
Title Gray-image processing using optical array logic

Author(s) Kakizaki, Sunao; Tanida, Jun; Ichioka, Yoshiki

Citation Applied Optics. 1992, 31(8), p. 1093-1102

Version Type VoR

URL https://hdl.handle.net/11094/2997

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Gray-image processing using optical array logic

Sunao Kakizaki, Jun Tanida, and Yoshiki Ichioka

A method for digital image processing that uses optical array logic (OAL) is presented. Parallel
thresholding and digital filtering are demonstrated. OAL is a promising computational paradigm for
digital optical computing based on parallel neighborhood operations for two two-dimensional binary
images. In the proposed method, virtual processing elements are assumed on an image plane and a gray
pixel in an original gray image is stored in each processing element. Efficient gray-image processing can be
achieved by data manipulation in the virtual processing elements and in the data communication among
them by using OAL. Several simulation results are presented. Finally, hardware requirements for the
developed algorithms and their capabilities are discussed.

I. Introduction

Many architectures for digital optical computers have
recently been proposed.'" A digital optical computer
is expected to be a powerful computing system,
making good use of both the flexibility of digital
processing and the excellent advantages of optical
parallel processing. We are attempting to find the
optimal architecture for a digital optical computer.
There are several factors hindering development of
such a computing system, e.g., the difficulty of produc-
ing optical logic devices, the lack of appropriate
materials, and problems in parallel programming.
Problems concerned with programming are of special
interest to us because the architectures of the optical
digital computers have a close relationship to process-
ing algorithms, and the two elements cannot be
considered separately.

To solve the problems, we have studied optical
array logic (OAL) as a computational paradigm for
digital optical computing.'2" 3 OAL can perform any
parallel neighborhood operation for two binary im-
ages. In OAL, an identical operation is executed on all
pixels in the input images in parallel. Thus OAL
provides a single-instruction-stream multiple-data-
flow type of parallel processing. In addition, if one
input image of OAL is used as control signals specify-
ing operations to be executed for the other input

When this work was done, the authors were with the Depart-
ment of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita,
Osaka 565, Japan. S. Kakizaki is now with the Central Research
Laboratory, Hitachi, Ltd., 1-280, Higashi-koigakubo, Kokubunji-
shi, Tokyo 185, Japan.

Received 2 July 1990.
0003-6935/92/081093-10$05.00/0.
© 1992 Optical Society of America.

image, multiple single-instruction-stream multiple-
data-flow (MSIMD) processing can be implemented.'3
Such processing in OAL can be described by a simple
programming language.

These features of OAL are especially useful and
attractive for digital image processing, in which large
numbers of data must be processed efficiently. To
demonstrate the advantages of OAL, we have pre-
sented algorithms for template matching,'4 edge detec-
tion,12 and skeletonization.15 However, these algo-
rithms are designed for binary images, so those for
gray images should be developed to extend the applica-
tions of image processing by OAL. Here we present a
method of efficient gray-image processing with OAL.

A simple method of extracting the parallelism
involved in image processing is to assign an individual
gray pixel to a processing element and to process all
data simultaneously. In the new method, we assume
that the processing elements are set virtually upon an
image plane of OAL and that programs for the desired
processing are constructed in terms of operations for
the individual processing element. Gray pixels in the
original image are developed into spatial patterns and
stored in the virtual processing elements upon an
image. The resultant image is used for the inputs of
OAL, with an additional image specifying the content
of operations, pixel by pixel. With this technique,
gray-image processing can be designed and executed
effectively by OAL.

In this paper we present an effective method for
gray-image processing in OAL. In Section II we
explain OAL and a method for space-variant process-
ing with OAL. In Section III we describe procedures
for assigning gray images to virtual processing ele-
ments and the methods for performing gray-image
processing. In Sections IV and V we present proce-

10 March 1992 / Vol. 31, No. 8 / APPLIED OPTICS 1093

dures for pixel-by-pixel operations and digital fil-
tering with OAL. In Section VI we demonstrate
successive operations for processing gray images by
computer simulation. In Section VII, we discuss
hardware requirements for the developed algorithms
and their capabilities.

II. Optical Array Logic and Space-Variant Processing

OAL is a computational paradigm for digital optical
computing based on parallel neighborhood operations
for two two-dimensional binary images.21 3 Figure 1
shows the processing procedure of OAL. OAL is
implemented by four operations: coding, correlation,
sampling, and inverted-OR operation. Two binary
images to be processed are encoded with the coding
rule shown in Fig. 1 and converted into a coded image.
The coded image is separately correlated with dif-
ferent operation kernels. Individual correlated im-
ages are spatially sampled at 1-pixel intervals in the
vertical and the horizontal directions. Parallel in-
verted-OR operation for all the sampled images pro-
vides the final result. The operations are specified by
a set of operation kernels used in correlations. Thus a
sequence of operation kernels is regarded as a pro-
gram in OAL.

The processing procedure of OAL is simple and
easy to implement by optical techniques such as
optical shadow casting.'4 If the parallelism of optics is
fully exploited, we can execute the operations in OAL
in parallel. In this case an identical operation is
carried out for all pixels in the images. Therefore
single-instruction-stream multiple-data-flow process-
ing can be performed in OAL. In other words, OAL
executes space-invariant processing for two binary
images.

Moreover, OAL can achieve space-variant process-
ing with a specific programming technique.'3 The
fundamental idea of the technique is that one of the
inputs is used for data and the other is used for
specifying operation imposed on the data. We call the
former a data plane and the latter an attribute plane.
A spatial pattern used for specification is called an
attribute pattern.

Using the programming technique, we process all
pixels with the same attribute pattern by an identical
operation. Thus MSIMD processing can be achieved
by OAL. This technique is not suitable for multi-
instruction-stream multiple-data-flow processing be-
cause of processing inefficiency. Fortunately, MSIMD
processing is sufficient for numerical operations re-
quired in gray-image processing. In this case, a large
number of grouped data are processed effectively by
an identical operation. 3

Ill. Gray-image Processing with Optical Array Logic

To execute gray-image processing efficiently with
OAL, we assume virtual processing elements in an
image plane, and individual pixels in an original gray
image are processed in the processing element. That
is, gray pixels in gray image are developed into spatial
patterns with multiple bits and stored in the virtual
processing elements on an input image for OAL.
Figure 2 shows the assignment of gray-image Ga,
consisting of 4-bit gray pixels, onto virtual processing
elements constructed in an image plane. In this
scheme, a gray level of a pixel in the original gray
image is represented by binary pixels (at, a, a, a,
a) arranged in rows. Five pixels are prepared for 4-bit
data to take care of overflow. This group of pixels is
called a register and is used like a register in an
electronic computer.

If we prepare several registers, multiple gray im-
ages can be stored in the same image plane. Since
shift operations can easily be executed in OAL, the
use of multiple registers makes image processing
effective. A set of registers for pixels at the same
position is called a register block. With this arrange-
ment, most of the operations required in gray-image
processing can be executed efficiently. In this case,
the register block is regarded as a virtual processing
element in which a gray pixel in an original gray
image is processed.

Figure 3 shows an example of two input images of
OAL. Nine register blocks are set in input B, or the
data plane. Row-coded numbers are stored in regis-
ters A and B of individual register blocks. To identify
individual register blocks, we set supplementary pat-

Coding Correlation Sampling Inverted OR|
d At Invenedk h' Image #k

Gray Image

Binary

Data Plane of OAL

5 cells

r .Igx:teE,.~,Z.
Register B
Register C 5 cells
Register D
Register E

I I

CEi d c1J clJdiJ
ILd7J d dtJI

eier Blo ek

Register Block

Fig. 1. Processing of optical array logic.
Fig. 2. Assignment of gray-image data for virtual elements con-
structed in an image plane of OAL.

1094 APPLIED OPTICS / Vol. 31, No. 8 / 10 March 1992

I

(a) Input Image A (b) Input Image B (c) Input Data
Attribute Plane Data Plane

Fig. 3. Two input images of OAL in gray-image processing.

terns in input A, or the attribute plane. An identical
operation is applied to the data in the neighborhood
that have the same attribute patterns.

Using these two input images, we can perform
gray-image processing efficiently with OAL. The as-
sumed processing flow is depicted in Fig. 4. Input B,
which stores the data, and input A, which specifies
operations for the data, are processed by an OAL
processor, and output C is produced. The output
image is used as input B in the successive processing
stage. For efficient processing, several kinds of at-
tribute plane are used, according to the processing
sequence.

We consider two classes of operation in gray-image
processing. The first class is a pixel-by-pixel operation
such as thresholding. This operation is achieved by
data manipulation among the registers in one register
block. The second class is a neighborhood operation
such as digital filtering, in which a pixel's value is
calculated relative to those of its neighboring pixels.
In this operation, pixel-by-pixel operation and data
communication among the neighboring register blocks
are required. Using these techniques, we can execute
various kinds of gray-image processing.

IV. Pixel-by-Pixel Operations with Optical Array Logic

A. Addition between Two Registers

As we mentioned in Section II, operations in OAL are
specified by a set of operation kernels used in correla-
tion. Thus a sequence of operation kernels can be
used as a program of OAL. However, for convenience
of programming we use a kernel expression'" 3 in-
stead of a sequence of operation kernels. In the kernel
expression, an operation kernel is expressed in matrix-
like notation.

As an example of a program in OAL, we consider
parallel addition for pairs of row-coded numbers in a

binary image. The input images are assumed to have
the same arrangement as in Fig. 3. Addition between
registers A and B is designed with the space-variant
technique described in Section II. In this algorithm,
sum-and-carry operations are executed iteratively,
and their results are sent back to registers A and B
until no carry signal arises. These operations are
written by the following logical operations:

(1)

bi` - agjW , (2)

where a, -and b denote nth-bit signals in registers A
and B, respectively, the subscript is the identifier of
the register block, and + and - mean OR and NOT
operators, respectively.

Considering the arrangement of the individual
registers shown in Fig. 3, the operations in expres-
sions (1) and (2) are designed with a kernel expression
as follows:

01I 00 .. 01

00 01 .. 01

0. + 0. + .. 0.

0. 0. .. 0.

1. 1. .. 1.

(3)

where one set of brackets corresponds to one opera-
tion kernel, an underscore indicates the origin of the
neighborhood area, and a + denotes an OR operation
for the results obtained by the attached operation
kernels. Each symbol inside brackets indicates an
operation for the pixels at the same position as shown
in Table I.

As an advantage of using register blocks, opera-
tions of addition can easily be specified by the combi-
nation of attribute patterns and operations. For
example, if the attribute patterns shown in Fig. 5(a)
and the operation described in Eq. (4) below are used,
addition between registers C and D as well as between
registers A and B can be achieved simultaneously:

(4)

Attribute
Plane

© 0il i t~ l 770 w Output
Data ®l© ©§c
Plane

Feedback
Fig. 4. Data flow in OAL. The algorithms presented in this paper
are to be processed according to this data flow.

B. Thresholding

Here we consider thresholding as an example of
pixel-by-pixel processing. Thresholding is an opera-
tion converting the value of a gray pixel into either 0
or -1, according to the relation between pixel and
threshold values.

Let us assume that pixel and threshold values are
set to registers A and B, respectively, in a register
block. Each number has 4-bit length, represented by
2's complement. The algorithm for thresholding con-
sists of two steps, i.e., subtraction of the number in

10 March 1992 / Vol. 31, No. 8 / APPLIED OPTICS 1095

W.L
4 5 16 6
3 3 3

a l
I-3-

-

l l

A
B
C

ED

2 3
3 1 _ I I

a� -�(- a!I W -+ W W -Ili Ili Ili Ili

01. 00. 01

10 + 11 + .. 11 ,

Table 1. Kernel Units Corresponding to a Two-Variable
Binary Logic Function'

Kernel Kernel
Unit Function Symbol Unit Function Symbol

4141 .. t a+b PP
447 a+b NN I aEib UU

amb NP b .1

z F a 0. ab 01

47 a-ib PN At a 1.

447 ib .0 4 ab 10

aE~b EE t ab 11

T4 a b 00 4i 0 DD

aFunction symbols used for symbolic notation
tabulated.

(a) Input Image A
Attribute Plane

Fig. 5. Two input

(b) Input Image B
Data Plane

images of OAL used
registers C and D and between registers A and B.

of OAL are also

(c) Input Data

in addition between

respectively, are

01 0.

0. 00

0. + 0. + ..

0. 0.

1. 1. 1

.. .. .

..

1. 1. 1.

01 0. 0. .. 0.

0. 01 00 .. 01

0. + 00 + 01 + .. 01

0. 0. 0. .. 0.

1. 1. 1. .. 1.

01 00 .. 01

00 01 .. 01

0. + 0. + *.. 0.

0. 0. .. 0.

1. 1. .. 1.

(5)

(6)

(7)

These kernel expressions can easily be converted
into corresponding operation kernels by referring to
Table I. Using the obtained operation kernels in the
procedure of Fig. 1, we can execute thresholding
optically in parallel. The operations in expressions (6)
and (7) must be repeated five times to complete
addition for 4-bit numbers.

Figure 6 shows a simulation result of thresholding.
Images 1A and B are the attribute and the data
planes, respectively; five registers are prepared in a
register block on image B, and the decimal expres-
sions of the data stored in individual registers are
indicated in image 1B'. The other images in Fig. 6 are
arranged in the same manner as in the first row.
Images 2B, 3B, and 4B are the results of steps (1), (2),
and (3), respectively. After step (3), by testing the
status of the most significant bit of register A we can
obtain the result of thresholding as shown in image
5B'.

registers B from that in register A and testing of the
status of the most significant bit, or sign bit. The
subtraction is achieved as follows:

(1) Preserving a pixel value stored in register A,
inverting a threshold value in register B, and assign-
ing value 1 to register C as a forced carry.

(2) Preserving a pixel value stored in register A
and executing addition between registers B and C to
obtain 2's complement of the threshold. The result is
stored in register B.

(3) Executing addition for registers A and B. This
result is equal to the subtraction from the pixel value
of the threshold value.

The operation kernels for the steps (1), (2), and (3),

V. Digital Filtering with Optical Array Logic

A. Data Transmission among Register Blocks

As an example of neighborhood operation, digital
filtering for image processing is considered. Digital
filtering is categorized into two classes,'recursive
filtering and nonrecursive filtering. Nonrecursive fil-
tering is useful and sufficient for many applications in
digital image processing. Thus in this paper we
consider only nonrecursive linear digital filtering.

To implement nonrecursive linear digital filtering
by OAL, we must add data transmission to the
sequence of pixel-by-pixel operation. That is, row-
coded numbers in neighboring register blocks are
transmitted to the register block at the origin of the

1096 APPLIED OPTICS / Vol. 31, No. 8 / 10 March 1992

A a _ 1 _12 3
B 3 3 1 3
c 9 I H 7
D 7 1 E _ _ _ 7 @ 7_7
E I _

WhB 1 1B 4 5 1 6 -

6 5! 4
7 71

1 |7~* -15-- ___ 8
I I a | 1 _ 3 3 3

"t1 1 no I I . I . I .

1 , I , 1 ,

E 1 ! 'I 1 Z I I I
W 'a I I W

3 3

f I2 11 1
3 31

1B'
4 3
4 1 4 1

U
2 1

4 .4
I i I

213'

m

2A

3A

fi LPII .3 I 1

4A

5AF

n

A-1,-1 A 1to A-1,1

B-1,1 B -1,o 1,
C--1 C-1,0 _ G
D-1 ,1 D Q@0 D1J,

~~~~E -1,-o E lo-1,1

A o,-i AZ om0
B Bolt
C .i t ~ C.Th

D o5 - i :

E o,-l .......... E:..:: t i;e -n ;;ii0 E 0,1
A 1 -1 A1,o Au 1

B1B 1 0 8131

C C 10 C 1,1
D 1-1 D o D1,1
E E1,o E 1,1

Fig. 7. Identifiers of registers around one resister block.

the following operation:

.1

Fig. 6. Simulation result of thresholding: 1A-5A, attribute planes;
1B-5B, data planes; 1B'-4B', decimal expressions of stored data in
data planes.

neighborhood area, multiplied by a kernel of the
filter, and accumulated.

Data transmission among the register blocks is
achieved by shift operations in OAL. For ease of
description of data transmission among the registers,
we use identifiers, such as A1, amd Al,0, in considering
a specific register block and the relative positions of
the data. Figure 7 shows the identifiers of registers
around one register block, where A-E indicate individ-
ual registers and the subscripts refers to the local
coordinates of the register blocks in the neighborhood
area. Note that a set of operations for one resister
block can describe whole processing for a given image
because of the single-instruction-stream multiple-
data-flow characteristics of OAL. In addition, we
sometimes use the identifier without any subscript,
which indicates a composite set of a specific register in
all register blocks.

Let us consider data transmission from register
A0 1 to register B0,0 and that from A,,1 to C0,0. Assum-
ing that the number of registers in a register block is
five and that the attribute plane is as shown in Fig.
8(a), we can achieve data transmission by performing

........ 0.

........ 0.

.. .. .... 0. +0.

........ 0.
.. . . .. 1. 1.

....... .. .11

.. .. .. .. ... I

.. .. .. .. .. J

(8)

Figure 8 shows a simulation result of data transmis-
sion. Combining this technique with the calculation
method described in Subsection V.A, we can carry
out any kind of nonrecursive linear digital filtering.

B. Filtering with Robert's Gradient Operator

As an example of digital filtering, we consider Rob-
ert's gradient operator.'6 Robert's gradient operator
is a linear filter for detecting the difference between a
pixel and its adjacent diagonal pixel values. The
filtering operation is performed by convolution of an
input image with the digital filter, as shown in Fig. 9.

Let us assume that a value of a gray pixel is set in
register A of each register block and represented by
2's complement. Digital filtering with Robert's gradi-

(a) Attribute Plane (b) Data Plane (c) Result

Fig. 8. Simulation result of data transmission: (a) attribute plane,
(b) data plane, (c) the resultant image.

10 March 1992 / Vol. 31, No. 8 / APPLIED OPTICS 1097

1B 
m"0 IXSf Lam

;:,a._% S s 

_ 2BSH
KAg 

B E 

E aEBL 

-IE ~ 

5B

U
FNN



-1 l |

0 

(a) (b) (c)

Fig. 9. Kernels of the digital filter: Robert's gradient operator.

ent operator is achieved by the following three steps:

(1) Preserving the value of a gray pixel in register
AO,0, negating all bits in register A, -,, transmitting
the result to register Bo0 , and setting 1 to register C0,o
as a forced carry.

(2) Preserving the data in register A,,, executing
addition between registers Bo, and C0,0 to obtain 2's
complement of the value of the gray pixel in register
A-,,-,, and setting the result at register B0,0.

(3) Executing addition between registers A,0 and
Boo. As a result, subtraction between the adjacent
diagonal pixels is performed.

The operation kernels for steps (1), (2), and (3) are
designated, respectively by

.. .. .. .. .. ... ....... .. O... ....... .. 0.
... .. 1.

01 0. 0.

0. 01 00

0. + 00 + 01 -

0. 0. 0.

1. 1. 1.

4A 4B 4B'
Fig. 10. Simulation result of digital filtering with Robert's gradi-
ent operator: 1A-4A, attribute planes; B-4B, data planes; B'-
4B', decimal expressions of stored data in the corresponding data
planes.

(9)

1.

.. .. 

1. 1. 1.]

0.. .

01

I- .. 01 

1 0.

. l]
01 00 .. 01

00 01 .. 01

0. + 0. + .. 0. 

0. 0. .. 0.

1. 1. .. 1.

step (2) with image 2A. Image 2B' indicates the
decimal expression of the data stored in the individual
registers of image 2B. Images 3B and 4B show the
results of steps (2) and (3). The expected results are
obtained in image 4B'.

Note that the processing explained in this section is
independent of the number of register blocks. OAL
executes an identical operation for all pixels in a given
image in parallel. Therefore, if a large number of

(10) register blocks are set in the input image, great
processing capabilities can be obtained.

VI. Successive Execution of Gray-image Processing
with Optical Array Logic

We have described basic ideas for gray-image process-
ing in OAL. Here we show a series of gray-image

(11)
9 cells

A1 Rgster ||
| egster Cl

Figure 10 shows a simulation result of filtering
with Robert's gradient operator. Images 1A and 1B
are the attribute and the data planes, respectively.
Image B' shows the values of the gray pixels to be
processed, which are stored in register A. Image 2B
shows the result of step (1) above, which is used for

3 cells( AbtPlne_

! w By |i 4 By
Ire r

3, X , , 2 l . . . . s

^ 3 , . 3 . i . 3 . . i i

to3p mix it tt t . : , . t s . .; §
Y : . . . !

S > l 32 S x E . C A.

2 E 3 fl .2 R s . :
f ^ W 3 ^ s 3 i S . r

t * S 2 3 , in ' 3 , i. M S U w . v s .r .
3 ^ 3 . l . v ^ v . &3

(b) Data Plane

Fig. 11. Arrangement of attribute plane and data plane in the
experiment.

1098 APPLIED OPTICS / Vol. 31, No. 8 / 10 March 1992

1 3

2 2 2

3 | 1 B'E 1 
1 B ~ f I 3

1A

I
.0

01

0.

0. +

0.

1.

I

I



(1) Gradient Operation

(a) Input Image Al

.... .........

..........
(b) Input Image Bl

l

(2) Set Threshold Value

(c) Input Image A2 (d) Input Image B2

(3) Thresholding

(c) Input Image A2 (d) Input Image iB2

(e) Input Image A3

(4) Skeletonization

(g) Input Image A4

(f) Input Iage B3

(h) Input Image B4
(e) Input Image A3

(I) Final Result

Fig. 12. Data flow of successive steps in gray-image processing:
(a)-(i); the input and output data in four stages, i.e., gradient
operation, setting threshold value, thresholding, and skeletoniza-
tion.

processing steps to clarify the flexibility of our scheme.
The image processing to be demonstrated is extrac-
tion of edge pixels with 1-pixel width from input gray
images. The processing is achieved by a sequence of
edge detection by Robert's gradient operator, binariza-
tion by thresholding, and skeletonization.

Figure 11 shows the arrangement of the attribute
and the data planes for the processing. In this arrange-
ment, three registers, A, B, and C, composed of 9
pixels to treat an 8-bit number, are set in a register
block. Although Fig. 11 shows only 9 x 3 register
blocks, 192 x 64 register blocks are prepared to
process three images consisting of 64 x 64 pixels with

(i ) Final Result

Fig. 13. Simulation results of
the processing: (a)-(i), images
corresponding to (a)-(i) in Fig.
12: (a), (e), (g), attribute planes;
(c) binary image-storing thresh-
old values; (b), (d), (f), (h), (i)
data planes storing image data.

10 March 1992 / Vol. 31, No. 8 / APPLIED OPTICS 1099



(al)

(a2)

(01) (Cl)

(Cz)

(C3)

(a4) (b4) (c4)
Fig. 14. Gray images converted from binary images (b), (d), (h), and (i) in Fig 13.

1100 APPLIED OPTICS / Vol. 31, No. 8 / 10 March 1992

ht\u:\\\t'LttD :\Y cite it: id: 2:tt t In \,"e:. :Ei i;. t \' :ti:: d ! a:: m Dt i: :: : \ Q f i: ]

- t |

I

l ad l



(Ni1) M pixels

0)
Z
0.

I 0

X

._

N+1 pixels
Fig. 15. Required cells of data shift in digital filtering: N, number
of bits; R, number of the register; M, size of the neighborhood area.

8-bit data. Therefore 576 x 576 pixels are used in
total.

Figure 12 is a processing flow chart. The processing
consists of four steps: gradient operation, setting
threshold value, thresholding, and skeletonization.
Input B, or the data plane, has the image data and is
processed in successive steps. On the other hand,
input A, or the attribute plane, is changed to modify
the operations at the individual steps. Note that three
kinds of data are set in input B and processed
simultaneously. The capability of such parallel pro-
cessing for different objects is a notable advantage
provided by OAL.

Figure 13 shows the result of computer simulation
performed on a SUN3 workstation. Individual images
show the contents of the input and the output data of
the OAL processor. The letters under the images
correspond to those in Fig. 12. Figure 14 depicts three
kinds of gray image stored in input images of OAL.
They are converted from images (b), (d), (h), and (i) of
Fig. 13. As the figure shows, the desired results are
obtained.

VII. Discussion

A. Hardware Requirements

As was shown previously,'4" 7 OAL can be imple-
mented with several types of optical system. The

developed programs can easily be executed with those
systems. However, two requirements for the optical
system must be satisfied for implementation.

As the first requirement, the optical system must
handle large sizes of images. When a gray image
consists of P x P pixels, (N + 1)P x RP pixels are
required for conversion of a gray image into a binary
image, where N is the number of bits in the data
representation and R is the number of registers in
one register block. For example, if P = 256, N = 8,
and R = 9, the binary image must have 2304 x 2304
pixels. Usually P is a large number, so we must
handle quite a large number of pixels in an optical
system. In a practical system, to overcome the limita-
tion of hardware, input images may be partitioned
into smaller sections and processed. In this case a
virtual storage mechanism to support the hardware is
required in the system.

As the second requirement, there must be a correla-
tion of the input data with large sizes of kernels in the
optical system. Consider digital filtering with a filter
composed of M x M pixels. In this case, as Fig. 15
shows, at most (M + 1)(N + 1)/2 pixels of the data
shift are required in the horizontal direction, and
(M + 1)R/2 pixels in the vertical direction. Conse-
quently the necessary size of an operation kernel is
2[(M + 1)(N + 1)1] x 2[(M + 1)R - 1]. If M = 3,
N = 8, and R = 9, we need an operation kernel
consisting of 70 x 70 points.

B. Computational Capabilities of the Developed Programs

The execution time of a program in OAL is affected
primarily by hardware implementation, which we
consider here in detail. Let the processing time for
coding, correlation with sampling, and inverted OR be
te t and td, respectively, and let the required num-
bers of times for these operations be n n and nd,
respectively. The processing time in OAL can be
estimated to be tene + tn, + tdnd for the sequential
execution of correlation with a single correlator and
ne(te + t + t) for parallel execution with multiple
correlators. Although t, t and td depend heavily on
hardware performance, n., n, and nd are good mea-
sures for evaluation of processing efficiency of devel-
oped programs.

In Table II the calculated values of ne, nc and nd for
programs presented in this paper are tabulated. N is

Table 11. Processing Capabilities of the Developed Programs

Title ne n nd

Addition:Nbits N+ 1 3(N+ 1) 3(N+ 1)
Subtraction: N bits (complement value) 2N + 3 7N + 10 7N + 10
Multiplication: N bits N + 2N - 2 3N2 + N - 2 3N2 + N - 2
Thresholding: N bits (complement value) 2N + 6 8N + 12 8N + 12
Robert's gradient operator N bits (complement

value) 2N + 3 7N + 10 7N + 10
Skeletonization (erasing only the border of objects) 8 16 8

aN is the bit number of the pixel datum; n n,, and nd are the numbers required for coding,
correlation and sampling, and inverted-oR operation, respectively, for N-bit lengths of data.

10 March 1992 / Vol. 31, No. 8 / APPLIED OPTICS 1101

__ 2- N1 pixels
I I



the bit number of a gray pixel. As Table II shows,
these values are independent of the size of a gray
image or of the number of pixels. This means that
processing time is invariant even if the number of
data is increased. Therefore the developed algorithm
can extract the parallel nature of OAL successfully.

On the other hand, the processing time depends on
the bit number, N. Since the ripple carry algorithm is
used for addition, the sum-and-carry operation must
be repeated N + 1 times. For this problem, fruitful
results in digital processing such as modified signed
digit number representation and the carry-look-
ahead algorithm can be used. Applying these algo-
rithms to our scheme, we can achieve addition more
effectively.

References
1. A. A. Sawchuk and T. C. Strand, "Digital optical computing,"

Proc. IEEE 72, 758-779 (1984).
2. A. Huang, "Architectural considerations involved in the de-

sign of an optical digital computer," Proc. IEEE 72, 780-786
(1984).

3. J. Tanida and Y. Ichioka, "OPALS: optical array logic system,"
Appl. Opt. 25, 1565-1570 (1986).

4. K.-H. Brenner, A. Huang, and N. Streibl, "Digital optical
computing with symbolic substitution," Appl. Opt. 25, 3054-
3060 (1986).

5. K.-H. Brenner and G. Stuke, "Architectures for digital optical
image processing using morphological filters," in Optical
Computing '88, P. Chavel, J. W. Goodman, and G. Roblin, eds.,
Proc. Soc. Photo-Opt. Instrum. Eng. 963, 657-662 (1988).

6. A. Huang, "Computational origami-the folding of circuits
and systems," in Optical Computing, Vol. 6 of OSA 1991
Technical Digest Series (Optical Society of America, Washing-
ton, D.C., 1989), pp. 132-135.

7. M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, "Optical
design of programmable logic arrays" Appl. Opt. 27, 1651-
1660 (1988).

8. K. S. Huaung, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M.
Wang, and I. Glaser, "Implementation of a prototype digital
optical cellular image processor (DOCIP)," in Optical Comput-
ing '88, P. Chavel, J. W. Goodman, and G. Roblin, eds., Proc.
Soc. Photo-Opt. Instrum. Eng. 963, 687-695 (1988).

9. F. Kiamilev, Sadik C. Esener, R. Paturi, Y. Fainman, P.
Mercier, C. C. Guest, and S. H. Lee, "Programmable optoelec-
tronic multiprocessors and their comparison with symbolic
substitution for digital optical computing," Opt. Eng. 28,
396-408 (1989).

10. G. Stucke, "Parallel architecture for a digital optical computer,"
Appl. Opt. 28, 363-370 (1989).

11. V. P. Heuring, H. F. Jordan, and J. P. Pratt, "A bit serial
architecture for optical computing," Tech. Rep. 88-Ola (Opto-
electronic Computing System Center, University of Colorado,
Boulder, Colo., 1988).

12. J. Tanida and Y. Ichioka, "Programming of optical array
logic. 1: Image data processing," Appl. Opt. 27, 2926-2930
(1988).

13. J. Tanida, M. Fukui, and Y. Ichioka, "Programming of optical
array logic. 2: Numerical data processing based on pattern
logic," Appl. Opt. 27, 2931-2939 (1988).

14. J. Tanida and Y. Ichioka, "Optical-logic-array processor using
shadowgrams. II. Optical parallel digital image processing,"
J. Opt. Soc. Am. A 2, 1237-1244 (1985).

15. J. Tanida, J. Nakagawa, E. Yagyuu, M. Fukui, and Y. Ichioka,
"Experimental verification of parallel processing on a hybrid
optical parallel array logic system," Appl. Opt. 29, 2510-2521
(1990).

16. M. P. Ekstrom, Digital Image Processing Techniques (Aca-
demic Press, Orlando, Fla., 1984).

17. J. Tanida, J. Nakagawa, and Y. Ichioka, "Birefringent encod-
ing and multichannel reflective correlator for optical array
logic," Appl. Opt. 27, 3819-3823 (1988).

18. A. Avizienis, "Signed-digit number representations for fast
parallel arithmetic," IRE Trans. Electron. Comput. EC-10,
389-398 (1961).

19. E. Swartzlander, "Digital optical arithmetic," Appl. Opt. 25,
3021-3032 (1986).

1102 APPLIED OPTICS / Vol. 31, No. 8 / 10 March 1992


