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Extended coding for optical array logic

Jun Tanida, Masaya Iwata, and Yoshiki Ichioka

We present extended coding for optical array logic (OAL) to avoid the marginal effect. The marginal
effect is defined as an effect caused by the finite size of the image region, and it is a problem in massively
parallel processing by OAL. OAL is a paradigm of optical computing suitable for optical implementation
utilizing image coding and discrete correlation. To avoid the marginal effect in the context of OAL, we
propose a new coding rule and consider possible operations with this coding. With extended coding,
binary data can be identified from background with the same number of pixels as that used in the original
OAL. Simulation results of the operations verify the correctness of the proposed technique.

Key words:

1. Introduction

A variety of methods, techniques, and system architec-
tures that use the desirable features of light such as
parallelism, high speed, and connectivity have been
presented for overcoming problems of electron-based
information processing.! Novel schemes for optical
computing, such as optical neural networks, are
interesting as a future goal, but setting a shorter term
goal is also important to clarify problems on the way
to developing a practical system and to promoting
more study. An optical digital computing scheme is
considered to be a promising candidate for the near
future owing to its compatibility with current tech-
nologies in information processing, the availability of
various techniques and devices, and the ease of
investigation with computer simulation. Of course,
specific techniques and considerations are necessary
in optical digital computing to utilize the features
associated with the difference in dimensionality as
compared with current one-dimensional-based infor-
mation processing.

There is an essential principle behind achieving
efficient massively parallel processing: the process-
ing of as much data as possible at a time. Following
this principle, one should send a lot of data to a
processing register and apply appropriate operations
tothem. However, as the amount of data increases,

When this study was performed, the authors were with the
Department of Applied Physics, Osaka University, 2-1 Yamadaoka,
Suita 565, Japan. M. Iwata is now with Electrotechnical Labora-
tory, 1-1-4 Umezono, Tsukuba 305, Japan.

Received 15 July 1993; revised manuscript received 12 Novem-
ber 1993.

0003-6935/94,/173663-07$06.00/0.

© 1994 Optical Society of America.

Digital optics, optical computing, coding, optical-array logic, parallel processing.

a problem arises: how do we control and handle a
large amount of data without loss of processing
efficiency? A single-instruction multiple-data (SIMD)
stream is an effective solution, and the suitability of
SIMD processing is an important motivation for
optical digital computing. We have proposed a para-
digm for optical digital computing called optical array
logic? (OAL) and an effective processing scheme called
pattern logic.3#* Utilizing both techniques, we can
process multiple data collectively with SIMD opera-
tions.

When considering implementation of pattern logic
or other optical digital computing schemes, one will
encounter a troublesome problem. Namely, in some
situations the margin of the objective image produces
undesired processing results. For example, image
processing based on convolution with a spatially
extended kernel produces an invalid data region
around the margin of the objective image.5 With the
Laplacian edge detector the valid image region is
decreased in the same way. Another instance of the
problem is found in the communication between
neighborhood pixels of an image by a parallel shift
operation. The shift operation transfers the informa-
tion of the pixels to other locations in the image, but
at the same time it brings undefined information
from outside the image region. These problems are
caused by the finite size of the image region and are
found in parallel processing. In the following, we
call this undesired effect the marginal effect. To
overcome the problems associated with the marginal
effect, we need a sophisticated implementation, and it
should be reflected in the design of optical devices for
optical digital computing.

In this paper we present extended coding to avoid
the marginal effect in the context of the pattern logic
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Fig. 1. Schematic diagram of OAL.

implemented by OAL. In Section 2, OAL and pat-
tern logic are explained. In Section 3 the marginal
effect is defined, and three methods are shown to
avoid the effect. In Section 4 extended coding for
OAL is presented and some useful operations are
provided. Finally, application and processing effi-
ciency are discussed.

2. Optical Array Logic and Pattern Logic

OAL is a paradigm for optical digital computing based
on image encoding and discrete correlation, as shown
in Fig. 1. By OAL, arbitrary logic operations on
neighboring pixels can be executed in parallel for all
pixels belonging to two input binary images, which
are fundamental operations in the two-dimensional
data and image processing. In the procedure of OAL
an individual pair of pixels at the corresponding
location on the input images is converted into a coded
pattern according to the coding rule shown in Fig. 2.
There are four cases for the combination of the pixel
values; thus four patterns are prepared, and one of
them is selected in the coding. After the coding
process, the coded image composed of the coded
patterns is correlated with a discrete kernel consist-
ing of several delta functions located at specific
positions. These kernels are called operation kernels.
This operation is called discrete correlation and is
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Fig.2. Codingrule used in OAL.
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considered a fundamental operation in optical digital
computing. The correlated image is then sampled at
every other structuring cell to obtain an intermediate
product-term image. Inverting and logic summing
for several intermediate images, we complete a logic
neighborhood operation specified by the combination
of operation kernels used in discrete correlation.

To explore the capability of OAL, we have devel-
oped various programming techniques and algo-
rithms.5? Pattern logic is a conceptual idea but is
useful in the context that a large amount of data must
be processed efficiently. Figure 3 shows the concep-
tual diagram of the pattern logic. In this technique,
information primitives to be processed are converted
into a set of pixels accompanied by another set of
pixels that have the attributes of the information
primitives. Each of the pixel patterns is set at the
corresponding location in two input images for OAL.
With the appropriate design of neighborhood opera-
tions in OAL the pixel patterns on the images are
processed collectively without care for individual
location of the pixel patterns. After processing, the
processed pixel patterns are recovered into the origi-
nal information form.

In pattern logic an image in itself is nothing but a
container for pixel patterns. Ideally, such an image
should be transparent and not affect the processing
on the pixel patterns. However, in actual implemen-
tation an image has a finite region and brings an
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Fig.3. Conceptual diagram of pattern logic.
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Fig. 4. Image region and marginal effect.

undesired effect owing to its margin when the neigh-
borhood operations are applied. A specific program-
ming technique based on template matching with
attribute pixel paterns enables us to avoid this prob-
lem, but in this case we must pay a penalty in
processing efficiency and pixel usage. Consequently,
to execute the pattern logic efficiently, we need a
sophisticated technique.

3. Marginal Effect

Before proceeding in our discussion, we must define
and estimate the marginal effect. In Fig. 4(a), an
image is defined as an area enclosed by four edges.
Usually, valid information is located in the image as a
collection of discrete elements, called pixels. When
the image is shifted horizontally and/or vertically,
undefined information in the marginal area is brought
into the image area, as shown in Fig. 4(b). We define
the effect caused by intrusion of the marginal informa-
tion as the marginal effect.

Since the physical size of an actual device is limited,
the marginal effect cannot be avoided. Table 1 shows

Table 1. Ratio of the Pixels Unaffected by the Marginal Effect to the

Pixel Number
Neighborhood Number®
Pixel Number® 1 4 16 64 256
2 0.00
8 0.56 0.00
32 0.88 0.56 0.00
128 0.97 0.88 0.56 0.00
512 0.99 0.97 0.88 0.56 0.00

aNeighborhood number L corresponds to (2L + 1)(2L + 1) neigh-
borhood area.
5The pixel number is expressed by a number per dimension.

a calculation of the ratio of the pixels unaffected by
the marginal effect to the total number of pixels as
the pixel number per dimension and the neighbor-
hood number vary. For pixel number L the neighbor-
hood area is determined as (2L + 1)(2L + 1). As
seen from the table, the rate of the unaffected pixels
becomes quite low for a large neighborhood number.
Since optical interconnection has an advantage over
electronic interconnection for a long distance and
complicated connection (i.e., for a large neighborhood
number), the marginal effect is recognized as a seri-
ous problem.

As solutions for the above problem, three methods
are considered, as shown in Fig. 5: the wraparound
plane method, the marginal mode method, and the
extended coding method. In the wraparound plane
method [Fig. 5(a)] an ideal image plane, whose edges
are connected, is assumed to eliminate margins from
the processing image. Although this method seems
elegant, its implementation is difficult and requires a
complicated setup. In the marginal mode method
[Fig. 5(b)], values of the marginal pixels are implicitly
assigned to either 0 (called normal mode) or 1 (called
inverse mode). The essential problem caused by the
marginal effect is that undefined values intrude the
image area. Thus assigning implicit values to the
marginal pixels can avoid the problem. Although
this technique was used in our parallel processing
based on OAL, we note that an OAL programmer
needs to pay attention to the marginal mode when -
writing a program. In the extended coding method
[Fig. 5(c)], special code patterns are employed to
identify the existence of data. In general this method
requires an extension of the coding rule to represent
multiple status, or more than two states. In section
4 we explain the details of the extended coding for

Fig. 5. Three solutions to manage the marginal effect: (a)
wraparound plane method, {(b) marginal mode method, (c) extended
coding method.
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OAL to avoid the marginal effect and to implement
pattern logic efficiently.

4. Extended Coding for Optical Array Logic

A. Coding Rule

As described in Section 2, in pattern logic, informa-
tion primitives are coded into pixel patterns and set in
images. However, the OAL scheme is based on
binary logic, in which only two values, 0 and 1, are
employed to represent the data. As a result, thereis
no identification between the information primitives
and the background images. This suggests that
multivalued coding for more than two states is re-
quired.

Figure 6 shows the coding rule used in the proposed
extended coding. In the extended coding, a new
state, called none, is introduced to represent nonexist-
ence, or invalidity, of data. For two input variables
there are nine cases, including the none state, as
shown in Fig. 6. For example, the state in which a is
0 and b is none means that only datum e is valid, and
its value is 0.

To increase the possible number of states repre-
sented by coding, coded patterns with multiple pixels
can be also used.#1%11 Although this method is
simple and is implemented within the original OAL
scheme, it wastes pixels and reduces the total number
of data located on the processing images. On the
other hand, the proposed coding requires the same
number of pixels as used in the original OAL, thus no
penalty is paid for the pixel number required by
coding.

B. Logic Operations

The extended coding is an upper set of the original
OAL coding. Thus operations in the original OAL
are effective for the four types of coded patterns used
in the original coding. In addition, logical opera-
tions in the original OAL offer interesting responses
for the other coded patterns. Figure 7 shows output
patterns for nine possible coding cases obtained by
discrete correlation with operation kernels used in
the original OAL for 16 logic operations. The num-
bers under each output pattern indicate the optical
intensity at the center part of the pattern by the unit
of illuminated intensity and the corresponding logic
value. Since intensity varies between 0 and 4, we
assign intensity 0 to logic 1 and anything else to logic
0 according to the procedure in OAL.

none O 1

i g 1
° ol ol
Bl § .

Fig. 6. Extended coding rule for OAL.
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Figure 8 depicts the logic outputs for three opera-
tions, AND, OR, and NOT A, in truth-table form.
Looking into the tables carefully, one can find that
each operation provides reasonable outputs for the
nonexisting input cases. For example, in AND opera-
tion, if two data are valid, i.e., not in the none state,
and their values are 1, then logic 1 is output. In OR
operation, if at least one datum is valid and its value is
1, then 1is output. InNOT A operation, regardless of
b, if a is valid and its value is 0, then 1 is output.

Figure 9 shows results from a computer simulation
for the AND, OR, and NOT A operations for two images.
Assuming a situation appeared in the pattern logic,
we see that several isolated pixels coded from informa-
tion primitives are set in the image planes [Figs. 9(a)
and 9(b)]. The extended coding image is shown in
Fig. 9(c). The effective image area is set to be
surrounded by the coded patterns corresponding to
the state in which both a and b are invalid. In
practical implementation this setting is achieved by a
transparent area surrounding the image area. Fig-
ures 9(d)-9(f) are correlated images of the coded
image with operation kernels for AND, OR, and NOT A
operations. Although the background intensity var-
ies for each case, logic 1 is provided by the common
intensity 0. Therefore logic outputs are obtained as
shown in Figs. 9(g)-9(i). As seen from the result, it
is verified that correct results are obtained.

C. Data Validity Test

In addition to logic operations a useful operation can
be derived by use of the analog nature of the output
signals. Referring to the rightmost column of Fig. 7,
one can find that the intensity reflects the number of
valid data. Figure 10 shows the correspondence in
table form. Therefore correlation with the opera-
tion kernel consisting of 2 x 2 delta functions, as
shown in Fig. 11(a), can be used to test the data
validity. We call the operation the data validity test
(DVT). If the output intensity is equal to 1 in this
configuration, it is verified that both inputs ¢ and &
have valid data, i.e., either 0 or 1.

The DVT operation can be extended for testing
pixel patterns arranged in a neighborhood area.
With the above kernel, locations (i, j) in the input
images, in which both data a; ; and b; ; are valid, are
detected. In OAL an operation kernel larger than
2 X 2 provides neighborhood operation. Inthe same
manner the target of the DVT operation can be
enlarged. For example, to execute a neighborhood
operation between the pixel at the origin of the
neighborhood area (@; ; and/or b; ;) and its under pixel
(@i+1,; and/or b;,, ;), we need an operation kernel of
size 2 X 4. In this configuration, if delta functions
are set at all possible positions in the kernel, as shown
in Fig. 11(b), locations (i, j) at which the data a; ;,
@i+1,j bij, and by, ; are valid provide the output
intensity equal to the number of locations involved in
the neighborhood area (i.e., 2). Therefore the out-
put intensity equal to the number of locations in-
volved in the neighborhood area indicates the location
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Fig. 7. Output patterns for extended coding by logic operations in OAL: n means none state; numbers under each pattern represent

intensity (left) and logic value (right).

at which all of the neighborhood pixels have valid
data. Of course, the shape of the neighborhood area
can be specified by the operation kernel used.

Figure 12 shows computer-simulation results of
the DVT operation for single and double locations.
The input images contain pixel patterns with differ-
ent shapes [Figs. 12(a) and 12(b)]. The extended
coding image is shown in Fig. 12(c). Figures 12(d)
and 12(e) are correlated images with operation ker-
nels in Fig. 11(a) and 11(b), respectively. To detect
locations in which all data in the specified neighbor-
hood area are valid, we select a specific intensity and
assign it to logic 1; for the single location case the
intensity is 1, for the double location case the inten-
sity is 2. In Figs. 12(f) and 12(g), locations (i, j)
satisfying {(i, j)|a;; # none, b;; # none} and {(Z, j)
|a;,; # none, a;.,,; # none, b; ; # none, b;,, ; #* none}
are detected, respectively.

To implement the DVT operation, we need a special-
ized circuit to compare the signal detected at the
correlated plane and the signal corresponding to the
number of locations involved in the neighborhood
area. Although it might be executed time sequen-
tially by a program sequence, effective hardware can
be constructed as shown in Fig. 13. This DVT
circuit consists of two optical circuits based on a

3P|none 0 1
none| [0] [0] O]

Fig. 8. Truth tables of (a) AND, (b) OR, and (c) NOT A operations for
extended coding.

10 June 1994 / Vol. 33, No. 17 / APPLIED OPTICS 3667



@) (b) (©

(d) (e) ®

()]

N:o :1 : none
Fig. 9. Simulation results of AND, OR, and NOT A operations: (a),
(b) input images, (c) extended coding image, (d)—(f) correlated
images, (g)—(i) output images; (d) and (g) are for AND, (e) and (h) are
for OR, and (f) and (i) are for NOT A,

shadowgram utilizing spatial multiplexing. Be-
tween the normal sampling positions in OAL, extra
detectors are set to detect the signals for the DVT
operation. With this configuration the DVT opera-
tion can be executed independently from the logic
operation. For the individual operations two sets of
operation kernels, one for logic operation and the
other for DVT operation, are specified independently.

D. Application

Extended coding is expected to be useful in massively
parallel processing based on pattern logic. With
extended coding and DVT operation, pixel patterns
converted from information primitives can be identi-
fied and processed effectively. However, if the re-

30| none 0
o |[2] [ [T
]

Fig. 10. Output intensity for extended coding by the DVT opera-

tion.
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(a) (b)

: Origin of

Neighborhood Area
Fig. 11. Operation kernels for the DVT operations. The target
neighborhood area is (a) only the origin and (b) the origin and the
next lowest location.

sults obtained are used in the following operation,
they must be encoded by the extended coding rule
with attention to data validity. This process might
be an overhead of the processing. Regardless of the
overhead, flexibility and capability obtained by the
extended coding are attractive for massively parallel
processing.

The DVT operation is used to detect the ready state
in data flow computing.!? In the data flow comput-
ing architecture, processors, all of which are ready to
process input data, start their operations asynchro-
nously. However, when the number of processors is

(@ (b) {©

(d) (e)

®

Mo 0d:1 2
Fig. 12. Simulation results of DVT operations: (a), (b) input
images, (c) extended coding image, (d), (e) correlated image, (f), (g)
output images; (d) and (f) are for single location and (e) and (g) are
for double-location cases.
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Fig. 13. Example of the opfical setup for concurrent DVT opera-
tion.

large, it is troublesome to detect which processor is
ready to go. Hence the extended coding and DVT
operation can be used for this purpose. The flexible-
structure computing technique presented in Ref. 6
will be a powerful computing method with the ex-
tended coding scheme.

5. Conclusion

In this paper we have presented extended coding to
manage the marginal effect in pattern logic imple-
mented by OAL. First, OAL and pattern logic is
explained. Then, the marginal effect is defined and
three solutions are presented. As an effective solu-
tion, extended coding is presented and its useful
operations are shown as well as its promising applica-
tions.
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