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   § 0. Introduction. 

   Minimal surfaces are exactly the critical points of area functional for all 
variations which keep their boundary values fixed. But they do not necessarily 

provide relative minima of area. When a minimal surface corresponds to a 
relative minimum of area for all such variations, we say it is stable, otherwise 
unstable. 

   In this paper we shall give sufficient conditions for the stability and the 
instability of minimal surfaces in the Euclidean space R3. 
   Let D be a plane domain with compact closure D, whose boundary aD is a 
finite union of piecewise C~ curves. Let : D -R3 be a regular (i. e, immersed) 
minimal surface. And denote by C : fl-S= {(x1, x2, x3)ER3 ; (x1)2+(x2)2+(x3)2 
=1} the Gauss map of ~E. Barbosa and do Carmo [1] gave a sufficient condition 

for to be stable : 

   THEOREM (Barbosa and do Carmo [1]). If the area of CA(D) (as a point set 
on S) is smaller than 2~r, then is stable. 
   This estimate is sharp in the following sense : There are examples of un-
stable minimal surfaces whose Gaussian image has area larger than 22r and as 
close to 22r as one pleases. 

   Now what can we say about the stability of minimal surfaces satisfying the 
condition that the area of CA(D) is exactly 22r? Our purpose in this paper is to 
answer this question. 
   Except the case that ( is a branched covering of a hemisphere H of S (i, e. 
CA(D) coincides with H and(aD)=aH), minimal surface is always stable 

(Theorem 1 and Theorem 2). 
   In the case excepted above, let f and g be the factors of the Weierstrass 

representation of (cf. § 3). By a suitable rotation of the surface in R3, we may 
assume that C (D) coincides with the lower hemisphere of S : H- = {(x1, x2, x3) 
ES ; x3<0}. In this situation, g is a holomorphic function of D onto Do= 

{w e C ; I w <1}. Here we define a function F in Do as follows :



524 M, horso 

                   F(w)= g'(:) 
                                   {QED; g()-w} f (O 

Then F is seen to be holomorphic in Do and we can prove the following fact : 

   MAIN THEOREM. Let : D-~R3 be a regular minimal surface and let C : 
D-~S be the Gauss map of Z. Suppose that C53(D) coincides with the lower hemi-
sphere H- o f S and that C3(aD) =aH-. I f 

                      Re F"(0) ~ 0, 

then is unstable. 
   Therefore every minimal surface satisfying the assumption of the above 
theorem is not physically realized as soap film. It must be interesting that the 
instability of is decided only by the values of derivatives of at a finite 
number of points. This result is proved by calculating the third variation of 
area functional. 

   § 1. Notations and terminology. 

   A minimal surface in R3 is a C 2 mapping X from some domain D in the 

plane into R3 which is harmonic in D, extends continuously to the closure D, 
and satisfies _ ~ I in D (where ~_e+1/-1 r~ is the variable in 
the parameter domain). A branch point of is some point E D where _X71 
=0. Branch points are the only possible singularities of minimal surfaces. 

   In the following the parameter domain D is supposed to be a relatively 
compact domain whose boundary is a finite union of piecewise C°° curves. And 
we shall be concerned only with regular minimal surfaces which can be extended 
as minimal surfaces across aD, where "regular" means that the surface con-
sidered has no branch points on D. 

   If J : D -* R3 is of piecewise C1-class on D, then the area functional is 
defined as 

           A()= Dl~x~ I ded~= D~E~G-F ddb, 

where E=, F~=Ve .~, and G= J~. 
   We give here the rigorous definitions for the stability and the instability of 

minimal surfaces in terms of the Gauss map and real-valued functions with 
vanishing boundary values : 

                   C : D-} S the Gauss map of 

   Co'(D)= {u : DAR ; u is a piecewise C2 function with u ~aD=O} 

   For each smooth family v(s) E Co' (D) (~ runs in an interval containing zero 
and "smooth" means that v(E) is smooth with respect to r and the derivatives



                       Stability of minimal surfaces 525 

are contained in C' (D)) with v(0)=0 and [av(s)/as]E-o~0, we consider the 

normal variation of : +v(s)(3, where ( is identified with the unit normal 

vector field of ~E. 

   DEFINITION. (i) A minimal surface is said to be stable if for each smooth 

family v(s) E Co' (D) with v(0)=0 and [av(s)/as]~=o * 0, there exists some s> O 

such that 

                   A(i) < A(~E+v(s)3) 

holds for every s, I s I < so. 

   (ii) A minimal surface is said to be unstable if is not stable, that is, 
there exists some smooth family v(s) E Co' (D) with v(0)=0 and [av(s)/as]E=o ~ 0, 

such that for each so >0, 

                   A()>A(+v(s)3) 

holds for some s, s I < se. 

   The notations and symbols below will be used throughout this paper without 

particular mentions : 

   ~_e+~/' ~ (, , ER) : the complex variable in the respective parameter 
      domain ; 

   a=a2/a2-F a2/a~2 : the Laplacian on the parameter domain ; 

   aD : the boundary of D ; 
   D : the closure of D ; 

   Do : the unit open disk ; 

   ,S= {(x1, x2, x3) ER3 ; (x1)2+(x2)2--(x3)°=1} : the unit sphere in R3; 

   H : a (closed) hemisphere of S ; 

   H- _ {(x1, x2, x3) E S ; x 3 _< 0} : the lower (closed) hemisphere of S ; 

      D-~R3 : a regular minimal surface which can be extended as a m.nimal 

       surface across aD ; 

   Ed2+2Fddi+Gd,n2 : the first fundamental form of ; 
   Lde2+2Mdedri+Ndrj2 : the second fundamental form of ; 

   W = s/E G -F 2 : the area element of ;                    

: D -~ S : the Gauss map (sometimes identified with the 
      unit normal vector field) of ; 

   K : the Gaussian curvature of ; 

   Since our surface is minimal, it follows that 

                          E=G, F=0, 

and 

                      LAN=53 •(se+~~)=0. 

Theref ore
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                  W=VEG-F2=E=G 
and 

                   _ LN-M2 L2+M2 c0 . (1) K_ EG-F2 yV2 _ 

Moreover, K can have only isolated zeros unless the locus of is contained in 
a plane (Lemma 3 in § 3). 

N 

   REMARK 1. For each subdomain D of the parameter domain, we denote 
the image of D under C by ( (D)= {( (~) ; a D} . Although C is a complex 
analytic mapping of b, we regard ( W) as a mere subset of S, ignoring its 
number of sheets. 

    2. The variations of area and the eigenvalue problem associated with 

         area. 

   Let v(s) be a smooth family in Co'(D) with v(0)=0 and [av(s)/as]E=o=u~0. 

With the aid of the minimality of , the first and the second variations of area 

functional for a normal variation +v(s)( are given by the following formulae 

(cf. Beeson [2]) 

                   d A( +
v(~)~) =0                                d 

~ E=0 

           d2 
              d~2 A(~-F-v(E)C~) E_o= Du(-4u-}-2KWu)d~d~ . 

Therefore, as for the first and the second variations of area, it is sufficient to 

consider only variations formed as + s u C (~ e R, u E= C o' (D) and u ~ 0) which we 
shall call "variation u". Then 

(2) Ic1~(u)= d A(X+~uC) = d A(+v(s)() =0,                          (~ ~ E=0 d ~ E=0 

2 

         Ic2~(u)= d A(X+Eu( ) 
(3) dr2 E=0 

2 

              = d A( +v(s)C) = u(-du--2KWu)d d .                          d
E2 E=U D 

Moreover the third variation of area functional for variation u is given by 

3 (4) Ic3>(u)_ 3 A(X+ru) = u {L(u-u)+2Mueu~}dd~I                     d ~ E=o ~ W 

(cf. Nitsche [4, p. 93]). 
   When the locus of X does not lie in a plane, we consider an eigenvalue
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N problem related to the second variation above. Let D D be a subdomain of D 
such that aD is piecewise C°°. Then we pose the eigenvalue problem. 

N 

                       Du --2KW u =0 in D , 
(5) N 

                      u=0 on aD. 

N If we denote by A1(D) the least eigenvalue of the problem (5), then we see almost 
immediately from Beeson [2] the following 

   LEMMA 1. (i) I f D1 D2, then A1(D1)?A1(D2), where the equality holds i f 

and only i f D1=D2. 

   (ii) According as aD varies smoothly, ~1(D) varies continuously. 

N 

   (iii) A1(D) is equal to the minimum of the Rayleigh quotient 

                     D(-uDu)ddri 2 N              R(u)= a EC
o (D) , 

                    D(-KW)u2ded~ 

N and the equality "R(u)=~1(D)" holds i f and only i f u is a least eigenfunction (i. C. 

N the one associated with the least eigenvalue A1(D)). 
   (iv) Each least eigen f unction has the definite sign. But except them, every 

eigenfunction changes its sign. 

   (v) The eigenspace corresponding to the least eigenvalue is 1-dimensional. 
   Now set D=D in (5). By using the fact that A1(D) minimizes R(u) ((iii) of 
the above lemma), we can derive the relationship between the least eigenvalue 
of the problem (5) and the stability of the minimal surface : 

   LEMMA 2. (i) I f 21(D)>2, then I2(u)>O ~' for all the variations u. There-

fore is stable. 
  (ii) I f ~1(D)=2, then I ~2'(u)>_0 for all such variations u, and I2(u)=O holds 

i f and only i f u is a least eigen f unction o f (5). 

   (iii) I f A1(D) <2, then there exists some u such that I2(u)<O. Therefore 
is unstable. 
   PRooF. Since Al (=A1(D)) minimizes R(u), 

                          D(-u~u)deda~ 

                           D(-KW)u2d~dr~ 

for every variation u. By using the fact that -KW is non-negative (~ 1), we see 

               ~1 
D(-KW)u2dEd~_ Dedrl. 

Therefore
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                 I 2(u)= u(-au+2KW u)ded r 

v 

                       >_(A1-2) 
D(-KW)u2dedr. 

Hence, the assumption Al>2 implies 112j(u)>0 for all u. Moreover, if 21=2, 

I ~2'(u)>_0 for all u, and I ~2'(u)=0 if and only if Al==R(u) which is just the case 

in which u is a least eigenfunction by virtue of Lemma 1, (iii). Thus we have 

proved (i) and (ii). 
   Suppose that Al < 2 and that u is a least eigenf unction. Then 

                            (-uau)ddr 
                      2>A1= D                                                                                                                      -

, 

                           D(-KW)u2d~dr 

Therefore 

                  I~2'(u)= 
Du(-Du+2KWu)dedr 

                      =(21-2) 
D(-KW)u2dedr 

                          <0. Q.E.D. 

   REMARK 2. In the case (ii) of Lemma 2, we cannot so easily arrive at any 
conclusion about the stability of the minimal surface . Calculating the third 

variation is one of the ways to obtain some conclusion. In fact, if, for some 
u, I 1(u)=0 and I {3'(u)0, then is clearly unstable. 

   § 3. The Weierstrass representation and the second fundamental form. 

   In this section we recall the Weierstrass representation of minimal surfaces 

and derive a certain important relation between the factors of the representation 

and the second fundamental form of the surface. The facts mentioned in this 

section will be used effectively in § 6 to investigate the stability of a certain 

kind of minimal surfaces. 

   Since =(1, 2 3) : D-- R3 is a minimal surface, each of the functions 

                                 J 1 

(6) = -1/-1 W , .=1, 2, 3,              ~~ a~ r 

is holomorphic in D. Let us introduce two functions with Enneper-Weierstrass 

(7, f- 1~ -1 2, g= 
                                             1~ ~ _1 2
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Then f is holomorphic and g is meromorphic in D. Moreover, for any point 
C D which is not a pole of g, f ()=O if and only if is a branch point of lt. 
Since is an isothermal parameter of , 

From this fact, it follows that 

                                     ~-1 1-F-g2), g=                 ~ 1-g2), 2 - f( (8) i=f(                                     fg• 

Therefore if ~o E D, 

                1(~)` Re-f (1-g2)d~ 1(b~)                                    ~0 2 

                2 = Re _ 1f (1-E-g2)d 2() •               (~) 
~0 2 ~ ~o

3(~) Re 
~o f gd 

This representation is called the Weierstrass representation of the minimal surface 
3. Let us call f and g the first and the second factor of the Weierstrass represen-
tation of respectively (or, for short, the first W-factor and the second W-factor 
of respectively). And sometimes we call f and g the factors of the Weier-
strass representation (or the W-f actors) of in the lump. 
   From the equations (6) and (8) we derive 

(9) W=~ 2= 2=1 2- ~fI(1+Igl2) 2. 

2 

   Now, by some calculations, we observe 

(10) 2 Re g- -2 Im g I g 2-1 

. 

      g12+1' J2+1 ' I g12+1 

Consequently g coincides with the composition P C3 of the Gauss map ( with 
the stereographic projection P from the point (0, 0, 1) onto the (x1, x2)-plane. 
   The following proposition will give some information about the geometrical 
meaning of the holomorphic function f. 

   PROPOSITION 1. Let ; D -+R3 be a minimal surface and let f, g be the 
W-f actors o f . Denote the second fundamental form o f X by a= L de2+2Mdedj 
+Nd r12. Then 

(11) L-V-1 M=-f g' 

                 a=-(1/2)f g~d~2-(1/2)f g~d~2
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where ' means the derivative of a holomorphic function, d~=d +/-1 dii, and 

d=de-/-1 dri. 
   PROOF. Set f (l) =Re f, f (2' =Im f, g (1) =Re g, and g(2) =1m g. By the equa-

tion (10), we see 

(12) =(2 {_g i)(g(i))2_g i)(g(2))2_2g 2)g(i)g(2).H-ggl)} /( I g 12 f1)2, 

           2{g~2)(g(1))2-g 2)(g(2))2-2g 1)g(1)g(2)-I-g~2)}/( g 21)2, 

          4(gl)g(i).~g2)gc2))/(I g 12+1)2). 

On the other hand, 

                       =-( •(~l.?1, ¶152, c3) 

(13) =--~~ • (f(1 -g2)/2, /-1 f (l+g2)/2, f g) . 

By some calculation using (12) and (13), we obtain 

                    L-/-1 M=- f g' . 

Since is minimal, N= - L (~ 1). Therefore 

     a= L(de2-- d ~2) +2Mded 

      =Re{(L-i,/-1M)(de+s-1 dr))2} 

      _ {(L-~1-1 M)(d~~--1 d~)2-~-(L-I-~-1 M)(d-V-1 d yj)2} /2. 

                                                              Q.E.D. 
   Although the following lemma is well known, we contain a brief sketch of 
its proof by using the above proposition. 

   LEMMA 3. 

                         4Ig'i 2 (14) K=-- 
I f (1-f- 1g12)2 

Therefore K is non-positive. Moreover, K can have only isolated zeros unless the 
locus of l lies entirely in a plane. 
   PROOF. By using (1), (9), and Proposition 1, we obtain the equation (14). 

Since g is meromorphic, g' can have only isolated zeros unless g' is identically 
zero. Moreover, g'=0 if and only if C is constant by virtue of the equation 

g=P °(3. Q.E.D.
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   § 4. Case 1. C)(D) has area 2ir but does not coincide with H. 

   From now on, we assume that the area of ( (D) equals exactly 2r. At 
first, in this section, we are concerned with the case in which CA(D) does not 
coincide with any hemisphere H of S. 

   When we regard S as a Riemannian manifold with the Riemannian metric 
induced from the Euclidean space R;, we denote the Laplacian for functions in 
S by ds : Denote by g j k (j, k=1, 2) the components of the Riemannian metric 
on S with respect to a system of local coordinates (y1, y2) in S. Set G=det (gjk), 
and set (gjk)=(gjky1. Then the operator 4s is defined as follows : 

                   dsh=-1- ~ -_a-: ~lG jk ah 
                          ay, g ay k 

   Let D be a domain in S. Consider- the eigenvalue problem : 

                       asv+Av=0 in D, 
(15) 

                       v=0 on aQ. 

We denote by ,1(Q) the least eigenvalue of this problem. 

   LEMMA 4 (Peetre [5]). Among all spherical domains with the same area, 

only the spherical cap minimizes ~]. 

   LEMMA 5 (Barbosa and do Carmo [1]). ,1(Int H)=2, where Int H stands for 

the interior of H. 

   LEMMA 6 (Barbosa and do Carmo [1]). I f 1(3(D))>2, (then I2(u)>O for 

all u, so is stable. 

   Now that A1((3(D))>2 for our minimal surface by Lemmas 4 and 5, Lemma 

6 is applicable. Thus we have proved 

   THEOREM 1. Let the image of the Gauss map of a regular minimal surface 

  have area 27r. Assume that it does not coincide with any hemisphere of S. 

Then is stable. 

   § 5. Case 2. ( maps D onto H but 3(aD) ~ aH. 

   THEOREM 2. Let the image of the Gauss map ( of a regular minimal sur-

face coincide with a hemisphere H of S. Suppose that (3(dD)~dR. Then the 
second variation of area is always positive, and hence is stable. 

   PROOF. Assume that 1 ~2'(u)_<0 for some u. Then 21(D)<2 (Lemma 2). 

Since c (dD) ~ H, there exists some arc icd D such that ( (r)CInt H (Fig. 1). 

By assumption, can be extended across y up to some domain D1D such that 

C(D1)=H, too (Fig. 2). Because Al is strictly decreasing (Lemma 1, (i )), A1(D1)
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<A1(D)<_2. Owing to this fact and the continuity of Al (Lemma 1,(ii)), we can 
take some domain D2 whose closure is contained in IntD1, such that 21(D2)<2 

(Fig. 3). 
   On the other hand, the second W-factor g of : D1-~ Rj is holomorphic in 
D1 and g(D1)=Do= {w; w I <_ 1}. Therefore g(D2)S~Do by the maximum prin-
ciple, which implies that C~(D2) Int H (Fig. 3). Since , is decreasing, ,1((D2)) 
>2 (Lemma 5). Thus, by applying Lemmas 2 and 6 to the minimal surface
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I D2, we obtain A1(D2)>2. This is a contradiction. Q. E. D. 

   REMARK 3. From the proof above, it is obvious that the assumption of the 

extensibility of across aD can be replaced by the following weaker assumption (*) : 

(*) There exists some arc I C d D, (fi(r) C Int H, such that can be extended 
   across r as a minimal surface. 

   § 6. Case 3. ( maps D onto H and C (aD)=dH. 

   Finally we consider the case in which ( (D) coincides with a hemisphere H 

of S and 3(aD)=dH. By a suitable rotation of the surface in R3, we may 

assume that H coincides with the lower hemisphere H-= {(x1, x2, x3)ES ; x3<0}. 

Then g=P c~ (see § 3) maps D onto the unit open disk Do= {w ; I w I <1}. 

   LEMMA 7. Suppose that CS3(D)=H- and that CS(dD)=aH Then g I D : D-3D0 

is a finite-sheeted branched covering (in other words, (D, Do ; g) is a finite-sheeted 

unlimited covering surface), and the number of branch points of g is finite. 

   (For the notion of (global) branched covering, cf. Gunning [3, pp. 220-221].) 
   PROOF. Because can be extended as a minimal surface across dD, g is 

holomorphic on D. From this fact and the fact that g(dD)=aD0, the lemma 
holds immediately. 

   LEMMA 8. It holds that 21(D)=2. And the eigenspace corresponding to the 
least eigenvalue of the problem (5) is given by 

                 E1= {avo°~ ; vo((xl, x2, x3))=x3, a ER} . 

   PROOF. Put uo=vo°C3 with vo((xl, x2, x3))=x3. Then by (10) (§ 3) 

    g()12+1 

From some easy calculations, we derive 

                        8Ig/(2(1-IgI2) (17) D
uo= ---(I 

g 2-F 1)3 

On the other hand, by virtue of Proposition 1 (§ 3), we observe 

(18) K= -EG -1,'2 ~ -- tiU2 _ 1,V2 ' 

From (9) (§ 3), (16), (17), and (18), we conclude that 

                               .u„--2K lVu0 -=0 . 

Moreover, u0 <0 on D and uo ~,D-O. Therefore uo is one of the least eigenfunc-
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tions of the problem (5) (Lemma 1, (iv)), and the least eigenvalue 21(D) equals 2. 
Since the eigenspace corresponding to Al is 1-dimensional (Lemma 1,(v)), the proof 
is completed. 
   From Lemmas 2 and 8, we observe 

   LEMMA 9. I°(u)>0 ' for all u. The equality holds i f and only i f u E E1. 
   In view of Remark 2 and the above lemma we shall investigate the third 

variation of area for u e E1. 

   LEMMA 10. If u belongs to E1, then 

19 1cs> u =Re 384x3(1--Igl2}Ig~4lg'_2- . - g~- d 

where a is a real constant determined by the choice of u, i. e. u=avo (cf. Lemma 8). 
   PROOF. By virtue of (4) (~ 2), (9), and (11) ( 3), we see 

        Ic3>(u), 6u-Re {(L-~i-1 M)(ur+~-1 ur)2} ddr~                        DW 

(20) _ -24u _ l (l +lg l2)2 • Re { f g'(u~+ ~-1 u )2} did. 
Since u E1, u can be written in the form : 

                                     2-1 
                                  u=a • g-I -- a ER                             1

g12+1' 

((16) in the proof of Lemma 8). Therefore, by some calculation, we observe 

                                      2- 16a2g2 x.   ) 12  (01 (ue-}--'v u,i ------ . 
                           ( 12+61                            g )4 

Using (20) and (21), we see 

                  384x3(1- I g 12)            I(.)(u)= D- --~ 2(1 I 12)7- • Re {f g2g'g'2} dsd'l                              J{ g 

              _ 384a(1 g (2) I g' 2I g `1 g' 
                JJD (1+1g12)7 -- • Re jg2 did r~ 

                 384a3(1- g 2) I g' 12I g 14 Re g' - did .                      D (1-I- g 2)' fg2 ~1 

                                                                  Q.E.D. 
    In Lemma 7, we observed that g : D --> Do is a finite-sheeted branched cover-

ing. Therefore, for each point ED, there exists some open neighborhood U E D 
of ~, such that g(U) is open in f„ and the restriction of g to TI-- {~} is a finite-
sheeted covering of g(U)-- {g (~)} . The number of such sheets is called the 
multiplicjty of the point for g. (Of course, if c; E D is not a branch point of
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g, namely if g'(~) ~ 0, the multiplicity of is one.) 
   Let us introduce a single-valued function F in D0 as 

(22) F(w)='()                                    CD; g(C)=w} f() 

Then we have the following lemma which plays an important role in subsequent 

arguments. 

   LEMMA 11. F is holomorphic in D0. 

   PROOF. Note that F(w) coincides with v(~) .g'()/f(), ~~where 
                                                       {QED; g(~)=w} 

v(~) ? 1 is the multiplicity of the point for the function g. Indeed u()>1 if 

and only if g)=o. 

   Denote the branch points of g by , bm (Lemma 7). Set D1=D--
    ... , bm} and D2-=D0 {g(~1), ... , g()}. 

   Let q E Do, let g-1(q)= {Pi, , p7l} (pj ~ p k, if j k), and let v; be the multi-

plicity of p;, j=1, • • , n. Then there exists a neighborhood V C D2U {q} of q 
such that the set formed by the connected components of g-1(V) is the disjoint 

union of neighborhoods U1, , UnciiD of the points pl, •, pn, respectively, and 

the restriction of g to U1- {p3} is a v j-sheeted covering of V - {q}, Define 

functions Fj in V as follows : 

                        f (pj) 

and if q V - {q} , 

                   F1(q)= 
                               k=1 f (~ k) 

n where g-1(q)fU j= {i, ,v;} . Then the restriction F V= Fj . 
                                                                                     j=1 

   When gED2, then each restriction g1=g v, is injective and has an inverse 

g; l : V -U j which is holomorphic in V. Moreover, Fj = (g' / f) g;1 is holomor-

n phic in V. Therefore F= Fj is holomorphic in V. Because of the arbitra-

riness of q, F is holomorphic in D2. [n particular, F is continuous in D2. 
   Now let us prove the continuity of F at q=g(~j), j=1, • • , m. We may 

assume V to be a small disk around q. Let I be a segment joining q to OV. 

Then g has inverses : 

                                         -1 

                              gjk : V-l --> U; 

which are holomorphic in V -I, and 

                                                          k=1
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So each Fj is continuous on V -l. Since l is arbitrary, Fj is continuous in V 
- {q}. But, for any choice of 1, we have that 

                           lii 
q-q k=1                           f ~ ~ f (t' j) 

Consequently, F; is continuous in V, hence F is continuous in V. 
   Now we have proved that (i) F is holomorphic in D2=Do-- {g(~1), , g(~,n)} 
and that (ii) F is continuous up to Do. Therefore, g(~1), • • •, g() are removable 
singularities of Fl D2, hence F is holomorphic in the whole Do. 

   REMARK 4. F remains invariant under any parameter change of the "minimal 
surface" . Namely, let z : D --> D be a conf ormal mapping from some domain 
D in the plane onto D, then D which is constructed from the minimal surface 
~E=oz by (22) coincides exactly with F. 
   PROOF. Let f, g be the w-factors of =(~E1, '7G 2,j)• And set 

                    N 
z `2 a~j(z)                  ~~() az 1=1, 2, 3. 

Then 

Therefore, by definition (see (6) and (7) in § 3), 

                                                                        _ o.z
,               f1-1c52-2(-J-1- --N~-a 1 ̀a 2- uz.z                            )'fv' 

~ 

3 

                                       N 2•-- az.z' 
             N3 a~ 

g_ i`/'1O,-gr. 
                            2 a --~-1 a 

Thus we obtain 

               F(w)= ~ ~ gN(z)                               {zED; g(z)=w} f (z) 

-

                         {ED; g(C)=w} f (v1()) 

                                  g)•z'(z-1( ),) 
                        {ED; g(C)=w} f (~)•2'(r-1(~)) 

                      =F(w). Q.E.D. 

   PROPOSITION 2. I f u belongs to F,, then 

(23) 1(3 (u)=zca'•Re{F"(0)} ,
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where a is a real constant determined by the choice o f u, i. e. u = av0 (cf. Lemma 8). 
   PROOF. Let us first prove that 

(24) I3(u)=Re 384x3(1- I w _2) 1-w 4. F(w) dx1dx2                ( Do ---- (1 ~ w 12)7 w2-- , 

where w=x1+~/-1 x2. Set 

               384a3(1- g(~) 12) g(~) 14 g'()           4(a) 
(1+1 g(~) 12)7 f() {g(}2'                                     ~)

then 

                 I(3'(u)=Re A(~) I g'(~) 12dd~ 

D by virtue of Lemma 10. 

   Let D1 and D2 be what were defined in the proof of Lemma 11. Let q E D2 

and let g-1(q)= {Pi, • • • , pnj. Then similarly to the proof of Lemma 11, there 
exists a neighborhood V CD2 of q such that g-1(V) is the disjoint union of neigh-

borhoods U1, , UncDI of the points Pi, , p,, respectively, and each restric-

tion g U j is in jective and has a holomorphic inverse g; 1 : V -~ U j, j=1, • • , n • 

Therefore 

                      n n 

               A(E)I g)I2ded~= ± A°g,1(w)dxldx2 
                      j=1 Uj=1 V 

                               384a3(1- -w 12) w 4 . i(w) dxldx2 .                         JJ
V (1-I w) w 

Consequently 

                                        3- 4 F(w) 
(25) D1A(~) I g'(~) 2`"ed'I - 384x(1 w 2)w l w2 dxldx2. 

Now we assert that each integrand of the both sides of (25) is bounded. In fact, 
because of the regularity and the extensibility of , 1/f and g' are both bounded 
on D (cf. § 3). Moreover, not only D-D1, but also D0--D2 is of measure zero. 
Therefore (25) implies (24). 
   Let us introduce the polar coordinates (r, 8) in w-plane : w = x 1 + s/-1 x 2 = 

rep'-1 ~. By using (24) and the residue theorem, we obtain 

1 

   I(u)=Re 84a7(1 384x3(1-r2)r5 1 2~ F(re~=i o)        (3' --r - _-- . ~/-1 re^'=1~o d8 dr 
                r=o (1-~-Y2)' ~--1 6=0 (Yep 1 B). 

        =Re 1 384a3(1-r2)r5 1 F(w) dw dr 
                  r=o (1+r2)7 "V "-1 Iwl=r w3 

             1 384x3(1-r2)r5 1 
          =Re - - ~~ 1• 27c\/--1•Res F(--w)dr                  r=0 (1+r2)7 V °1 w=o w3
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        = 7c a ,3 Re {F"(0)} , 

which was to be proved. 
   Therefore, by taking account of Remark 2 (~ 2) and Lemma 9, we obtain 

   MAIN THEOREM. Assume that the Gauss map (~ of a regular minimal surface 
X : D -R1 R' is a mapping from D onto the lower hemisphere H- o f S and that (~ 
maps aD onto aH-. If 

(26) Re {F"(0)} *0, 

then is unstable, where F is the holomorphic function defined by (22). 
   Especially, for the case in which (~ is injective, we get 

   COROLLARY 1. Assume that the Gauss map ( of a regular minimal surface 
   D-- R3 is injective and maps D onto the lower hemisphere of S. Let f, g be 

the first and the second W -factor of , respectively. If 

                        Re fo g-1"(0) *0, 

then i is unstable. 
   When C5 is not injective, it is difficult in general to express the left hand 

side of (26) using f and g explicitly. However, whenever g-1(0) contains no 
singularity of g, (that is, (-1((0, 0, -1)) contains no singularity of (,) we obtain 

   COROLLARY 2. Assume that the Gauss map (i o f a regular minimal surface 
   B--;R' is a mapping from D onto the lower hemisphere H- of S and maps 
aD onto aH-, and moreover that C~-1((o, 0, -1)) contains no singularity of ( . 
Let f, g be the TV-factors o f L I f 

        Re ~ 2g (~) 1 3g (, 1 
           (Eg-1(o) L g~() f ()g) g'() f (fi)g (~) 

                         )"]~o, 
then is unstable. 

   Of course, the last result implies Corollary 1. 
   PROOF. Let us recall the proof of the holomorphy of F (Lemma 11). Let 

g-1(0)= {pi, • , p}. Then each p, is not a singularity of g by assumption. 
Therefore there exist a neighborhood V of w=-0 and neighborhoods U, of p, 

such that each g,=g rr, has a holomorphic inverse g, 1 : V -> U,• Moreover 

                                          n g -1 
                                                    j=1 

Set F,= °g;1. Then f
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n (27) Ff v:= Fj . 
                                                     j=1 

Obviously, 

                  _d_ 1 1 __ 1 1 
             dw g' (w) gjC~) =jg1 V(w) g'(~)=g-1(w)•                                              J J 

Therefore 

           F,(w)= [2g". f +g, , ( f                       g g C)']=gi ~ (w) 
              w)_ 2g... 1 + 30 " 1 - f .}_ 1          F"\ 

g/ fg' g/ fg/ fg, =gj 1(w) 

By using this equation and (27), we obtain the desired result by virtue of Main 
Theorem. 
   Finally we give an interesting example of the case that C~1((0, 0, -1)) con-

tains singularities of CS3. 

   EXAMPLE. Suppose that D-Do and that g(~)=fin (n>_1). Then, for u 

C28) ~c~~)(u)_ 22ca3n2 Re do+1 1 

Therefore, if Re {[(dn+1/d~n+1)(1/ f (~))]~,o} *0, is unstable. 
   PROOF. Let wo be an arbitrary point of Do- {0}, and let g-1(wo)= {~o, , 

~n_1}. Then there exists some neighborhood VCD0- {0} of w0 such that g-1(V) 
is the disjoint union of neighborhoods Uo, •, Un_1CDo-- {0} of the points ~o, •, 

bn_1, respectively, and each restriction gj=g I Uj is injective and has a holomorphic 
inverse cb : V --* U;. Moreover we may assume that ~;=e27r -1'/n~o and that 

T1=e2n1'lncj0, j=0, 1, ... , n-l. Since 

                         _ 1 1 _ 

we see 
                                                                       2714'-1 j/71 

                    71 7 n(w))n-1 

Define a holomorphic function Ii in D„ as h =1/f. In V we observe 

                                                                                7t-1 

(29) F(w) , g1(w)) `i(~a(w)) . 

   Now we introduce the Taylor expansion of h around -.0: 

                            11(x)== ~' afl~k. 
                                                            k =o 

Then
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(30) h(~J(w))= ak(~j(w))k= ake2n~='Jk/n(,jo(w))k' k=0 k=0 

4n the other hand, 

               g'(cj(w))=n(~J(w))n-1-ne27rN'-1 j(n-1)ln(0(w))n-1 

(31) =ne-2rr~-1 iI n(O0(w))n^1 . 

From (29), (30), and (31), we obtain 

                  F(w)= nake2nNr-1 j(k-1)ln( o(w))n+k-1 
                                   j=o k=o 

                      =nw E ak(cl,o(w))k-1 (e2a~-1 (k-1)/n)i . 
                                           k=o ~=o 

Set k-1= pn+q (p, qEZ, 0<_q<_n--1). We claim 

                                  n-1 n-1 

                           (e2av'-1 (k-1)!n)j _ (e22tv'-1q(rt)J 
                              j=o j=o 

                             5 n for q=0.                           5 
0 for q~0. 

Therefore 

               F(w)=n2w ak(~L'o(w))k-1 
                                        k=pn+1 

                     =n2w apn+i(~0(w))pn 
                                      p=0 

                           =n2w apn+1wp= n2apn+1wp+1 

                                         p=o p=o 

(32) _ n2acc-i)n+iwt 
                                          l=1 

in V. Since wo is an arbitrary point in Do-- {0} and F is holomorphic 

(32) is valid in the whole Do. Thus, in Do, 

                           F'(w)= ln2a(c-1)n+iwc-1 
                                                    L=1 

Consequently, 

                                     l(1--1)n2a(l-1)n+iwc-2 
                                                  l=2 

 and 

                                       h(n+1)(0)                       F"(0) = 2n2an+1=2n2•-n+- i . 

 Therefore, by using Proposition 2, we obtain

in Do,
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                             2ira3n2                  13 (
u)= (

n+1)! - Re {h MTh 1(p)} , 

which means (28). 
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