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Genetic Algorithm Based Optimization Method of Mechanical Systems
and Its Application to Optimal Design of Automotive Engine

Kikuo FUJITA, Noriyasu HIROKAWA, Shinsuke AKAGI and Takanori HIRATA

An optimization method based on genetic algorithms is proposed for a class of design optimization
problems of mechanical systems, where design variables are real numbers, objectives and constraints have
rugged response characteristics, the number of objectives is plural. While this kind of optimization problems
are hard for conventional mathematical optimization techniques, genetic algorithm based approaches are
promising due to their robustness against optimization hardness. This paper proposes a genetic algorithm
based multi-objective optimization method, that introduces Pareto-optimality based fitness function, similarity
based selection, life span limit of elite preservation and direct real number crossover. This optimization method
is also applied to the optimal design problem of an automotive engine with the design criteria on a total power
train. The computational example shows the ability of the proposed method for finding a relevant set of Pareto
optima.

Key Words: Design Optimization, Genetic Algorithm, Multi-Objective Optimization, Automotive Engine,

Power Train

1 0 O

doooboooobooooouoobobooooa
bbb uouooboobuoobooooa
doooooooobuoobobouobobooooa
doodoooooboboobouobobooooa
dobddboooooboboobuobuoobuoooa
dofdooobooboobooobobobooboooa
dofdooobobuoouoobouoobboobooooa
gooooboboboboooooouooboooooda
goodbodoobobooouooouobboboooa
Jd00000U0oOoooldoouoooooooog
O (Genetic Algorithms, GAYD O OOQOOooOOoQooOo
do00ooobooboooooooooooooooa
do00ooobooboooooooooooooooa
doodoooooobooobooooobooooooa
do0d0ooobooboooooooooooobooooa
dooodoboob0oooooboouooooooooa
do0fdoooboooboooooboooooboooa
doooooooooooooooon

*0000 19980 50 60
tDD,DDI]I]DEIEIDDDDD(D 5650s210 00000 2-1)0
‘tDD,DDDDDDD(D 7350020 0000000 3-1)0

gooboboooobobboboooooooobooboo
gobbooooooobbboooooobbooo
goobobbobooooobbboooobbbbooo
goobooObboooooboobbooobbbobooo
goobobbobooooobbboooobbbbooo
gooboboboooobbooooooobbobobooo
goboboboooboobobbooooooboobbbooaoo
goobobbbooooooobbbooboboooo
goobobbobooooobbboooobbbbooo
goobooObboooooboobbooobbbobooo
goobOboooobooooooboobbbooooo
goobobbobooooobbboooobbbbooo
gbobooooobobon

2 0000000OO000O0ODOOoOo0oOooDooOn

21 0O00OUOOOCODOODODOOOOOO oo
gooboboboboooobobooooooobbobobooo
goooboooobbooooooobbbobooo
gboboobbooboobooobooboooboooboo
gobboooboobobboooooooboobbbooooo
gooobboooooboobbooobbbobooo
gboboobbooboobooobooboooboooboo



coooooo0oooooooo0oO0oooooooooboo0oooooooooooooo 822

gobboooobobbooooooboobbbooaoo
goobobbbooooooobooooobobboo
goboboObboooooboooooobbobobooo
goobobboooooboobboooooobboo
gobbooooooobbboooobbbooooo
gbobbooooooobbbooooobbooooo
goobobobbooooobooooooobbobooo
goboobboobooboooooboooboooo
goobobbboooooobobbooobobooooo
goobobboooooboobbooobbobobooo
goboobboobooboooooboooboooo
goboooooobbooooooobbobobooo
gobbooooooobbboooooobboooo
goobobbbooooobboooooobooboo
goobobbooooboobooooobobbobooo
goobobobooobboobooooobobbobooo
goobobbooooboobboooobbobooo
00000000000 00O0o0ooOo2000000
goobobbooooboboboooobobobbooo
oogon

22 000000 O0OOODODOOOOO ogoo
goobobbooooboobbooooooboboo
00000000OoO®Y0Oo00oOoO0oooooooooao
goobobbooooboboboooobobobbooo
goobooooooobbboooooobooooo
O00000000OO0O0OoOo((@OooOo)ooooao
0000000 (@O)OoooOoOoOoOoOoooooo
O00000000OO0O0OOoOo(@Ooo)obooooao
0000 (0D0O0)0000000000O0OooOOO00
goobbboooobboboooobobobbooo
goobobbooooboobbooooooboooo
gobooooooboboobooooobobbobooo
goobobbooooboboobooooobobbobooo
goobobooooooooobooooobbooogo
goobobobboboboooobbbooobooooo
goooboooobbooooooobbobobooo
goboooooobobooooooobbobooo
gbobobooooooboboooboobbbooooo
gboboooobobobooboboooob

gooboobboooooboobobooooooooboo
gobooObboooobbooooooobbobobooo
gboboobbooboobooooboooboooboooboo
gobooObboooooboooooobbobobooo
goobooObbooooobooooooobbobobooo
goobobbboooobbbooooobbooooo
goobobbboooobbbooooooboooo

Limit for Feasible

N

c

S i specific criterion .

T e~ region
= -_- o

O Q Initial

Xa \a--

Coverage * ‘solution set
range % N %
) 0
D o Final °
Q 99I ution set
Individua Q

vidl ¥
optimality Coverageg |dea| Pareto
range i optimal plane
Criterion 1

Fig. 1 GA based multi-objective optimization
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