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矩形双対グラフを用いた最適区画配置手法に関する研究 ∗

藤田 喜久雄†, 赤木 新介†, 島崎 定雄‡

Optimal Space Partitioning Method Based on

Rectangular Duals of Planar Graphs

Kikuo FUJITA, Shinsuke AKAGI and Sadao SHIMAZAKI

The layout problem, in which a region should be partitioned into plural subregions of layout components
so as to satisfy neighboring relationships between them and the size conditions for the whole region and
respective subregions, occurs in several layout designs. It is difficult and computationally hard to find optimal
solutions for them. In this paper, we propose an optimal space partitioning method based on rectangular duals
of planer graphs, which is used for dealing with the topological structure of the arrangement of subregions. In
the method, such a structure is optimized through a simulated annealing algorithm, and the layout structure
represented with a rectangular dual graph is transformed into an embodiment layout by using the generalized
reduced gradient method, one of the numerical optimization techniques for constrained nonlinear optimization
problems. Finally, we show an example of an access control room layout in a power plant design for checking
the effectiveness and validity of the proposed method.

Key Words: Optimal Space Partition, Rectangular Dual, Simulated Annealing, Optimization, Design
Engineering, Layout Design

1 緒 言

ある一定の広さを有する領域を複数の区画に分割

し，その際に，区画間における特定の隣接関係を満足

させるとともに，個々の区画のサイズについての条件

をも満足させる必要のある区画配置問題は，プラント

配置設計や建築設計などの分野において見られる問題

である．しかし，このような問題においては，上記の

ような条件を同時に考慮する必要があることや，位置

関係についての位相的な組合せ条件を数多く内在して

いることから，最適な配置を求めることが困難な問題

であるとされている．

本研究では，区画配置問題における位相的な隣接関

係を表現するための方法として Kozminskiらによる矩

形双対グラフ (rectangular dual)(1) (2)に対して田宮が拡

張を行なった方法(3)を導入した上で，そのような位相

構造を操作するための方法としてシミュレーテッドア

ニーリング法 (Simulated Annealing, SA)(4) (5)を，また，
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†正員，大阪大学工学部 (〒 565吹田市山田丘 2-1)．
‡学生員，大阪大学大学院工学研究科．

位相構造から具体的な配置を求めるための方法として

制約条件付き非線形最適化アルゴリズムである一般縮

小勾配法(6)を用いることにより，上記のような配置問

題において準最適な配置解を求めるための手法を提案

する．さらに，発電プラントにおけるある施設内の区

画配置設計に適用して，その妥当性を検証する．

なお，このような配置における位相的な組合せ条件

と具体的な配置情報とを階層的に取り扱い，ハイブ

リッド化解法を適用するという考え方は，著者らによ

るプラントの機器配置手法(7) (8)や最適板取り手法(9)とも

通じるものである．

2 配置設計とその支援手法

2.1 区画配置設計問題の構成と特徴 緒言でも

述べたように，本研究で取り上げる区画配置問題は特

定の領域を複数個の区画に分割する問題であり，その

特徴とするところは以下の通りである．

• 全体の領域のサイズは，その形状とともに固定さ
れている．

• 各区画のサイズについては，最小面積が与えられ
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ており，その形状 (縦横比)は極端に歪んだもので

ない限り，任意である．

• 特定の区画の間には，領域内のアクティビティに
対応する満足すべき隣接関係が存在する．以下で

は，このような満足すべき隣接関係を特に「隣接

条件」と呼んで，単に区画が相互に隣接している

状態とは区別するようにする．

このような問題は，様々な配置問題と同様，配置の位

相構造に関する組合せ条件を数多く含んだ複雑な問題

であり，加えて，各区画の形状に任意性があるため，

VLSI 設計などにおける配置問題に比べてその取り扱

いが困難となる．

そこで，本研究では組合せ条件に関する内容を矩形

双対グラフをもとに表現する一方，組合せ最適化の問

題を有効に解くことのできる SA法によりそのような

構造を操作し，また，上述の面積に関する内容を扱う

ために非線形最適化アルゴリズムである一般縮小勾配

法を融合化して，準最適な配置を求めることができる

ようにする．

2.2 シミュレーテッドアニーリング法 シミュ

レーテッドアニーリング法 (Simulated Annealing,

SA)(4) (5)は，金属の焼きなまし過程を模擬した，従来か

らの数理計画法で取り扱うことが困難であるような最

適化の問題を近似的に解くための手法である．その内

容は，ある解を仮定した上で，その解の近傍解を次々

に求めつつ，それによって得られる解により評価値が

改善される場合には，その近傍解を新しい解として受

け入れ，改善されない場合においてもある確率で受け

入れていき，以上の過程における受け入れ確率を金属

の焼きなまし過程の温度に対応したパラメータを介し

て徐々に低下させていくことによって，最終的に，大

域的に最適な解を近似的に求めようとするものであ

る．

SA法は，巡回セールスマン問題(4)や VLSI の配置問

題(4) (10) (3)への適用をはじめ，多段減速機の歯数を決定す

る問題(11)や板取り問題(12)， 3次元的なコンポーネント

の配置問題(13) (14)などにも適用されており，組合せ条件

を内在した様々な問題に対して有効であることが示さ

れつつある．しかし，上述のような最適化過程におい

て，解の受け入れ確率をどのように制御していくかは

もちろんのこと，ある解に対してその近傍解をどのよ

うに定義するかが，個々の問題に対して SA法を有効

に適用していく上で重要であるとされており，各試み

においても，個々の問題の性質に応じた適切な問題の

表現方法と，近傍解の定義方法が用いられている．し

たがって，本研究で取り上げる区画配置問題において
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図 1 矩形双対グラフの例

も，望ましい表現方法を用いる必要があると考えられ

る．

2.3 グラフ表現を用いた配置設計手法 矩形双

対グラフは，矩形領域の配置問題において各配置要素

間の隣接関係を効率的に扱うために導入された方法で

あり，配置における隣接関係を 4連結三角化無向平面

グラフ (4-connected triangulated plane graph)を用いて

表現した上で，そのようなグラフと具体的な配置とを

相互に変換することによって，隣接関係をグラフ上で

位相的に操作しようとするものである．このような表

現方法に対して， Kozminskiらは，そのようなグラフ

の性質と領域分割のアルゴリズムを示している (1) (2)．さ

らに，田宮は，上記のグラフを有向グラフへと拡張す

ることによって，マクロセル配置問題を SA法で解く

際の配置変更方法 (後出，図 1・図 2を参照)を提案し

ている(3)．

以上のようなグラフによる方法は，配置における隣

接関係を直接的に操作できることから， 2.1項で示し

たような特徴を有する配置問題においても，有効な表

現方法であると考えられる．一方では，マクロセル配

置などの配置問題では各区画の形状寸法があらかじめ

与えられていたり，隣接条件が明確には規定されてい

なかったりするなどの点で，性質を異にする部分も多

く，本研究では，以下の節で述べるように，グラフか

ら配置を求める過程で最適化アルゴリズムを用いた

り，隣接条件を満足する配置を求めるためのアルゴリ

ズムを付加するなどの点で，独自の拡張や変更を行な

う．

3 矩形双対グラフと区画配置の表現

3.1 矩形双対グラフによる配置表現 本手法で

用いる矩形双対グラフの表現方法 (3)を図 1に示す．図中

(a)はある配置の位相構造についてのグラフ表現であ

り， (b)はその具体的な配置の例である．図 (a)中の各
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ノードは，配置すべき区画 (図中 1, 2, 3, · · · )と全体

の配置領域に対する各東西南北方向の無限遠平面 (図中

E, W, S, N)を表現しており，それらの間の隣接関係が 2

種類のエッジを用いて表現されている． ‘ ’ なる水

平エッジはそれによって接続されているノードが西か

ら東の順で隣接していることを， ‘ ’ なる垂直エッ

ジは各ノードが南から北の順で隣接していることを表

現している．

以上のような矩形双対グラフの特徴は，以下のよう

にまとめられる(3)．

• 配置における各区画は相互に重なり合うことが
なく，また，それらの間に隙間を生じることもな

い．

• 配置の外形は長方形となる．
• 矩形双対グラフにおいてエッジで結ばれている
ノードの対は，配置において必ず隣接する．

これらの点を， 2.1項に示した区画配置の特徴に照らし

合わせてみた場合，全体の領域を隙間を生じることな

く分割できる点や，区画間の隣接条件をグラフ上にお

けるノード間のエッジの存在条件に置き換えて取り扱

うことができることから，図 1に示したような矩形双

対グラフによる表現は，区画配置を処理するための方

法として，有効であると考えられる．

3.2 矩形双対グラフの位相構造変換 図 1に示し

たようなグラフに対して SAの過程で逐次的な変更を

加えていくためには，上述のように，あるグラフに対

してその近傍を求めるための変換操作を定める必要が

ある．図 2は田宮(3)によるそのような変換のタイプを示

したものであり，矩形双対グラフにおける矩形領域の

隣接性を局部的に変更する変換である．図中，タイプ

1は，水平 (垂直)方向に隣接した 2つの矩形領域を 90

度回転し垂直 (水平)方向に隣接させる変換である．タ

イプ 2は， 3つの矩形領域に囲まれた T字の方向を変

える変換である．タイプ 3は， 4つの矩形領域からな

る領域における中心部分の接続形態を変更する変換で

ある．なお，これらの各タイプの変換について，それ

ぞれ， 2個， 8個， 4個の類似形が存在する．

後述の SAの過程では，図 2に示した変換に従っ

て，図中の左側のグラフと同型な矩形双対グラフのサ

ブグラフを見つけ，そのサブグラフに対して，それぞ

れの変換を適用することにより，その近傍の配置を見

つけ出すようにする．なお，このような変換を有限回

繰り返して行なうことにより，ノード数の等しい全て

の矩形双対グラフは相互変換可能であることが示され

ており(3)，これにより最適な配置となる区画の位相構

造を SA法により求めることが可能となる．
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図 2 矩形双対グラフの変換

3.3 一般縮小勾配法による配置の具体化 一

方，上記のような変換を通じて定義される位相関係

から図 1(b)に示すような配置を具体化する方法に

ついては，以下のように制約条件付き非線形最適化

問題として定式化を行ない，それを一般縮小勾配法

(Generalized Reduced Gradient Method, GRG法)(6)に

よって解くようにする．

3.3.1 設計変数 図 3に示すような座標系を設定

した上で，各区画i , (i = 1, · · · ,N)について，それぞ
れ，位置と寸法についての 4つの設計変数 x+

i , x−i , y+
i ,

y−i を導入する．
3.3.2 制約条件 以下の 2種類の制約条件を考慮

する．

• 矩形双対グラフによる位相構造に従って，対応す
る区画が隣接するようにし，さらに隣接部で共有

される部分の長さをある一定の長さ以上にする．

例えば，図 4のように区画i の東側に区画 j が隣
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図 4 隣接する区画間についての制約条件

接している場合には，以下の条件式を定める．

x+
i = x−j

y+
i −y−j ≥ Li j

y+
j −y−i ≥ Li j

 (1)

ただし， Li j は区画i と区画 j の隣接部の最小寸法

であり，それらの区画の間に隣接条件が指定され

ている場合には，対応するアクティビティに必要

な通路の幅を Li j とし，そうでない場合には Li j =
0とする．

• 各区画に対してその必要最小面積を確保する．
例えば，区画i については以下のように定める．

(x+
i −x−i ) (y+

i −y−i ) ≥ Si

x+
i −x−i ≥ Li

y+
i −y−i ≥ Li

 (2)

ただし， Si は区画i の必要最小面積， Li は区画i

の一辺の最小長さである．

3.3.3 目的関数 目的関数は，配置を行なうべき

全体領域のサイズ， XS×YSに対して，図 3の位置変数

X, Yをもとに以下のように定める．

(X−XS)2 +(Y−YS)2 → Min. (3)

以上のような定式化は，制約条件付き非線形最適化

問題であり，一般縮小勾配法を用いてそれを解くこと

により，図 1(a)のようなグラフから (b)のような配置

を求めることができるようになる．
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図 5 グラフのブロック化の一例

4 最適区画配置設計手法

本節では，上述の矩形双対グラフによる表現(3)と

一般縮小勾配法(6)による配置の具体化に基づいた

SA法(4) (5)による最適区画配置手法について述べる．そ

の概要は，まず，与条件として規定された隣接条件を

満足するグラフを導出し，それを初期解として SA法

を適用していくことにより，準最適な配置解を求めよ

うとするものである．以下にその詳細を示す．

4.1 初期可能解の導出 本研究で扱う問題にお

いては，前述のように特定の区間を互いに隣接させる

必要があり，そのような関係を矩形双対グラフ中の

エッジに対応させる．一方，後述の SA法による最適

化過程では，規定された隣接関係を満足するグラフに

限定して，最適化操作を繰り返していくようにする．

このため， SA法における初期解としては，与えられ

た隣接条件のすべてを満足する矩形双対グラフを求め

ておく必要がある．

そこで，グラフにおいて与えられた隣接条件のうち

満足されていない条件の数を評価関数とした降下法

のアルゴリズムを用いて，そのような初期解を導出す

る．すなわち，任意に生成した矩形双対グラフに対し

て，図 2に示した位相構造変換を適用しつつ，上記の

評価関数が改善される場合には解を受け入れ，そうで

ない場合には受け入れないことにより，逐次的にすべ

ての隣接関係を満足するグラフを求めるようにする．

このとき，初期解を容易に得られるように，配置すべ

き区画群を隣接条件に基づいてブロック化した上で，

ブロック間のグラフと各ブロック内のグラフのそれぞ

れに対して，降下法のアルゴリズムを適用する．以上

の方法の詳細を，以下に示す．

(1) 配置すべき区画の隣接条件や各区画の内容をも

とに，グラフ上の枝の部分を幹に含めたり，連続
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した幹の部分をまとめたりすることにより，複数

個の区画をブロック化し，それによってブロック

間のグラフを定義する．なお，図 5は 5節で取り

上げる事例におけるグラフのブロック化を示した

ものである．

(2) 与えられた区画間の隣接条件をもとにブロック

間で満足されるべき隣接関係を定義し，そのよう

な隣接関係を満足するブロック間の矩形双対グラ

フを降下法により求める．

(3) 以上のようにして定めたブロック間の隣接関係

により規定される各ブロック内のエッジの方向性

を満足するように，各ブロック内の区画配置を降

下法により求める．

(4) 各ブロック内の配置を全体としてまとめた場合

に，すべての隣接条件を満足させることができ

れば，その配置を SA法における初期可能解とし

て，アルゴリズムを終了する．満足させることが

できない場合は，ステップ (5)へ行く．

(5) 現在のブロック間のグラフに対して図 2に示し

た位相構造変換を任意に適用することにより，そ

れとは異なる別のブロック間のグラフを求めて，

ステップ (3)へ行く．

このうち， (4)の各ブロック内の配置を全体としてま

とめる処理については，図 6にも示すような処理を繰

り返し行なうことによって行なう．すなわち，例え

ば， (a)のようにブロック A とブロック Bが西から東

への関係で隣接しており，さらに，それぞれにブロッ

ク内の配置が (b)のように求まっている場合には，ブ

ロック A 内のノード a1と a2，ブロック B内のノード

b1と b2，の双方のノード間におけるエッジの連結と

して (c)に示すような可能性を想定でき，本来の矩形

双対グラフの平面性を満足しつつ，ノード間の隣接条

件をできるだけ多く満足できるように，相矛盾する

エッジのうちのいずれかを除去していくようにする．

以上のような処理を行なっていくことにより， (2)と

(3)の処理によって与えられた各配置を統合化すること

ができるようになる．

4.2 SA法による位相構造の最適化 前節のよう

にして求まる初期可能解に対して，以下のような SA

法(4) (5)のアルゴリズム (図 7)を構成し，最適な区画配置

を求めるようにする．

(1) あらかじめ規定された隣接条件の全てを満足す

る矩形双対グラフを任意に生成し，この解により

定まる配置の評価値を，例えば，後出の式 (4)に

より求めて，Cとする．

(2) 初期温度を T とする．

(3) 現在の解に対して 3.2項で示した位相構造変換を

適用することにより得られる解の中から要素間の

隣接条件を満足しないものを除き，さらに残った

ものの中からランダムに一つを選択して，候補解

とする．この候補解に対して 3.3項で示した方法

により実配置を求め，それの評価値を，例えば，

後出の式 (4)により計算して， C̃とする．

(4) ∆ f = C̃ − Cとし， ∆ f < 0の場合，候補解を

新しい解として受容し， C̃を新たなCとする．

∆ f ≥ 0の場合についても,確率 p = exp
(
−∆ f

T

)
で

候補解を新しい解として受容する．

(5) 以上の操作を規定回数，繰り返した場合には，

ステップ (6)へ行く．それ以外の場合は，ステッ

プ (3)へ行く．

(6) 温度 T に温度更新係数 αを乗じて温度を下げ
る．

(7) 解が収束したと判断された場合には，終了す

る．それ以外の場合はステップ (3)へ行く．

以上のようにして，逐次的に配置を改善していくこと

により望ましい配置が得られることが期待できる．

4.3 区画配置の評価 上記の過程で用いる評価

値については，個別の問題に依存するが，次節で示す
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Generate an initial feasible layout

start

Repeat the following operations
certain times 

end

Generate the neighborhood
layouts of the current layout

and select one from them

Accept the new
layout as the 
current layout

Embody the 
layout with 

GRG method

Yes

No

No

Yes

Is the layout converged ?

f 0

Set initial temprature: T

Calculate the cost function
of the new layout and set:

f = C C

Update T = α Tto small:T

Accept the new layout as
the current layout with

the following probability:
f T( )exp

図 7 SA法による位相構造の最適化

事例においては，以下に示す関数により定める．

C = w1

N

∑
i=1

surplusi +w2

N

∑
i=1

ratioi (4)

ここで， surplusi と ratioi は，それぞれ，各区画の余

剰面積と縦横比に関する評価関数であり， w1と w2は

各項についての重み付けの係数 (w1, w2 > 0)である．

余剰面積は必要最小面積を超過した面積であり，そ

の評価関数は区画i に対して，具体的な配置における

面積を Si，配置条件として定められる必要最小面積を

Ŝi として，次式により定義する．

surplusi =

{
Si − Ŝi · · · Si > Ŝi

0 · · · Si ≤ Ŝi
(5)

一方，縦横比 Ri (≥ 1)の評価関数については，次式

により定義する．

ratioi =


(

Ri − R̂i

)2 · · · Ri > R̂i

0 · · · Ri ≤ R̂i

(6)

R̂i = Rmin×
(

Ŝi

Smin

) 1
β

(7)

ここで， Rminは必要最小面積が最小となる区画の縦横

比の最大許容目標値， Sminはそのような区画の必要最

小面積である． βは Rminの値をもとに必要最小面積の

大きな各区画の縦横比の最大許容目標値を設定するた

めの係数 (1≤ β ≤ ∞ )であり， Ŝi の大小関係に依存す

るが， β = 1の場合には，縦横比を評価するのではな

く，すべての区画に対して短辺の長さをある一定値以

上に定めようとすることになり，一方， β = ∞の場合
には R̂i をすべて Rminに等しくできることから，両者

の間の適切な値をとることにより，面積の小さい区画

ほど正方形に近い形状とする一方，比較的面積の大き

い区画についてはある程度長細い形状になることを許

容するようなバランスのとれた配置が得られるように

なることが期待できる．

4.4 配置手法の実装方法 次に，以上のような

配置手法をコンピュータ上に実装する方法について述

べる．本手法における処理は，大きく，配置の位相構

造についてのグラフを扱う部分と，そのようなグラフ

から実際の配置を求める部分とから成り立っており，

前者は，グラフ表現中のパターンを変換するところ

に，後者は数値的な計算を主体とするところに，それ

ぞれ特徴がある．このような内容を各プログラミング

言語の特徴と照らし合わせた結果，前者については記

号処理に優れた Lisp 言語を，後者については C言語

を用い， UNIX オペレーティングシステムにおける

ソケット通信の機能 (15)を用いて両者の間のデータのや

り取りを行なうことにより，最適配置システムを構築

した．なお，具体的なシステムの構築・実行に当って

は， Sun SPARC Station (SunOS 4.1.1)を用いた．

5 適用事例

最後に，本手法をある発電プラントにおける出入り

管理設備の配置問題に適用した事例を示す．このよう

な施設の配置では，作業員がある定められた順序で各

区画を通過していくため，そのようなアクティビティ

に対応した区画間に隣接関係を実現するとともに，そ

れぞれの区画に対して必要な面積を確保することが求

められる．

表 1はある設計事例において配置すべき 21個の区画

を示したものであり，それらの間で前出の図 5に示し
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図 8 配置結果の一例

表 1 配置条件

No. Name of subregion Ŝi R̂i

1 atlb-pre 49.00 2.74
2 atlb-pro 40.00 2.56
3 cont-man 13.00 1.76
4 shoes-box 65.00 3.02
5 locker-r 204.00 4.42
6 lavatory 16.00 1.89
7 relax-r 36.00 2.48
8 watchman-r 68.00 3.06
9 watchman-wait-r 8.00 1.50

10 special-wait-r 14.00 1.81
11 monitor-pre 58.00 2.90
12 monitor-pro 58.00 2.90
13 clothing-r 89.00 3.35
14 clothing-store 105.00 3.54
15 hand-washing-r 71.00 3.11
16 dressing-r 84.00 3.28
17 shower-r 37.00 2.50
18 yellow-shoes 92.00 3.39
19 patrol-r 29.00 2.30
20 storehouse 15.00 1.85
21 empty-zone 62.00 2.97

た 27個の隣接条件を満足させる必要がある．図 8は，

そのような問題を本手法により解いた場合の一例であ

り，与えられた隣接関係を満足しつつ，バランスの取

れた良好な配置が得られていることを確認することが

できる．また，図 9は，図 8に示した配置解を得る過程

において，式 (4)の評価値が変化していく様子を示し

たものであり，横軸については， (a)が候補解を生成

した回数を， (b)が温度 T を更新した時点を示してお

り，縦軸については双方とも評価値Cを表している．

これらの図からも，温度が低くなっていくにつれて，

解の評価値の変動幅が小さくなっていき，徐々に最適

な解へと収束していく様子を確認することができる．

0 5000 10000 15000 20000 25000 30000 35000

Iterations

C
os

t F
un

ct
io

n
3000

2000

1000

4000

5000

(a)新しい解を生成した回数に対する評価値の変化
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(b)温度の更新による評価値の変化

図 9 SA法の収束過程

なお，本計算例においては，初期温度を T = 1000,

規定繰返し数を 200回，温度更新係数を α = 0.95，重

み付け係数をそれぞれ w1 = 1.0, w2 = 2.0，縦横比の評

価関数におけるパラメータを Rmin = 1.5， β = 3とし

た．
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6 結 言

本研究では，区画配置における位相関係を矩形双対

グラフにより表現した上で，シミュレーテッドアニー

リング法を用いて操作することにより，最適な配置を

求める手法を提案した．また，プラント配置における

具体的な事例に適用して，その妥当性を検証した．

矩形双対グラフは，区画配置における隣接関係を取

り扱う上で，具体的な配置から位相的な関係を分離し

て取り扱うことができるなどの点において有効な手

法であり，そのような位相構造を最適化する方法とし

て，シミュレーテッドアニーリング法が有効であるこ

とが確認できた．さらに，区画配置問題における望ま

しい配置を求めるために，各区画についての余剰面積

と縦横比から構成される評価関数を導入し，そのよう

な関数によりバランスに優れた良好な配置解が得られ

ることを確認した．

最後に， 5節で取り上げました区画配置問題につい

て御教示頂きました，三菱原子力工業の 仲戸川 哲人

氏，安田公輔氏，柴戸要氏に謝意を表します．
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