of G and of a vertex of weight�1). In all cases, blowing-upG produces a new
weighted graphG 0 whose vertex-set is obtained from that ofG by adding one new
vertex e of weight �1 (one says thate is the vertex “created” by the blowing-up).
If G 0 is a blowing-up ofG and e is the vertex ofG 0 created by the blowing-up, then
one says thatG is the blowing-down ofG 0 at e. Two weighted graphsA and B are
equivalent(denotedA � B) if one can be obtained from the other by a finite sequence
of blowings-up and blowings-down. Note that ifG is a weighted graph without edges,
and in which each vertex has weight�1, thenG is equivalent to the empty weighted
graph¿.

DEFINITIONS 5.1. (a) By aweighted pair, we mean an ordered pair (G,v) where
G is a nonempty weighted graph andv is a vertex ofG (called the distinguished vertex).
(b) A blowing-upof a weighted pair (G, v) is a weighted pair (G 0, v0) satisfying:

• the weighted graphG 0 is obtained by blowing-up the weighted graphG either
at the vertexv or at an edge incident2 to v;
• v

0 is the unique vertex ofG 0 which is not a vertex ofG (i.e., v0 is the vertex
of weight �1 which is created by the blowing-up).

We write (G, v) (G 0, v0) to indicate that (G 0, v0) is a blowing-up of (G, v).
(c) A weighted pair (G, v) is said to beerasableif there exists a finite sequence

(11) (G, v) D (G0, e0) (G1, e1) � � �  (Gn, en) (with n � 0)

of blowings-up of weighted pairs such that the weighted graph Gn n {en} is equivalent
to the empty weighted graph.

REMARK 5.2. In contrast with the theory of weighted graphs, we do notdefine
a “blowing-down” of weighted pairs. The contraction of weighted pairs defined in Def-
inition 5.7 is not the inverse operation of the blowing-up ofweighted pairs.

REMARK 5.3. Let (G, v) be a weighted pair. The following claims are obvious:
(a) If G has a vertexw of nonnegative weight such thatw ¤ v andw is not a neighbor
of v, then (G, v) is not erasable.

2An edge� is incident to a vertexv if v is one of the endpoints of�.
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(b) If G has at least two vertices, v has negative weight and all weights inG n{v} are
strictly less than�1, then (G, v) is not erasable.

DEFINITION 5.4. For any weighted pair (G, v) we definel (G, v) 2 N [ {1} as
follows. If (G, v) is not erasable, we setl (G, v) D 1. If (G, v) is erasable, then we
define l (G, v) to be the leastn 2 N for which there exists a sequence (11) satisfying
Gn n {en} � ¿. Thus a weighted pair (G,v) is erasable if and only ifl (G,v) <1. Also
note that the conditionl (G, v) D 0 is equivalent toG n {v} � ¿.

DEFINITION 5.5. Let (G, v) be an erasable weighted pair such thatl (G, v) > 0.
A blowing-up (G 0, v0) of (G, v) is said to begood if it satisfies l (G 0, v0) < l (G, v).

Lemma 5.6. Let (G, v) be an erasable weighted pair such that l(G, v) > 0. Then
there exists a good blowing-up of(G, v). Moreover, if (G 0, v0) is a good blowing-up of
(G, v) then (G 0, v0) is erasable and l(G 0, v0) D l (G, v) � 1.

Proof. Obvious.

DEFINITION 5.7. Let (G, v) be a weighted pair. Acontractible vertexof (G, v)
is a vertexw of G satisfying:
• the weight ofw is (�1) andw has at most two neighbours inG
• if w has two neighboursv1 and v2, then v1, v2 are not joined by an edge
• w ¤ v andw is not a neighbour ofv.
If w is a contractible vertex of (G,v) then thecontraction of(G,v) at w is the weighted
pair ( NG, Nv) defined by taking NG to be the blowing-down of the weighted graphG at w
and by settingNv D v.

Lemma 5.8. Suppose that( NG, Nv) is the contraction of a weighted pair(G, v) at
some contractible vertex. Then l(G, v) D l ( NG, Nv).

Proof. We proceed by induction onnDmin(l (G,v),l ( NG, Nv)), noting that the lemma
is true whenevern D1. Let w be the contractible vertex of (G, v) at which the con-
traction is performed. ThenNG n {Nv} is the blowing-down ofG n {v} at w, so there is
an equivalence of weighted graphsG n {v} � NG n {Nv}. In particular, the lemma is true
whenevern D 0.

Considern 2 N n{0} such that the lemma is true for all (G,v) and (NG, Nv) satisfying
min(l (G, v), l ( NG, Nv)) < n. Consider (G, v) and (NG, Nv) such that min(l (G, v), l ( NG, Nv)) D n.

Choose an element (G0,v0) of the set{(G,v), ( NG, Nv)} such thatl (G0,v0)D n, and let
(G 00, v00) denote the other element of the set. By Lemma 5.6, there exists a blowing-up
(G0, v0) (G1, v1) such thatl (G1, v1) D n� 1. ThenG1 is the blowing-up ofG0 at x,
wherex is either the distinguished vertexv0 or an edge{v0, u} with u a neighbour of
v0 in G0. As the distinguished vertices of (G0, v0) and (G 00, v00) are the same (v0 D v

0

0
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becausev D Nv), and the neighbours of that vertex are the same inG0 and in G 00, it
makes sense to blow-upG 00 at x, and this gives rise to a blowing-up (G 00,v00) (G 01,v01)
of weighted pairs. Let us change the notation again and represent the two blowings-up
(G0, v0) (G1, v1) and (G 00, v00) (G 01, v01) as

(G, v) (H, e) and (NG, Nv) ( NH, Ne) (in some order).

Note thatw is a contractible vertex of (H, e), and that (NH, Ne) is the contraction of
(H, e) at w. We have

min(l (H, e), l ( NH, Ne)) D min(l (G1, v1), l (G 01, v01)) � l (G1, v1) D n� 1,

so the inductive hypothesis implies thatl (H,e)D l ( NH, Ne), which is equal ton�1. Thus
l (G, v) � 1C l (H, e) D n and l ( NG, Nv) � 1C l ( NH, Ne) D n, so

max(l (G, v), l ( NG, Nv)) � n D min(l (G, v), l ( NG, Nv))

and consequentlyl (G, v) D l ( NG, Nv)).

NOTATION 5.9. Given integersx1, : : : , xn and i 2 {1, : : : , n}, the weighted pair

r r r r r. . . . . .
x1 xi�1 xi xiC1 xn

�

(where the asterisk� indicates the distinguished vertex) is denoted by

[x1, : : : , xi�1, x�i , xiC1, : : : , xn].

Observe that there is an equality of weighted pairs

[x1, : : : , xi�1, x�i , xiC1, : : : , xn] D [xn, : : : , xiC1, x�i , xi�1, : : : , x1].

Lemma 5.10. If l [�2,�1�, �1,�3] <1, then

l [�3,�1�, �1,�2] < l [�2,�1�, �1,�3].

Proof. Suppose that (G,v)D [�2,�1�,�1,�3] is erasable and observe thatl (G,v)>
0. Pick a sequence (11) such thatGn n {en} � ¿ and such thatn D l (G, v). Then (G1, e1)
is a good blowing-up of (G, v) and one of the following holds:
(a) (G1, e1) is the blowing-up of (G, v) at v
(b) (G1, e1) is the blowing-up of (G, v) at the edge [�1�, �1]
(c) (G1, e1) is the blowing-up of (G, v) at the edge [�2,�1�].
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In case (a), one of the connected components ofGn n {en} has the form

(12)
r r r r
�2 z

�1 �3

B

✞

✝

☎

✆ (for somez 2 Z)

where every vertex in the branchB has weight strictly less than�1 (andB might be
empty). This is absurd, because the weighted graph (12) is not equivalent to¿. Thus
case (a) does not occur.

In case (b), Remark 5.3 (b) implies that (G1, e1) is not erasable, which is absurd;
so case (b) does not occur either.

In case (c) we have (G1,e1)D [�3,�1�,�2,�1,�3], and the contraction of (G1,e1)
at its contractible vertex is (NG1, Ne1) D [�3,�1�, �1,�2]. Consequently

l [�3,�1�, �1,�2] D l ( NG1, Ne1) D l (G1, e1) < l (G, v) D l [�2,�1�, �1,�3]

(where we used Lemma 5.8), and this proves the lemma.

Lemma 5.11. If x � �2 and l[�1�, �1, x, �4] <1, then

l [�1�, �1, x, �4] > l [�3,�1�, �1,�2].

Proof. Letx � �2, let (G,v)D [�1�,�1,x,�4] and suppose thatl (G,v) <1. As
l (G,v)> 0, there exists a good blowing-up (G 0,v0) of (G,v). By Remark 5.3 (b), (G 0,v0)
cannot be the blowing-up of (G, v) at the edge [�1�,�1]; so (G 0, v0) is the blowing-up
of (G, v) at v, i.e., (G 0, v0) D [�1�, �2, �1, x, �4]. The contraction of (G 0, v0) at its
contractible vertex is (NG 0, Nv0) D [�1�, �1, x C 1,�4], so

l [�1�, �1, x C 1,�4] D l ( NG 0, Nv0) D l (G 0, v0) < l (G, v) D l [�1�, �1, x, �4].

More precisely, we have shown that ifx � �2 and l [�1�, �1, x, �4] <1 then

l [�1�, �1, x, �4] > l [�1�, �1, x C 1,�4].

By induction it follows that if x � �2 and l [�1�, �1, x, �4] <1, then

l [�1�, �1, x, �4] > l [�1�, �1,�1,�4] D l [�1�, 0,�3]

(where the equality follows from Lemma 5.8); so there only remains to show that

(13) l [�1�, 0,�3] � l [�3,�1�, �1,�2].

This is obvious if l [�1�, 0,�3] D 1, so let us assume thatl [�1�, 0,�3] < 1. Let
(G, v) D [�1�, 0,�3]. As l (G, v) > 0, there exists a good blowing-up (G 0, v0) of (G, v).
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By Remark 5.3 (a), (G 0, v0) cannot be the blowing-up of (G, v) at v, so it must be
the blowing-up of (G, v) at the edge [�1�, 0]; so (G 0, v0) D [�2, �1�, �1, �3] and
consequently

(14) l [�2,�1�, �1,�3] D l (G 0, v0) < l (G, v) D l [�1�, 0,�3] <1.

As l [�2,�1�,�1,�3] <1, Lemma 5.10 implies thatl [�3,�1�,�1,�2] < l [�2,�1�,
�1,�3], so (14) gives

l [�3,�1�, �1,�2] < l [�2,�1�, �1,�3] < l [�1�, 0,�3].

So (13) is proved and we are done.

Lemma 5.12. If x � �2 and l[�1,�1�, x, �4] <1, then

l [�1,�1�, x, �4] > l [�3,�1�, �1,�2].

Proof. Let E be the set ofx 2 Z satisfying x � �2 and

(15) l [�1,�1�, x, �4] <1 and l[�1,�1�, x, �4] � l [�3,�1�, �1,�2].

It suffices to show thatE D ¿. By contradiction, suppose thatE ¤ ¿ and pickx 2 E.
Let (G,v) D [�1,�1�, x,�4]. Then l (G,v) <1 and l (G,v) > 0, so there exists a good
blowing-up (G 0, v0) of (G, v). By Remark 5.3 (b), (G 0, v0) cannot be the blowing-up of
(G, v) at the edge [�1,�1�]; so one of the following conditions must hold:
(a) (G 0, v0) is the blowing-up of (G, v) at v
(b) (G 0, v0) is the blowing-up of (G, v) at the edge [�1�, x].
In case (a), the contraction of (G 0, v0) at its contractible vertex is

( NG 0, Nv0) D [�1�, �1, x, �4].

Thus l [�1�, �1, x, �4] D l ( NG 0, Nv0) D l (G 0, v0) < l (G, v) <1, so Lemma 5.11 implies
that l [�1�, �1, x, �4] > l [�3,�1�, �1,�2]. This gives

l [�3,�1�, �1,�2] < l [�1�, �1, x, �4] < l (G, v) D l [�1,�1�, x, �4],

which contradicts (15) (and (15) holds sincex 2 E). Thus case (a) does not occur.
In case (b), (G 0, v0) D [�1,�2,�1�, x � 1,�4]. The contraction of (G 0, v0) at its

contractible vertex is (NG 0, Nv0)D [�1,�1�,x�1,�4], so l [�1,�1�,x�1,�4]D l ( NG 0, Nv0)D
l (G 0, v0) < l (G, v) D l [�1,�1�, x, �4]. In fact we have shown:

if x 2 E then l [�1,�1�, x � 1,�4] < l [�1,�1�, x, �4] and x � 1 2 E.
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This implication together withE ¤ ¿ imply the existence of an infinite descending
sequence

l [�1,�1�, x, �4] > l [�1,�1�, x � 1,�4] > l [�1,�1�, x � 2,�4] > � � �

of natural numbers, which is absurd. SoE D ¿ and we are done.

Lemma 5.13. [�3,�1�, �1,�2] is not erasable.

Proof. We prove this by contradiction. Let (G0, e0) D [�3,�1�, �1,�2] and as-
sume that (G0, e0) is erasable. Asl (G0, e0) > 0, there exists a good blowing-up (G1, e1)
of (G0, e0). There are three possibilities:
(a) (G1, e1) is the blowing-up of (G0, e0) at e0

(b) (G1, e1) is the blowing-up of (G0, e0) at the edge [�1�, �1]
(c) (G1, e1) is the blowing-up of (G0, e0) at the edge [�3,�1�].

Consider case (a). Let (NG1, Ne1) be obtained from (G1, e1) by performing two con-
tractions at contractible vertices. Then (NG1, Ne1) D [�1�, 0,�3], so l ( NG1, Ne1) > 0, so
( NG1, Ne1) has a good blowing-up (NG2, Ne2). By Remark 5.3 (a), the blowing-up of (NG1, Ne1)
at Ne1 is not good; so (NG2, Ne2) must be the blowing-up of (NG1, Ne1) at the edge [�1�, 0],
i.e., ( NG2, Ne2) D [�2,�1�, �1,�3]. Then

l [�2,�1�, �1,�3] D l ( NG2, Ne2) < l ( NG1, Ne1) D l (G1, e1) < l (G0, e0)

D l [�3,�1�, �1,�2],

so l [�2,�1�, �1,�3] < l [�3,�1�, �1,�2] <1, which contradicts Lemma 5.10. So
case (a) cannot occur.

In case (b) we have (G1, e1) D [�3, �2, �1�, �2, �2], which is not erasable by
Remark 5.3 (b). So case (b) does not occur either.

In case (c) we have (G1, e1) D [�4, �1�, �2, �1, �2]. Let ( NG1, Ne1) be obtained
from (G1, e1) by performing two contractions at contractible vertices.Then (NG1, Ne1) D
[�4,�1�, 0], so l ( NG1, Ne1) > 0, so (NG1, Ne1) has a good blowing-up (NG2, Ne2). In fact ( NG2, Ne2)
must be the blowing-up of (NG1, Ne1) at the edge [�1�, 0], otherwise Remark 5.3 (a) gives
a contradiction. So (NG2, Ne2) D [�4,�2,�1�,�1] D [�1,�1�,�2,�4] and consequently

l [�1,�1�, �2,�4] D l ( NG2, Ne2) < l ( NG1, Ne1) D l (G1, e1)

< l (G0, e0) D l [�3,�1�, �1,�2].

We conclude that

l [�1,�1�, �2,�4] < l [�3,�1�, �1,�2] <1,

which contradicts Lemma 5.12. So we are done.
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Proposition 5.14. Let x 2 Z n {�2} and y2 Z. Then the two weighted pairs

r r

r
�

�
�
�❅

❅
❅

�1 x

�1

r r r

r

�2 �1
�

�2

y

are not erasable.

Proof. Let (G,v) be the weighted pair which looks like a triangle, in the statement
of the proposition, and (proceeding by contradiction) assume that (G, v) is erasable.
Since x ¤ �2, we haveG n {v} 6� ¿, so l (G, v) > 0. Pick a sequence (11) such that
Gn n {en} � ¿ and such thatn D l (G, v); note that (G1, e1) is a good blowing-up of
(G, v). If (G1, e1) is the blowing-up of (G, v) at v then Gn n {en} contains a simple
circuit, which contradictsGn n {en} � ¿; so (G1, e1) is the blowing-up of (G, v) at one
of the two edges incident tov. Consequently, (G1, e1) is either as in (16) or as in
(17), below.

Consider the case where (G1, e1) is as follows:

(16)

r r

r

�
�
�❅

❅
❅

�1 x � 1

�2

r
�

�1
w

Thenw is a contractible vertex and if (NG1, Ne1) denotes the contraction of (G1, e1) at w
then (NG1, Ne1) is isomorphic3 to (G, v). This isomorphism implies thatl ( NG1, Ne1) D l (G, v)
but on the other hand Lemma 5.8 implies thatl ( NG1, Ne1) D l (G1, e1) < l (G, v). This
contradiction shows that (G1, e1) cannot be as in (16).

The only other possibility is that (G1, e1) be as follows:

(17)

r r

r

�

�
�
�❅

❅
❅

�2 x

�2

r�1
w

Now we must havex D �1, otherwiseGnn{en} would not contain any vertex of weight
(�1) and hence would not be equivalent to the empty weighted graph. Sow is a con-
tractible vertex and the contraction (NG1, Ne1) of (G1, e1) at w is isomorphic to (G, v).
This leads to the same contradiction as in the first case, so wehave shown that (G, v)
is not erasable.

From now-on let (G,v) be the weighted pair on the right-hand-side, in the statement
of the proposition; proceeding again by contradiction, assume that (G, v) is erasable. It

3The definition ofisomorphism of weighted pairsis the obvious one.
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is clear thatG n {v} 6� ¿, so l (G, v) > 0. Pick a sequence (11) such thatGn n {en} � ¿

and such thatn D l (G, v), and note that (G1, e1) is a good blowing-up of (G, v). One of
the following holds:
(a) (G1, e1) is the blowing-up of (G, v) at the edge which contains the vertex of
weight y
(b) (G1, e1) is the blowing-up of (G, v) at the distinguished vertexv
(c) (G1, e1) is the blowing-up of (G, v) at an edge which does not contain the vertex
of weight y.

In case (a), one of the connected components ofGn n{en} has the following shape:

(18)
r r r
�2 z

v

�2

B

✞

✝

☎

✆ (for somez 2 Z)

whereB represents a (possibly empty) branch ofGnn{en} atv; so the weighted graph (18)
is equivalent to¿. However, (18) is not equivalent to¿. Indeed, if it were, then we
would haveB � ¿ and in fact (18) would contract to

(19) r r r
�2 t �2

(for somet 2 Z)

but clearly the graph (19) is not equivalent to¿. So (18) is not equivalent to¿ either,
which rules out case (a).

In case (b),Gn n {en} has a connected component as follows:

(20)
r r r

r

�2 z
�2

y

✞

✝

☎

✆

B

(for somez 2 Z)

whereB might be empty and all vertices ofB have weight strictly less than�1. This
implies that the weighted graph (20) is equivalent to the empty graph. However, (20) is
not equivalent to¿. Indeed, if it were then we would haveB � ¿, so in factB D ¿,
then (20) would be of the form (18) and hence would not be equivalent to¿. So (20)
is not equivalent to¿ and case (b) is ruled out.

Consequently case (c) must occur, i.e., (G1, e1) must be the blowing-up of (G, v)
at an edge which does not contain the vertex of weighty. Note that, although there
are two such edges, only one case needs to be considered because an automorphism
of (G, v) interchanges the two edges. Also observe that, if the vertex of weight y is
calledw, thenw has the same weight inG and in Gn; consequentlyy D �1, because
Gn n {en} must have a vertex of weight�1 and all vertices ofGn n {en,w} have weight
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strictly less than�1. So (G1, e1) is the following weighted pair:

r r r r

r

�2 �2
�

�1 �3

�1 w

Then w is a contractible vertex and the contraction of (G1, e1) at w is ( NG1, Ne1) D
[�3, �1�, �1, �2]. Then l [�3, �1�, �1, �2] D l ( NG1, Ne1) D l (G1, e1) < l (G, v) < 1,
which implies that [�3,�1�,�1,�2] is erasable. This contradicts Lemma 5.13, so the
proof is complete.

The next proof requires familiarity with the classical notion of dual graph (see for
instance 2.4). IfD is an SNC-divisor of a nonsingular projective surfaceS, we write
G(D, S) for the dual graph ofD in S. Recall in particular thatG(D, S) is a weighted
graph. See Definition 3.2 for the definition of “chain”.

Proposition 5.15. No triple (Y0, D, L) satisfies the following conditions(i)–(iii):
(i) Y0 is a nonsingular projective surface and D, L � Y0 are irreducible curves.
(ii) L is nonsingular, L2

D 0 and D � L D 2.

(iii) There exists a chain Y0
�1
 � Y1

�2
 � � � �

�N
 � YN such that N� 1 and, if DN � YN ,

L N � YN , and Gi � YN denote respectively the strict transforms of D, of L, and of
the exceptional curve of�i , then:

• the subset DN [ L N [ G1 [ � � � [ GN�1 of YN is the exceptional locus of a
birational morphism YN ! S where S is a nonsingular projective surface;
• L2

N ¤ �1 in YN .

Proof. By contradiction, assume that (Y0, D, L) exists and considerY0
�1
 � Y1

�2
 �

� � �

�N
 � YN as in the statement, where�i W Yi ! Yi�1 is the blowing-up at the point

Qi 2 Yi�1. Let Di ,L i � Yi be the strict transforms ofD0D D and L0D L respectively;
we write Gi � Yi for the exceptional curve of�i and, if i < j � N, the strict transform
of Gi in Yj is also denoted byGi � Yj . For eachi 2 {1, : : : , N}, let 1i denote the
reduced divisorDi C L i C G1 C � � � C Gi of Yi . Let � denote the reduced divisor
DN C L N C G1C � � � C GN�1 of YN , i.e.,� D 1N � GN .

As supp(�) is the exceptional locus of a birational morphism,� is an SNC-divisor
of YN which has at least one (�1)-component. BecauseL2

N ¤�1, it follows that D2
N D

�1 and thatDN is the only (�1)-component of�. Moreover, there must holdL2
N < �1

(so N � 2, Q1 2 L0 and Q2 2 L1). Also note thatDN � L N � 1 < 2 D D0 � L0, so
Q1 2 D0 \ L0. We record:

(21) Q1 2 L0 \ D0 and Q2 2 L1 \ G1.

Suppose thatQ1 is a singular point ofD0. Then D0 �L0D 2 implies thatD1\L1D

¿ and thatD1 �G1 D 2; then (21) implies thatQ2 � D1 and hence that (DN �G1)YN D
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(D1 � G1)Y1 > 1, which contradicts the fact that� is an SNC-divisor. This shows that
Q1 is a regular point ofD0. As DN is nonsingular and�1 Æ � � � Æ �N is a chain, it
follows that D0 is nonsingular.

Consider the case whereD0 \ L0 is one point (so it isQ1). Then it follows from
(21) that12 D D2C L2C G1C G2 is an SNC-divisor ofY2 whose dual graph is

(22) G(12, Y2) W r r r

r

�2 �1
�

�2

y

where y D D2
2 2 Z and whereG2 is the vertex indicated by an asterisk�. Then1i D

Di C L i C G1C � � � C Gi is an SNC-divisor ofYi for eachi 2 {2, : : : , N}, and

(G(12, Y2), G2) � � �  (G(1N , YN), GN) D (G, v)

is a sequence of blowings-up of weighted pairs (cf. Definition 5.1). The weighted
graphG n {v} is equal toG(�, YN), which is equivalent to the empty weighted graph
since supp(�) is the exceptional locus of a birational morphism. So the weighted pair
�

G(12, Y2), G2
�

is erasable, i.e., the weighted pair pictured in (22) is erasable, and this
contradicts Proposition 5.14.

This shows thatD0\ L0 contains more than one point. Then it follows from (21)
that11 D D1C L1C G1 is an SNC-divisor ofY1 whose dual graph is

(23) G(11, Y1) W
r r

r
�

�
�
�❅

❅
❅

�1 x

�1

wherex D D2
1 � D2

N D �1 and whereG1 is the vertex indicated by the asterisk. Then

(G(11, Y1), G1) � � �  (G(1N , YN), GN) D (G, v)

is a sequence of blowings-up of weighted pairs such thatG n {v} D G(�, YN) � ¿. So
the weighted pair

�

G(11, Y1), G1
�

is erasable, i.e., the weighted pair pictured in (23)
is erasable. This contradicts Proposition 5.14, so the proof is complete.

6. Existence of a dicritical of degree 1

6.1. Dicriticals. Let 3 be a pencil without fixed components on a nonsingular
projective surfaceS and 8

3

W SÜ P

1 the rational map given by3. Choose a
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commutative diagram

(24)

S QS

P

1

!

8

3

!

9

3

!�

where QS is a nonsingular projective surface,� is a birational morphism and9
3

is a
morphism, and consider the exceptional locusE D exc(�) � QS of � . The horizontal4

curves included inE are called thedicriticals of diagram (24). IfE � E is a dicritical

of (24) then the compositionE ,!

QS
9

3

��! P

1 is a surjective morphismfE W P
1
! P

1;
the positive integer deg(fE) is called thedegree of the dicritical E.

Suppose that diagram (24) hass� 0 dicriticals, of degreesd1, : : : , ds respectively.
Then the numbers and the unordereds-tuple [d1, : : : , ds] are uniquely determined by
3, i.e., are independent of the choice of a diagram (24) which resolves the points of
indeterminacy of8

3

. So it makes sense to speak of the number of dicriticals “of3”,
and of the degrees of these dicriticals.

The main objective of this section is to prove:

Theorem 6.2. Let C � P

2 be a unicuspidal rational curve with distinguished
point P and let3C be the unique pencil onP2 such that C2 3C and Bs(3C) D {P}.
If C is of nonnegative type then3C has either1 or 2 dicriticals, and at least one of
them has degree1.

The fact that3C has either one or two dicriticals easily follows from Propos-
ition 4.5 (f); the real contents of the theorem is the claim that there exists a dicritical
of degree 1.

The proof of the Theorem makes use of Proposition 5.15 (see the last sentence of
the proof). The following notation is also needed:

6.3. Let (a,b) 2 Z2 be such that min(a,b) � 1. Consider the Euclidean algorithm
of (a, b):

x0 D q1x1C x2,

� � �

xp�2 D qp�1xp�1C xp,

xp�1 D qpxp

4A curve E �

QS is vertical if 9
3

(E) is a point,horizontal otherwise.



UNICUSPIDAL RATIONAL PLANE CURVES 505

where x0 D b, x1 D a, all xi and qi are positive integers andx1 > � � � > xp � 1 (so
that gcd(a, b) D xp). We define the finite sequenceS(a, b) by

S(a, b) D (x1, : : : , x1
� �� �

q1 times

, : : : , xp�1, : : : , xp�1
� �� �

qp�1 times

, xp, : : : , xp
� �� �

qp times

).

Note thatS(a, b) D S(b, a). It is well known and easy to verify that if we change the
notation toS(a, b) D (r1, r2, : : : , rn) then

(25)
n
X

iD1

r i D aC b� gcd(a, b) and
n
X

iD1

r 2
i D ab.

The proof of Theorem 6.2 also requires the following fact.

6.4. ConsiderSm
�m
�! Sm�1

�m�1
���! � � �

�1
�! S0 where, for eachi D 1,: : : ,m, �i W Si !

Si�1 is the blowing-up of the nonsingular projective surfaceSi�1 at a point Pi 2 Si�1.
Let Ei D �

�1
i (Pi ) � Si for eachi D 1, : : : , m. Given a curveH0 � S0, and giveni , j

such that 1� i � j � m, let (Ei � H j )Sj denote the intersection number inSj of the
curvesEi � Sj and H j � Sj , whereEi and H j denote the strict transforms ofEi � Si

and H0 � S0, respectively.

Lemma 6.5. Let the setup and notation be as in6.4. Then, for each j2 {1,: : : ,m},
there exists aZ-linear map Tj W Z

m
! Z

j with the following property:

for every curve H0 � S0, Tj

0

B

�

(E1 � Hm)Sm

...
(Em � Hm)Sm

1

C

A

D

0

B

�

(E1 � H j )Sj

...
(E j � H j )Sj

1

C

A

.

Proof. If j D m then the claim is trivial. Assume thatj < m (in particularm �
2). For eachk D 2, : : : , m, define theZ-linear mapLk W Z

k
! Z

k�1 by

Lk

0

B

�

x1
...

xk

1

C

A

D

0

B

�

x1C ePk (E1)xk
...

xk�1C ePk (Ek�1)xk

1

C

A

,

whereePk (Ei ) is the multiplicity of the pointPk 2 Sk�1 on the curveEi � Sk�1. Note

that L2, : : : , Lm are completely determined by the sequenceSm
�m
�! � � �

�1
�! S0. We leave

it to the reader to verify thatTj D L jC1 Æ � � � Æ Lm has the desired property.

Proof of Theorem 6.2. LetC � P2 be a unicuspidal rational curve of nonnegative
type, with distinguished pointP. Let the notation be as in Notations 4.4 and Propos-
ition 4.5, and note that3m is a P1-ruling by Proposition 4.5 (c). The dicriticals of
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3C are theEi � Sm which are horizontal, i.e., which are not included in the support
of an element of3m. So, by Proposition 4.5 (f),3C has either one or two dicriti-
cals. To prove that at least one dicritical has degree 1, we have to show that there
exists i 2 {1, : : : , m} such thatEi is a section of3m, i.e., (Ei � D)Sm D 1 for all
D 2 3m. Note that3m does have a section by Gizatullin’s Theorem 2.5; however, we
don’t know a priori whether a section can be found among theEi . Proceeding by con-
tradiction, we assume that noEi is a section of3m. As Cm 2 3m by Proposition 4.5
(b), it follows that

(26) for all i 2 {1, : : : , m}, Ei � Cm ¤ 1 (in Sm).

Then in Sm we have

(27) Em � Cm > 1 and for all i < m we have Ei \ Cm D ¿.

Indeed,Em � Cm D ePm(Cm�1) � 1 and (26) implies that the inequality is strict. If for
some i < m we haveEi \ Cm ¤ ¿ then the fact thatEi \ Cm D {PmC1} D Em \ Cm

implies that min(Ei � Cm, Em � Cm) D ePmC1(Cm) D 1, which contradicts (26). So (27)
is true.

Consider the multiplicity sequence (r1, : : : , rm) wherer i D ePi (Ci�1) D (Ei �Ci )Si ,
and note that

rm > 1

by the first part of (27). Letd D deg(C). As C2
mD 0 andCm� P

1, we have 0D C2
mD

C2
0�
Pm

iD1r 2
i D d2

�

Pm
iD1r 2

i and (by the genus formula) (d�1)(d�2)D
Pm

iD1r i (r i �1).
It follows that

(28) d2
D

m
X

iD1

r 2
i and 3d � 2D

m
X

iD1

r i .

Note that (r1,:::,rm) cannot be a constant sequence (a,:::,a) because equations (28)
would then readd2

D ma2 and 3d � 2 D ma, and these have no solution in integers
with a > 1. We point out thatm � 2, for otherwise (r1, : : : , rm) would be constant.
From the second part of (27) and the fact that (r1, : : : , rm) is not constant, we deduce
that (r1, : : : , rm) has the following description: there exist (a1, b1), : : : , (ah, bh) 2 Z2

(for someh � 1) such that
• min(ai , bi ) � 1 for all i 2 {1, : : : , h}

• aiC1 D gcd(ai , bi ) for all i 2 {1, : : : , h � 1}

• a1 > � � � > ah > ahC1, where we defineahC1 D gcd(ah, bh)
• (r1,: : : ,rm)D

�

S(a1,b1), : : : , S(ah,bh), (ahC1)e
�

for somee� 0, where each sequence
S(ai , bi ) is defined as in 6.3 and where (ahC1)e is the sequence (ahC1, : : : , ahC1) where
ahC1 occurse times.
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By 6.3, the last term of the sequenceS(ah, bh) is gcd(ah, bh) D ahC1; so rm D ahC1

holds wheneD 0, and obviously it also holds whene¤ 0. So

ahC1 D rm > 1

in all cases. By (28) and (25),

d2
D

h
X

iD1

ai bi C ea2
hC1

and sinceahC1 divides eachai and eachbi it follows that a2
hC1 j d2 and hence that

ahC1 j d. The other part of (28) gives

3d � 2D
h
X

iD1

(ai C bi � aiC1)C eahC1 D a1C (e� 1)ahC1C

h
X

iD1

bi ,

so ahC1 j 2 and consequently

(29) rm D ahC1 D 2.

Define the integersÆ D d=2, �i D ai =2 (1� i � h C 1) and �i D bi =2 (1� i � h).
Then �iC1 D gcd(�i , �i ) for all i 2 {1, : : : , h} and �1 > � � � > �h > �hC1 D 1. The
above equations yield:

Æ

2
D

h
X

iD1

�i�i C e, 3Æ D �1C eC
h
X

iD1

�i .

Suppose thatp is a prime number which divides bothe and�h. ThenÆ2
� 0 (mod p)

and 3Æ � �h (mod p), so p j �h and consequentlyp j gcd(�h,�h)D �hC1 D 1, which is
absurd. This contradiction shows that gcd(e, �h) D 1, and since�h > 1 we have shown
that e> 0. This has the following consequence:

(30) the only i < m which satisfies Ei \ Em ¤ ¿ (in Sm) is i D m� 1.

As Pi 2 Ei�1 for all i > 1 (cf. (10)), we see in particular that
Sm

iD1 Ei is connected; by

(30), it follows that the subsetE D
Sm�1

iD1 Ei of Sm is connected. As each irreducible
component ofE is vertical by (27) and Proposition 4.5 (e), it follows that

(31) E � supp(F) for some F 2 3m

because distinct elements of3m have disjoint supports. We claim:

(32) if G 2 3m and G ¤ F then G is irreducible and reduced.
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By contradiction, suppose thatG 2 3m n {F} is not irreducible and reduced. Then the
support ofG is a union of at least two curves (otherwise we would haveG D nG0 for
somen� 2 and some divisorG0 of Sm, and this would contradict the fact Theorem 2.5
that 3m has a section). LetL � Sm be an irreducible component ofG. As Em is
horizontal andE � supp(F), G does not contain anyEi , so the image ofL in S0 (via
�1 Æ � � � Æ�m) is a curveL0 � S0. As ¿ ¤ L0\C � Bs(30) D {P1}, we haveP1 2 L0,
so L\ (E [ Em)¤ ¿; as L\E � supp(G)\supp(F)D ¿, we haveL � Em > 0 (for any
irreducible componentL of G). As G � Em D Cm � Em D rm D 2, and sinceG has at
least two irreducible components, it follows thatG D L C M where L , M are distinct
prime divisors,L � Em D 1D M � Em and L \ E D ¿ D M \ E . Moreover, Gizatullin’s
Theorem 2.5 implies thatL � P1

� M and thatL2
D �1D M2.

Let L i � Si be the strict transform ofL0 on Si and note thatLm D L. By the
above observations we havePi 2 L i�1 for all i 2 {1, : : : , m} and Lm satisfiesLm �

P

1 and L2
m D �1. Define m(L0) D (r 01, : : : , r 0m) by r 0i D ePi (L i�1) D (Ei � L i )Si and

let us comparem(L0) with the sequencem(C) D (r1, : : : , rm) which we have already
considered. We claim:

(33) (r1, : : : , rm) D 2(r 01, : : : , r 0m).

To see this, note that

0

�

(E1 � Cm)Sm

...
(Em � Cm)Sm

1

A

D

0

B

�

0
...
0
2

1

C

A

and

0

�

(E1 � Lm)Sm

...
(Em � Lm)Sm

1

A

D

0

B

�

0
...
0
1

1

C

A

, so

(34)

0

B

�

(E1 � Cm)Sm

...
(Em � Cm)Sm

1

C

A

D 2

0

B

�

(E1 � Lm)Sm

...
(Em � Lm)Sm

1

C

A

.

By Lemma 6.5, for eachj 2 {1, : : : , m} there exists aZ-linear mapTj W Z
m
! Z

j

which is completely determined by the sequenceSm
�m
�! � � �

�1
�! S0 and which has the

following property: given a curveH0 � S0 and its strict transformH j on Sj ,

Tj

0

B

�

(E1 � Hm)Sm

...
(Em � Hm)Sm

1

C

A

D

0

B

�

(E1 � H j )Sj

...
(E j � H j )Sj

1

C

A

.

By (34) and linearity ofTj it follows that (Ei � C j )Sj D 2(Ei � L j )Sj for all i , j such
that 1� i � j � m, so in particularr j D (E j � C j )Sj D 2(E j � L j )Sj D 2r 0j for all
j 2 {1, : : : , m}. This proves (33).

Let d0 D deg(L0). As Lm � P
1 and L2

m D �1, (d0 � 1)(d0 � 2)D
Pm

iD1 r 0i (r
0

i � 1)
and (d0)2

D

Pm
iD1(r 0i )

2
� 1, so 3d0 D 1C

Pm
iD1 r 0i . Doubling the last equation and using
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the second part of (28) gives

6d0 D 2C
m
X

iD1

(2r 0i ) D 2C
m
X

iD1

r i D 3d,

so d D 2d0. Then

d2
D 4(d0)2

D 4
m
X

iD1

(r 0i )
2
� 4D

m
X

iD1

r 2
i � 4

contradicts (28), and hence (32) is proved.
By Gizatullin’s result 2.5 we may choose a section6 � Sm of 3m and consider

the birational morphism� W Sm! F whose exceptional locus is the union of the curves
in Sm which are3m-vertical and disjoint from6. Recall from the same result The-
orem 2.5 thatF is one of the Nagata–Hirzebruch ruled surfaces and thatL D �

�

(3m)
is a base-point-free pencil onF each of whose elements is a projective line. We have
exc(�) � suppF by (32), so the number of irreducible components of exc(�) is 1 less
than the number of irreducible components of suppF (as exactly one component ofF
meets6). Recall that the canonical divisorsK

P

2 and K
F

satisfy K 2
F

D K 2
P

2 � 1; so,
consideration of

P

2
D S0

�

 � Sm
�

�! F

(where� D �1Æ� � �Æ�m) shows that� contracts exactlym�1 curves, and hence thatF
has exactlym irreducible components. AsE � supp(F), it follows that supp(F)D 0[E
for some curve0 � Sm such that0 6� E , and where we must have02

D �1 since no
component ofE has that property. We have0 \ 6 D ¿, for otherwise Theorem 2.5
would imply that F has a (�1)-component other than0, which is not the case. Note
that 0 ¤ Em since Em is horizontal, so0 is not an Ei . It also follows that exactly
one elementj 2 {1, : : : , m� 1} is such that�(E j ) is a curve; in factE j is the unique
component ofF which meets6 and consequently�(E j ) is an element ofL. Let us
also observe that exc(�) D 0 [

S

i2I Ei , where I D {1, : : : , m� 1} n { j }, so �(Em) is
a curve.

Let us state some properties of the triple (Y0, D, L), where we defineY0 D F ,
D D �(Em) and L D �(E j ) (the symbol “L ” was used in an earlier part of the proof,
but we give it a new meaning here). Obviously,
(i) Y0 is a nonsingular projective surface and D, L � Y0 are irreducible curves.

We also observe:
(ii) L is nonsingular, L2

D 0 and D � L D 2.
Indeed, we have already noted thatL 2 L, so L is nonsingular andL2

D 0. As
Em � Cm D 2 and (since exc(�) � suppF) � is an isomorphism in a neighborhood of
Cm, it follows that D ��(Cm) D 2; noting that�(Cm) 2 L, it follows that D � L 0

D 2 for
any L 0

2 L and in particular (ii) is true. Next we note:5

5See Definition 3.2 for the definition of “chain”.
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(ii) There exists a chain Y0
�1
 � Y1

�2
 � � � �

�N
 � YN such that N� 1 and, if DN � YN ,

L N � YN , and Gi � YN denote respectively the strict transforms of D, of L, and of
the exceptional curve of�i , then:

• the subset DN [ L N [ G1 [ � � � [ GN�1 of YN is the exceptional locus of a
birational morphism YN ! S where S is a nonsingular projective surface;
• L2

N ¤ �1 in YN .
This is obtained from� W Sm ! F by changing the notation: letN D m� 1 and

factor � as Sm D YN
�N
�! � � �

�1
�! Y0 D F , where each�i is a blowing-up at a point.

Just after (28) we noted thatm� 2, so N � 1. The fact that the blowing-up sequence
(�1, : : : , �N) is a chain follows from the fact that exc(�) D 0 [

S

i2I Ei (where I D
{1, : : : , m� 1} n { j }) has exactly one (�1)-component. We haveGN D 0, DN D Em,
and L N D E j , so in particularL2

N ¤ �1. The subsetDN [ L N [ G1 [ � � � [ GN�1 of
YN D Sm is equal to

Sm
iD1 Ei , which is the exceptional locus of the birational morphism

�1 Æ � � � Æ �m. So (iii) is true.
By Proposition 5.15, no triple (Y0, D, L) satisfies (i)–(iii). This contradiction com-

pletes the proof of the theorem.
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