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Fracture of CFRP under Hyper-Velocity Impact Using Laser-Accelerated Flyer

by

Yoshiaki Yamaucu: ¥, Motohiro Nakano *, Norimasa Ozakt ™™ and Kazuo A. Tanaka ™"

We performed hyper-velocity impact tests that laser-accelerated aluminum flyer collided to carbon fiber rein-
forced plastics (CFRP) target. A short-pulsed intense laser beam can accelerate a small flyer as fast as LEO (low earth
orbit) satellite velocity. We succeeded in observing the deformation and fracture behavior of the CFRP target with a
high-speed framing camera. After the impact experiments, we investigated damages of the CFRP target with an opti-
cal microscope and a scanning electron microscope (SEM). As these results, the hyper-velocity impact fracture
mechanism of CFRP was proposed as follows: (1) Under the impact back surface, spallations are caused by reflected
tensile waves and the similar surfaces of the crack-opening mode I fracture are created. (2) The spalling cracks prop-
agate along the direction of carbon fibers and produce the fracture surfaces of mode I or mixed-mode I/II. (3) At
the center of the spalling layer, carbon fibers are kinked and broken by tension. For the lower laser energy, the above
damages could not extend to carbon fiber breakage. On the basis of the fracture mechanism, we assembled a model
for numerical analyses. Using the LS-DYNA3D, we conducted numerical simulation of the hyper-velocity impact
tests. Displacement and velocity at back surface of the CFRP target calculated in the numerical analyses agreed com-
parably well with the results of the experiments.

Key words : Fracture, Shock waves, Hyper-velocity impact, CFRP, Laser, Orbital debris, Spallation,
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Fig. 1. Schematic view of laser acceleration.
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Fig. 2. Relation belween laser energy and flyer velocity.
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Fig. 3. Experimental setup for hyper-velocity impact
test.

Table 1. Mechanical properties of CFRP target.
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P Ey Es Modulus Ratio
[kg/m?®] [GPa] | [GPa] G, [GPa] Vi
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Fig. 4. Flaming images of hyper-vclocity impact on
CFRP target. (Laser energy 26.4], Flyer velocity
8.3km/s)
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Fig. 5. Images of damages at back surface of CFRP
target after experiment. ((a) Flyer velocity 7.7km/s,
(b) Flyer velocity 8.3km/s)
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Fig. 6. SEM images of delamination surface on CFRP
target. (Laser energy 26.4], Flyer velocity 8.3km/s)

Flyer impact
Fiber Direction :

Delamination

Fiber Breakage

Fig. 7. Section view of CFRP target with optical microscope.
(Laser energy 27.6], Flyer velocity 8.5km/s)
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Fig. 8. Schematic diagram of fracture mechanism under hyper velocity impact loading.
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