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The renormalizability of the three dimensional supersymmetric CPN�1 model is discussed in the

1=N-expansion method, to all orders of 1=N. The model has N copies of the dynamical field and the

amplitudes are expanded in powers of 1=N. In order to see the effects of supersymmetry explicitly,

Feynman rules for superfields are used. All divergences in amplitudes can be eliminated by the

renormalizations of the coupling constant and the wave function of the dynamical field to all orders of

1=N. The beta function of the coupling constant is also calculated to all orders of 1=N. It is shown that this

model has a nontrivial ultraviolet fixed point. The beta function is shown to have no higher order

correction in the 1=N-expansion.
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I. INTRODUCTION

In lower dimensions many quantum field theories are
renormalizable. Especially in two dimensions, scalar
field theories with arbitrary interactions are renormalizable
in perturbation theory. We can easily see this fact by
power counting. In two dimensions, a scalar field is di-
mensionless and any interaction term in the Lagrangian is
superrenormalizable.

In three dimensions, however, the situation is different.
Since a scalar field now has dimension 1=2, coupling
constants of interaction terms involving more than six
scalar fields have negative mass dimensions, implying
nonrenormalizability of the theory. In particular, three
dimensional nonlinear sigma models are perturbatively
nonrenormalizable because they have an infinite number
of interaction terms in the Lagrangian.

However, the perturbative nonrenormalizability does not
immediately mean that the theory is ill-defined. It only
means that we cannot remove divergences order by order in
powers of coupling constants. It might be possible to
remove divergences by methods other than perturbation
theory. To do this, we would have to use some nonpertur-
bative method. Theories which are nonrenormalizable in
perturbation theory, but renormalizable by nonperturbative
methods, often have interesting nonperturbative phe-
nomena, such as dynamical mass generation, bound states
formation, and dynamical generation of the Chern-Simons
term. In three dimensions, such nonperturbative phe-
nomena seem to be crucial for the nonperturbative renor-
malizability. Therefore, it would be interesting to study
how these nonperturbative phenomena contribute to the
nonperturbative renormalizability of the three dimensional
sigma model.

Actually, some supersymmetric nonlinear sigma models
were argued to be renormalizable even in three dimensions
by the exact renormalization group method [1]. The super-
symmetric CPN�1 model is one of the candidates.
The CPN�1 model is a nonlinear sigma model on the
complex projective manifold CPN�1, which was first in-
troduced by Eichenherr [2]. The supersymmetric version of
the model was formulated by introducing an auxiliary
gauge field [3–5].
The renormalization group method is one of the power-

ful methods which can reveal the nonperturbative property
of the theory. The renormalizability in the renormalization
group method is equivalent to the existence of a nontrivial
ultraviolet (UV) fixed point of the theory. In the renormal-
ization group analysis in [1], however, the effective action
is expanded in powers of derivatives on spacetime and
approximated by truncating at the second order of deriva-
tives. Although this approximation is valid in the low
energy scale region, it is not obvious in the high energy
scale whether the approximation is valid or not.
The existence of the UV fixed point of the three dimen-

sional supersymmetric CPN�1 model is also shown by the
1=N-expansion method up to the next-to-leading order
[6,7]. In the 1=N-expansion, we expand amplitudes in
powers of 1=N instead of coupling constant, where N is
the number of fields involved in the theory. In general, each
term of 1=N expansion corresponds to a sum of infinite
number of Feynman diagrams in perturbation theory.
Therefore, the 1=N-expansion is another powerful non-
perturbative method. Indeed, it was argued that the three
dimensional nonlinear sigma model and its supersymmet-
ric versions are renormalizable, order by order in the 1=N
expansion [8,9]. In Refs. [6,7], the beta function of the
coupling constant was explicitly evaluated by using
Feynman rules in the component field formalism. It was
shown that there is no next-to-leading order contribution of
1=N. Because of supersymmetry, contributions of bosons
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and fermions cancel each other in the next-to-leading order
of 1=N. There might be, however, contributions of higher
orders of 1=N. Therefore, an all order calculation in 1=N is
necessary for the complete proof of the existence of the UV
fixed point.

In this paper, we study the three dimensional N ¼ 2
supersymmetric CPN�1 model in all orders of
1=N-expansion and show that there is no higher order
correction to the beta function in this model. This confirms
the existence of the nontrivial UV fixed point to all orders
of 1=N-expansion. We also show explicitly that all diver-
gences can be eliminated by the renormalizations of the
coupling constant and the wave function of the dynamical
field �, namely, the renormalizability in the method of
1=N-expansion. To show this explicitly we have intro-
duced N ¼ 2 supersymmetry and we use Feynman rules
for superfields, which we call ‘‘super Feynman rules’’. For
example, a chiral superfield �ðx; �; ��Þ can be expanded in
terms of component fields as

�ðx; �; ��Þ ¼ �ðyÞ þ �c ðyÞ þ 1

2
�2FðyÞ;

where y� :¼ x� þ i
2
�����. Therefore, if we know the two-

point functions of component fields, we can construct the
two-point function of superfield �ðx; �; ��Þ from them.
Using this propagator of superfield, we can explicitly see
the cancellation due to supersymmetry.

In Sec. II, we review a part of the argument given in [7].
For the 1=N-expansion, it is useful to introduce an auxil-
iary field in the action. Although the auxiliary field has no
kinetic term in the classical action, it acquires quadratic
terms in the effective action induced by the quantum
fluctuations of the dynamical field. When the auxiliary
field is introduced, the path integration over the dynamical
field becomes a Gaussian integral and can be performed
easily. After performing the integration over the dynamical
field, we obtain the action with respect to the auxiliary
field, which is proportional to N. Therefore, the
1=N-expansion turns out to be the loop expansion of the
auxiliary field. This is the reason for introducing the aux-
iliary field.

We evaluate the effective action to the leading order of
1=N to study the vacuum structure of the model. The model
turns out to have two phases, ‘‘symmetric phase’’ and
‘‘broken phase.’’ The global SUðNÞ symmetry is sponta-
neously broken in the broken phase, while it is unbroken in
the symmetric phase. The supersymmetry is unbroken in
both the symmetric phase and the broken phase. In the
leading order of 1=N, the effective action has a linear
divergence which can be eliminated by the renormalization
of the coupling constant.

In Sec. III, we evaluate the propagator of the chiral
superfield � in the symmetric phase, which can be ob-
tained by combining the propagators of component fields.
We call this propagator of superfield ‘‘superpropagator.’’

After we modify the chiral superfield� by some similarity
transformation, the superpropagator can be written by us-
ing differential operators on superspace. These differential
operators can be obtained by modifying ordinary super-
covariant derivatives D�; �D�. We call these differential
operators ‘‘twisted covariant derivatives.’’
In Sec. IV, we first evaluate one-loop diagrams of the

dynamical field, which induce the inverse propagator of the
auxiliary field in the effective action. Using the superpro-
pagator of the dynamical field, we can easily calculate the
one-loop diagrams by a partial integration over Grassmann
coordinates. From the inverse propagator of the auxiliary
field, we secondly evaluate the propagator of the auxiliary
field V, which can be written in terms of ordinary covariant
derivatives D�, �D�.
In Sec. V, we study divergent diagrams and the renor-

malization. We first evaluate the superficial degree of
divergence and find that divergent diagrams can be classi-
fied into two types. We show that all divergences can be
eliminated in each order of 1=N by renormalizations of the
coupling constant and the wave function of the dynamical
field. In the last subsection, we evaluate the beta function
of the coupling constant. In the 1=N-expansion, there is no
contribution to the beta function except at the leading
order. We find that this model has a nontrivial UV fixed
point.
Throughout this paper we work in three dimensions with

metric ��� ¼ diagðþ;�;�Þ.

II. CPN�1 MODEL

A. Action of the CPN�1 model with the auxiliary field

The action of theCPN�1 model involves a set ofN chiral
superfields �j (j ¼ 1� N) and one vector superfield V:

S ¼
Z

d3xd4�ð�jye�V�j þ cVÞ; (1)

where c is a coupling constant and we define

Z
d4� :¼

Z
d2�d2 ��;

Z
d2��2 ¼

Z
d2 �� ��2 ¼ 2:

This action has N ¼ 2 supersymmetry, Uð1Þ local gauge
symmetry, and a global SUðNÞ symmetry. In Appendix A,
N ¼ 2 supersymmetry in three dimensions is reviewed.
The local gauge transformation is

�j ! ei��j; �jy ! e�i�y
�jy;

V ! V þ�þ�y;

where � is any chiral superfield. Although V itself is not
invariant under this transformation, the following term

Z
d2�d2 ��V

is gauge invariant.
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The equation of motion for V

�jye�V�j ¼ c

is solved for the auxiliary field V

V ¼ logð�jy�jÞ � logc:

Therefore we can eliminate V from the action:

S ¼ c
Z

d3xd4� logð�jy�jÞ;

which reduces to the action with the Fubini-Study metric if
we fix the gauge symmetry by �N ¼ 1. Note thatR
d4� logc ¼ 0.
For the 1=N-expansion, the action (1) is more conve-

nient than this action.
In terms of component fields, � can be written as

�jðx; �; ��Þ ¼ �ðxÞ þ �c ðxÞ þ 1

2
�2FðxÞ þ i

2
ð ��@6 �Þ�ðxÞ

� i

4
�2½ ��@6 c ðxÞ� � 1

16
�2 ��2@2�ðxÞ

and if we choose the Wess-Zumino gauge, V can be written
as

Vðx; �; ��Þ ¼ ��v6 ðxÞ�þMðxÞ ���þ 1

2
½�2 ���ðxÞ þ ��2� ��ðxÞ�

þ 1

4
�2 ��2DðxÞ: (2)

Then the action (1) becomes

S ¼
Z

d3xf@��j�@��j þ i �c j@6 c j þ Fj�Fj

� ½ið�j�@��j ��j@��
j�Þ þ �c j��c j�v�

þ v�v��
j��j �M2�j��j �M �c jc j �D�j��j

þ cDþ ð�j �c j�þ�j� ��c jÞg:

B. Vacuum structure of the CPN�1 model

To investigate the vacuum structure we have to calculate
the effective potential. We divide the dynamical fields into
the vacuum expectation values and the quantum fluctua-
tions:

�j ¼ �j
c þ�j

q; c j ¼ c j
q; Fj ¼ Fj

c þ Fj
q;

where

�j
c ¼ h�ji; Fj

c ¼ hFji
are constant modes independent of spacetime and hc ji ¼
0 because we assume the translation and Lorentz invari-
ance of the vacuum. Quantum fluctuations satisfyR
�i

qd
3x ¼ R

c i
qd

3x ¼ R
Fi
qd

3x ¼ 0. Then we perform

the path integration over �j
q, c

j
q, F

j
q.

We can first perform the Gaussian integral over Fj
q and

find that the effective potential for Fj is Fj�
c F

j
c. Therefore

Fj does not have the vacuum expectation value:

Fj
c ¼ 0:

Then we integrate out �j
q and c j

q. Notice that the
Lagrangian can be written as

L ¼ �j�
q f�ð@� þ iv�Þð@� þ iv�Þ �M2 �Dg�j

q

þ �c j
qði@6 � v6 �MÞc j

q þ�j
q
�c j
q�þ�j�

q
��c j

q þ cD

��j�
c fið@�v�Þ � v�v� þM2 þDg�j

c;

where surface terms are ignored. We shift the integration

variables c j
q, �c j

q:

c 0j
q :¼ c j

q þ ði@6 � v6 �MÞ�1�j
q�;

�c 0j
q :¼ �c j

q þ�j� ��ði@6 � v6 �MÞ�1;

then we find

L ¼ �j�
q ðrB � ��r�1

F �Þ�j
q þ �c 0j

qrFc
0j
q þ cD

��j�
c fið@�v�Þ � v�v� þM2 þDg�j

c;

where

rB :¼ �ð@� þ iv�Þð@� þ iv�Þ �M2 �D

rF :¼ i@6 � v6 �M:

We perform the Gaussian integration over �j
q, c j

q and
obtain the effective action for the dynamical fields, where
the auxiliary fields are treated as the external background
fields:

Seffð�c;v;M;�;DÞ ¼ iNTr lnðrB þ ��r�1
F �Þ� iNTr lnrF

þ
Z

d3x½cD��j�
c fið@�v�Þ

�v�v� þM2 þDg�j
c�:

To obtain the exact effective potential for both the
dynamical fields and the auxiliary fields, we have to per-
form the path integration over the fluctuations of the aux-
iliary fields. In this section, we calculate the effective
potential in the leading order of the 1=N-expansion, and
we take c ¼ N=g2 in order to make the Lagrangian of
order N.
If we take the limit of N ! 1, the path integration over

the auxiliary fields can be performed by the saddle point
method since the Seff is of order N. In the leading order of
1=N expansion, the effective potential is given by the value
of Seff at the saddle point.
We take the vacuum expectation values of the auxiliary

fields as follows:

hv�i ¼ h�i ¼ 0; hMi ¼ Mc; hDi ¼ Dc;

where Mc, Dc are constant fields. Then we find
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Seff ¼ �
Z

d3xVeff

Veff

N
¼ �i

Z � d3k

ð2	Þ3 lnð�k2 þM2
c þD2

cÞ

þ i
Z � d3k

ð2	Þ3 tr lnðk6 �McÞ þ 1

N
�j�

c ðM2
c þD2

cÞ�j
c

� 1

g2
Dc

¼ � 1

6	
jM2

c þDcj3=2 þ 1

6
jMcj3

þ 1

N
ðM2

c þDcÞ�j�
c �

j
c þ

�
�

2	2
� 1

g2

�
Dc; (3)

where � is an ultraviolet cutoff and the last equality is
shown in Appendix B. Then we define a renormalized
coupling constant gR to absorb the linear divergence:

�

g2R
:¼ 1

g2
� �

2	2
þ �

2	2
;

where � is a renormalization scale and gR is dimension-
less. Then we define m as follows:

m

4	
:¼ �

�
1

2	2
� 1

g2R

�
¼ �

2	2
� 1

g2
;

which is independent of the renormalization scale �.
With these definitions, the effective potential can be

written as

Veff

N
¼ � 1

6	
jM2

c þDcj3=2 þ 1

6	
jMcj3

þ 1

N
ðM2

c þDcÞ�j�
c �

j
c þ m

4	
Dc: (4)

The saddle point condition of Seff is

1

N

@Veff

@Mc

¼ �2Mc

�



4	
jM2

c þDcj1=2 � 1

4
jMcj � 1

N
�j�

c �
j
c

�

¼ 0 (5)

1

N

@Veff

@Dc

¼ � 


4	
jM2

c þDcj1=2 þ 1

N
�j�

c �
j
c þ m

4	
¼ 0

(6)

1

N

@Veff

@��i
c

¼ 1

N
ðM2

c þDcÞ�i
c ¼ 0;

where 
 ¼ sgnðM2
c þDcÞ. The first two conditions fix the

value of Mc at the saddle point

jMcj ¼ m or 0:

So there are two candidates for the vacuum configuration.
We will evaluate the values of Veff at these two
configurations.

jMcj ¼ m case: Notice that this case is possible only

when m � 0. Equation (6) can be solved for 1
N �

j�
c �

j
c as

follows:

1

N
�j�

c �
j
c ¼ 


4	
jM2

c þDcj1=2 � m

4	
: (7)

Substituting this and jMcj ¼ m to (4), we find

Veff

N
¼ 1

12	
ðjM2

c þDcj3=2 �m3Þ:

And we can also solve the constraint (6) for jM2
c þDcj1=2:

jM2
c þDcj1=2 ¼

��������mþ 4	

N
�j�

c �
j
c

��������:
Then we obtain the vacuum energy when �j

c is kept fixed

Veffð�cÞ ¼ N

12	

���������
4	

N
�j�

c �
j
c þm

��������
3�m3

�
:

Assuming m> 0, the minimum of this vacuum energy is

located at �j
c ¼ 0. Then (6) implies Dc ¼ 0. Since �c and

Dc are the order parameter of SUðNÞ and supersymmetry,
respectively, both SUðNÞ and supersymmetry are unbroken
in this case. The fact that the minimum vacuum energy is
exactly zero also implies supersymmetry is not broken.
Mc ¼ 0 case: Substituting (7) and Mc ¼ 0 to the effec-

tive potential (4), we find

Veffð�cÞ ¼ 1

12	
jDcj3=2:

And by solving the constraint (6) for jDcj1=2 and substitut-
ing it to this equation, we obtain the vacuum energy

Veffð�cÞ ¼ N

12	

��������
4	

N
�j�

c �
j
c þm

��������
3

:

If m> 0, the minimum of this vacuum energy is located at

�j
c ¼ 0 and larger than zero, and therefore the true vacuum

is located at Mc ¼ m. On the other hand, if m< 0, the
minimum is located at

�j�
c �

j
c ¼ N

4	
jmj;

then (6) implies Dc ¼ 0. Therefore supersymmetry is not
broken while SUðNÞ symmetry is spontaneously broken in
this case. The minimum vacuum energy is again exactly
zero.
In summary, in the case of m � 0 which we call the

symmetric phase, both supersymmetry and SUðNÞ are

unbroken, and �j
c ¼ Dc ¼ 0, jMcj ¼ m at the vacuum.

On the other hand, in the case of m< 0 which we call
the broken phase, supersymmetry is not broken while

SUðNÞ is spontaneously broken, and �j
c ¼ 4	

N jmj, Mc ¼
Dc ¼ 0 at the vacuum.
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III. PROPAGATOR OF THE DYNAMICAL FIELD

In this section, we will evaluate the propagator of the
dynamical field �j in the symmetric phase. We first evalu-
ate the propagators of the component fields�j, c j, Fj, and
then we construct the propagator of the superfield �j.

A. Propagator of the component fields

In the symmetric phase, we redefine M as follows:

M ! Mþm

so that hMi ¼ 0. Then in the Lagrangian, the kinetic term
for the dynamical field becomes

L kin ¼ �j�ð�@2 �m2Þ�j þ �c jði@6 �mÞc j þ Fj�Fj:

Notice that although the dynamical field obtained the mass
m, neither supersymmetry nor SUðNÞ symmetry is broken
in this phase.

Defining the Green’s function

�Fðx� x0Þ :¼ ð�@2 �m2 þ i
Þ�1�ðx� x0Þ;
the propagators of �j, c j, and Fj can be written as

h�jðxÞ�k�ðx0Þi0 ¼ i�jk�Fðx� x0Þ
hc j�ðxÞ �c k

�ðx0Þi0 ¼ i�jk½ði@6 �mÞ�1����ðx� x0Þ
¼ i�jkði@6 þmÞ���Fðx� x0Þ

hFjðxÞFk�ðx0Þi0 ¼ i�jk�ðx� x0Þ
¼ i�jkð�@2 �m2Þ�Fðx� x0Þ:

All other two-point functions vanish.

B. Superpropagator of the dynamical field

Using these component propagators, we can construct
the propagator of the superfield �j which we call the
superpropagator.

Since the superfield �j can be written in terms of
components as

�jðx; �; ��Þ ¼ �jðyÞ þ �c jðyÞ þ 1

2
�2FjðyÞ;

where y� :¼ x� þ i
2
�����, the free-field two-point func-

tion of �j becomes as follows:

h�jðx; �; ��Þ�ykðx0; �0; ��0Þi0 ¼ h�jðyÞ�k�ðy0yÞi0
þ h�c jðyÞ ��0 �c kðy0yÞi0
þ 1

4
�2 ��02hFjðyÞFk�ðy0yÞi0:

If we note

h�c jðyÞ ��0 �c kðy0yÞi0 ¼ ��hc j�ðyÞ �c k
�ðy0Þi0 ��0�;

then we find

h�jðx; �; ��Þ�ykðx0; �0; ��0Þi0
¼ i�jk

�
1þ �ði@6 þmÞ ��0 þ 1

4
�2 ��02ð�@2 �m2Þ

�

��Fðy� y0yÞ
¼ i�jke�ði@6 þmÞ ��0�Fðy� y0yÞ:

In the last line, we use the equation ½�ði@6 þmÞ ��0�2 ¼
1
2�

2 ��02ð�@2 �m2Þ; which is shown in Appendix C.

Recalling y� ¼ x� þ i
2
����� and noting that �ði@6 þ

mÞ ��0 ¼ � ��0ði@6 �mÞ�, then we find

h�jðx; �; ��Þ�ykðx0; �0; ��0Þi0
¼ i�jke� ��0ði@6 �mÞ�þði=2Þ ��@6 �þði=2Þ ��0@6 �0�Fðx� x0Þ:

In momentum space, this becomes

h�jðp; �; ��Þ�ykð�p; �0; ��0Þi0
¼ e� ��0ðp6 �mÞ�þð1=2Þ ��p6 �þð1=2Þ ��0p6 �0 i

p2 �m2 þ i

�jk: (8)

All the propagators of component fields are combined in
this superpropagator.
Since we redefine M as M ! Mþm, the action be-

comes

S ¼
Z

d3xd4�ð�jye�m ���e�V�j þ cVÞ:

We define ~�j, ~�jy by

~� j :¼ e�ð1=2Þm ����j; ~�jy :¼ e�ð1=2Þm ����jy;

then we find

S ¼
Z

d3xd4�ð ~�jye�V ~�j þ cVÞ; (9)

and the propagator of ~�j becomes

h ~�jðp; �; ��Þ ~�ykð�p; �0; ��0Þi0
¼ e� ��0ðp6 �mÞ�þð1=2Þ ��ðp6 �mÞ�þð1=2Þ ��0ðp6 �mÞ�0 i

p2 �m2 þ i

�jk:

(10)

Hereafter, we will use ~�j, ~�yj as the dynamical fields
instead of �j, �yj.

C. Twisted covariant derivatives

Since the expression (10) is slightly complicated, we
will rewrite it in terms of differential operators on super-
space, obtained by twisting D�, �D�. We call them the
‘‘twisted covariant derivatives.’’
We first review the propagator of the ordinary massless

chiral superfield. Although the Lagrangian

L massless
chiral ¼

Z
d4��y� (11)
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does not have any time derivatives, the constraint �D�� ¼
0 contains a time derivative and leads to the nontrivial
propagation of �. From the Lagrangian (11), we can
show that the propagator of � becomes

h�ðp; �; ��Þ�yð�p; �0; ��0Þi0
¼ i

p2 þ i

e� ��0p6 �þð1=2Þ ��p6 �þð1=2Þ ��0p6 �0 : (12)

It is known that this is equivalent to the following expres-
sion [10–12]:

h�ðp; �; ��Þ�yð�p; �0; ��0Þi0
¼ i

p2 þ i

� 1
4
�DðpÞ2DðpÞ2�ð4Þð�� �0Þ; (13)

where DðpÞ and �DðpÞ are the covariant derivatives in
momentum space:

DðpÞ� ¼ � @

@��
þ 1

2
ð ��p6 Þ�;

�DðpÞ� ¼ � @

@ ���
þ 1

2
ð�p6 Þ�;

and we define �ð4Þð�� �0Þ :¼ 1
4 ð�� �0Þ2ð ��� ��0Þ2:We can

show this equivalence of Eqs. (12) and (13) through a
straightforward calculation. For the calculation of a loop
diagram, the expression (13) is more useful than (12)
because we can perform the integration by parts in
superspace.

We now look for a constraint for ~� such that

�E�
~� ¼ 0:

Since ~�ðx; �; ��Þ ¼ e�ð1=2Þm ����ðx; �; ��Þ, we impose
�E�e

�ð1=2Þm ��� ¼ e�ð1=2Þm ��� �D�, namely

�E� :¼ e�ð1=2Þm ��� �D�e
þð1=2Þm ��� ¼ �D� þ 1

2
m��: (14)

We define E� by the same similarity transformation ofD�:

E� :¼ e�ð1=2Þm ���D�e
þð1=2Þm ��� ¼ D� þ 1

2
m ���: (15)

Secondly, we define another set of differential operators
�H�, H� as follows:

�H� :¼ eþð1=2Þm ��� �D�e
�ð1=2Þm ��� ¼ �D� � 1

2
m��;

H� :¼ eþð1=2Þm ���D�e
�ð1=2Þm ��� ¼ D� � 1

2
m ���:

Notice that the sign in front of m is opposite to (14) and
(15). We call E�, �E� and H�, �H� the twisted covariant
derivatives. Then we can rewrite the expression (10)
through a straightforward calculation:

h ~�jðp; �; ��Þ ~�kyð�p; �0; ��0Þi0
¼ �jk i

p2 �m2 þ i

� 1
4
�EðpÞ2HðpÞ2�ð4Þð�� �0Þ; (16)

where

HðpÞ� ¼ DðpÞ� � 1

2
m ���; �EðpÞ� ¼ �DðpÞ� þ 1

2
m��:

In Appendix D, the derivation of

1

4
�EðpÞ2HðpÞ2�ð4Þð�� �0Þ

¼ e� ��0ðp6 �mÞ�þð1=2Þ ��ðp6 �mÞ�þð1=2Þ ��0ðp6 �mÞ�0 (17)

is shown in detail.

D. Property of the twisted covariant derivatives

In the previous subsection, we defined the twisted co-
variant derivativesE�, �E� andH�, �H�. We now investigate
the property of these differential operators in detail.
We first study E� and �E�. We can easily show the

anticommutation relations of E�, �E� are those of covariant
derivatives:

fE�; �E�g ¼ i@6 �
�; fE�; E�g ¼ f �E�; �E�g ¼ 0:

They are indeed supercovariant derivatives when they act

on ~�j, ~�jy. To see this explicitly, recall the definition of

the twisted chiral superfield ~�j ¼ e�ð1=2Þm ����j. Under the
infinitesimal supersymmetry transformation, the chiral
superfield � transforms as �j ! ð1þ 
Qþ �
 �QÞ�j

where 
, �
 are the transformation parameters. So the trans-

formation law for the twisted chiral superfield ~�j becomes
as follows:

~� j ! e�ð1=2Þm ���ð1þ 
Qþ �
 �QÞeþð1=2Þm ��� ~�j: (18)

If we define

R� :¼ e�ð1=2Þm ���Q�e
þð1=2Þm ��� ¼ Q� þ i

2
m ���

�R� :¼ e�ð1=2Þm ��� �Q�e
þð1=2Þm ��� ¼ �Q� � i

2
m��;

the transformation law (18) can be written as ~�j ! ð1þ

Rþ �
 �RÞ ~�j. We call R�, �R� twisted supercharges, which
of course satisfy the anticommutation relations

fR�; �R�g ¼ �i@6 �
� ¼ fQ�; �Q�g;

fR�; R�g ¼ f �R�; �R�g ¼ 0:

Supersymmetry transformations for twisted chiral super-

fields ~�j, ~�jy are generated by R�, �R�.
We can show explicitly that twisted covariant derivatives

E�, �E� anticommute with R�, �R�:

fE�; �R�g ¼ f �E�; R�g ¼ fE�; R�g ¼ f �E�; �R�g ¼ 0:
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Therefore E�, �E� are indeed supercovariant derivatives

when they act on ~�j, ~�jy. We now find that the twisted

chiral condition �E�
~�j ¼ 0 is supercovariant. The twisted

antichiral condition for ~�jy becomes

E�
~�jy ¼ 0

and also supercovariant.
On the other hand, another set of twisted covariant

derivatives H� and �H� do not anticommute with R� and
�R�. The anticommutation relations are

fH�; �R�g ¼ �im��
�; f �H�; R�g ¼ im��

�

fH�; R�g ¼ f �H�; �R�g ¼ 0

and therefore H�, �H� are not supercovariant derivatives

when they act on ~�j, ~�jy. However, since the only differ-
ence between H�, �H� and E�, �E� is the sign in front of m,
H�, �H� are supercovariant derivatives when they act on

eþð1=2Þm ����j; eþð1=2Þm ����jy;

while ~�j ¼ e�ð1=2Þm ����j and ~�jy ¼ e�ð1=2Þm ����jy. So
there are two ways of ‘‘twisting’’ and we can define two
sets of twisted superfields (twisted supercharges) and
twisted covariant derivatives which are distinguished by
the sign in front of m.

Anticommutation relations among supercovariant de-
rivatives in different sets are as follows:

fE�; �H�g ¼ ði@6 �mÞ��; fH�; �E�g ¼ ði@6 þmÞ��

fE�;H�g ¼ f �E�; �H�g ¼ 0;

which will be used frequently in Appendix E to show
useful formulae for loop calculations.

In the following, we will show a useful formula for the
propagator of the dynamical field.

Note that the only difference between E�, �E� and H�,
�H� is the sign in front ofm. Therefore, by replacing �E� and
H� with �H� and E� in Eq. (17), we find

1

4
�HðpÞ2EðpÞ2�ð4Þð�� �0Þ

¼ e� ��0ðp6 þmÞ�þð1=2Þ ��ðp6 þmÞ�þð1=2Þ ��0ðp6 þmÞ�0 : (19)

If we replace �, �� with �0, ��0, we find

1

4
�H0ðpÞ2E0ðpÞ2�ð4Þð�0 � �Þ

¼ e� ��ðp6 þmÞ�0þð1=2Þ ��0ðp6 þmÞ�0þð1=2Þ ��ðp6 þmÞ�; (20)

where E0ðpÞ, �H0ðpÞ stand for twisted covariant derivatives
with �0, ��0. Recalling the definition of twisted covariant
derivatives

�H0ðpÞ� ¼ � @

@ ��0�
þ 1

2
ð�0p6 Þ� � 1

2
m�0�;

E0ðpÞ� ¼ � @

@�0�
þ 1

2
ð ��0p6 Þ� þ 1

2
m ��0�;

we can exchange �H0ðpÞ and E0ðpÞ by the following replace-
ment: �0 $ ��0, m ! �m. Therefore by replacing � $ ��,
�0 $ ��0, m ! �m in Eq. (20), we find

1

4
E0ðpÞ2 �H0ðpÞ2�ð4Þð�0 � �Þ

¼ e��ðp6 �mÞ ��0þð1=2Þ�0ðp6 �mÞ ��0þð1=2Þ�ðp6 �mÞ ��:

Then, at last, using the fact that �p6 �� ¼ � ��p6 � and m� �� ¼
m ���, we obtain the following result:

1

4
E0ð�pÞ2 �H0ð�pÞ2�ð4Þð�0 � �Þ

¼ e� ��0ðp6 �mÞ�þð1=2Þ ��0ðp6 �mÞ�0þð1=2Þ ��ðp6 �mÞ�:

Since the right-hand side is the same as that of (17),
Eq. (16) can be written as

h ~�jðp; �; ��Þ ~�kyð�p; �0; ��0Þi0
¼ �jk i

p2 �m2 þ i

� 1
4
�EðþpÞ2HðþpÞ2�ð4Þð�� �0Þ

¼ �jk i

p2 �m2 þ i

� 1
4
E0ð�pÞ2 �H0ð�pÞ2�ð4Þð�� �0Þ:

(21)

We will use this formula in the calculation of the loop
diagrams of the twisted chiral superfield.

IV. PROPAGATOR OF THE AUXILIARY FIELD

In the previous section, we studied the propagator of the
dynamical field. In this section, we will investigate that of
the auxiliary field. Although the auxiliary field has no
kinetic term in the classical level, the effective action
contains the quadratic term of the auxiliary field induced
by quantum effects of the dynamical field. We use the
quadratic term induced by one-loop diagrams of the dy-
namical field, which is the leading order of 1=N, as a
kinetic term in order to calculate the propagator of the
auxiliary field. Therefore we have to calculate the one-loop
diagram of the dynamical field in order to obtain the
propagator of the auxiliary field in the large N-expansion.

A. One-loop diagram of the dynamical field

Since the action of the theory is

S ¼
Z

d3xd4�ð ~�jye�V ~�j þ cVÞ ðj ¼ 1� NÞ; (22)

the auxiliary field V does not have the kinetic term at the

tree level. If we perform the path integration over ~�, ~�y,
we obtain the effective action Seff when the auxiliary field
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V is treated as the external background field while the dynamical fields ~�, ~�y fluctuate:

Seff ¼ Sþ 1

2

Z
d3xd4�VðiG�1ÞV þ � � � :

The quadratic term of the auxiliary field defines the inverse propagator of it, which comes from one-loop diagrams of the
dynamical field:

Feynman rules are as follows

Then the contribution of the first diagram in (23) can be evaluated as

Z d3p

ð2	Þ3
Z

d4�Vð�p; �Þ � ið�1Þ2
Z d3q

ð2	Þ3
iN

q2 �m2 þ i


�
1

4
�EðqÞ2HðqÞ2�ð4Þð�� �0Þ

����������0¼�; ��0¼ ��
�Vðp; �Þ:

Since �ð4Þð�� �0Þ ¼ 1
4 ð�� �0Þ2ð ��� ��0Þ2, we can show�

1

4
�EðqÞ2HðqÞ2�ð4Þð�� �0Þ

����������0¼�; ��0¼ ��
¼ 1

16

�
@

@ ���
@

@ ���

@

@��
@

@��
ð�� �0Þ2ð ��� ��0Þ2

����������0¼�; ��0¼ ��
¼ 1: (24)

Therefore the contribution of the first diagram in (23) becomes

In the right-hand side, the momentum integral over q has a linear divergence. So we here regularize the integral, for
instance by introducing a momentum cut-off.

B. Integration by parts at vertices

We now evaluate the contribution to the effective action from the second diagram in (23):
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where �E0ðpþ qÞ and H0ðpþ qÞ are twisted covariant de-
rivatives with �0, ��0 and momentum pþ q. Using Eq. (21),
we can rewrite the term in the first bracket:

1

4
�E0ðpþ qÞ2H0ðpþ qÞ2�ð4Þð�0 � �Þ

¼ 1

4
Eð�p� qÞ2 �Hð�p� qÞ2�ð4Þð�� �0Þ: (27)

In the following, we perform the �, �� integration by parts,
then we can apply Eð�p� qÞ2 �Hð�p� qÞ2 to the second
bracket and Vðp; �Þ in Eq. (26). We first note the partial
integration rule for covariant derivatives [12]:

Z
d4�fDðpÞ�AgB ¼ �

Z
d4�ð�1ÞjAjAfDð�pÞ�Bg;

where jAj ¼ 1 for Grassmann-odd A and jAj ¼ 0 for
Grassmann-even A. Note that the signs in front of � @

@��

and 1
2 ð ��p6 Þ� become opposite after the integration by parts

in the definition of the covariant derivative DðpÞ� ¼
� @

@�� þ 1
2 ð ��p6 Þ�. Namely, through the integration by parts,

DðpÞ� becomes Dð�pÞ� and �DðpÞ becomes �Dð�pÞ as
well.

We now recall the definition of twisted covariant deriva-
tives:

EðpÞ� ¼ DðpÞ� þ 1

2
m ���;

�EðpÞ� ¼ �DðpÞ� þ 1

2
m��;

HðpÞ� ¼ DðpÞ� � 1

2
m ���;

�HðpÞ� ¼ �DðpÞ� � 1

2
m��:

Then we find in the similar way that EðpÞ� becomes
Hð�pÞ� and �HðpÞ� becomes �Eð�pÞ� through the integra-
tion by parts.

If we take the following operator

Z d3p

ð2	Þ3
d3q

ð2	Þ3
Z

d4�fEð�p� qÞ� ~�yð�p�qÞgVðpÞ ~�ðqÞ;
(28)

we can integrate by parts and move Eð�p� qÞ� to

VðpÞ ~�ðqÞ by substituting Hðpþ qÞ� for it:

�
Z d3p

ð2	Þ3
d3q

ð2	Þ3
Z

d4� ~�yð�p� qÞ �Hðpþ qÞ�
�fVðpÞ ~�ðqÞg: (29)

Then we can distribute Hðpþ qÞ� to VðpÞ and ~�ðqÞ as
Hðpþ qÞfVðpÞ ~�ðqÞg ¼ fDðpÞVðpÞg ~�ðqÞ þ VðpÞ

� fHðqÞ ~�ðqÞg; (30)

where we should recall Hðpþ qÞ� ¼ � @
@�� þ 1

2 ð ��p6 Þ� þ
1
2 ð ��q6 Þ� � 1

2m
��� and DðpÞ� ¼ � @

@�� þ 1
2 ð ��p6 Þ�. We apply

the Leibnitz rule for � @
@�� and distribute 1

2 ð ��p6 Þ� to VðpÞ
and 1

2 ð ��q6 Þ � 1
2m

��� to ~�ðqÞ. The momenta in the covariant

derivatives should be chosen as the momenta of the fields
on which they act. We frequently use this kind of integra-
tion by parts at interaction vertices. Since each interaction

vertex contains one pair of ~� and ~�y, through the integra-
tion by parts, we move 1

2m
��� or 1

2m�� in twisted covariant

derivatives from ~� to ~�y, or vice versa. We never distrib-
ute 1

2m
���,

1
2m�� to the auxiliary field V.

Therefore, the rules for partial integration are as follows:
twisted covariant derivatives E�, �E�ðH�; �H�Þ are replaced
by another set of twisted covariant derivatives H�,
�H�ðE�; �E�Þ when they act on the dynamical fields ~�,
~�y, while they act as ordinary covariant derivatives D�,
�D� on the auxiliary field. The momenta in covariant de-
rivatives should be chosen as the momenta of the fields on
which they act. We can draw the result of the integration by
parts (28)–(30) as follows:

Then we perform �, �� integration by parts in Eq. (26).
Recall the term in the first bracket has been rewritten as
(27). We apply, through the integration by parts, Eðp�
qÞ2 �Hðp� qÞ2 in (27) to the second bracket and Vðp; �Þ in

(26). We will obtain 16 terms if we perform the integration
by parts straightforwardly. To avoid complicated expres-
sions, we rewrite the products of twisted covariant deriva-
tives in (27) as follows:
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1

4
Eð�p� qÞ2 �Hð�p� qÞ2

¼ 1

4
�Hð�p� qÞ2Eð�p� qÞ2 � �Hð�p� qÞ

� fð�p6 � q6 Þ þmgEð�p� qÞ þ fð�p� qÞ2 �m2g;
(31)

which is shown in Appendix E (see proposition E-2).
Noting that the order of Es and �Hs is reversed, we see
that many terms vanish through the integration by parts.
For instance, if we integrate by parts and move �Hð�p�
qÞ� in the first term, it acts as �EðqÞ� on the second bracket
and as �DðpÞ� on VðpÞ. However, since the second bracket
in (26) already has �E2, it vanishes when �EðqÞ� acts on it.
Similarly, we will easily find many terms vanish through
the integration by parts if we use the above equation.

We first evaluate the contribution of the third term in the
right-hand side of (31). Since this term has no covariant
derivatives, we can easily evaluate it by substituting

fð�p� qÞ2 �m2g�ð4Þð�� �0Þ for the first bracket in (26):

N
Z d3p

ð2	3Þ
d3q

ð2	Þ3
Z

d4�d4�0Vð�p; �0Þ 1

q2 �m2 þ i


�
�
�ð4Þð�� �0Þ 1

4
�EðqÞ2HðqÞ2�ð4Þð�� �0Þ

�
� Vðp; �Þ

¼ þ
Z d3p

ð2	3Þ
Z

d4�Vð�p; �0Þ �
Z d3q

ð2	Þ3
N

q2 �m2 þ i


� Vðp; �Þ;
where we should recall Eq. (24). This exactly cancels the
linearly divergent contribution of (25).

Then we evaluate the contribution of the second term in
(31). We first apply �Hð�p� qÞ to the second bracket and
Vðp; �Þ in (26). However, for the reason mentioned before,
the second bracket vanishes if we apply �Hð�p� qÞ on it
as �EðqÞ. So we apply �Hð�p� qÞ to Vðp; �Þ as �DðpÞ
through the integration by parts. On the other hand, the
twisted covariant derivative Eð�p� qÞ can be distributed
to both the second bracket and Vðp; �Þ in (26). But if we
operate it to the second bracket, we obtain the following

factor:

�ð4Þð�� �0ÞHðqÞ� �EðqÞ2HðqÞ2�ð4Þð�� �0Þ; (32)

and using the commutation relation of ½HðqÞ�; �EðqÞ2� ¼
�2½ �EðqÞðq6 �mÞ�� (again see Appendix E) we can rewrite
this as

� 2�ð4Þð�� �0Þ½ �EðqÞðq6 �mÞ��HðqÞ2�ð4Þð�� �0Þ:
We find this is zero due to the property of Grassmann

variables. Since �ð4Þð�� �0Þ ¼ 1
4 ð�� �0Þ2ð ��� ��0Þ2, the

term containing two delta functions vanishes unless we
have four derivatives ð @

@��Þ2ð @
@ ���

Þ2 between them. Therefore,

a nonzero contribution of the second term in (31) comes
only from the term where �Hð�p6 � q6 þmÞE is applied to
the auxiliary field. Noting that with Grassmann-even fields
A, B

Z
d4�f �Hð�pÞð�p6 þmÞEð�pÞAg � B

¼ þ
Z

d4�fð�p6 þmÞ��Eð�pÞ�Ag � f �EðpÞ�Bg

¼ �ð�p6 þmÞ��

Z
d4�A � fHðpÞ� �EðpÞ�Bg

¼ �ð�p6 �mÞ��
Z

d4�A � fHðpÞ� �EðpÞ�Bg

¼
Z

d4�A � fHðpÞðp6 þmÞ �EðpÞBg; (33)

the contribution of the second term of (31) becomes

� N
Z d3p

ð2	Þ3
d3q

ð2	Þ3
Z

d4�d4�0Vð�p; �0Þ�ð4Þð�� �0Þ

�
�
1

4
�EðqÞ2HðqÞ2�ð4Þð�� �0Þ

�
1

ðpþ qÞ2 �m2 þ i


� 1

q2 �m2 þ i

DðpÞfp6 þ q6 þmg �DðpÞVðp; �Þ:

(34)

We can graphically express this integration by parts as
follows:

Recalling the Eq. (24) again, we evaluate (34) as follows:
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� N
Z d3p

ð2	Þ3
d3q

ð2	Þ3
Z

d4�Vð�p; �Þ 1

ðpþ qÞ2 �m2 þ i


� 1

q2 �m2 þ i

DðpÞfp6 þ q6 þmg �DðpÞVðp; �Þ:

When we use the identity

Z d3q

ð2	Þ3
q6

½ðpþ qÞ2 �m2 þ i
�ðq2 �m2 þ i
Þ

¼
Z d3q

ð2	Þ3
� 1

2p6
½ðpþ qÞ2 �m2 þ i
�ðq2 �m2 þ i
Þ ;

which is easily shown by shifting the integration variables
q ! �q� p in the left-hand side, and we obtain the
following result:

� iN
Z d3p

ð2	Þ3
Z

d4�Vð�p; �ÞDðpÞ
�
p6
2
þm

�
�DðpÞVðp; �Þ

� 1

4	
Iðp2Þ�1; (35)

where we define Iðp2Þ�1 as

Iðp2Þ�1 :¼ 4	

i

Z d3q

ð2	Þ3
1

ðpþ qÞ2 �m2 þ i


� 1

q2 �m2 þ i


¼ arctan
ffiffiffiffiffiffiffi
�p2

4m2

q
ffiffiffiffiffiffiffiffiffiffi�p2

p :

The second equality is shown in Appendix F. This defini-
tion of Iðp2Þ�1 is the same as that in [7].
We now evaluate the contribution of the first term in (31)

1

4
�Hð�p� qÞ2Eð�p� qÞ2�ð4Þð�� �0Þ:

We integrate by parts and apply 1
4
�H2E2 to the second

bracket and Vðp; �Þ in (26). For the same reason as before,
we first apply �Hð�p� qÞ2 only to Vðp; �Þ as �DðpÞ2:

When we moreover apply E2ð�p� qÞ to the second
bracket (the upper chiral propagator in the above picture)
and Vðp; �Þ in (26), we should note the term (32) vanishes
as before and the term

�ð4Þð�� �0ÞHðqÞ2 �EðqÞ2HðqÞ2�ð4Þð�� �0Þ
also vanishes. This is because we have at most two deriva-

tives between two delta functions since we can show
HðqÞ2 �EðqÞ2HðqÞ2 ¼ ðq2 �m2ÞHðqÞ2. We do not have
nonzero contributions unless there are four derivatives
between two delta functions. Therefore again, the nonzero
contribution of the first term in (31) comes only from the
term where 1

4
�H2E2 is applied to the auxiliary field:

N
Z d3p

ð2	Þ3
d3q

ð2	Þ3
Z

d4�d4�0Vð�p; �0Þ � 1

ðpþ qÞ2 �m2 þ i


1

q2 �m2 þ i

�ð4Þð�� �0Þ

�
1

4
�EðqÞ2HðqÞ2�ð4Þð�� �0Þ

�

� 1

4
DðpÞ2 �DðpÞ2Vðp; �Þ

¼ N
Z d3p

ð2	Þ3
d3q

ð2	Þ3
Z

d4�Vð�p; �Þ � 1

ðpþ qÞ2 �m2 þ i


1

q2 �m2 þ i

� 1
4
DðpÞ2 �DðpÞ2Vðp; �Þ

¼ iN
Z d3p

ð2	Þ3
Z

d4�Vð�p; �Þ 1
4
DðpÞ2 �DðpÞ2Vðp; �Þ � 1

4	
Iðp2Þ�1: (36)

We can graphically express this integration by parts as follows:
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In summary, we can evaluate Eq. (26) by using the formula (31) for one of the chiral propagators. The contribution of
the third term of (31) cancels the contribution of (25),; the contributions of the second and third term are given by (35) and
(36). Considering all the contributions, the quadratic terms of the auxiliary field in the effective action become as follows:

1

2

Z d3p

ð2	Þ3
Z

d4�Vð�p; �ÞðiG�1ÞVðp; �Þ ¼ N

2

Z d3p

ð2	Þ3
Z

d4�Vð�p; �Þ
�
1

4
DðpÞ2 �DðpÞ2 � 1

2
DðpÞp6 �DðpÞ �mDðpÞ �DðpÞ

�

� Vðp; �Þ � 1

4	
Iðp2Þ�1

¼ N

2

Z d3p

ð2	Þ3
Z

d4�Vð�p; �Þ
�
1

4
DðpÞ �DðpÞ2DðpÞ �mDðpÞ �DðpÞ

�
Vðp; �Þ

� 1

4	
Iðp2Þ�1; (37)

where the last equality is shown in Appendix G. This
inverse propagator of the auxiliary field is the same as
that of the super Yang-Mills field except for the mass
term mD �D and nonlocal factor Iðp2Þ�1.

C. Propagator of the auxiliary field

In order to derive the propagator of the auxiliary field
from (37), we have to evaluate the inverse of the differen-
tial operator in it. To do so, we first study the algebra ofD�

and �D� in detail. Because of the fact thatD2 ¼ �D2 ¼ 0, all
the differential operators composed of D� and �D� can be
written as linear combinations of the following six opera-
tors (similar to the case of N ¼ 1 in four dimensions
[10]), namely, a set of projection operators of chiral and
antichiral superfield

P2 :¼
�D2D2

4p2
; P1 :¼ D2 �D2

4p2
;

and other four operators:

Pþ :¼ � iD2

2
ffiffiffiffiffiffiffiffiffiffi�p2

p ; P� :¼ � i �D2

2
ffiffiffiffiffiffiffiffiffiffi�p2

p ;

PT :¼ �D �D2D

2p2
; PD :¼ � iD �Dffiffiffiffiffiffiffiffiffiffi�p2

p ;

where we omit explicitly writing the momentum depen-
dence of covariant derivatives. Note that the termDp6 �D can
be written as a linear combination of PT and P1. Through a
straightforward calculation, we can show that

P1 þ P2 þ PT ¼ 1: (38)

The multiplication rules of these operators are indicated in

Table I, where the blanks mean zero. We show a part of this
table explicitly in Appendix G.
We now want to derive the inverse of

1

4
D �D2D�mD �D ¼ �p2

2
PT � im

ffiffiffiffiffiffiffiffiffiffi
�p2

q
PD (39)

by using Table I. But this operator is noninvertible because
this annihilates arbitrary antichiral superfields (indeed also
annihilates arbitrary chiral superfields). Note here that

D �D ¼ �DDþ fD�; �D
�g ¼ �DDþ i trð@6 Þ ¼ �DD:

This singularity is of course due to the gauge symmetry. So
we need to introduce a gauge-fixing term to define the
inverse of (39). We here introduce the following super-
symmetric gauge-fixing term in the action

SGF ¼ N

2�

Z d3p

ð2	Þ3
Z

d4�Vð�p; �Þ

� 1
8
½D2 �D2 þ �D2D2�Vðp; �Þ � 1

4	
Iðp2Þ�1;

where we omit writing momenta p of covariant derivatives

TABLE I. The multiplicative property of operators.

Left\right P1 P2 Pþ P� PT PD

P1 P1 Pþ
P2 P2 P�
Pþ Pþ P1

P� P� P2

PT PT PD

PD PD PT
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explicitly. With this gauge fixing, the inverse propagator of
the auxiliary field is given by

1

2

Z d3p

ð2	Þ3 d
4�Vð�pÞðiG�1ÞVðpÞ þ SGF

¼ N

2

Z d3p

ð2	Þ3
Z

d4�Vð�p; �ÞrVVðp; �Þ � 1

4	
Iðp2Þ�1;

where

rV ¼ 1

4
D �D2D�mD �Dþ 1

8�
ðD2 �D2 þ �D2D2Þ

¼ �PT

2
� im

ffiffiffiffiffiffiffiffiffiffi
�p2

q
PD þ p2

2�
ðP1 þ P2Þ:

Then we can evaluate the inverse of rV . Indeed, by sup-
posing r�1

V ¼ aP1 þ bP2 þ cPþ þ dP� þ ePT þ fPD,
we can easily show

rVr�1
V ¼ p2

2�
ðaP1 þ bP2Þ þ p2

2�
ðcPþ þ dP�Þ

� 1

2
ðp2eþ 2im

ffiffiffiffiffiffiffiffiffiffi
�p2

q
fÞPT

� 1

2
ðp2fþ 2im

ffiffiffiffiffiffiffiffiffiffi
�p2

q
eÞPD:

If we impose a ¼ b ¼ �
p2 , c ¼ d ¼ 0, e ¼ � 2

p2�4m2 , and

f ¼ � 4imffiffiffiffiffiffiffi
�p2

p
ðp2�4m2Þ ,

rVr�1
V ¼ P1 þ P2 þ PT ¼ 1:

Therefore the inverse operator of rV is

r�1
V ¼ � 2

p2 � 4m2

�
PT þ 2imffiffiffiffiffiffiffiffiffiffi�p2

p PD

�
þ 2�

p2
ðP1 þ P2Þ

¼ 1

p2 � 4m2
�D �D2D� 4mD �D

p2

þ �

2p4
ðD2 �D2 þ �D2D2Þ:

Using this inverse operator, the superpropagator of the
auxiliary field V can be written as

hVð�p; �0; ��0ÞVðp; �; ��Þi0 ¼ 4	i

N
Iðp2Þ � r�1

V �ð4Þð�� �0Þ:
(40)

Note that this propagator has a pole at p2 ¼ 4m2, which
implies that a one-particle state of the auxiliary field is a
bound state of the dynamical field.
If we expand this propagator in components, we obtain

propagators of component fields. However, it leads to a
complicated expression to expand (40) straightforwardly
since the auxiliary superfield Vðp; �; ��Þ has many unphys-
ical component fields which can be eliminated if we choose
the nonsupersymmetric gauge such as the Wess-Zumino
gauge. We can, nevertheless, easily obtain the propagators
of v� and M by taking the coefficient of ��0�0 ��� in the

expansion of (40), namely

hv�ð�pÞv�ðpÞi0 ¼ 4	i

N
Iðp2Þ

�
1

p2 � 4m2

�
�
���� þ

�
1þ � � p

2 � 4m2

p2

�

� p�p�

p2
� 2mi

p2

���p

�

��
(41)

hMð�pÞMðpÞi ¼ 4	i

N
Iðp2Þ 1

p2 � 4m2
: (42)

These propagators of component fields coincide with the
result in [7]. The derivations of these expressions are
shown in Appendix H.

V. DIVERGENT DIAGRAMS AND
RENORMALIZATION

In this section, we investigate divergent diagrams and
the renormalizability. We first study the superficial degree
of divergence and show that there are two types of diver-
gent diagrams. We can prove all divergences can be elim-
inated by renormalizations of the coupling constant g and

the wave function of the dynamical field ~�.

A. Superficial degree of divergence

We first evaluate the superficial degree of divergence.
Recall the superpropagators of the dynamical field and the
auxiliary field

h ~�ykð�p; �0; ��0Þ ~�jðp; �; ��Þi0 ¼ �jk i

p2 �m2 þ i

� 1
4
�E2H2�ð4Þð�� �0ÞhVð�p; �0; ��0ÞVðp; �; ��Þi0

¼ 4	i

N
Iðp2Þ

�
1

p2 � 4m2
�D �D2D� 4mD �D

p2
þ �

2p2
ðD2 �D2 þ �D2D2Þ

�
�ð4Þð�� �0Þ;

where momenta of covariant derivatives are all equal to p. Postponing the discussion on momentum dependence of
covariant derivatives, we can evaluate high energy behaviors of above superpropagators as follows:
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h ~�ykð�p; �0; ��0Þ ~�jðp; �; ��Þi0 � 1

p2
� �E2H2

hVð�p; �0; ��0ÞVðp; �; ��Þi0 �
ffiffiffiffiffiffiffiffiffiffi�p2

p
p4

� ðD �D2D or mD �D or D2 �D2 or �D2D2Þ:

Note that

Iðp2Þ ¼
ffiffiffiffiffiffiffiffiffiffi�p2

p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
� p2

4m2

q �
ffiffiffiffiffiffiffiffiffiffi
�p2

q

at high energy.
Then we evaluate high energy behaviors of covariant

derivatives. In any loop diagram, we can integrate by parts
and reduce the number of integrations over Grassmann

coordinates by virtue of the delta function �ð4Þð�� �0Þ.
Then the final expression of Grassmann integrations on
each loop has a factor

�ð4Þð�� �0Þðproduct of covariant derivativesÞ�ð4Þð�� �0Þ
in the integrand. As we have seen in the previous section,
however, this factor will give a vanishing result unless
there are four derivatives between two delta functions.
What can be obtained if we have six covariant derivatives
between two delta functions? The answer turns out to be
zero when we note

D2 �D2D2 ¼ ½D2; �D2�D2 ¼ 4p2D2;

since we have only two derivatives between delta func-
tions. How about the case in which we have eight deriva-
tives between delta functions? In such a case, we obtain a
factor

D2 �D2D2 �D2 ¼ 4p2D2 �D2

and this gives a nonzero contribution. Similarly, if we have
12 covariant derivatives, we obtain ðD2 �D2Þ3 ¼
ð4p2Þ2D2 �D2. Therefore we find that D2 �D2 � p2 unless

they are used to differentiate a delta function �ð4Þð��
�0Þ. In every loop, we use one D2 �D2 to differentiate a delta
function in the formula

Z
d4�0�ð4Þð�� �0Þ

�
1

4
D2 �D2

�
�ð4Þð�� �0Þ ¼ 1:

This formula is easily shown in the same way as (24).
When the diagram contains L loops, L sets of D2 �D2 are
used to differentiate delta functions, reducing the degree of
divergence by 2L.

By counting D �D� p6 , we then obtain the complete
behavior of superpropagators at high energy as

h ~�ykð�p; �0; ��0Þ ~�jðp; �; ��Þi0 � 1

hVð�p; �0; ��0ÞVðp; �; ��Þi0 � 1ffiffiffiffiffiffiffiffiffiffi�p2
p ;

and the degree of divergence has to be reduced by 2L if the
diagram has L loops. Then we have the superficial degree
of divergence d as

d ¼ 3L� PV � 2L;

where L denotes the number of loops and PV denotes the
number of propagators of the auxiliary field. The first term
comes from the fact that each loop has three momentum
integrations. The last term comes from the fact that we use
four covariant derivatives at each loop to differentiate a
delta function. Using the relation L ¼ ðPV þ P�Þ � V þ
1, where P� is the number of propagators of the dynamical
field and V denotes the number of vertices, we find

d ¼ P� � V þ 1: (43)

Then we should notice that all vertices in this theory

contain exactly one ~�y ~�. This means that

V ¼ P� þ E�

2
; (44)

where E� denotes the number of external lines of ~�. The
formula (44) can be shown as follows. Noting the symme-

try of ~� ! ei� ~�, ~�y ! e�i� ~�y, we find that the internal

FIG. 1. Typical examples of two types of ~�-lines.
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lines of ~� are not branched. This means there are two types

of ~� lines. The first type goes from one external line to
another external line without branches: (a) The second type

is an internal circle of ~� which has no external lines;
(b) Typical examples of these two types are indicated in
Fig. 1. We now count the number of vertices on the line of
~�. For type (a), we easily find V ¼ P� þ 1 ¼ P� þ E�

2 .

On the other hand, for type (b), V ¼ P� is satisfied. But

this can be also written as V ¼ P� þ E�

2 because E� ¼ 0

for type (b). Since both types (a) and (b) satisfy (44),
diagrams containing both types also satisfy (44).
Combining (43) and (44), we find the final result:

d ¼ 1� E�

2
:

Therefore there are only two types of divergent diagrams:

In the following, we study these two types of diagrams in
detail. We will show that all the divergences can be ab-
sorbed into the bare coupling constant and the wave func-
tion of ~�.

B. Renormalization of the coupling constant

In this subsection, we study the amplitudes without

external ~�-lines shown in the left diagram in (45). Since
its superficial degree of divergence is 1, it may contain
linear and logarithmic divergences. To see these diver-
gence explicitly, one might expand the amplitude in

powers of the external momentum p� in the same way as
in the ordinary field theory. However, since we now work
in the superfield perturbation theory, each field has
Grassmann coordinates in addition to spacetime coordi-
nates. Therefore we have to expand the amplitude in
powers ofD�, �D� as well as p�. The reason for expanding
it by D�, �D� rather than @

@�� ,
@

@ ���
is supersymmetry.

Although there are no terms linear in p� due to the
Lorentz invariance, there may be terms linear in D2, �D2

or �DD, which can be logarithmically divergent:

where a, b, c and d are constants independent of external
momenta and Grassmann coordinates. The differential
operators �DD, D2, �D2 acts on external auxiliary fields
and independent of internal momenta. Terms linear in p2,
p4 or p2 �DD are included in finite terms.

Therefore, the effective action might need counter terms
of the form

Z
d3x

Z
d4�½�nV

n þ �nV
n�2ð �DVÞðDVÞ

þ �nV
n�2ðDVÞ2 þ �nV

n�2ð �DVÞ2�; (46)

where n is a positive integer and �n, �n, �n, �n are
constants. When n ¼ 1, the second, third, and fourth terms
should be considered as �DDV, D2V, and �D2V,
respectively.

If we assume the existence of a gauge invariant regu-
larization, �n and �n must be zero because operators

Vn�1D2V, Vn1 �D2V are not gauge invariant. Similarly, we
can show �n ¼ 0 unless n � 2 and �n ¼ 0 unless n ¼ 1.
However, we can explicitly show these results by analyzing
loop integrations without assuming the existence of a
gauge invariant regularization.

1. Operators of the form Vn�1 �DDV, Vn�1D2V, Vn�1 �D2V

We first show explicitly that �n, �n, �n ¼ 0 for all n.
Note that all covariant derivatives acting on external fields
come from partial integrals over Grassmann coordinates.
In order to obtain operators Vn�1 �DDV, Vn�1D2V,
Vn�1 �D2V, we have to move two covariant derivatives
from propagators to external fields through integrations
by parts. Suppose there are k propagators in the diagram.
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Since every term in every propagator has four covariant
derivatives except for mD �D in the superpropagator of the
auxiliary field, 4k� 2 covariant derivatives remain in
loops after moving two covariant derivatives to external
fields, assuming there is no mD �D in the diagram. We
perform integrations over Grassmann coordinates and
shrink all Grassmann loops using the formula

Z
d4�0�ð4Þð�� �0Þ

�
1

4
D2 �D2

�
�ð4Þð�� �0Þ ¼ 1

or the similar one which has E2 �H2 instead ofD2 �D2. We use
4L covariant derivatives to shrink all Grassmann loops
when the diagrams has L loops. Then 4ðk� LÞ � 2 cova-
riant derivatives remain. But, since all Grassmann loops
have been shrunk, these 4ðk� LÞ � 2 derivatives must be
changed into internal momenta by using the anticommu-
tation relation

½D2; �D2� ¼ 4q2 � 4 �Dq6 D
unless they vanish for the reason that there are less than
four derivatives between two delta functions. Therefore, if
we move two covariant derivatives to external fields, at
most 4ðk� LÞ � 2 covariant derivatives are changed into

q2ðk�LÞ�1, where q is a typical internal momentum. Recall
here that D2 �D2 � p2. However, assuming Lorentz invari-
ance, this factor has to be written as ðq2Þk�Lq6 , which
contains an odd number of internal momenta. Notice that
each propagator is invariant under p ! �p except for

covariant derivatives and vertex factors are independent
of momenta. Then we find that the total integrand is an odd
function of internal momenta. We know that the degree of
divergence is reduced at least by 1 if the Feynman inte-
grand is an odd function of internal momenta. Then these
integrals are not divergent because their original superficial
degree of divergence is zero.
Let us consider what happens if we have some mD �Ds in

the diagram. Noting that we count all of D2 �D2, D �D2D,
mD �D as �p2 when we evaluate the superficial degree of
divergence, we find that the degree of divergence is again
reduced at least by 1 if the diagram contains some mD �Ds.
It is proved that in the effective action there is no

quantum correction to the operator of the form of
Vn�1D2V, Vn�1 �D2V, or Vn�1 �DDV.

2. Operators of the form Vn

We now show explicitly that �n in (46) vanishes unless
n ¼ 1. Recall that no V2 term arose when we evaluated the
inverse propagator of the auxiliary field in subsection IVB.
The reason for this is the cancellation between (25) and the
contribution of the third term in (31). The contribution of
the third term of (31) is a part of (26). The contribution
proportional to V2 induced by the partial integration over
Grassmann coordinates in (26) exactly canceled (25)
which is also proportional to V2. This cancellation is due
to the fact that the dynamical field is a chiral superfield. To
see this, we examine the following diagram:

where �ij stands for �
ð4Þð�i � �jÞ and pij denotes the momentum which flows from �i to �j. Therefore pji is equal to�pij.

When we write �E2H2�ij, the covariant derivatives in front of �ij stand for covariant derivatives with Grassmann
coordinates �i, ��i and momentum pij. On the other hand, if we write �E2H2�ji, they are covariant derivatives with �j,
��j, pji. We distinguish �ij from �ji. Then we can write the formula (27) as

1

4
�E2H2�12 ¼ 1

4
E2 �H2�21:

By using this formula, we can rewrite (47) as

Then we use the formula

1

4
E2 �H2�21 ¼ 1

4
�H2E2�21 � �Hðp6 21 þmÞE�21 þ ðp2

21 �m2Þ�21;
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which is easily shown by the commutation relations of E2 and �H2. We can graphically express this formula as follows:

In the third term in the right-hand side, we can easily perform the integration over �1. Then we obtain the following
contribution

In order to understand the minus sign, we should recall that the vertex factor is ið�1Þn when the vertex is attached to n lines
of auxiliary field. Although performing the integration over �1 does not change the number of lines of auxiliary field, it
reduces the number of vertices by one, leaving a factor iwhich has been attached to the annihilated vertex. Moreover, there
is another i in front of �21. The minus sign in (50) comes from these two factors of i. Then the contribution from the third
term in (49) exactly cancels that of the following diagram:

We now consider the remaining terms, namely, the first and second terms in (49). Performing the partial integration over
�2, we can show as before that all vanish except for contributions in which all covariant derivatives between �1 and �2 are
applied to external auxiliary fields. For instance, see the second term in (49). If we move �H� from the left chiral propagator
to the right one exchanging it for �E�, it vanishes because �E�

�E2 ¼ 0. We have to apply �H� to V2 to obtain a nonzero
contribution. Then we moveE� in the left chiral propagator and perform the integration over �1 by virtue of �21. The result
is as follows:
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where we use the similar equation as (33).
In the second term in the bracket, all covariant deriva-

tives moved to the external auxiliary field V2. On the other
hand, in the first term, H� is applied to the other chiral
propagator. This H� can, however, move to V1 or V2 if we
again perform the partial integration over �2. Noting that

E�
~�y ¼ 0, we find that the contribution of applyingH� to

the external ~�y vanishes. So we move it only to external
auxiliary fields exchanging it forD�. The result is the same
if there is an another chiral propagator instead of the

external ~�y because E� < ~�yðp; �; ��Þ ~�ð�p; �0; ��0Þ>0 ¼
0. This vanishing occurs due to the fact that the dynamical
field is a (twisted) chiral superfield. Therefore, through the
integration by parts, the nonzero contributions of the sec-

ond term in (49) come only when all the covariant deriva-
tives are applied to external auxiliary fields V1, V2.
In the sameway, we can show that nonzero contributions

of the first term in (49) arise only when all the covariant
derivatives are applied to external auxiliary fields, by per-
forming a partial integration over �2 to move �H2E2 in front
of �21. Therefore, all nonzero contributions from the first
and second terms in (49) have at least one covariant
derivative applied to external auxiliary fields. Only the
third term has no covariant derivative applied to external
auxiliary fields but it was canceled by the contribution of
(51). We can express the whole argument given above by
the following simple graphical equation:

where�means that both sides are equal up to terms with at
least one covariant derivative applied to external fields.

Recalling the purpose of this subsection, in the follow-
ing, we consider only one-particle irreducible amplitudes
with no external chiral superfields and no covariant deriva-
tives applied to external auxiliary fields:

For instance, consider the following amplitude with two
external auxiliary fields

This induces an order 1=N2 correction to the inverse
propagator of the auxiliary field. By the same argument
as above, we can show this amplitude cancels the following
one:

except for terms with at least one covariant derivative
applied to external auxiliary fields. Note that covariant
derivatives do not act on the internal line of the auxiliary
field, since V1 is attached on the propagator of dynamical
fields. Shifting the vertex attached to V1 along the chiral
loop in a clockwise direction, we can also show that
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These six amplitudes are given by inserting a vertex

into the following diagram

where there are six possible ways of insertion and summing
up all these amplitudes leads to a vanishing result.
Similarly, all possible insertions of (52) into the following
diagrams

also give vanishing results.
Considering all possible insertions into (53) and (54), we

can obtain all amplitudes of order 1=N2 with two external
auxiliary fields. This means that in the effective action
there is no quantum correction to the operator V2 in order
1=N2. We can also prove that amplitudes of order 1=Nm

with two external auxiliary fields vanish when we sum
them up, with an arbitrary positive integer m, except for
terms with at least one covariant derivative applied to
external fields.

In the same way, if we fixed the number of external
auxiliary fields and the order of 1=N, except for only one
case, we can show that all contributions vanish if we sum
them up, up to terms which have at least one covariant
derivatives applied to external fields. For example, if the
diagram has n external auxiliary fields and we consider the
contribution of order 1=Nm, we choose one external aux-
iliary field and consider all diagrams of order 1=Nm with-
out it. Then we consider all possible insertions of the
chosen external auxiliary field into them. The insertions

have to be made at propagators or vertices on loops of ~�.
Since any chiral loop has the same number of propagators
and vertices, it gives a vanishing result to sum up all
insertions. The only exception is the following one-loop

amplitude:

Since this is only one amplitude of order N with one
external auxiliary field, it has no counterpart to cancel.
However, this contribution was already considered when
we evaluated the vacuum structure of the theory in
subsection II B. It gave a linearly divergent contribution
to be eliminated by the renormalization of the coupling
constant.
In summary, it is proved that no counterterms of the

form of Vn are necessary, except for the case n ¼ 1.
Namely, �n in (46) vanishes unless n ¼ 1. In the case n ¼
1, there is a linearly divergent term proportional to N but it
is canceled by a counterterm induced by the renormaliza-
tion of the coupling constant. Notice here that the counter-
term is also proportional to N.
We now find that all divergent amplitudes of the left type

in (45) become finite, at each order of the 1=N-expansion,
only by renormalizing the coupling constant.

C. Wave function renormalization of ~�

We now show that all divergences from diagrams of the
second type in (45)

can be eliminated by the renormalization of the wave

function of ~�. Since its superficial degree of divergence
is zero, it may contain logarithmic divergences. If we
expand the amplitudes in powers of covariant derivatives
and external momenta, only the lowest order, which has no
external momenta and no covariant derivative acting on
external superfields, can be divergent. Therefore, in this
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subsection, we only consider terms with no covariant
derivatives acting on external superfields.

Notice here that we have to expand amplitudes in powers

of E�, �E� acting on external ~�, ~�y as well as in powers of
D�, �D� acting on external V. The reason for this is super-
symmetry. Differential operators E�, �E� are supercovar-

iant when they act on ~�, ~�y, while D�, �D� are
supercovariant when they act on V. In order to study
divergent amplitudes, it is enough to investigate amplitudes

which have no E�, �E� acting on external ~�, ~�y and noD�,
�D� on external V.
We have already seen that the following type of ampli-

tudes

has no divergence. Especially when we neglect terms with
covariant derivatives acting on external superfields, it led to
a vanishing result to sum up all the diagrams of the above
type. The reason for this was as follows. Suppose the
following diagram and take one external auxiliary field,
which is always attached to a loop of a twisted chiral
superfield:

When we perform a partial integration at a vertex � where
the chosen external auxiliary field is attached, we use the
formula (48) at a chiral propagator next to the vertex.
Keeping only the contribution with no D�, �D� acting on
external auxiliary fields, we find that it exactly cancels
another diagram

These two diagrams can be obtained by inserting one
external auxiliary field in the following diagram:

The diagram (57) can be obtained by inserting an external
V into the chiral propagator in the loop while the dia-
gram (58) can be obtained by inserting it into the vertex
in the loop. The diagrams obtained by these two insertions
cancel each other. Since any loop has the same number of
propagators and vertices, the contributions of diagrams
obtained by moving one external auxiliary line along the
chiral loop cancel each other. This kind of cancellation
occurs when other external lines and all internal lines are
fixed. Therefore, considering all diagrams of the form (56)
leads to a vanishing result.
In the same way, it gives a vanishing result to sum up all

the diagrams of the following form

when we neglect terms with covariant derivatives acting on
external superfields. But we cannot use the same argument
to evaluate the following diagrams

because there is no external auxiliary field attached to an
internal chiral loop. All external auxiliary fields are at-
tached to the chiral line which connects two external
twisted chiral superfields. In this case, even if we neglect
terms with covariant derivatives acting on external super-
fields and move one external auxiliary field along the chiral
line, with other external lines and all internal lines being
fixed, it gives a nonvanishing result to sum up all contri-
butions. The reason for this is as follows. The chiral line
has one more vertex than propagators, and it has also two
external chiral lines. Then, there are two types of insertion
of the chosen external auxiliary field: (A) insertion in a
vertex on the chiral line; (B) insertion in a chiral propa-
gator or an external chiral line. Each diagram of type (A)
has a counterpart of type (B) to cancel out. However, since
there are one more diagram of type (B) than that of (A),
without cancellation when we sum up all insertions of the
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chosen external auxiliary field, only one diagram of
type (B) remains.

For instance, suppose the following diagram:

We insert one external auxiliary field in the above diagram.

Since the chiral loop in the above diagram has four vertices
and four propagators, considering all insertion of the ex-
ternal auxiliary field in the chiral loop, we obtain a vanish-
ing result up to terms with covariant derivatives acting on
external superfields. On the other hand, the chiral line in
the above diagram has two vertices, one propagator, and
two external lines. We first find that the following two
diagrams vanish when they are summed:

where we neglect terms with covariant derivatives acting on external superfields. In the same way, we find that the sum of
the following diagrams vanishes:

The following diagram, however, remains:

This diagram does not have a counterpart to cancel.
Therefore, summing up all diagrams obtained by inserting
one external auxiliary field in the diagram (59), all dia-
grams cancel out each other except for the diagram (60). If
we again perform the partial integration, we find the re-
maining diagram (60) is equivalent to

up to terms with covariant derivatives acting on external
superfields.

When we insert two external auxiliary fields in (59), we
fix the first external auxiliary field and consider all inser-
tion of the second external auxiliary field. Then we find

that only one diagram remains, in which the second exter-

nal field is inserted in the external line of ~�. We now
consider all insertion of the first external auxiliary field
and again find that only one diagram remains. The remain-
ing diagram is as follows:

Notice here that if there is at least one external auxiliary
field inserted in the internal chiral loop, we can move it
along the chiral loop and obtain a vanishing result.
Performing partial integration, we find the above remain-
ing diagram is equivalent to
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up to terms with covariant derivatives acting on external
superfields.

In the same way, when we insert n external auxiliary
fields in the diagram (59), considering all insertions, all
diagrams cancel each other except for one diagram:

In order to obtain an amplitude from this diagram, we have
to perform all integration over Grassmann coordinates of
remaining vertices as well as internal momenta. In doing
so, we neglect terms with covariant derivatives acting on
external superfields because such terms have no divergence
and we are only interested in divergent terms. Particularly,
we neglect terms with D�, �D� acting on external auxiliary
fields. Therefore, in order to study divergent terms, we can
rewrite (61) as

where � means both sides are equivalent up to terms with
covariant derivatives acting on external superfields. In the
right-hand side, n external auxiliary fields are just multi-
plied by the diagram (59) which has no external auxiliary
fields.

In general, any one-particle irreducible diagram with n

external auxiliary fields and one pair of external ~�, ~�y,
can be obtained by insertion of n external auxiliary fields in
a diagram of the form

If we choose one diagram of the above form and consider
all insertions of n external auxiliary fields in it, the result is
equivalent to multiplication of the chosen diagram by
V1V2 � � �Vn, neglecting terms with covariant derivatives
acting on external auxiliary fields. Namely,

We now find that all divergences included in the left-hand
side of (63) can be eliminated by a renormalization of the
wave function of ~�. Indeed, Eq. (63) implies that all
logarithmic divergences included in diagrams of the form

are canceled by a counter term of the form

~� jye�V ~�j ¼ X1
n¼0

1

n!
~�jyð�VÞn ~�j;

namely by a renormalization of the wave function of the
dynamical field.
Note that Eq. (63) is satisfied for any internal diagram in

the shaded circle. Therefore, it is also satisfied at each
order of 1=N. Then divergences are eliminated at each
order of 1=N by the renormalization.

D. Beta function of the coupling constant

We have shown that all divergences in the
1=N-expansion can be eliminated by the renormalizations
of the coupling constant and the wave function of the
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twisted chiral superfield. In this subsection, we evaluate the
beta function of the coupling constant gR.

In Sec. II, we defined gR by

�

g2R
:¼ 1

g2
� �

2	2
þ �

2	2
; (64)

so that the linear divergence from a one-loop diagram of
the dynamical field (55) is eliminated. In the above defini-
tion, � is a renormalization scale and � is a momentum
cutoff. In subsection VB, we showed that there is no more
divergence from diagrams of the form

Therefore we need no more renormalization of the cou-
pling constant. Then we can treat gR defined by (64) as a
renormalized coupling constant correct in all orders of
1=N-expansion.

We now evaluate the beta function of gR. Differentiating
both sides of (64) by �, we obtain

1

g2R
� 2�

g3R
� dgR
d�

¼ 1

2	2
;

where we should note that g and � are independent of �

but gR depends on�. If we define �ðgRÞ :¼ �dgR
d� , we find

�ðgRÞ ¼ 1

2
gR � 1

4	2
g3R:

This beta function is shown in Fig. 2. This vanishes when

gR ¼ 0,
ffiffiffi
2

p
	. We find that this theory has one ultraviolet

fixed point at gR ¼ ffiffiffi
2

p
	.

VI. CONCLUSIONS

In this paper, we have studied a three dimensional
CPN�1 model in the method of 1=N-expansion. This
model has N ¼ 2 supersymmetry, Uð1Þ gauge symmetry,
and global SUðNÞ symmetry. For the 1=N-expansion, it is
useful to use the Lagrangian with the auxiliary field V.
Using the super Feynman rules, we have derived the super-
propagator of the auxiliary field induced by quantum ef-
fects of the dynamical field. Then we have proved that all
divergences in amplitudes can be eliminated in each order
of 1=N by renormalizations of the coupling constant and
the wave function of the dynamical field. We have also
shown that there is no contribution to the beta function
except in the leading order of 1=N. This model has been
shown to have a nontrivial ultraviolet fixed point. These
arguments are valid in all orders of 1=N-expansion.
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APPENDIX A: N ¼ 2 SUSY IN THREE
DIMENSIONS

The smallest supersymmetry algebra in three dimen-
sions has one Majorana (real) spinor of supercharges. It
has two real degrees of freedom. SoN ¼ 2 supersymme-
try in three dimensions has one Dirac (complex) spinor of
supercharges. It has four real degrees of freedom.
Therefore the dimensional reduction of the N ¼ 1 super-
symmetry in four dimensions gives the N ¼ 2 supersym-
metry in three dimensions.
The superspace has coordinates x�, ��, and ��� where

� ¼ 0; 1; 2 and � ¼ 1; 2. Here �� is a two-component
Dirac spinor and ��� is the complex conjugate of ��.

1. Gamma matrices and Dirac spinor

We use the metric ��� ¼ diagðþ;�;�Þ and gamma

matrices

�0 ¼ 0 �i
i 0

� �
; �1 ¼ 0 i

i 0

� �
;

�2 ¼ i 0
0 �i

� �
:

These matrices satisfy the anticommutation relations
f��; ��g ¼ 2��� and the identity

���� ¼ ��� þ i
�����;

where 
��� is a totally antisymmetric tensor so that 
012 ¼
þ1.
Spinors with upper and lower indices are related through

the antisymmetric tensor C:
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FIG. 2. Beta function of the coupling constant.
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C�� ¼ C�� ¼ 0 �i
i 0

� �
��

; C��C�� ¼ ��
�

c � ¼ C��c
�; c � ¼ C��c �:

We use the following summation convention:

c� :¼ c ��
� ¼ ���c � ¼ ��c

� ¼ �c

�c �� :¼ �c � ��� ¼ � ��� �c � ¼ ���
�c � ¼ �� �c

�c� :¼ �c ��
� ¼ ��� �c � ¼ ��

�c � ¼ � �c :

The gamma matrices have the following index structure:

ð��Þ��
�c��� :¼ �c �ð��Þ���

�:

Since this �� satisfies ð��Þ�� :¼ C��C
��ð��Þ�� ¼

ð��Þ��, we find the identity �c��� ¼ ���� �c .
We also find the following identities:

ðc�Þy ¼ ðC��c
���Þy ¼ C�� ��� �c � ¼ �� �c ¼ �c ��

ð �c�Þy ¼ ðC��
�c ���Þy ¼ C�� ���c � ¼ ��c ¼ c ��

ð �c���Þy ¼ ����c :

Notice here that �c � :¼ C��
�c � � C��c

� because

C�
�� ¼ �C�� ¼ C��.

2. Supersymmetry algebra and covariant derivatives

A supersymmetry transformation in the superspace

x� ! x0 ¼ x� þ i

2
ð �
���� ����
Þ;

�� ! �0� ¼ �� þ 
�; ��� ! ��0� ¼ ��þ �
�

is generated by the differential operators

Q� :¼ i

�
@

@��
þ i

2
ð@6 ��Þ�

�
;

�Q� :¼ �i

�
@

@ ���
þ i

2
ð@6 �Þ�

�
;

namely

eið
Q� �
 �QÞFðx; �; ��Þ ¼ Fðx0; �0; ��0Þ:
Supercharges Q� and �Q� satisfy the following anticom-
mutation relations:

fQ�; �Q�g ¼ �i@�� fQ�;Q�g ¼ f �Q�; �Q�g ¼ 0:

We define the covariant derivatives:

D� :¼ � @

@��
þ i

2
ð ��@6 Þ�; �D� :¼ � @

@ ���
þ i

2
ð�@6 Þ�;

and we find

fD�; �D�g ¼ i@�� fD�;D�g ¼ f �D�; �D�g ¼ 0:

With these definitions, supercharges Q�, �Q� and covariant
derivatives D�, �D� anticommute.

3. Chiral and vector superfield

Since �D� and Q�, �Q� anticommute, the chirality con-
straint

�D��ðx; �; ��Þ ¼ 0

is consistent with supersymmetry transformations. The
expressions for D� and �D� in terms of y� :¼ x� þ
i
2
�����, ��, ��� are

D� ¼ � @

@��
þ ið ����Þ� @

@y�
; �D� ¼ � @

@ ���
:

We can therefore expand � in powers of �:

�ðx; �; ��Þ ¼ �ðyÞ þ �c ðyÞ þ 1

2
�2FðyÞ

¼ �ðxÞ þ �c ðxÞ þ 1

2
�2FðxÞ þ i

2
ð ��@6 �Þ�ðxÞ

� i

4
�2½ ��@6 c ðxÞ� � 1

16
�2 ��2@2�ðxÞ:

The superfield �y satisfies the constraint D��
y ¼ 0.

Note that there are no chiral spinors in three dimensions.
Although we call � chiral superfield, c is a Dirac spinor.
A vector superfield V satisfies the constraint

Vy ¼ V

and has the expansion

Vðx; �; ��Þ ¼ CðxÞ þ ½��ðxÞ þ �� ��ðxÞ� þ 1

2
½�2fðxÞ

þ ��2f�ðxÞ� þ ��v6 ðxÞ�þMðxÞ ���

þ 1

2
�2 ��½�ðxÞ � i@6 c � þ 1

2
��2�½ ��ðxÞ þ i@6 �c �

þ 1

4
�2 ��2

�
DðxÞ þ 1

4
@2CðxÞ

�
;

where C, v�, M and D are real.

APPENDIX B: CALCULATION OF THE
EFFECTIVE POTENTIAL

In propsition B-1, we show the last equality in (9).

1. Proposition B-1

� i
Z � d3k

ð2	Þ3 lnð�k2 þM2
c þD2

cÞ

þ i
Z � d3k

ð2	Þ3 tr lnðk6 �McÞ

¼ � 1

6	
jM2

c þDcjð3=2Þ þ 1

6	
jMcj3 þ �

2	2
Dc: (B1)

In order to show this, we first note
R
� d3k

ð2	Þ3 tr lnðk6 �
McÞ ¼

R
� d3k

ð2	Þ3 lnð�k2 þM2
cÞ.
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Then we perform the Wick rotation in the left-hand side
(LHS):

ðLHSÞ ¼
Z � d3kE

ð2	Þ3 lnðk2E þM2
c þD2

cÞ

�
Z � d3kE

ð2	Þ3 lnðk2E þM2
cÞ:

We now combine two integrals as follows:

Z M2
cþDc

M2
c

dm2
Z � d3kE

ð2	Þ3
1

k2E þm2

¼ �

2	2
Dc � 1

2	2

Z M2
cþDc

M2
c

dm2
Z �

0
dK

m2

K2 þm2
:

(B2)

Notice that the first term is linearly divergent while the
second term has no divergence. Therefore we take the limit
� ! 1 at the second term. We find

ðLHSÞ ¼ �

2	2
Dc � 1

4	

Z M2
cþDc

M2
c

dm2jmj ¼ ðRHSÞ:

Alternatively, we can interpret the left-hand side of (B1)
as a vacuum zero-point energy. Namely, if we take the limit
� ! 1 and perform the contour integral over k0, then we
obtain

ðLHSÞ ¼
Z d2k

ð2	Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

c þDc

q
�

Z d2k

ð2	Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

c

q
:

The first term in the right-hand side (RHS) is a zero-point
energy of �, and the second is that of c . These include a
linear divergence proportional to D.

APPENDIX C: FIERZ TRANSFORMATIONS

In this appendix, we show some useful formulae for
spinor calculations. We can first show

ð�
Þð��Þ ¼ � 1

2
�2ð
�Þ (C1)

through a straightforward calculation. Substituting �� for
both 
 and �, we find

ð� ��Þ2 ¼ � 1

2
�2 ��2:

On the other hand, if we substitute �� �� for 
 and @�c for

� in (C1), we obtain the equation

ð��� ��Þð�@�c Þ ¼ � 1

2
�2C��ð�� ��Þ�ð@�c Þ�

¼ 1

2
�2ð ��@6 c Þ:

Substituting �� �� for 
 and �� �� for � in Eq. (C1), we can
show ð��� ��Þð��� ��Þ ¼ 1

2�
2ð ������ ��Þ. Using the equation

���� ¼ ��� þ i
����� and the fact that 
��� ¼ �
���,

we find

ð��� ��Þð��� ��Þ ¼ 1

2
�2 ��2���:

At last, if we substitute ði@6 þmÞ �� for both 
 and � in (C1),
we obtain

½�ði@6 þmÞ ���2k ¼ � 1

2
C��½ði@6 þmÞ ����½ði@6 þmÞ ����

¼ 1

2
��2ð�@2 �m2Þ:

We use this equation in Sec. III B to construct the super-
propagator of the dynamical field.
In the following, we will show the Fierz transformation

for general two-by-two complex matrices. In general, any
two-by-two complex matrix � can be expanded by the
following four matrices:

�� :¼ ��ð� ¼ 0; 1; 2Þ; �3 :¼ i1;

such that � ¼ cA�
A where the capital index A runs over 0,

1, 2, 3. Note the relation

tr ½�A�B� ¼ 2�AB;

where �AB :¼ diagðþ ���Þ and �A :¼ �AB�
B. Then we

find cA ¼ 1
2 tr½�A�� and therefore

� ¼ 1

2
tr½�A���A: (C2)

If we take an another two-by-two matrix �0, the product of
the matrix elements �ab�

0
cd can be treated as the

ða; bÞ-element of a two-by-two matrix fixing the indices
b, c. Then we use the above relation (C2):

�ab�
0
cd ¼

1

2

X
e;f

½ð�AÞef�fb�
0
ce�ð�AÞad

¼ 1

4
trð�B�

0�A�Þð�BÞcbð�AÞad:
In the last equality, we again used the relation (C2).

APPENDIX D: SUPERPROPAGATOR WITH
TWISTED COVARIANT DERIVATIVES

In this appendix, we will explicitly show the calculation
to rewrite the superpropagator of the dynamical field (10)
into (16) which is written in terms of the twisted covariant
derivatives. We first show a proposition.

1. Proposition D-1

H2ð�� �0Þ2 ¼ �4 exp

�
� 1

2
½ ��ði@6 �mÞð�� �0Þ�

�
:

(D1)

The proof is straightforward. Noting that H� ¼
� @

@� þ 1
2 ½ ��ði@6 �mÞ��, we see
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H2ð�� �0Þ2 ¼
�
� @

@��
@

@��
þ ½ ��ði@6 �mÞ�� @

@��

þ 1

4
��2ð@2 þm2Þ

�
ð�� �0Þ2;

where we should note that C��
@

@��
¼ � @

@��
. We can easily

show

� @

@��
@

@��
ð�� �0Þ2 ¼ �4;

½ ��ði@6 �mÞ�� @

@��
ð�� �0Þ2 ¼ 2 ��ði@6 �mÞð�� �0Þ;

and then we find

H2ð�� �0Þ2 ¼ �4

�
1� 1

2
��ði@6 �mÞð�� �0Þ

� 1

16
��2ð�� �0Þ2ð@2 þm2Þ

�
:

Noting that ½� 1
2
��ði@6 �mÞð�� �0Þ�2 ¼ � 1

8
��2ð�� �0Þ2 �

ð@2 þm2Þ, we can prove the statement.
Using this, we can show Eq. (17) in page (11).

2. Proposition D-2

1

4
�E2H2�ð4Þð�� �0Þ ¼ exp

�
� ��0ði@6 �mÞ�

þ 1

2
��ði@6 �mÞ�

þ 1

2
��0ði@6 �mÞ�0

�
:

In the above equation, we define �ð4Þð�� �0Þ ¼ 1
4 �ð�� �0Þ2ð ��� ��0Þ2. The proof is again straightforward but

needs a large amount of calculation. We first use
proposition D-1 and obtain

�E 2H2�ð4Þð�� �0Þ ¼ � �E2

�
exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

�

� ð ��� ��0Þ2
�
:

Since we can expand �E2 as

�H 2 ¼ � @

@ ���
@

@ ���
þ ½�ði@6 þmÞ�� @

@ ���
þ 1

4
�2ð@2 þm2Þ;

we find

�E2H2�ð4Þð�� �0Þ ¼ � exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

�
�E2ð ��� ��0Þ þ

�
@

@ ���
@

@ ���
exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

��
ð ��� ��0Þ2

þ 2

�
@

@ ���
exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

��
@

@ ���
ð ��� ��0Þ2

� ½ ��ði@6 þmÞ��
�
@

@ ���
exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

��
ð ��� ��0Þ2; (D2)

where we use the Leibniz rule for the derivative with respect to ��. We can easily show

�E 2ð ��� ��0Þ2 ¼ �4� 2ð ��� ��0Þði@6 �mÞ�� 1

4
�2ð ��� ��0Þ2ð@2 þm2Þ @

@ ���
@

@ ���
exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

�

¼ � 1

4
ð�� �0Þ2ð@2 þm2Þ exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

�
@

@ ���
exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

�

¼ � 1

2
½ð�� �0Þði@6 þmÞ�� exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

�
:

Therefore the Eq. (D2) becomes

�E2H2�ð4Þð�� �0Þ ¼ exp

�
� 1

2
��ði@6 �mÞð�� �0Þ

�

� 4
�
1þ 1

2
ð ��� ��0Þði@6 �mÞð2�� �0Þ

� 1

16
ð ��� ��0Þ2ð2�� �0Þ2ð@2 þm2Þ

�
:

We can rewrite this equation as

�E2H2�ð4Þð���0Þ ¼ 4exp

�
�1

2
��ði@6 �mÞð���0Þ

�

� exp

�
þ1

2
ð ��� ��0Þði@6 �mÞð2���0Þ

�
:

Then, at last, we can prove the statement.

APPENDIX E: USEFUL FORMULAE WITH
TWISTED COVARIANT DERIVATIVES

In this appendix, we will show some useful formulae for
loop calculations involving twisted covariant derivatives,
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which are shown only by using the anticommutation rela-
tion of them.

1. Proposition E-1

½ �E2; H�� ¼ 2½ �Eði@6 �mÞ��;
½ �E2; H�� ¼ �2½ði@6 þmÞ �E��
½ �H2; E�� ¼ 2½ �Hði@6 þmÞ��;
½ �H2; E�� ¼ �2½ði@6 �mÞ �H��:

We can easily find the anticommutation relations
fH�; �E�g ¼ ði@6 þmÞ�� and fE�; �H�g ¼ ði@6 �mÞ��.

Using these, this proposition can be shown through a direct
calculation.

By using this proposition, we can show the following
important formula.

2. Proposition E-2

½ �E2; H2� ¼ 4ð�@2 �m2Þ � 4Hði@6 þmÞ �E
½E2; �H2� ¼ 4ð�@2 �m2Þ � 4 �Hði@6 þmÞE: (E1)

We first show the upper equation. The second termHði@6 þ
mÞ �E in the right-hand side meansH�ði@6 þmÞ��H

�. When

we rewrite the left-hand side asH�½ �E2; H�� þ ½ �E2; H��H�

and use the proposition E-1, the left-hand side becomes

� 2Hði@6 þmÞ �Eþ 2 �Eði@6 �mÞH
¼ �4Hði@6 þmÞ �Eþ 2ði@6 �mÞ�� � f �E�;H

�g:
Then using the anticommutation relations of �E�, H

�, we
can prove the statement. The lower equation of (E1) is
proved in the same way.

APPENDIX F: Iðp2Þ�1 ¼ arctan

ffiffiffiffiffiffi
�p2

4m2

q
ffiffiffiffiffiffiffi
�p2

p
We here explicitly show the equation

Iðp2Þ�1 ¼ arctan
ffiffiffiffiffiffiffi
�p2

4m2

q
ffiffiffiffiffiffiffiffiffiffi�p2

p ;

where the definition of Iðp2Þ�1 is

Iðp2Þ�1 :¼ 4	

i

Z d3q

ð2	Þ3
1

ðpþ qÞ2 �m2 þ i


� 1

q2 �m2 þ i

:

We first introduce a Feynman parameter:

Iðp2Þ�1 ¼ 4	

i

Z 1

0
dx

Z d3k

ð2	Þ3

� 1

½ðk� xpÞ2 ��ðp2; xÞ þ i
�2 ;

where �ðp2; xÞ :¼ �xð1� xÞp2 þm2. Then we shift the
integration variable k as k ! kþ xp and perform theWick
rotation:

Iðp2Þ�1 ¼ 2

	

Z 1

0
dx

Z 1

0
dK

K2

½K2 þ �ðp2; xÞ�2 :

We can easily perform this integral by changing the inte-

gration variable as K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp2; xÞp

tan�. The result is

Iðp2Þ�1 ¼ 2

	

Z 1

0
dx

	

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðp2; xÞp ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
� p2

4m2

q
ffiffiffiffiffiffiffiffiffiffi�p2

p :

APPENDIX G: D ALGEBRA

We here study the algebra of supercovariant derivatives
D�, �D� especially in momentum space. Recall that we can
obtain D�, �D� from twisted covariant derivatives E�, �E�,
H�, �H� imposing m ¼ 0. Therefore, from proposition E-1
and E-2, we find in momentum space that

½ �D2; D�� ¼ �2ðp6 �DÞ�; ½ �D2; D�� ¼ 2ð �Dp6 Þ�;
and

½ �D2; D2� ¼ 4p2 � 4Dðp6 Þ �D: (G1)

Moreover, we can show the following proposition.

1. Proposition G-1

�D2D2 � 2 �Dp6 D ¼ D �D2D;

D2 �D2 � 2Dp6 �D ¼ D �D2D;
(G2)

where D �D2D :¼ D�
�D2D�.

The proof is straightforward. By using the anticommu-
tation relation of D� and �D�, we can rewrite �D2D2 as
D �D2Dþ 2 �Dp6 D Therefore the left equation in (G2) is
proved. The right equation can be shown in the similar
way.
We now define the following projection operators:

P1 :¼ D2 �D2

4p2
; P2 :¼

�D2D2

4p2
: (G3)

Suppose � is an arbitrary chiral superfield. Then we can
show P1� ¼ 0 and

P2� ¼
�
P1 þ ½ �D2; D2�

4p2

�
� ¼ �:

In the last equality, we use Eq. (G1). In the same way, we
can show that P1�

y ¼ �y and P2�
y ¼ 0 for arbitrary

antichiral superfield �y. Therefore, P1 and P2 are projec-
tion operators to antichiral and chiral superfield,
respectively.
In addition to (G3), we can define the following four

Lorentz invariant operators from D� and �D�:
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Pþ :¼ � iD2

2
ffiffiffiffiffiffiffiffiffiffi�p2

p ; P� :¼ � i �D2

2
ffiffiffiffiffiffiffiffiffiffi�p2

p ;

PT :¼ �D �D2D

2p2
; PD :¼ � i �DDffiffiffiffiffiffiffiffiffiffi�p2

p :

Since D�D
2 ¼ �D�

�D2 ¼ 0, any other differential operator
composed of D�, �D� can be written as a linear combina-
tion of these six operators. Note thatDp6 �D can be written as
a linear combination of P2 and PT using proposition G-1.

Moreover, we can show the following useful formula.

2. Proposition G-2

P1 þ P2 þ PT ¼ 1:

The proof is straightforward. Recalling the definition of
projection operators, we can show that

P1 þ P2 þ PT ¼ 1

4p2
ðD2 �D2 þ �D2D2 � 2D �D2DÞ

¼ 1

2p2
ðDp6 �Dþ �Dp6 DÞ:

In the last equality, we use proposition G-1. We moreover
rewrite this as

P1 þ P2 þ PT ¼ 1

2p2
p6 �

�fD�; �D�g ¼ 1

2p2
trðp6 2Þ ¼ 1:

Then the statement has been proved.
The multiplication rules of these projection operators are

indicated in Table I. The table is, for the most part, the
same as that in [10,12]. Here we have, however, a new
operator PD. Below, we will show the multiplication prop-
erty of it.

We first note that since

PD ¼ � i �DDffiffiffiffiffiffiffiffiffiffi�p2
p ¼ � iD �Dffiffiffiffiffiffiffiffiffiffi�p2

p ;

we obtain a vanishing result if we multiply PD by P1, P2,
Pþ, or P�. Next we will show that P2

D ¼ PT . By using the
Fierz identity, we see

��
��

�
� ¼ 1

4
tr½�A�B��B�

��
A�

� ¼ 1

2
�A�

��A
�
�

¼ 1

2
ð���

���
�
� þ ��

��
�
�Þ:

We can therefore show that

P2
D ¼ 1

2p2
D�

�D� �D�D
���

��
�
� ¼ 1

2p2
D�

�D� �D�D
�

¼ � 1

2p2
D �D2D ¼ PT:

We will now show that PTPD ¼ PD. First note that

PTPD ¼ � i

2ð�p2Þ3=2 ðD
�D2DÞð �DDÞ

¼ i

ð�p2Þ3=2 ðDp6 �DÞð �DDÞ

¼ i

ð�p2Þ3=2 D�
�D� �D�D

�p6 �
��

�
�: (G4)

Then use the Fierz identity as follows:

p6 �
��

�
� ¼ 1

4
tr½�Ap6 �B��B�

��
A�

�:

Substituting this for (G4), we see that the factor
�D��B�

�
�D� vanishes if �B ¼ ��. The reason for this is

�D�� �D ¼ 0. Nonzero contribution, therefore, occurs if and
only if �B ¼ i1, namely,

PTPD ¼ i

4ð�p2Þ3=2 D�
�D� �D�D

� tr½p6 �����
��

��
�

¼ i

ð�p2Þ3=2 ð
�Dp6 2DÞ ¼ PD:

In the same way, we can show the equation PDPT ¼ PD:

APPENDIX H: PROPAGATORS OF AUXILIARY
COMPONENT FIELDS

We here derive the expressions (41) and (42) from the
superpropagator of the auxiliary field

hVð�p; �0; ��0ÞVðp; �; ��Þi0 ¼ 4	i

N
Iðp2Þ � r�1

V �ð4Þð�� �0Þ;
(H1)

where

r�1
V ¼ 1

p2 � 4m2
�D �D2D� 4mD �D

p2

þ �

2p4
ðD2 �D2 þ �D2D2Þ: (H2)

We will first expand the left-hand side of (H1) in compo-
nents. Choosing the Wess-Zumino gauge, the auxiliary
field V can be written as

V ¼ ��v6 �þM ���þ 1

2
��2��þ 1

2
�2 �� ��þ 1

4
�2 ��2D:

Then we see that the propagators of M and v� can be
obtained by taking terms proportional to ��0�0 ��� in (H1),
namely,

hVð�p; �0; ��0ÞVðp; �; ��Þi0jOð ��0�0 ���Þ
¼ h ��0½v6 ð�pÞ þMð�pÞ��0 ��½v6 ðpÞ þMðpÞ��i0: (H3)
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In the right-hand side of (H1), we can show that

D2 �D2�ð4Þð�� �0ÞjOð ��0�0 ���Þ ¼ �D2D2�ð4Þð�� �0ÞjOð ��0�0 ���Þ
¼ ð ��p6 �Þð ��0p6 �0Þ; (H4)

Dðp6 þ 2mÞ �D�ð4Þð�� �0ÞjOð ��0�0 ���Þ
¼ p2ð��0Þð �� ��0Þ þmð ��p6 ��0Þð��0Þ þmð�p6 �0Þð �� ��0Þ:

(H5)

By using the Fierz identity, we obtain

ð��0Þð �� ��0Þ ¼ � 1

2
ð��� ��Þð ��0���

0Þ � 1

2
ð� ��Þð ��0�0Þ;

ð ��p6 ��0Þð��0Þ ¼ � i

2

���p

�ð �����Þð�0�� ��0Þ

� 1

2
ð ��p6 �Þð�0 ��0Þ � 1

2
ð ���Þð�0p6 ��0Þ;

ð�p6 �0Þð �� ��0Þ ¼ � i

2

���p

�ð �����Þð�0�� ��0Þ

þ 1

2
ð ��p6 �Þð�0 ��0Þ þ 1

2
ð ���Þð�0p6 ��0Þ:

Then Eq. (H5) becomes

Dðp6 þ 2mÞ �D�ð4Þð�� �0ÞjOð ��0�0 ���Þ

¼ p2

2
½ð �����Þð ��0���

0Þ � ð ���Þð ��0�0Þ�
� im
���p

�ð �����Þð ��0���0Þ: (H6)

From (H2), (H4), and (H6) and proposition G-1, we can
evaluate terms proportional to ��0�0 ��� in (H1) as follows:

hVð�p; �0; ��0ÞVðp; �; ��Þi0jOð ��0�0 ���Þ

¼ ð ��0���0Þð �����Þ � 4	i

N
Iðp2Þ

�
�

1

p2 � 4m2

�
���� þ

p�p�

p2

�
1� �

p2
ðp2 � 4m2Þ

�

þ 2mi

p2

���p

�

��
þ ð ��0�0Þð ���Þ � 4	i

N
Iðp2Þ 1

p2 � 4m2
:

Comparing this to (H3), we can show that

hv�ð�pÞv�ðpÞi0 ¼ 4	i

N
Iðp2Þ

�
1

p2 � 4m2

�
���� þ

p�p�

p2

�
�
1� �

p2
ðp2 � 4m2Þ

�

þ 2mi

p2

���p

�

��
;

hMð�pÞMðpÞi0 ¼ 4	i

N
Iðp2Þ 1

p2 � 4m2
;

hv�ð�pÞMðpÞi0 ¼ 0:

These coincide with the results in [7].
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