

Title	舌下神経核細胞活動の調整に関する反射機構
Author(s)	森本, 俊文
Citation	大阪大学, 1968, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/29648
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

()

(原 著)

(図 11)

(別刷 部)

舌下神経核細胞活動の調整に関する

反射機構

612.819.93, 612.312.3, 612.811.4

A STUDY ON REFLEX MECHANISMS CONTROLLING HYPOGLOSSAL

MOTONEURON ACTIVITY.

森 本 俊 文 (MORIMOTO Toshifumi)

大阪大学歯学部口腔生理学教室

Department of Oral Physiology, Dental School,

Osaka University.

A STUDY ON REFLEX MECHANISMS CONTROLLING HYPOGLOSSAL MOTONEURON ACTIVITY

Toshifumi MORIMOTO (Department of Oral Physiology, Dental School, Osaka University)

An effect of the lingual nerve volley upon the excitability of hypoglossal motoneurones were analysed in decerebrate and decerebellated cats.

1. The hypoglossal nerve was broadly classified into two subdivisions: one is the nerve trunk which innervates the tongue protrusive muscle and the other is for the tongue retractive muscle. An evoked potential was recorded from the medial and ventrolateral part of the hypoglossal nucleus when antidromic stimulation was applied to the tongue protrusive nerve. However, the dorsolateral part of the nucleus was responded by antidromic stimulation of tongue retractive nerve.

2. The antidromic response of the tongue protrusive neurone in the hypoglossal neurone was inhibited by electrical stimulation of the lingual nerve, but that of the tongue retractive neurone was initially facilitated and later inhibited. Furthermore, lingual nerve stimulation induced the IPSP in the tongue protrusive neurone and the EPSP-IPSP or the EPSP in the tongue retractive neurone.

3. The impulses through the lingual nerve are estimated to transmit to the hypoglossal neurone via 3 synapses in the shortest reflex arch of the linguo-hypoglossal reflex system, and some reverberating circuit is also speculated in this reflex system.

I. 緒言

舌は内舌筋および外舌筋より構成され、その形態を複雑に変化させる事が出来るのみならず、その目的に適合した巧妙な運動を行う事が出来る。この様な舌筋活動に対して延髓舌下神経核細胞は final common path として重要な働きを行っている。故に、前記舌筋活動の生理学的機序を解明するためには、舌および口顎よりの求心性信号により舌下神経核細胞の活動が、如何に反射的に調整されるかを明らかにする事が必要である。しかし、今日舌運動の反射機構については不明の点が多く、特に三叉神経知覚枝を介する口腔組織よりの一般知覚性信号が舌下神経核細胞に如何に作用するかについては意見の一致を見ていない。

延髓舌下神経核は組織学的並びに神経生理学的に各種舌筋を支配する数個の小区域に分かれていますが、大別すると舌のつき出しに働く筋を支配する細胞群と舌のひこめに働く筋を支配する細胞群の2つになります。故に、

三叉神経知覚枝刺激の舌下神経細胞に対する影響を分析する際には、舌つき出し細胞に対する影響と舌ひっこみ細胞に対する影響とをそれぞれ検討する必要がある。

本実験は舌の前 $\frac{2}{3}$ の一般知覚を伝える舌神経を介する信号が、舌下神経核の前記2群の運動神経細胞に対する影響如何に影響するかを検討したものである。

II 実験方法

実験には体重2.5~4.0kgの猫37匹を用い、Nembutal-Soda(40mg/kg)を腹腔内に投与して麻酔を行った。猫の頸下部皮膚および頸舌骨筋を縱に切開し舌下神経を露出させ、口腔底中央部で切断し、その中権端に刺激電極を装着した。また、舌神経刺激のためには舌神経が舌に入る直前で切断し、その中権端に刺激電極を装着した。一対の輪状銀線電極を内径1.5mmのホリエチレン・チューブ内面に装置し、神経を断端よりこのチューブ内に挿入し保定了した。これら刺激電極はすべて他組織との絶縁のためワセリンに浸した綿でこれを覆った。刺激にはduration 0.1msecの単一矩形波刺激を用いた。

動物は頭部を脳定位固定装置に固定後、四丘体上丘前端レベルで除脳し、小脳をも吸引除去して延髄を露出した。露出延髄表面は乾燥を防ぐため37°C~39°Cの流動パラフィンで覆った。

舌下神経核細胞の活動を記録するには3M

— KC1 または 2M 一 K-Citrate 封入ガラス微小電極(先端抵抗 20-40MΩ)を用い、マイクロマニピュレーターにより stereotaxic に延脣舌下神経核に挿入した。

舌神経刺激が舌下神経核細胞の活動に如何に影響するかを調べるために、条件刺激を舌神経に与え、次いで時間々隔を次第に変化させながら試験刺激を舌下神経に与えた。この操作により舌下神経核の逆行性誘発電位が、条件刺激を与えない場合に比べて如何に変化するかを細胞外記録法により観察、記録した。

なお、舌下神経線維は大きく 2 つに分けられ、一方は舌のつき出しに働く頭舌筋および内舌筋へ、他方は舌のひしめに働く茎突舌筋および舌骨舌筋へ分布している(以下これら神経線維の名を舌つき出し線維、舌ひしめの線維と名付けた)。故に、舌下神経の逆行性刺激はこれら兩線維の各中枢端にそれぞれ与えた。

また、舌神経に刺激を与える、誘発される舌下神経細胞のシナプス電位を細胞内記録した。この際、微小電極が舌下神経細胞内に挿入されたことをかねて舌下神経の逆行性スパイク電位によつて確認した。

細胞外電位記録には微小電極用増中器、ECG結合5段増中器を用い、また細胞内記録にはDC2段増中器を用い、陰極線オフシロスコープ、連続記録装置により記録、撮影した。

III 実験結果

A 舌下神経核の逆向性誘発電位

舌下神経を刺激するににより延髓舌下神経核から逆向性誘発電位が記録出来た。電極が延髓表面下に入ると通常小さな positive-negative の電位が観察されたが、電極を更に深く挿入すると、ある実からンの誘発電位の negative の成分は急に大きくなり、表層より約 1.5 mm に達する間に、多くの場合電位は最大となつた。また、時に細胞体の電位と思われる大きな positive-negative の電位が記録出来た。これら誘発電位の潜時は 1 ~ 1.5 msec で、逆向性誘発電位を生じる場所は舌ひ、この線維を刺激した場合と舌つき出し線維を刺激した場合とで異つていた。すなわち、舌ひ、この線維が刺激された時は主として舌下神経核の外背側部に、舌つき出し線維が刺激された時は核の内側部および外腹側部で誘発電位が記録された。また、逆向性誘発電位の大きさは

(手元の刺激の強さによって変化した)。

B. 舌神経刺激の影響

舌下神経の逆向性刺激の強さとしては、誘発電位の大きさが直線的に変化する範囲のもとを送入だ。

舌下神経刺激による舌下神経核の逆向性誘発電位は、舌神経に条件刺激を与えることによつて影響を受けた。この影響は舌つき出し細胞と舌^群細胞と舌^群細胞とでそれなりに相違した。図3-1は舌つき出し細胞に対する舌神経刺激の影響を示したものである。舌神経刺激により舌下神経核より図3-1 Aに示した如き持続の長い小さな電位が記録された。図3-1 Bは条件刺激を与えた場合の舌下神経核の逆向性誘発電位であり、図3-1 C～Eは条件刺激と試験刺激の間隔を次第に変化させた時の舌下神経核の逆向性誘発電位の変化である。舌つき出し細胞の逆向性誘発電位は舌神経刺激により常に小さくなる傾向を示した。この様な舌つき出し細胞の反応の1例を図3-2に示した。図において縦軸は条件

件刺激を与えない場合の逆行性誘発電位の大きさを100とし、これに対する条件刺激を与えた場合の電位の大きさをパーセントで表わした。横軸には条件刺激と試験刺激の間隔を示した。条件刺激の効果が出現し始める時の両刺激の間隔は、短い場合で約2.5 msec、長い場合で約7 msecであった。また、効果が最高になるのは両刺激の間隔が12~15 msecの時であった。条件刺激効果の持続時間は誘発電位によって多少異り、条件刺激と試験刺激との間隔が40~90 msecになると条件刺激は無効となつた。舌下神経核での記録部位が相違しても、これら反応パターンには特記すべき相違を認めなかつた。

次に条件刺激の強さの変化が舌下神経核誘発電位に如何に影響するかを検討した。3段階の強さで舌神経に条件刺激を与えた場合、それぞれの刺激に対する効果を図4に示した。図において各曲線上の数字は刺激の強度を表わしている。舌神経への刺激が強くなる程、逆

向性誘発電位は小さくなると共に、その効果の持続が延長した。また、強い条件刺激を与えた場合、両刺激間隔が $20 \sim 40 \text{ msec}$ の間で、一時的電位減少効果の弱まるのが認められることがある。

舌ひ、二め細胞の誘発電位に対する舌神経刺激の影響を図 5-1 に示した。図において A は舌神経刺激により誘発された舌下神経核の誘発電位で、刺激が強い場合には時としてスパイクが認められた。B は舌下神経刺激による舌下神経核逆向性誘発電位。C ~ L は条件刺激と試験刺激の間隔を変化させた時の舌下神経核の逆向性誘発電位の大きさの変化を示したものである。舌つき出し細胞の場合とは異り、両刺激の間隔が短い間は逆向性誘発電位の増大が認められ、間隔が長くなると逆に電位の小さくなるのが認められた。この様な舌ひ、二め細胞の反応の一例を図 5-2 に示した。条件刺激の効果が出現し始める時の両刺激の間隔は比較的短く約 2.5 msec を越える

と電位の増大が始まり、5~7 msecで増大は最高となつた。続いて通常は両刺激間隔が10~16 msecに達すと一旦電位は元のレベルにまで戻つた。しかし、それ以上両刺激間隔が増大すると電位は小さくなり、条件刺激の効果が無くなるには試験刺激との間隔が60 msec以上にもなる必要があった。少數例では条件刺激と試験刺激の間隔が一定時間以上になると、電位は小さくならず、両刺激間隔が約40 msecまで電位の増大効果が認められ、それ以上両刺激間隔が大きくなつた場合条件刺激は無効となり、前記の如き電位減少効果は全く認められないものがあった。

図6は強弱3段階の強度で舌神経に条件刺激を与えた場合、それぞれの強さに対する舌認、この細胞の逆行性誘発電位の変化を示したものである。舌神経への刺激が強い程、両刺激間隔が短い場合に認められる電位増大効果は大となり、また両刺激間隔が延長した場合の電位減少効果も著明になつた。

次に、この様な舌ひ、この細胞に対する舌神経よりの影響のうち、兩刺激間隔がある一定時間以上にな、た時認められた舌下神經逆向性誘発電位減少機序に I P S P が関与するか否かを検討した。一般に I P S P 抑制効果をもつ strychnine (0.08 mg/kg) を静脈注射し、前記舌ひ、この細胞の反応を記録した。図 7 に示した如く strychnine が約 5 分後には舌下神經逆向性誘発電位に対する条件刺激の増大効果は著明に大きくなり、兩刺激間隔が延長した場合生じる誘発電位の減少効果は明らかに抑制された。この事実から条件刺激が舌下神經核逆向性誘発電位を抑制する機序の一つに I P S P が関与していることが推察出来る。

c. 舌下神經核細胞のシナプス電位

次に細胞内記録によつて上記現象を分析した。舌下神經細胞内で観察された逆向性電位は図 8 A に示す如くスパイク電位、あるいは図 8 B に示す如く後電位に移行する前に dip を持つスパイク電位、また図 8 C に示す如く下

行期に delayed depolarization を示すスパイク電位が認められた。但し、上記3種のスパイク電位の中で図8Cに示したタイプのものが最も多かった。この様なスパイク電位の形の相違は舌ひき細胞、舌つき出し細胞の区別なく観察された。逆向性スパイク電位により舌下神経細胞内より記録していき事を確認した後、舌神経刺激により舌下神経細胞のシナプス電位を記録した。舌神経刺激により舌つき出し細胞では図9Aに示した如き過分極性の電位が記録された。この電位の潜時は短いもので6 msec、電位の大きさは舌神経に与えた刺激の大きさによって異った。この電位はKCl封入微小電極を用いて記録した場合、次第に過分極から脱分極に変化する事からIPSPであると思われる。既にPorter²⁾¹⁵⁾が指摘する如く、この過分極電位はその下行相にstepが認められた。また、舌つき出し細胞では舌神経に与えた刺激が強くなると図9Bに示した如く刺激後20~40 msecの潜時においてスパイクを生じ

る場合が少數ながら認められた。

一方、舌神經刺激により舌ひ、この細胞では図 10 A に示した如く、小さな脱分極とこれに続く過分極電位が記録出来た。初の脱分極電位の潜時は短いもので 4 msec であった。舌神經刺激が強い場合には、この脱分極電位がラスパ。イクを生じる事から EPSP である事が分った。なお、少數例においては脱分極に続く過分極電位が脱分極電位の 2 倍が記録された。

舌下神經に与えた逆向性刺激により舌つき出し細胞にスパ。イクが生じている時、これに先行して舌神經に刺激を与えると、それによって生じた I P S P の為に逆向性スパ。イクの大ささが変化した(図 11)。図中 A は舌つき出し細胞の逆向性スパ。イク。B は舌神經刺激による I P S P。C は舌神經刺激後、時間々隔を次第に変えてながら舌下神經に刺激を与えた場合の逆向性スパ。イクの変化を示している。両刺激間隔が 10.5 msec の時、逆向性スパ。イクは

やゝ小さくなつたが、更に 13.5msec の時、逆向性
スパイクは SDスパイクが消えて ISスパイ
クのみとなつた。しかし両刺激間隔が 17msec に
なると再び SDスパイクは生じ、 32.5msec になると
とほゞ对照の逆向性スパイクと同じ大きさ
となる。

口 考 察

舌運動の反射的調節には舌神経からの求心性信号、ことに舌の一般知覚性信号が極めて重要な役割を果している。すなはち、舌の前半の一般知覚を伝える舌神経を切断すると、ヒトは咀嚼に際して舌を噛んでしまう。Carleton

¹⁰⁾ は cocaine を用いてヒトの口腔および舌粘膜を麻酔すれば、舌の位置感覺が失われる事を報告した。一方 Schoen¹¹⁾、Schoen & Koeppe¹²⁾ は視床猫で舌の触あるいは痛刺激が反射的舌運動を惹起することを認め、また Tarkhan¹³⁾ は犬および猫の舌神経を電気刺激すると舌運動が起る事を観察した。Blom¹⁴⁾ はこの様な舌神経刺激により舌下神経に誘発される反射を舌神経・舌下神経反射と呼んだ。更に Porter^{2) 15)} および Green¹⁶⁾ は三叉神経刺激により舌下神経核細胞シナプス電位を記録した。しかし、上記の舌神経・舌下神経反射において舌神経を介する信号が舌下神経核細胞に如何に作用するかの詳細は今日なお十分明らかにされていない。

本実験は舌下神経核細胞をその機能に従って舌つき出し筋支配の細胞と舌ひ、この筋支配の細胞に分けて考へ、舌神経からの信号がこれら2つの細胞群に対してそれぞれ如何に作用するかを明らかにした。すなはち、舌骨舌筋、茎突舌筋等の舌ひ、このに働く筋を支配する舌下神経核細胞の活動は、舌神経刺激により主として先ず促進され続いて抑制された。なお少數のものにおいては促進反応のみ未したものも存在した。これとは逆に頸舌筋等の舌つき出しに働く筋を支配する細胞の活動は后一刺激条件で抑制された。

Bloom³⁾は連続する2発の刺激を時間的隔を次第に変化させながら舌神経に与えると舌下神経で記録される電位は、2つの刺激間隔が短い間（約10 msec）は第2の刺激による電位が対照（第1の刺激による電位）に比して大きくなり、それ以上刺激間隔が広くと逆に小さくなる事を報告している。Postter¹⁵⁾は一側舌神経に与えた条件刺激と反対側舌神経に与えた試

駆刺激との間隔が短い間は舌下神経線維で記録した反射性の活動電位は増大するが、しか
1. 両刺激の間隔がある一定時間を越えると
遂に減少する事を報告している。また、Green
等¹⁾は三叉神経刺激によつて舌下神経核細胞
にスパイクが生じると、それに続く数 10 msec の
間舌下神経刺激により誘発されるこの細胞の
逆行性電位が抑制されることを観察した。こ
れらの結果はいづれも本実験における舌ひ、
この細胞の態度と極めて良く一致している。
更に Porter²⁾は舌神経刺激により舌下神経核細
胞では脱分極性、脱分極一過分極性、過分極
性および複雑な型の4種のシナプス電位が生
ずることを示した。本実験の細胞内記録の結
果から考へて、これら4種のシナプス電位の
内、前二者は舌ひ、この細胞からのものであ
り、過分極性のものは舌つり出し細胞からの
ものであると云える。

本実験では舌下神経を刺激し、逆行性に誘
発された舌下神経核細胞群の電位を舌下神経

核細胞の興奮性の指標として用いた。脊髄では後根刺激により誘発される前根または末梢筋枝神経の单シナプス性反射放電の大小を指標として運動神経細胞の興奮性を検討する。^{17) 18) 19)} とが出来たのにに対して、舌下神経核細胞では脊髄運動神経細胞における如き单シナプス性反射回路は未だ見出されていないためである。また、この方法は舌ひ、この細胞と舌つき出し細胞を別々に興奮させることにも都合が良い。なお、この様に逆向性誘発電位を細胞の興奮性の指標として用いる方法は既に脊髄運動神経細胞の場合にも用いられている。^{20) 21) 22)} 舌下神経刺激により逆向性に誘発させた舌下神経核細胞の電位が、先に舌神経に条件刺激を与えることにより増大するか減少するかは、細胞内記録実験の結果と合せ考えると舌下神経核細胞中に興奮性シナプス後電位 (EPSP) が生じるか、あるいは抑制性シナプス後電位 (IPSP) が生じるかによる。すなはち、舌神経刺激によって舌ひ、この細胞

群の誘発電位が増大したことは、これら細胞群に興奮性インパルスによる感値低下があり、逆向性衝撃によつて細胞体が発火しやすくなつたと共に、舌神経刺激が強い場合にはEIPSPからスパルクが生じて来るためと思われる。次に、条件刺激を与えることにより舌つを出し細胞群および舌ひ、この細胞群で認められた逆向性誘発電位の減少は、舌神経刺激によつて生じたIPSPのため逆向性衝撃が軸索起始部(IS)から細胞体および樹状突起の太い幹の部分(SD)へ伝播する時に中断されたためと考えられる。更にこの他、IPSPのため逆向性衝撃が軸索の有髓部(M)から無髓のIS部へ伝播しなかつたり、あるいはIPSPのため細胞体ラスパルク電位が僅かがら小さくなる可能性をも考慮しなければならぬ。²³⁾ 事実、細胞内記録では舌神経刺激により舌ひ、この細胞に脱分極一過性電位を示す細胞と脱分極のみを示す細胞が認められた。また舌つを出し細胞では統て

過分極電位が得られた。

更に、舌、口の細胞において逆向性誘発電位の増大後に見られる電位減少効果は、上記の如きシナプス電位による原因の他、舌神経刺激によつて生じた正向性スパイクが舌下神経軸索を下降する途中、逆向性スパイクと衝突し互に相殺し合つたとも原因の一つになつてゐるものと思われる。なお、cranial motor axon は殆ど側枝を有しないので²⁴⁾²⁵⁾、Renshaw型細胞による反回性抑制は殆ど無視出来ず。

舌神経刺激により舌下神経核細胞内より記録したシナプス電位の最短潜時は 4 msec である。一方、舌神経刺激による三叉神経知覚核細胞の反応潜時は 1.8 ~ 2.4 msec (平均 2.0 msec) である。三叉神経知覚核の 2 次 = 一口から舌下神経核細胞にインパルスが達する為に、平均 $\frac{1.8 + 2.4}{2} = 2.1$ msec となる。これら 2 細胞間に介在細胞が 1 つ存在すると仮定すれば伝導時間は実測値に一致する。すなはち tri-synaptic pathway であることが推察される。しか

し、最近 Porter¹⁵⁾ は更に潜時の短いシナプス電位を記録し、最短の反射回路が disynaptic pathway である事を推察している。Woodburne²⁶⁾、Stewart 及 King²⁷⁾ は組織学的研究により三叉神経脊髄通路核から舌下神経核へ投射する神経線維の存在を確認しているが、この様な神経線維が上記の如きシナプスのない反射回路を構成するのに関与しているのである。

舌ひ、この細胞の逆向性誘発電位は舌神経刺激により主として初め増大し、続いて減少したが、舌神経への刺激の強さを如何に調節してもこれら両効果の内、一方のみを得る事は出来なかつた。この事実から、初めの増大効果を起すのに関与する神経細胞が一方ではその側枝によつて reverbating circuit を形成し最後に抑制性介在細胞を介して舌下神経に接続してゐる可能性が考えられる。

V. 総括

除脳・除小脳猫を用い舌下神経の興奮が舌下神経核細胞に対するいかに影響をおよぼすかを検討した。

記録電極 (3M-KCl 封入微小ガラス電極) を延髓舌下神経核に挿入し、舌下神経に試験刺激を与えて逆行性の誘発電位を記録した。先行する条件刺激を舌神経に与えて、舌下神経核中の逆行性誘発電位が条件刺激を与えたかった時に比べいかに変化するかを観察し分析した。得た結果は概略次の通りである。

1. 舌つき出し筋を支配する舌下神経核細胞の逆行性誘発電位は主として核の内側部および外腹側部から、舌ひっこめ細胞のそれは核の背外側部で記録された。

2. 舌ひっこめ細胞の誘発電位は条件刺激と試験刺激の乙の刺激間隔が短かい間は増大し、ある程度まで二之三と逆に減少した。舌つき出し細胞の誘発電位は条件刺激によって抑制された。

3. 細胞内記録により、舌神経刺激により、舌下神経核中の舌つき出し細胞には IPSP が、舌ひっこめ細胞には EPSP - IPSP もしくは EPSP が誘発されることを確認した。

4. 舌神経と舌下神経核細胞との間には次の潜時上り又有、すくなくとも 3 個のシナックを介するものと推察される。更に reverberating circuit の存在することを考察した。

稿を終子に臨み、終始御懇篤なる御指導と
御校庵を賜、た河村洋二郎教授に對し衷心よ
り謝意を表し、併せて本実験を行うに當り種
々御協力を戴いた高田充講師および口腔生理
学教室員諸兄に厚く感謝します。

文

獻

1. Green, J.D. and K.Negishi (1963) Membrane potentials in hypoglossal motoneurons. *J. Neurophysiol.* 26, 835-856
2. Porter, R. (1965) Synaptic potentials in hypoglossal motoneurons. *J. Physiol.* 180, 209-224
3. Blom, S. (1960) Afferent influences on tongue muscle activity; A morphological and physiological study in the cat. *Acta Physiol. Scand. Suppl.* 170, 1-97
4. Barnard, J.W. (1940) The hypoglossal complex of vertebrates. *J. Comp. Neurol.* 72, 489-524
5. Goldin, L. (1934) Zur Frage d. Zusammensetzung d. Hypoglossus Kernes und über die Zellengruppen, die mit seinen Wurzeln topographisch Zusammenhängen. *Ant. Anz.* 78, 81-89
6. 林本勇 (1960) 食肉類舌下神經核の比較解剖学的研究. *神醫大紀* 20卷. 394 - 408
7. Kosaka, K. and K.Yagita (1903) Experimentelle Untersuchungen über die Ursprung des Nervus Hypoglossus und seines absteigendes Astes. *Jahrb.f.Psychiat.und Neur.* 24, 150-189
8. Stuurman, F.J. (1916) Die Lokalization der Zungen Muskeln im Nucleus hypoglossi. *Anat. Anz.* 48, 593-610

9. Morimoto, T., Kato, I and Y. Kawamura (1966) Studies on functional organization of the hypoglossal nucleus. *J. Osaka Univ. Dent.* Sch. 6, 75-78

10. Carleton, A. (1938) Observations on the problem of the proprioceptive innervation of the tongue. *J. Anat. Lond.* 72, 502-507

11. Schoen, R. (1931) Untersuchungen über Zungen- und Kieferreflexe. I. Mitteilung: Der Kieferzungenreflex und andere propriozeptive Reflexe der Zunge und der Kiefermuskulatur. *Arch. exp. Path. Pharm.* 160, 29-48

12. Schoen, R. und S. Koeppen (1931) Untersuchungen über Zungen- und Kieferreflexe. II. Mitteilung: Exterozeptive Reflexe und ihre wechselnde Schaltung. *Arch. exp. Path. Pharm.* 160, 343-368

13. Tarkhan, A.A. (1936) Über das Vorhandensein afferenter Fasern im Nervus hypoglossus. *Arch. Psychiat. Berlin*, 105, 475-483

14. Blom, S. and S. Skoglund (1959) Some observations of the control of the tongue muscles. *Experientia* 15, 12

15. Porter, R. (1967) The synaptic basis of a bilateral lingual-hypoglossal reflex in cats. *J. Physiol.* 190, 611-627

16. Green, J.D., Groot, J. and J. Sutin (1957) Trigemino-bulbar

reflex pathway. *Am.J.Physiol.* 189, 384-388

17. Lloyd, D.P.C. (1946 a) Facilitation and inhibition of spinal motoneurons. *J.Neurophysiol.* 9, 421-438

18. Lloyd, D.P.C. (1946 b) Integrative pattern of excitation and inhibition in two-neuron reflex arcs. *J.Neurophysiol.* 9, 439-444

19. Hagbarth, K.E. (1952) Excitatory and inhibitory skin area for flexor and extensor motoneurones. *Acta physiol.Scand.* 26, Suppl. 94, 1-58

20. Renshaw, B. (1942) Effects of presynaptic volleys on spread of impulses over the soma of the motoneurone. *J.Neurophysiol.* 5, 235-243

21. Renshaw, B. (1946) Observation on interaction of nerve impulses in the gray matter and on the nature of central inhibition. *Am.J.Physiol.* 146, 443-448

22. Brooks, G.M. and J.C. Eccles. (1948) Inhibition of antidromic responses of motoneurones. *J.Neurophysiol.* 11, 431-444

23. Coomb, J.S., Eccles, J.C. and P. Fatt (1955) The inhibitory suppression of reflex discharges from motoneurones. *J.Physiol.* 130, 396-413

24. Cajal, S.R. (1909) Histologie du système nerveux de l'homme et des vertébrés. Paris, A. Maloine, I: XIV-986

25. Lorente de Nò, R. (1933) Vestibulo-ocular reflex arc. Arch. Neur. and Psychiat. 30, 245-291

26. Woodburne, R.T. (1936) A phylogenetic consideration of the primary and secondary centers and connection of the trigeminal complex in a series of vertebrates. J. Comp. Neur. 65, 404-501

27. Stewart, W.A. and R.B. King (1963) Fiber projection from the nucleus caudalis of the spinal trigeminal nucleus. J. Comp. Neur. 121, 271-286

Fig. 1. Schematic diagram of experimental procedures.

The conditioning stimulus was applied to the lingual nerve and the test stimulus was applied to the hypoglossal nerve.

Fig. 2. Bulbar responses by antidromic stimulation of the hypoglossal nerve. Arabic numerals in the figure indicate the depth from the bulbar surface. Maximum response of negative deflection was usually recorded in the hypoglossal nucleus at a depth of around 1.00 and 1.25 mm from the bulbar surface.

Fig. 3. Response pattern of tongue protrusive motoneurons.

A: Response to lingual nerve stimulation (An orthodromic potential). B: Response to hypoglossal nerve stimulation (An antidromic potential). C - L: Response pattern when the time interval between conditioning and test stimulus was successively prolonged.

Fig. 4. Relations between intensity of conditioning stimulus and effects on antidromic hypoglossal potentials.

A: 1.4 volt stimulus, B: 1.5 volt stimulus, C: 2.1 volt stimulus. The intensity of conditioning stimulus became stronger, the effects was enhanced.

Fig. 5. Response pattern of tongue retractive motoneurons.
 A: Response to lingual nerve stimulation (An orthodromic potential). B: Response to hypoglossal nerve stimulation (An antidromic potential). C - L: Response pattern when the time interval between conditioning and test stimulus was successively prolonged.

Fig. 6. Relations between intensity of conditioning stimulus and effects on antidromic hypoglossal potentials.

A: 0.67 volt stimulus, B: 0.70 volt stimulus, C: 1.07 volt stimulus.

Fig. 7. Effect of strychnine injection on activity of tongue retractive motoneuron.

Initial increasing effect of the conditioning stimulus became prominent and successive decreasing effect was suppressed.

Round circle: before injection

Solid circle: 5 minutes after strychnine injection

Fig. 8. Various antidromic spike potentials of hypoglossal motoneurons.

A: Spike potential with an after-negativity and without any interposed dip. B: Spike potential with a positive dip on the falling phase. C: Spike potential with so-called delayed depolarization. D: D were obtained at

faster speed than those to the C.

Fig. 9. Synaptic potential of tongue protrusive motoneuron.

A: Hyperpolarization

B: Spike potential induced by strong lingual nerve stimulation.

Fig. 10. Synaptic potential of tongue retractive motoneuron.

A: Small depolarization and successive hyperpolarization.

B: Spike potential induced by strong lingual nerve stimulation.

Fig. 11. Effect of IPSP on tongue protrusive motoneuron.

A: Antidromic spike potential of the tongue protrusive motoneuron.

B: IPSP by lingual nerve stimulation

C: Series of record of antidromic spike height in various interval of lingual nerve and hypoglossal nerve stimuli.