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 There exists a direct connection between spin torque and spin current in two-dimensional 

electron systems with linear in momentum Rashba spin-orbit (SO) coupling.  In terms of the 

spin-current continuity equation, we show that the spin torque of this type generates a divergent 

spin current due to spin injection, which we call the spin-current-driven spin pumping.  We 

quantitatively investigate the spin pumping from SO coupled systems in contact with 

spin-polarized reservoirs using the nonequilibrium Green’s function formalism, demonstrating 

that the spin torque effect efficiently produces a pure spin current which is orders of magnitude 

larger than the spin Hall current. 
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1. Introduction 

 

 Spintronics is a burgeoning field in condensed matter physics which aims to harness 

electron spin in addition to charge in solid-sate systems.  In this field, an active interest exists in 

a generation of a pure spin current without any net charge flow in nonmagnetic metals or 

semiconductors.  Many ideas for achieving this goal have been proposed to date.  Several 

approaches are based on purely magnetic means, including spin pumping from paramagnetic 

quantum dots 1-3) or finite-sized conductors in paramagnetic resonance,4) as well as a spin 

battery consisting of a ferromagnet with precessing magnetization attached to nonmagnetic 

metals or semiconductors.5)  A route to manipulate spin current by electrical means is provided 

by the spin-orbit (SO) coupling in conventional semiconductors and quantum heterostructures.  

Most intensively investigated is the spin Hall effect arising in SO coupled systems,6,7) which 

constitutes a spin analog to the conventional charge Hall effect, and generates a transverse spin 

flux in response to a longitudinal electric field or an unpolarized charge current.  Parametric 

quantum pumping by cyclic variations of system parameters has attracted a renewed interest for 

spin current generation in the presence of SO coupling.8-10)  Spin pumping mechanisms 

exploiting the linear in momentum Rashba SO coupling in two-dimensional electron systems 

lacking the structural inversion symmetry have also been devised, which operate with a 

dynamic modulation of the SO coupling strength due to an oscillating gate potential,11,12) as 

well as the electric dipole spin resonance under an oscillating in-plane electric field.13) 

 Generally, electron spin is not a conserved quantity so that the spin-current continuity 

equation may involve the spin torque contribution as a source term.  A physically transparent 

consequence of spin nonconservation is a possibility of spin pumping when the driving spin 



 3

torque is activated.  In this paper, we investigate the spin torque effect in Rashba SO coupled 

systems in contact with spin-polarized reservoirs.  The spin torque in the Rashba system is 

exerted by spin injection, giving rise to a spin-current-driven spin pumping.  The spin current 

generation due to spin injection is not new but has been found in a previous theoretical study,14) 

showing that in a four-terminal bridge geometry a longitudinal spin current driven by a virtual 

spin bias induces a transverse spin current with perpendicular polarization.  In the literature, 

however, its physical origin is not addressed.  In this paper, we uncover the underlying spin 

torque physics, and propose a spin battery operating with an ordinary electric bias. 

 

2. Theoretical Analysis 

 

 Throughout this paper we shall work in units where   e 1.  We consider the Rashba SO 

coupled system in the xy  plane described by the Hamiltonian H  p2 /2m U(r)  SO  S , 

where p  is the canonical momentum operator, S  is the spin operator, SO  p ez  is the 

momentum-dependent spin precession frequency, m  is the electron mass,   is the SO coupling 

strength, and e  (  x, y,z ) is the unit vector in Cartesian coordinates.  The electrostatic 

potential U , which can deal with lateral confinement or nonmagnetic scatterers, is incorporated 

for generality.  In terms of the Heisenberg equation, we derive the kinetic velocity operator 

v  Ý r  v0  vSO, which consists of the canonical velocity v0  p /m  and the spin-dependent 

anomalous velocity vSO  ez S due to SO coupling.  The same procedure defines the spin 

torque operator Ý S  SO S.  The spin torque of this type stems from the spin nonconservation 

due to SO coupling, and is distinct in nature from the field-induced torque 3,4) or the 

spin-transfer torque.15-17)  In this study, we specifically address the spin torque physics and its 
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related effects in the SO coupled system. 

 The Schrödinger equation it  H  in terms of the fermion field operator   leads to the 

continuity equation for the spin density operator  †S  and the spin current density 

operator j  Re†Sv , expressed as 

 

 

t
 (r, t)    j (r, t)  g (r, t),           (1) 

 

where Re A  (A  A†) /2 , and the operator g  Re† Ý S   represents the spin torque density.  

The spin current density j  is decomposed into j0,SO
 Re†Sv0,SO .  Note that jSO

z  0, and 

hence jz  j0
z .  In terms of the kinetic contributions j0

 , each component of spin torque density 

can be explicitly written as 

 

 gx (r, t)   j0,x
z (r,t) /LSO,             (2a) 

 gy (r, t)   j0,y
z (r,t) /LSO,             (2b) 

 gz(r,t)  [ j0,x
x (r, t)  j0,y

y (r, t)]/LSO,           (2c) 

 

where LSO 1/m  is the spin precession length (over which spin precesses by one radian).  The 

direct connection between spin torque and spin current is a unique property inherent to the 

linear in momentum SO coupling.  It should be noticed that eqs. (1) and (2) are independent of 

U  and hold for any potential profiles. 

 The spin-current continuity equation for the SO coupled system contains an important 

physical implication for the spin torque effect.  In the steady-state, eq. (1) reduces to   j  g .  

The local continuity provides a conservation law for spin flux 
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 j (r) ndr
C  g (r)d2r

A ,            (3) 

 

where the closed loop C  encloses the area A , and n is the outward-directed unit vector normal 

to C .  Thus, the total outflow of spin current is equal to the integrated spin torque.  In terms of 

eq. (2), the spin torque is generated in the presence of spin currents, giving rise to a 

spin-current-driven spin pumping.  The spin pumping process involves a polarization 

conversion, i.e., the out-of-plane (in-plane) spin torque is produced by the in-plane 

(out-of-plane) polarized spin current. 

 For definiteness, we specifically consider a four-terminal bridge geometry as illustrated in 

Fig. 1.  The model consists of a central rectangular sample with SO coupling and four leads 

without SO coupling attached on all four sides of the sample.  The two longitudinal leads 

(labeled by 1 and 3) are Sx-polarized whereas the two transverse leads (labeled by 2 and 4) are 

unpolarized.  This configuration corresponds to a Datta-Das spin transistor 18) to which 

additional unpolarized transverse leads are attached.  The charge current with Sx-polarization 

flows between the two longitudinal leads when subjected to a certain voltage bias.  The spin 

torque gz exerted by the spin injection generates a divergent spin current with Sz -polarization 

in the sample region, which flows into the leads connected to the sample.  If the electrochemical 

potentials in the transverse leads are suitably adjusted to prevent charge currents, pure spin 

currents are extracted.  Thus, the spin torque effect enables a stationary spin-battery operation, 

which is distinguished from conventional spin-pumping mechanisms that exploit 

time-dependent external fields.1-5,8-13)  Note that the spin-current-driven spin pumping occurs 

effectively in a finite-sized sample smaller than the spin precession length LSO.  It is trivially 
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expected for an infinitely-large sample that the spin torque substantially averages out because 

of a continuous spin precession. 

 In the tight-binding representation on a square lattice with lattice spacing a , the 

Hamiltonian describing the sample region is expressed as 

 


H  t0 cr

† (cra  crb )



r,
  rcr

† cr
r,
  2itSO cr

† (S 
x crb   S 

y cra  )



r, , 
 , (4) 

 

where cr  is the fermionic annihilation operator of an electron at position r  with spin  , 

a  aex  and b  aey  are the unit lattice vectors, t0 1/2ma2  is the hopping energy, 

r U(r)  4 t0  is the effective on-site energy, and tSO   /4a  is the SO coupling energy.  In the 

lattice model, the spin density   and the spin current density j  j0
  jSO

  are formulated as 

 

  (r) 
1

a2
cr

† S 
 cr 

 , 
 ,            (5a) 

 j0
 (r) 

t0

a
Im cr

† S 
 (cra  ex  crb  ey )




 , 
 ,        (5b) 

 jSO
x (r) 

tSO

2a
Re cr

† crb ey





 ,           (5c) 

 jSO
y (r)  

tSO

2a
Re cr

† cra ex





 ,           (5d) 

 

where ImA  (A  A†) /2i.  In eq. (5), j (r)  describes the local spin current on site r , which is 

equivalent to the average of bond spin currents j (r, r ) from the site r  to its nearest neighbor 

sites r .19)  The lattice version of spin torque density g (r)  is simply given by eq. (2) with 

adopting the lattice version of j0
 (r) .  It is shown from the Heisenberg equation 
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t
  i[,H] that these lattice expressions satisfy the continuity equation, eq. (1). 

 It is convenient for the numerical analysis to introduce the nonequilibrium Green’s 

function formalism,20-22) which employs the retarded and lesser Green’s functions defined by 

 

 Gr , r 
 (t, t )  i {cr (t),c r 

† ( t )} (t  t ),         (6) 

 Gr , r 
 (t, t )  i c r 

† ( t )cr (t) ,           (7) 

 

respectively.  In stationary situations, these double-time correlation functions depend only on 

the time difference t  t .  The retarded Green’s function is Fourier transformed into 

 

 G()  [ H  ()]1             (8) 

 

with    
 , where 

 Vg
V

†  is the retarded self-energy due to lead  , V  is the 

hopping matrix connecting lead   with the sample, and g
  is the retarded function of the 

isolated lead.  The lesser Green’s function satisfies the Keldysh equation, 

 

 G() G()()G()            (9) 

 

with G  (G)†  and    
 , where 

  if  is the lesser self-energy due to lead  , f  

is the Fermi function in lead  , and   2Im
 .  The local physical quantities such as the 

spin current density j (r)  and the spin torque density g (r)  are calculated directly from the 

equal-time correlation function G(t, t)  (2 )1  
 dG() .  This expression can be cast into a 

linear form for small deviations from equilibrium at zero temperature.23)  The spin- S  
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component of spin current flowing through lead   into the sample region is defined by 

J
   Ý S 

 , where the operator S
  r, ,  cr

† S 
 cr   describes the total spin in lead  .  

Assuming spin conservation in lead   and correspondingly [S ,
 ]  0 , the Heisenberg 

equation for S
  leads to a linearized Landauer-Büttiker formula for terminal spin current, 

 

 J
 

1

2
T

 (  )

              (10) 

 

with T
  Tr(SGG) , where   denotes the electrochemical potential in lead  .13)  

Equation (10) is analogous to the well-known formula for terminal charge current, 

J  (2 )1 T (  )  with T  Tr(GG), which is derived from the Heisenberg 

equation for the number operator N  r, cr
† cr  on the basis of charge conservation.20,22) 

 The spin polarization of lead may be formally represented either by the spectral function 

  (  2Img
 ) or by the coupling matrix V .  In the former picture, we use 

    (p)P
 

(0)  with  ( p)  (1p) /(1 p )  for S -polarization.  Here, 
(0) 

corresponds to the spectral function of unpolarized lead, P
 1/2S  is the projection 

matrix onto the spin- S  eigenvector, and p  ( 1 p 1 ) stands for the degree of spin 

polarization.  For example,   
(0)  for p  0  while   P,

 
(0)  for p  1.  The former 

picture is equivalent to the latter one where the coupling matrix is defined by 

V    ( p)P
V

(0) , insofar as transport properties are concerned (i.e., both pictures lead to 

the same self-energy 
 ).  It should be noticed that eq. (10) for spin- S  current is valid when 

the probe lead   is unpolarized ( p  0) or S -polarized ( p  0 and    ).  The present 

treatment mimics a spin-asymmetry in the density of states around the Fermi level in the Stoner 

model of ferromagnetism.  This phenomenological approach is useful for analyzing the spin 
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torque effect, which is fundamentally characterized by the sample size, the spin precession 

length, as well as the injected spin current, as shown in the following. 

 

3. Numerical Calculation 

 

 In the rest of this paper, we explain the results of numerical calculations performed for a 

quantitative study of the spin torque effect.  Hereafter, the bracket  representing the 

nonequilibrium statistical average is omitted for simplicity.  As shown in Fig. 1, the model 

system is basically comprised of a central square sample of size L  L  with SO coupling and 

four semi-infinite leads of the same width L  without SO coupling.  The spin polarization of 

two longitudinal leads  1,3  is varied in the range 0  p 1 while two transverse leads 

  2,4  remain unpolarized.  In this model, we examine the terminal spin current J
  in 

comparison with the total spin torque G  a2r g (r) .  Throughout the calculation, the 

condition J2,4  0  is imposed on terminal charge currents so that pure spin currents flow in 

transverse leads.  To avoid tediousness, in what follows we explain the longitudinal and 

transverse spin currents in terms of the conserved components: J
  (J1

  J3
 ) /2  and 

Jt
  (J2

  J4
 ) /2 , and the nonconserved ones: J

  (J1
  J3

 )  and Jt
  (J2

  J4
 ) .  Similar 

definitions also apply to terminal charge currents, which have only the conserved component 

J  (J1  J3) /2 .  All the numerical results are normalized by a factor (1 3) /2 .  

Accordingly, the spin current and the spin torque shown below have a dimension of spin 

conductance (in units of e /2 ).  In addition to the standard model, we consider a modified 

structure where a normal region with   p  0 is inserted between each lead and the sample 

for investigating the microscopic details of spin current flow.  In the normal region, the local 
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spin current is conserved and nondivergent, i.e.,   j  0, in contrast to the general relation 

  j  g  involving the local spin torque in the sample region.  In the following, the hopping 

energy is taken as the energy unit ( t0 1), and the lattice spacing as the length unit ( a 1).  The 

SO coupling energy is normally set to be tSO  0.01, which corresponds to the spin precession 

length LSO  50 .  The sample size L  is chosen to be smaller than LSO  so that the spin 

precession does not significantly affect the spin torque effect observed in the present 

calculation. 

 Before discussing the numerical results, it may be appropriate to summarize the general 

relations for terminal spin currents.  In the present model, the electrostatic potential has C2 

symmetry around the x, y,z -axis, i.e., U(x,y) U(x,y) U(x,y) U(x,y)  in the absence 

of random impurities.  Consequently, the total Hamiltonian for p  0 is invariant under each of 

the following unitary transformations:14) (i) x x , z z , Sy Sy , Sz Sz , (ii) 

y y , z z , Sx Sx , Sz Sz , and (iii) x x , y y , Sx Sx , Sy Sy , 

leading to the symmetry relation J
x  J

y  J
z  Jt

x  Jt
y  Jt

z  0 via the Landauer-Büttiker 

formalism.  On the other hand, the symmetries under transformations (ii) and (iii) are broken 

for p  0.  In this case, the relevant relation is only J
x  Jt

x  0.  These analytical results help 

to interpret the numerical results for clean ballistic systems described below. 

 For p  0, the spin Hall effect arises in response to the unpolarized charge current.  What 

is shown below is that the resulting spin-Hall current brings about a spin torque effect.  Figure 2 

(a) illustrates the conserved transverse spin current Jt
z  calculated as a function of the Fermi 

energy F .  A small oscillation is due to the subband formation in the finite-sized system 

subjected to lateral confinement.  The remaining nonzero spin-currents J
y  and Jt

y  are 

displayed in Fig. 2 (b), along with the total spin torque Gy .  These nonconserved spin currents 
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appear with opposite signs, implying that the spin- Sy current flows from transverse leads to 

longitudinal leads, and vice versa (depending on F ).  However, it is notable that the local spin 

current jy  is not conserved in the sample region where the finite spin torque gy  is generated by 

the local spin-Hall current jy
z  j0,y

z  [see, eq. 2(b)].  As explicitly stated in eq. (3), the total 

outflow of spin currents is identical to the total spin torque.  Hence, the terminal spin currents 

should obey the relation J
y  Jt

y  Gy .  The expected relation holds among the associated 

numerical results exactly.  Figure 3 shows the spatial profiles of local spin current and local spin 

torque calculated for F  0.1 , demonstrating that the spin current jz  flowing toward y  

generates the spin torque gy  in the sample region, and simultaneously the spin current jy  is 

drawn out of transverse leads and flows into longitudinal leads. 

 The terminal spin currents vary as J
y ,Jt

y   and Jt
z 2 with the SO coupling strength 

  when L  LSO (not shown).  The quadratic dependence of Jt
z  is naturally expected from its 

driving spin-force,24,25) which is also quadratic in  .  It appears that the spin currents J
y  and 

Jt
y  linear in   are of different origin.  The occurrence of these spin currents may be ascribed to 

a nonuniform spin accumulation y  in the SO coupled region, as suggested previously.26) 

 For p  0, the spin-current-driven spin pumping is expected to occur.  The spin-charge 

ratio of conserved longitudinal currents P  J
x /J  increases monotonically with p , and 

reaches the maximum P 1/2 at p 1 (corresponding to half-metallic leads).  In the presence 

of the conserved longitudinal spin current J
x , the nonconserved transverse spin current Jt

z  

emerges.  As shown in Fig. 4 (a), Jt
z  grows continuously with p .  In addition to the pumped 

spin current Jt
z , the nonzero spin currents Jt

z  and Jt
y  are detected in unpolarized transverse 

leads.  The spin Hall current Jt
z  and the spin polarization current Jt

y  occurring due to the 

longitudinal charge current J  are on the same order of magnitude for p  0.  As compared to 
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these ordinary spin currents, the pumped spin current Jt
z  observed for p 1 is orders of 

magnitude larger (compare Figs. 2 and 4).  The conserved transverse spin current Jt
y  (which 

does not exist in the case of p  0) behaves as Jt
y SOJt

z /8 (not shown), and is closely related 

to the pumped spin current Jt
z , where SO  L /LSO  is the spin precession angle for travel 

distance L .  This relation suggests that Jt
y  originates from the spin precession in the yz  plane 

accompanying Jt
z .  Figure 4 (b) explains that the pumped spin current Jt

z  probed in the 

transverse leads is appreciably lower than the total spin torque Gz , indicating that the spin- Sz  

current flows partly into longitudinal leads, in view of eq. (3).  This interpretation is supported 

by the spatial distributions of local spin current and local spin torque shown in Fig. 5.  The spin 

current jx  flows toward x  and generates the spin torque gz in the sample region.  The spin 

current jz flows divergently, and is finally absorbed into all four leads.  The total outflow of 

spin- Sz  currents is directly calculated from the line integral of jz along a closed loop across the 

normal regions.  Comparing it to the total spin torque Gz , the conservation law for spin 

pumping, eq. (3), is validated exactly. 

 The total spin torque generated in the sample region, which corresponds to the maximum 

output spin current, can be roughly estimated from the input spin current.  To simplify the 

matter, we here assume a uniform flow of spin currents such that j  (Jx
ex  Jy

ey ) /L  for a 

sufficiently weak SO coupling.  Each component of total spin torque G  is then written as 

Gx  SOJx
z , Gy  SOJy

z , and Gz SO(Jx
x  Jy

y ) .  For instance, the spin torque induced by the 

spin Hall current is described by Gy SOJt
z .  A similar treatment applies to the spin torque due 

to spin injection, giving G
z SOJ

x  for the particular configuration illustrated in Fig. 1.  These 

relations are merely an approximation assuming uniform spin currents but satisfactorily 

account for the numerical results, providing a simple way to evaluate the spin torque from the 
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input spin current. 

 In terms of the spin-torque mechanism we address, the four-terminal geometry analogous 

to a spin-Hall bridge is not a prerequisite for the spin-current-driven spin pumping.  To 

demonstrate this, additional numerical results for a three-terminal configuration are shown in 

Figs. 6 and 7.  The three-terminal model assumed in the calculation corresponds to the model 

illustrated in Fig. 1 with simply removing the bottom lead 4, which preserves the symmetry 

under transformation (i) so that J
x  J2

x  0 (in this case, Jt
  is not proper for describing 

transverse spin currents).  Figure 6 compares the pumped spin currents J2
z  observed in the 

three- and four-terminal models, showing that the output spin currents in both cases are similar 

in magnitude.  The microscopic details of spin-current flow and spin-torque distribution are 

explained in Fig. 7.  Physical insights into the spin torque effect are the same as those found in 

the four-terminal model, i.e., the spin torque gz  exerted by the spin current jx  creates a 

divergent flow of the spin current jz.  The conservation law for spin pumping is numerically 

verified by calculating the line integral of jz and the total spin torque Gz .  The spin torque 

effect occurring efficiently in different structures exemplifies its extended applicability to spin 

pumping. 

 Finally, we investigate the disorder effect due to nonmagnetic impurities.  In this study, the 

static disorder is taken into account by a random on-site potential U  uniformly distributed in 

the range W /2 U W /2 (for which C2 symmetry is broken).  Figure 8 shows the spin Hall 

current Jt
z  for p  0 and the pumped spin current Jt

z  for p 1 calculated as a function of the 

disorder strength W , in comparison with the charge currents J  computed simultaneously.  In 

this figure, the numerical results are normalized by the values in the clean limit (W  0).  It is 

easily found that although both spin currents tend to be suppressed for a strong disorder, there is 
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a significant difference between them.  The spin Hall current decays more rapidly than the 

charge current and almost disappears at W  2.  This feature is implied from a vanishing 

spin-Hall conductivity for an arbitrary weak disorder in the thermodynamical limit,27,28) and 

also from an extended Drude model including the spin force.29)  The Drude model predicts 

jz  (m2 /4)j ez  to second order in   for Rashba systems, where   represents the 

momentum relaxation time.  This suggests that jz decreases faster than j for a shorter  .  In 

contrast, the pumped spin current slowly decreases and remains finite even at W  2.  Actually, 

the pumped spin current and the charge current exhibit a similar fall-off property.  This 

observation is indicative that the spin torque effect is controlled mainly by the injected spin 

current even for a strong disorder. 

 

4. Conclusions 

 

 The spin torque effect is investigated in multi-terminal systems with the Rashba SO 

coupling in the center region.  The spin torque exerted by spin injection generates a divergent 

spin current in the SO coupled region which flows into the attached leads, enabling the 

spin-current-driven spin pumping in stationary situations.  In terms of the spin-current 

continuity equation, the conservation law for spin pumping is immediately derived, which 

states that the total outflow of pumped spin current is identical to the total spin torque.  The 

spin-current-driven spin pumping effectively occurs for finite-sized systems with the spin 

precession angle SO  L /LSO  smaller than unity, and produces much larger spin current 

compared to the spin Hall effect. 

 It is straightforward to extend the present theory to other linear in momentum SO 
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couplings.  For instance, in the case of the Dresselhaus SO coupling described by 

HD  ( pxS
x  pyS

y ) , the local spin torque is expressed as gx   j0,y
z /LD, gy   j0,x

z /LD, and 

gz  ( j0,y
x  j0,x

y ) /LD , where LD 1/m .  The physical consequences drawn from these 

expressions (which become equivalent to eq. (2) when exchanging flow directions x  y ) are 

very similar to those derived for the Rashba SO coupling.  Moreover, it is notable that metallic 

surfaces may exhibit the Rashba SO coupling due to the loss of inversion symmetry.30-32)  The 

spin injection from ferromagnetic metals into the Rashba SO coupled surface states constitutes 

a promising spin-pumping scheme, in addition to the spin injection from ferromagnetic 

semiconductors or metals into the semiconductor heterostructures with the Rashba or 

Dresselhaus SO coupling.  We expect the theoretical results obtained in this study to be useful 

for exploiting the spin torque effect in spintronics. 
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FIGURE CAPTIONS 

 

FIG. 1 

(Color online) Schematic diagram for a four-terminal system with Rashba SO coupling in the 

center rectangular region.  The two longitudinal leads 1 and 3 are Sx-polarized while the two 

transverse leads 2 and 4 are unpolarized.  The spin-polarized charge current flowing between 

longitudinal leads generates the spin torque in the SO coupled region.  The spin torque induces 

a divergent spin- Sz  current, which can be detected in transverse leads. 

 

FIG. 2 

(Color online) Terminal spin currents and total spin torque versus Fermi energy for p  0.  Two 

panels show (a) Jt
z , (b) J

y , Jt
y , and Gy .  The parameters used in the calculation are indicated 

in the figure. 

 

FIG. 3 

(Color online) Local spin currents and local spin torque for p  0.  Three panels show (a) jz, (b) 

gy , and (c) jy .  The parameters used in the calculation are tSO  0.01 and F  0.1.  The four 

rectangular arms attached to the central square sample are the normal regions where   p  0. 

 

FIG 4 

(Color online) Terminal spin currents and total spin torque versus Fermi energy for 0  p 1.  

Two panels show (a) Jt
z  for p  varying in 0.2 steps, and (b) J

x , Jt
z , and Gz  for p 1.  The 

parameters used in the calculation are indicated in the figure. 
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FIG. 5 

(Color online) Local spin currents and local spin torque for p 1.  Three panels show (a) jx , (b) 

gz, and (c) jz.  The parameters used in the calculation are tSO  0.01 and F  0.1.  The four 

rectangular arms attached to the central square sample are the normal regions where   p  0. 

 

FIG. 6 

(Color online) Pumped spin currents J2
z  in three- and four-terminal systems as a function of 

Fermi energy.  The parameters used in the calculation are indicated in the figure.  Insets 

illustrate the models assumed in the calculation. 

 

FIG. 7 

(Color online) Local spin currents and local spin torque in three-terminal system with p 1.  

Three panels show (a) jx , (b) gz , and (c) jz .  The parameters used in the calculation are 

tSO  0.01 and F  0.1.  The three rectangular arms attached to the central square sample are 

the normal regions where   p  0. 

 

FIG. 8 

(Color online) Normalized terminal currents as a function of disorder strength.  Two panels 

show (a) Jt
z  and J  for p  0, and (b) Jt

z  and J  for p 1.  The parameters used in the 

calculation are indicated in the figure.  In the calculation, the disorder average is performed 

over 1000 random configurations. 
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