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論文 No. 98-0687

遺伝的アルゴリズムによる機械システムの最適化法と

そのエンジン諸元の最適設計への適用∗

藤田 喜久雄†, 廣 川 敬 康†,

赤 木 新 介†, 平 田 隆 教‡

Genetic Algorithm Based Optimization Method of Mechanical Systems

and Its Application to Optimal Design of Automotive Engine

Kikuo FUJITA, Noriyasu HIROKAWA, Shinsuke AKAGI and Takanori HIRATA

An optimization method based on genetic algorithms is proposed for a class of design optimization
problems of mechanical systems, where design variables are real numbers, objectives and constraints have
rugged response characteristics, the number of objectives is plural. While this kind of optimization problems
are hard for conventional mathematical optimization techniques, genetic algorithm based approaches are
promising due to their robustness against optimization hardness. This paper proposes a genetic algorithm
based multi-objective optimization method, that introduces Pareto-optimality based fitness function, similarity
based selection, life span limit of elite preservation and direct real number crossover. This optimization method
is also applied to the optimal design problem of an automotive engine with the design criteria on a total power
train. The computational example shows the ability of the proposed method for finding a relevant set of Pareto
optima.

Key Words: Design Optimization, Genetic Algorithm, Multi-Objective Optimization, Automotive Engine,
Power Train

1 緒 言

機械システムの設計において，その性能やコストを

最適化する設計をコンピュータの計算によって見つけ

ようとする「最適設計」の考え方は重要かつ有効であ

り，適当な方法で実施できれば，設計における効果は

大きい．最適設計が可能であるためには，個別設計問

題の内容についての定式化とアルゴリズムである最適

化法が適合している必要があるものの，力学的物理現

象を伴うなどの特質を有する機械システムにおいて

は，そのような適合性を確保することが困難な問題も

多い．これに対して，ここ 10年来，遺伝的アルゴリズ

ム (Genetic Algorithms, GA)(1)がいわゆる古典的な数理

計画法では取り扱うことの困難であった問題に対して

頑強に有効な最適化法として，広い範囲で用いられる

ようになってきている．そのような頑強性も枠組とし

てのものであることから，個別の問題に適用するにあ

たっては，それぞれの問題に潜む困難に適合させて交

叉や選択などの方法を構成することが優れた最適化性

能を得る上で重要であるとされている．

∗原稿受付 1998年 5月 6日
†正員,大阪大学大学院工学研究科 (〒 565-0871吹田市山田丘 2-1)．
‡正員,マツダ株式会社 (〒 735-0028安芸郡府中町新地 3-1)．

本研究では，各種の機械システムの設計問題のなか

でも，設計変数が一連の実数変数であるものの，制約

条件や目的関数の数理的性質が局所的に望ましくない

ようなクラスの設計問題を取り上げて，そのような問

題に対して有効な遺伝的アルゴリズムを基本とした一

最適化法を構成する．ここでの局所的な悪構造の意味

は，例えば，局所的な勾配情報が最適化のための有用

な情報とならないなどの状況を指し，さらに，機械シ

ステムの設計問題において共通的である多目的関数や

側面制約などへの対応についても，併せて対応できる

ようにする．さらに，構成した最適化法を一例として

ある乗用車用エンジンの基本諸元の決定問題に適用し

て，その有効性を検証する．

2 機械システムの最適化と遺伝的アルゴリズム

2.1 機械システムの最適化における困難 緒言

でも述べたように，最適設計の考え方は重要かつ有効

であるものの，そのためには対象問題の性質と最適化

アルゴリズムの性質とが適合していることが重要で

ある．例えば，単体法は対象モデルが線形である性質

に基づいて構成されたものであり，各種の非線形計画

法も対象問題の連続性や単峰性を前提としたもので



遺伝的アルゴリズムによる機械システムの最適化法とそのエンジン諸元の最適設計への適用 822

ある．このため，最適化しようとする問題がそのよう

な条件に適合している場合には，それらの方法によっ

て最適化が可能であるが，機械システムの設計問題に

おいてはそのような条件に適合しないものも多い．例

えば，設計対象が力学的物理現象を伴っている場合に

は，対象が元来は分布系であることから，いわば脈動

的な傾向を含んでいるため，局所的な対象情報から最

適化探索のための有効な情報を得ることができない

などの不適合を生じることがある．また，設計対象が

システムとしての性質が強い場合には，部分システム

相互の組合せ的な状況が全体の性能に関与している

ため，対象における現象も組合せ的な様相を含んでい

たり，システムの動作や目的の多様性から，定式化が

多目的最適化の問題となったりするなどの面でも，不

適合を生じることにもなる．設計対象のシステム的構

成が既与であり，その内容が一連の実数変数により定

義できるような問題に限定したとしても，以上の内容

は，いずれも，一般縮小勾配法や逐次 2次計画法など

の古典的な最適化法を適用する上での障害となるもの

である．

2.2 遺伝的アルゴリズムとその優位性 以上の

ような機械システムの最適化における困難に対して，

遺伝的アルゴリズム (1)が様々な領域における困難な問

題において頑強に最適化が可能な手法として注目を集

めている．遺伝的アルゴリズムの基本構成は，個別設

計解を遺伝子に相当する形式 (遺伝子型)で表現した

上で，複数の解 (個体)からなる世代を構成し，個体の

遺伝子型から変換される設計 (表現型)から計算され

る評価値 (適合度)をもとに評価値が高いものをやや高

い確率で選択することにより適当な個体の対を構成し

て遺伝子組換えに相当する交叉を行うとともに，場合

によっては突然変異を加える世代交代を繰り返してい

くものであり，このような自然淘汰に類似した過程に

よって適合度の優れた個体，すなわち，最適な設計解

を得ようとするものである．それによって，遺伝的ア

ルゴリズムは，個別解の近傍に関する情報を必要とし

ない，設計解空間の全体的傾向を反映した探索が行え

る，などの特徴を持っており，各種の最適化問題にお

ける困難に対応できる可能性を持つとされている．

遺伝的アルゴリズムを機械システムの設計問題に適

用しようとする場合，基本的な遺伝的アルゴリズムが

離散変数や組合せ変数を表現しやすい遺伝子型につ

いて構成されているため，実数変数を設計変数とする

場合には工夫が必要である，制約条件の取扱いにも注

意が必要である，など課題はあるものの，上述の根元

的な困難に対して，近傍情報を必要としない，大域的
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Fig. 1 GA based multi-objective optimization

な最適化が可能であるなどの点で期待できる枠組と

なっている．また，多目的最適化に関しても，遺伝的

アルゴリズムが解集団を用いた最適化手法であること

を利用し，そのような解集団を多目的最適化問題にお

けるパレート解集合に収束させる方法が提案されてお

り(2)，この点でも適切な枠組として期待ができる．

2.3 機械システムの最適化問題の形式 本研究

では，機械システムの最適化問題の形式として，実数

を設計変数とした制約条件付き多目的最適化問題を想

定する．設計変数ベクトルを x = [x1,x2, · · · ,xn]T とし
たとき，問題を以下のように記述するものとする．

minimize fi(x) (i = 1,2, · · · , r)
subject to hj(x) = 0 ( j = 1,2, · · · , p)

gk(x) ≤ 0 (k = 1,2, · · · ,q)
xL

l ≤ xl ≤ xU
l (l = 1,2, · · · ,n)




(1)

この形式は，各設計変数に対して上下限を xL
l と xU

l の

間に抑える側面制約を明示的に考慮するものである．

3 遺伝的アルゴリズムによる最適設計法

3.1 基本構成 本研究では，いわゆる Simple

GA(1)を基本とした上で，そのなかで用いられる対象表

現，選択や交叉などを拡張することにより，設計対象

が脈動的な傾向や組合せ的傾向を含んでいるような場

合においても，実数空間上の実行可能領域内にバラン

ス良く分布したパレート最適解の集合を求めることが

できるような最適化法を構成する．

図 1は，構成しようとする遺伝的アルゴリズムによ

る最適化過程を模式的に示したものである．遺伝的ア

ルゴリズムに限らず，多くの最適化アルゴリズムは解

をある最適点に収束させようとするものであるが，こ

こでの方法は多目的最適化における実行可能空間での

個別目的関数の上限の範囲内におけるパレート解 (にで
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きるだけ近い解)の一群をランダムに生成する初期解か

ら求めようとするものである．以下では， Simple GA

に対する拡張の内容について示す．

3.2 制約条件付き多目的最適化問題のための適合度

関数 Simple GAにおける適合度関数は最大化すべ

き単一の目的関数に対応するものであることから，式

(1)の問題構成のもとで図 1において希求される解に対

して高い適合度を与えるような適合度関数を設定する

必要がある．このためには，制約違反の程度やパレー

ト最適性(3)などを適切に適合度に反映できることが必

要であり，以下の手順により，式 (1)の内容から適合

度を計算するようにする．

まず，側面制約以外の制約条件を除くために，

それらをペナルティとして各目的関数に組み込み，

f ′i (x), (i = 1,2, · · · , r)を定義する．

f ′i (x) = fi(x) + pE(t)
p

∑
j=1

∣∣hj(x)
∣∣2

+ pI (t)
q

∑
k=1

{max(gk(x),0)}2 (2)

ここで， pE(t)， pI (t)は，等式制約と不等式制約のそ
れぞれについてのペナルティ係数関数であり，世代 t

が進むにつれて値を大きくするようにする． pE(t)と
pI (t)を初期世代においては小さく設定した後，増大さ
せていくことにより，探索の初期では設計空間の広い

範囲を対象とし，最終世代では制約を満足した解に収

束させるようにすることが期待できる．

次に，選択を行う前処理として，各目的関数 f ′i (x)
のいずれかがあらかじめ設定した上限 f ′i

U を越える解

については以下の操作の対象から除外する．これによ

り，特定の目的関数値が劣っていたり，制約違反の程

度が大きかったりする不適切な解をパレート解の中か

ら除外するようにする．

続いて，以上により調整された一連の目的関数値

f ′i (x), (i = 1,2, · · · , r)を単一の適合度関数 F(x)に翻
訳する．そのような適合度関数は各解がその世代に

おける解集合の中でパレート解になっているかどう

か，パレート解でない場合にはどの程度パレート解よ

りも劣っているかを反映している必要がある．そこ

で，図 2に示すように，すべてのパレート解について

は F(x) = 1を与え，非パレート解については， f ′i (x)
で定義される r 次元の目的関数空間においてパレート

解からの距離が最も大きいものに F(x) = 0を与え，そ

れ以外の非パレート解には， F(x) = 0から F(x) = 1

の値をそのような距離に応じて線形に補間した値を与

えるようにする(4)．

f ’i1

f ’i2

:

Non-Pareto
solutions in a 
generation

:

Most inferior solution in a generation 
to which the minimum fitness value 
is assigned.

: Shortest path from 
a non-Pareto solu-
tion to Pareto sur-
face

F(  ) = 0x

F(  ) = 1x

F(  ) = 1x

Tentative Pareto optimal surface

Tentative Pareto
optimal solutions
in a generation

Fig. 2 Fitness function for multi-objectives

さらに，初期収束を避けるために σ切捨てと線形ス
ケーリング(1)を行い，適合度を F ′(xi)に補正する．
最後に，多目的最適化におけるパレート解は無限集

合解であるが，それを有限個の解集合で代表させる

ことから，個体群が図 1に示すような領域に一様に分

布するように，シェアリング関数による適合度の調

整(1) (5)を行う．すなわち， F ′(xi)から F ′′(xi)を以下の
ように定める(5)．

F ′′(xi) =
F ′(xi)

nci
(3)




nci = ∑
j

sh( d( f’ (xi), f’ (x j) ) )

sh(d) = max

(
0, 1− d

σshare

) (4)

ここで， nci はニッチ数， σshareはシェアリング半径

と呼ばれるパラメータである． dは， f ′(x)空間にお
ける距離であり，∑

j
は，その世代における個体群につ

いての総和を意味している．

シェアリング半径 σshareは個体が代表すべきパレー

ト面の範囲を意味しており，ニッチ数は個体が一様に

分布した理想的な状況に反してある個体の周囲に重複

して存在する個体数を意味している．なお，シェアリ

ング半径 σshareは Fonsecaによる方法(6)を参考にして

以下の方程式を解いて求めるものとする．

N =

r

∏
i=1

( f ′i,max− f ′i,min+2σshare)−
r

∏
i=1

( f ′i,max− f ′i,min)

(2σshare)r

(5)

ここで， f ′i,maxと f ′i,minはパレート最適解集合における

目的関数 f ′i (x)の最大値と最小値， Nは個体群のサイ

ズである．
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Fig. 3 Mating probability for diversification

3.3 類似性と寿命を考慮した選択 以上のよう

にして算出される F ′′(xi)をもとに選択を行うが，こ
こでの最適化はパレート面の広い領域に一様に分布し

た解を求めることを目的としていることから，個体の

多様性を最終局面まで維持することが重要である．ま

た，そのような多様性のもとで性質の大きく異なる個

体を交叉させた場合にはランダムな解を生成するに

等しいようなことになり，解の改善が全く期待できな

いことにもなる．これらのことを考慮して，本研究で

は，個体相互の類似性を考慮し，選択を個体ではなく

個体対に関して行うようにする．すなわち，まず，設

計変数空間を各変数毎の下限値 xL
l と上限値 xU

l に基づ

いて単位空間にマッピングした上で，個体対 x i と x j

についての距離 di j を計算し，図 3に示すような分布に

従って wi j を求め，別途求まっている各個体の適合度

関数とともに wi j F ′′
i F ′′

j として個体対の選択確率を定

める．ここで，C1とC2は適当に定める係数であり，

di j = 0に対して wi j = 0は重複個体間での交叉の禁止

を意味している．最終的には，そのような確率を期待

値として利用した選択 (remainder stochastic sampling

without replacement)(1)を行う．

一方，エリート保存戦略(1)は遺伝的アルゴリズムに

おいて有効な手段であるが，多目的最適化においては

保存すべきエリートがパレート解であることから，パ

レート解のすべてを保存した (2)のでは，個体群の主要

な部分がエリートとなって探索が進まなくなることが

起こり得る．そこで，本研究においてエリート保存戦

略を導入するにあたっては，エリートとして保存され

た個体に寿命 T を設定して，それを越えて保存された

エリートは保存の対象から除外するようにして，一定

割合の個体が継続的に更新されていくようにする．

3.4 実数変数の遺伝子表現と交叉 前述のよう

に，元来の遺伝的アルゴリズムはビット列や文字列を

遺伝子表現として用いることを前提としている．設計

変数が実数の場合にはビット列による表現も可能であ

るが，任意の表現精度を得るためには無限長のビット

列が必要であり，現実的ではない．本最適化法では実

数変数を直接交叉する方法 (7)を用いることにする．す

なわち，表現型と遺伝子型を区別することなく，設計

変数ベクトルとして表現し，交叉オペレータとして個

別の設計変数毎の確率変数に基づいた線形補間を用

いるようにする．さらに，式 (1)における側面制約の

なかに設計変数が収まるように，区間 (−∞, ∞)を区間
(xL

i , xU
i )に写像できるシグモイド関数 Sigi(x̂i)による

変数変換を介在させるようにする．すなわち，親世代

における xαと xβ から子世代における xγ と xδ を生成

する場合の交叉を次式により定義する．


xγ
i = Sigi

(
µi ·Sigi

−1( xα
i )

+ (1−µi) ·Sigi
−1

(
xβ

i

) )
xδ

i = Sigi
(

(1−µi) ·Sigi
−1 ( xα

i )

+ µi ·Sigi
−1

(
xβ

i

) ) (6)

Sigi(x̂i) =
xU

i + xL
i exp(−x̂i)

1 + exp(−x̂i)
(7)

ここで， xι
i は個体 x ι の i 番目の設計変数であり， µi

は個別の設計変数を交叉させる度に正規分布 N(0,σ2)
に従って生成される補間係数である．なお，正規分布

における標準偏差 σと交叉確率 Pcは，個別の事例につ

いて設定する必要がある．

一般に，遺伝的アルゴリズムにおいて突然変異はア

ルゴリズムにゆらぎを持ち込むための重要な要素であ

り，それによって大域的な最適化が可能になっている

とも言える．しかし，本最適化法では，上記の交叉そ

のものが突然変異としての性質を備えていることか

ら，明示的な突然変異を導入することは行わない．

4 乗用車用エンジンの最適設計問題

乗用車の駆動系におけるガソリンエンジンの基本諸

元を最適化する問題を上記の最適化法を適用する対象

として考えることにする．

4.1 最適化問題の定式化 図 4は対象とするガソ

リンエンジンの構成を示したものである．このエンジ

ンは 4気筒であり，吸気系における配管やタンクをも

含めた部分を設計対象と考えることにする．

(1) 設計変数 図 4のもとで， 11個の設計変数

を設定する．燃焼室に関しては， 4つの燃焼室が同じ

形状であり，排気量は与条件として設定されている

ものとして，ボアと圧縮比を設計変数とする．吸排気

弁に関しては，各燃焼室毎に 4個，全体で 16個の弁

があるものの，吸気弁と排気弁は，それぞれに，同じ

形状をしており，同じ動作をするものとして，それぞ

れを開タイミング，閉タイミング，最大リフト量の

3設計変数，全体で 6設計変数で表現する．なお，弁
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径については，燃焼室の径より従属的に定まるもの

とする．吸気系は，図 4にも示すように，エアクリー

ナ，サージタンク， 2本のダクト，燃焼室毎の吸気マ

ニフォールドと吸気ポートから構成されているが，こ

れらのうち，吸気マニフォールドと吸気ポートを設計

対象と考える．それらを燃焼室間で同じものが用いら

れるとし，マニフォールドの出口側とポートの入口側

は等しく，ポートの出口側の径は吸気弁の径から従属

的に定まり，ポートの径は入口側と出口側で等しいも

のとして，ポートの長さ，マニフォールドの長さ，マ

ニフォールドのテーパ比の 3つを設計変数とする．

(2) 目的関数 エンジンの性能は最大出力や軸

トルクなどにより表すこともできるが，エンジンが駆

動系におけるサブシステムであり，トルクコンバータ

やシフト系などの他のサブシステムとのマッチングを

考慮した最適化が乗用車そのものの設計として重要で

ある(8)ことから，以下に示すような駆動系の総合性能

に関する指標を目的関数として考えることにする．

(i) 燃費 · · · 10.15モード燃費などの燃料消費率．

(ii) 加速性能 · · · 速度が 0 km/hから 100 km/hに達す

るまでに要する時間．

(iii) 出足応答性 · · · 走行開始時における力強さを表す
指標であり，加速Gをある計算式でポイント化し

たもの．

(iv) 追従応答性 · · · ある車両に付かず離れず追従する
することのできる度合いについての指標．

(v) 吹上げ感 · · · トルクコンバータにおける滑り感を
示す指標．

(vi) 全開加速性能 · · · 全開加速時におけるピッチング
の度合いを示す指標．

(vii) フラットスポット感 · · · エンジン回転数の上昇に
対するスムーズさを表す指標．

(viii) ストール回転数 · · ·ストール時のエンジン回転数．

これらのうち，最適化計算においては， (i) から (iv) の

項目を目的関数とし，その他の項目については，各項

目についての許容限界を与えた上で，制約条件として

考えることにする．

(3) 制約条件 上記の 4つの制約条件に加え

て，吸気弁と排気弁の最大リフト量について，それぞ

れの開閉タイミングとの関係式による制約条件を考え

る．また， 11個すべての設計変数について側面制約に

よる上下限制約を考えることにする．後者の制約は，

特に，遺伝的アルゴリズムを適用する場合には，設計

変数が大きく変化することも有り得ることから，エン

ジンの性能シミュレーションモデルが想定している範

囲内に設計が収まるようにする上でも重要である．

4.2 エンジン性能の評価モデル ガソリンエン

ジンにおける物理現象は燃焼を伴う熱物質移動現象

であり，そのような内容をコンピュータ上で精密に

シミュレーションすることは困難であるが，設計開発

における必要性から，様々な簡易モデルや経験モデ

ルに基づいたシミュレーションコードが開発されてい

る(9) (10)．そのようなコードは本研究で取り扱う最適化

問題においても用いることのできるものである．

図 4にも示したように，対象とするエンジンはチャ

ンバーとパイプから構成されており，現象は 4サイク

ルエンジンにおける 2軸回転に従って周期的である．

吸排気系を通じての燃焼室間の相互干渉はエンジンの

性能向上における重要な要因であり，設計評価のため

のシミュレーションモデルは，そのような要因につい

ての弁の開閉タイミングや，マニフォールドやポート

の長さなどの影響を適格に反映できる必要がある．そ

のような要件に対するシミュレーションコードを構成

する物理現象モデル(9)は，全体をチャンバーとパイプ

のそれぞれに分けて考え，チャンバーについては集中

系としての，パイプについては軸方向の 1次元分布系

としてのモデル化を行った上で，熱と流動に関わる方

程式系を構成する一方，それらの接続部における保存

則を考慮することにより構成することができる．さら

に，燃焼室における燃焼現象についてもガス状態方程

式を加えて，考慮できるようにする．なお，以上のモ

デルには，物理現象を予見するための様々なパラメー

タが含まれており，そのなかには，理論的に導出でき

るものもあれば，過去の実機データや実験データなど

をもとに算出して用いているものもある (10)．

以上のようなシミュレーションモデルによって，

様々なスロットル開度と軸回転数についての出力と軸

トルクを計算できるようになり，別途，計算できるト

ルクコンバータの性能などと連係させることにより，
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駆動系全体の総合性能に関わるシミュレーションモデ

ルを構成することができる．

4.3 総合性能の評価計算 前述の目的関数や制

約条件の内容を評価するためには，そのようなシミュ

レーション計算として，駆動系全体を考慮した走行性

や燃料消費に関わる以下に示す合計 5つのモードにつ

いてのものを行う必要がある．

• 全開加速モード · · · (ii) と (vi)， (viii) を評価する

ために, 停止状態からフル・スロットルで 30秒間

加速する状況のシミュレーション計算を行う．

• 出足応答性モード · · · (iii) と (vii) を評価するため

に, 停止状態から 25%スロットル開度で 5秒間加

速する状況のシミュレーション計算を行う．

• 追従加速性モード · · · (iv) を評価するために,

50 km/hでの定速走行状態から 75%スロットル開

度で 5秒間加速する状況のシミュレーション計算

を行う．

• タイト感モード · · · (v)を評価するために, 20 km/h

での定速走行状態から 50%スロットル開度で 5

秒間加速する状況のシミュレーション計算を行

う．

• 燃費モード · · · (i) を評価するために, 10.15モード

燃費における走行パターンに従った走行状況のシ

ミュレーション計算を行う．

なお，以上の一連の評価計算をある設計について

行うには， Sun Ultra SPARC Station Model 140

(SPECint92 215.0, SPECfp92 303.0)上で 7分の計算時

間を必要としており，後述の計算事例では，遺伝的ア

ルゴリズムにおける特定世代での解評価の並列性に基

づいて，そのような計算をワークステーションクラス

ター上に並列化して行っている．

4.4 最適化問題としての性質 前述のように，

実際的な機械システムの最適化における問題点は，関

連する物理現象の複雑さ，評価における多目的性，問

題規模の大きさなどとして特徴づけられる．ここで対

象とするエンジンの設計問題は，設計変数が 11個，

目的関数が 4個であり，制約条件付き多目的最適化問

題となるものの，数理計画問題としての規模は比較的

小さい．しかしながら，上述のような物理モデルに潜

んでいる現象の複雑さが最適化を考える上での障害と

なっている．エンジンにおける物理現象は連成を伴っ

た熱と物質の移動であり，このような現象は僅かな設

計変更によっても微妙な変化を生じることになるが，

そのような場合，設計変数に対する評価項目の変化が

一様ではないため，例えば，設計対象の勾配情報に基

づいた数理計画法を適用しようとする場合には，容易

に局所的な極値に陥って，最適化を行うことができな

い．このような意味において，勾配情報を用いない遺

伝的アルゴリズムの適用には，その効果を期待するこ

とができる．

5 計算事例

以下に，本研究で構成した遺伝的アルゴリズムによ

る最適化法を上記のエンジンの最適設計問題に適用し

た結果を示す．最適化計算にあたっては，以下の設定

を用いるものとする．個体数は 100とする．不等式制

約条件に対するペナルティ係数は pI (t) = 100× 2
t

10

とする (等式制約は存在しないので， pE(t)は設定しな
い)．類似性に基づいた選択におけるパラメータについ

ては，C1は，各世代において，可能なすべての個体対

の設計変数空間における距離の平均値からその標準偏

差を差し引いたものとし，C2はそのような距離の平均

値とする． パレート解の寿命 T は 10世代とする．交

叉確率は Pc = 1.0とし，交叉における線形補間の標準

偏差は σ = 0.5とする．

5.1 最適解の分布と収束履歴 図 5は最適化の履

歴として世代の進行に対するパレート解の分布の変化

を示したものである (図中からは，非パレート解は省い

てある)．図は，グラフ化の都合上，追従応答性を除い

た，燃費，加速性能，出足応答性の 3つの最大化すべ

き目的関数について描いてあり，また， (ii) から (vi)

では各 20世代前の解分布を薄いプロットで示してい

る．図中の (i) から (vi) でのパレート解の変遷より，世

代が進むにつれて，個体群である解集合がランダムに

生成された初期解から最終的なパレート解へと漸近し

ていって，やがてはほぼ収束している様子と，個々の

目的関数に関してもそれぞれに均等に改善されていっ

ている様子を見ることができる．この結果から，本研

究で構成した遺伝的アルゴリズムによる最適化法が駆

動系の総合性能を目的関数としたエンジンの最適化問

題に対して有効であることを確認することができる．

5.2 多様性維持の効果 次に，本研究で遺伝的

アルゴリズムに導入した多様性維持のための拡張の効

果を検証することにする．

図 6はいくつかの拡張を導入しない場合の 100世代

における設計解の分布をすべての拡張を導入した場合

と比較したものである (図 5 (vi)に対応するものが薄く

示してある)．図 6 (i)は，図 3のようにして計算される

wi j による交叉確率の調整を導入しない場合に対する

結果であり，図 6 (ii) は，パレート解の寿命 T の効果

を導入しない場合に対する結果である (この場合， 67

世代以降，すべての解がパレート解となって，新しい
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Fig. 5 Convergence history of Pareto optimal solutions
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Fig. 6 Comparison of optimization results

解を生成することができなくなっている)．すべての拡

張を導入した場合と比較すれば，図 6 (i)の場合には，

求まっているパレート解の個数も少なく，図 5 (vi)の

ものと比べると，そのようなパレート解も大きく劣っ

ているものがほとんどである．一方，図 6 (ii) の場合

には，図 6 (i)よりも優れた解が多数求まっているもの

の，この場合も図 5 (vi)のものと比べると劣った解し

か求められていない．

以上のような拡張の効果の中で，パレート解の保存

における寿命の効果は，各世代に保存される個体数の

比較検討によって明確になる．図 7は，図 6 (ii) と図

5の結果における各世代でのパレート解の占める割合の

変化を示したものである．寿命による制限を加えない

場合，図中 (i) のように， 67世代でパレート解が個体

群の全体を占めるようになり，新しい解が生成されな

いような状況に陥っているが，寿命による制限を加え
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Fig. 7 History of Pareto ratio

ることにより，図中 (ii) のように，世代が進んでも，

継続的に新しい解が生成されるようになっている．

なお，以上の最適化計算における初期世代は，ある

設計実績を参照した上で，そのような設計解を中心

にランダムに生成したものである．その設計実績に

対するシミュレーション計算による各性能項目値は，

燃費が 11.6 km/̀，加速性能が 5.10秒，出足応答性が

8.18，追従応答性が 6.91というものであり，仮に図

5中にプロットすれば枠外の左下方に位置するものであ

る．一方，そのような初期解群のうちのいくつかを選

択した上で，ここで対象としたエンジンの設計問題が

勾配に基づく最適化手法による最適化が困難であるこ

とを確認するために， 4つの目的関数を適当に重み付

けした上で逐次 2次計画法による最適化を行ったが，

初期解からほとんど移動することができず，そのよう

なアルゴリズムによる解の改善が望まれないことを確

認した．このような比較結果は，遺伝的アルゴリズム

による本最適化法の有効性を示すものでもある．

6 結 言

本研究では，実際的な機械システムの設計問題に対

する最適化法として遺伝的アルゴリズムに基づく一方

法を構成し，乗用車用エンジンの諸元の設計問題に適

用して，その有効性を示した．本最適化手法で導入し

た拡張は，実数設計変数により表現された制約条件付

き多目的最適化問題における最適化の困難に適合さ

せて構成したものである．エンジンの問題以外に，別

途，マルチリンク式サスペンションの操安性最適設計

問題やオートマチック車における変速線図の最適化問

題に対して本最適化法の適用を行ったが，本方法が有

効であることを確認しており，一定のクラスに属する

問題について有効な方法となっていると考えられる．

なお，本研究の一部は日本学術振興協会 未来開拓

学術研究推進事業 (96P00702)の援助によるものであ

る．
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