
Title Experimental verification of parallel processing
on a hybrid optical parallel array logic system

Author(s) Tanida, Jun; Nakagawa, Jun; Yagyu, Eiji et al.

Citation Applied Optics. 1990, 29(17), p. 2510-2521

Version Type VoR

URL https://hdl.handle.net/11094/3028

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Experimental verification of parallel processing on a
hybrid optical parallel array logic system

Jun Tanida, Jun Nakagawa, Eiji Yagyu, Masaki Fukui, and Yoshiki Ichioka

A hybrid digital optical computing system is constructed, a variation of the optical parallel array logic system
(OPALS). The OPALS is a general-purpose digital optical computing system based on optical array logic, in
which image coding and 2-D correlation are used to achieve parallel logical operations. In the constructed
system, 2-D correlation for optical array logic is performed optically with a modified multireflective correla-
tor; the other procedures in optical array logic are achieved by electronics including a TV feedback system.
We have verified correct execution of programs written by optical array logic on the system. Although the
processing speed of the system is still slow because of the sequential process in electronics, it can be drastically
improved by replacing the sequential processing devices with parallel ones. Key words: Optical computing,
digital processing, optoelectronics, computers.

1. Introduction
A digital optical computing system is a promising

candidate for a massively parallel computer in the
future. The system will fully utilize excellent features
of light for computation and communication, such as
parallelism, high speed propagation, and crosstalk free
interconnection. A number of methods and tech-
niques have been proposed for digital optical comput-
ing as well as digital optical logic gates.'

Several architectures for digital optical computing
systems have been proposed.2-7 Most of them depend
on specific design concepts suitable for optical parallel
processing. Although much effort is devoted to con-
struct the optical systems, implementation of quite
basic circuits alone, e.g., parallel logic gates and flip-
flops, has been actually demonstrated. This depends
on the lack of appropriate optical devices.

To compensate the delay of development of optical
and/or optoelectronic parallel devices, computer simu-
lation is effective for studies on system behavior and
evaluation of processing algorithms. The authors are
investigating parallel processing algorithms based on
optical array logic (OAL) and have demonstrated their
capabilities.81 0 Nevertheless, construction of a pre-

When this work was done, all authors were with Osaka University,
Department of Applied Physics, 2-1 Yamadaoka, Suita, Osaka 565,
Japan; Jun Nakagawa is now with Konica Corporation, 2970
Ishikawa-cho, Hachioji, Tokyo 192, Japan; Eiji Ygyu is now with
Mitsubishi Electric Corporation, Central Research Laboratory, 8-1-
1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661, Japan; and Ma-
saki Fukui is now with NTT Transmission Systems Laboratories, 1-
2356 Take, Yokosuka, Kanagawa 238-03, Japan.

Received 24 July 1989.

liminary system is still important because it will pro-
vide useful information for designing practical devices
and stimulating researchers on optical parallel com-
puting. For this purpose, we have constructed a pre-
liminary optical computing system capable of imple-
menting parallel programming.

The architecture we adopt is that of the OPALS
(optical parallel array logic system). 1 The OPALS is
a conceptual digital optical computing system based
on OAL. Many kinds of processing written by OAL
can be executed on the OPALS, e.g., parallel image
processing and parallel numerical processing. Several
types of OPALS have been considered as available
hardware. Among the systems, an optoelectronic hy-
brid one is easy to construct with current technology,
and it is suitable for a prototype of the preliminary
system. Thus we choose the hybrid OPALS as the
target of our research.

In this paper we describe the hybrid OPALS com-
posed of currently available devices and present some
experimental results of parallel processing on the sys-
tem. In Sec. II we briefly explain OAL and the
OPALS. In Sec. III we describe details of the con-
structed system. In Sec. IV some results of the OAL
program executed on the hybrid OPALS are present-
ed. Finally, we discuss the performance of the hybrid
OPALS and required devices for future extension.

II. Optical Array Logic (OAL) and OPALS
OAL is a technique to execute parallel logical opera-

tion for 2-D image data. Figure 1 illustrates the pro-
cessing procedures of OAL. Essentially, OAL is
achieved by several parallel processing procedures for
2-D data, i.e., encoding, 2-D correlation, sampling, and
inverted OR. These procedures are easily implement-
ed with optical methods in parallel, so that OAL is

2510 APPLIED OPTICS / Vol. 29, No. 17 / 10 June 1990

Coding Correlation Sampling Inverted-OR

Input A Coded

Input B

a 0 1

1 MmgE

Product Term Operation #2

Coding Rule

Fig. 1. Processing procedures of OAL.

promising as a basic technique for parallel digital opti-
cal computing.

Among the features of OAL, programmability is
most important and attractive because it offers great
flexibility for processing. In OAL, programming is
realized by specifying operation kernels used in 2-D
correlation. By selecting the operation kernels, any
parallel neighborhood logical operation can be
achieved.

OAL programs are described by kernel expression
which is designated by the sum of a matrixwise expres-
sion. Hereafter we call an individual term in this
matrixlike expression a matrix. Figure 2 shows the
correspondence between a kernel expression and a set
of operation kernels. Each matrix in Fig. 2(a) corre-
sponds to one operation kernel in Fig. 2(c). Symbols,
such as .1 and .0, in the matrix in Fig. 2(a) are expressed
by specific dot patterns in small grids called kernel
units in Fig. 2(b). The kernel units form the operation
kernel shown in Figs. 2(b) and (c). Any processing can
be described explicitly with the kernel expression. We
have developed various ranges of applications written
in this notation. In the Appendix, the notation rule is
described briefly.

The OPALS is a general-purpose parallel processing
system based on OAL.7 OAL has two inputs and
produces one output. As shown in Fig. 3, the OPALS
involves a feedback line connecting the output of the
OAL processor to one of the inputs for effective itera-
tive operation. Whereas the feedback path is fixed in
the original OPALS, the current system has a port
selector to increase processing flexibility.

Several versions of the OPALS are considered for
matching to various levels of technology. For exam-
ple, optoelectronic, 7 all-optical, 1 and modularized 12

versions of OPALS are presented. Among these ver-
sions we chose the optoelectronic one as a preliminary
system. The optoelectronic version of OPALS is a
hybrid system in which optics is basically used for
processing that requires complicated signal flow, i.e.,

.. . 1 ..

.1 .0 .1

I.. .1

+ .1 .0

L..

(a)

+ [1

#'1

(b)

l I I I
_ ,: -Adr LI

I I I
I IX;:~ I I

I I I
(c)

Fig. 2. OAL description by kernel expression: (a) kernel expres-
sion; (b) sets of kernel units; (c) operation kernels. The shaded
squares in the operation kernels indicate the origin of a neighbor-

hood area.

2-D correlation, and electronics is utilized for nonlin-
ear operations. The hybrid system can be easily as-
sembled with currently available devices. Although
the processing speed of the hybrid system is quite slow,
flexibility is more important than speed to investigate
architecture and to evaluate production feasibility.

MII. System Specification of Constructed H-OPALS
Figure 4 shows a block diagram and a photograph of

the constructed hybrid OPALS (H-OPALS). The

10 June 1990 / Vol. 29, No. 17 / APPLIED OPTICS 2511

I El IFa O 0

_. i _ 0 0

Correlated Sampled
Image #1 Image #1

Product Term
Operation #1

Output

- - ---

.I Product Term Operation K .+

Feedback Loop

Input
Image

Port Optical Array Logic
Selector Processor

Fig. 3. OPALS involving a port selector.

Output
Image

(a)

(b)

Fig. 4. Constructed H-OPALS: (a) block diagram and (b) photo-
graph of the system.

system is divided into two parts: optical and electron-
ic parts. In the optical part, 2-D correlation is execut-
ed and in the electronic part, encoding, sampling, and
inverted OR are achieved. Control of the whole system
is also implemented by electronics. In the following,
we explain individual functional blocks.

The correlator is the main block of the H-OPALS
and it serves as 2-D correlation of a coded image and an
operation kernel. As pointed out in the previous pa-
per,9 capability of a correlator determines perform-
ance and flexibility of an OAL processing system. The
larger size of operation kernels a correlator can oper-
ate, the better performance the system attains. We
have designed a correlator to treat operation kernels
consisting of up to 20 X 20 grids.

To satisfy the above specifications with currently
available devices, a multichannel reflective correla-
tor13 followed by a 2-D galvanometer mirror is used.
Figure 5 shows the optical setup of the correlator. For
simplicity, optical paths are unfolded at the segmented
mirror and the galvanometer mirror. The reason a
galvanometer mirror is introduced to the system is that
individual segmented mirror pieces cannot be dynami-
cally controlled. Therefore, we use the galvanometer
mirror as an active control device for shifting the image
by the amount of any pixel sizes.

We use visible red light emitting diodes (LEDs),
Toshiba TLRA130-C, as a 2 X 2 light source array and
a galvanometer mirror, General Scanning G-100PD,
with a drive amplifier, A-601. As an input device, we
use a transparent type of liquid crystal display (LCD),
EDM-IG127801C made by Matsushita Electric Indus-
trial with controller EDP-LCDC07C. The LCD can
display images consisting of 128 X 128 cells, and each
cell size is 0.45 X 0.45 mm.

Unfortunately, the LCD has poor contrast ratio
(-4:1), so that some compensation techniques must be
used. Figure 6 shows the procedure executing 2-D
correlation. The 2-D correlation is divided into a se-
quence of subcorrelations. Each subcorrelation is
made for a copy of the coded image and a kernel unit.
A kernel unit consists of 2 X 2 grid points. This
subcorrelation is executed in the front part of the
correlator composed of lenses L1, L2, L3 , and L4 in Fig.
5. In this processing, individual segmented mirror
pieces are adjusted to produce images shifted by a half-
amount of a pixel to each other vertically and horizon-
tally. Although the segmented mirror is fixed, a
change of switching configurations of the LED array

t5 5

Fig. 5. Optical setup of the multichannel reflec-
tive correlator with a 2-D galvanometer mirror.

2512 APPLIED OPTICS / Vol. 29, No. 17 / 10 June 1990

Correlation

Fig. 6. Sequence of correlation
in the multichannel reflective cor-
relator with a 2-D galvanometer

mirror.

enables us to achieve any of sixteen possible subcorre-
lations. Note that the result of subcorrelation is an
overlapped version of at most four coded images.
Thus we can avoid problems caused by low contrast of
the LCD.

Individual results of subcorrelation are shifted by
the galvanometer mirror by the amount of any pixel
size and they are summed up. An operation of sum-
mation is achieved in the electronic system after detec-
tion by a charge coupled device (CCD) camera. As
long as the beam deflected by the galvanometer mirror
passes through lens L5 in Fig. 5, correlation with any
size of operation kernel can be realized in this manner.

The correlated, or subcorrelated, images are detect-
ed by the CCD camera, NEC TI-23A. Although the
CCD has 380 X 350 resolution points, the optical sys-
tem is adjusted such that the signal from one cell in the
correlated image can be detected in the area of 8 X 8
resolution points. To reduce the mismatching effect
between the detected spot size of the image and the cell
size of the CCD, median filtering is used for the detect-
ed image. The LCD displaying a coded image and the
CCD camera have different scanning frequencies, so
that flicker results. In addition, image distortion
caused by aberration of the optical system makes it
difficult to reduce the number of resolution points for
one cell. Consequently, a coded image consisting of 40
X 40 cells, equal to 20 X 20 pixels, is treated in the
constructed system. This size seems to be too small to
implement parallel processing, but it matches well to
the capability of the electronic system used.

Encoding, sampling, and inverted OR operations are
executed by a personal computer (PC), NEC PC-
9801VM, with a frame memory, Edec's Image PC ED-
1181. These procedures are programmed by pascal
and assembly languages and implemented through a
CRT terminal. Radiating configurations of the LEDs

Fig. 7. Terminal display monitoring the H-OPALS.

and the position of the galvanometer mirror are also
controlled by the program through input/output ports
of the PC, so that all the operations of the constructed
system can be controlled from the terminal of the PC.
The status of the system is monitored through a CRT
as shown in Fig. 7. The control program can execute a
sequence of commands written in OAL, or an OAL
program.

IV. Experimental Results
Many kinds of processing can be written in OAL.

We execute four kinds of parallel processing on the
constructed H-OPALS and demonstrate the capabili-
ties of the system.

A. Parallel Logic Operation

We execute simple parallel logic operations. Fig-
ures 8(a) and (b) show input images; Figs. 8(c) and (d)

10 June 1990 / Vol. 29, No. 17 / APPLIED OPTICS 2513

7

Summing UpSub-Correlation Image Shift

Input Image

.11

(a) (b)

Step: 7

(c) (d)

(e) (f)
Fig. 8. Experimental result of parallel logic operations: (a) and (b)
input images; (c) and (d) optical correlated images in operations A

and A XOR B; (e) and (f) outputs of A and A XOR B.

are optically correlated images for logical operations A
and A XOR B, respectively. These images are sampled
in the PC to produce the results of logical operations.
The final results are shown in Figs. 8(e) and (f). Note
that all the output results shown in this paper are not
the result of computer simulation but are those ob-
tained by parallel processing using the constructed H-
OPALS; they are printed out by a terminal printer
connected to the H-OPALS.

B. Binary Image Processing
As examples of binary image processing, maze solu-

tion and image thinning are demonstrated. The algo-
rithm used to solve a maze is iteratively to find dead
ends of paths by template matching and to delete
them. The OAL program is shown in the Appendix.
Figure 9 denotes the intermediate processed results
and the final result of the maze solution. In the pro-
cessing, dark pixels in input B indicate paths. After
seven iterations the correct path is extracted.

Image thinning can be executed with template
matching.1 4 If a current pixel surrounded by the

Fig. 9. Experimental results of the maze solution.

Current Pixel F-ET1 nr

~~~~E]E

~~~~~EM: Logical 1

: Logical 0

Fig. 10. Pixel patterns used for image thinning.

boxed area has one of the specific neighborhood pat-
terns shown in Fig. 10, the pixel can be deleted without
changing the topology of the input image. This search
and deletion algorithm is iteratively executed for thin-
ning. Figure 11 indicates the iterative operation, and
the correct result is obtained after seventeen itera-
tions.

C. Numerical Processing
Several algorithms for numerical processing such as

addition, subtraction, and multiplication have been
written in OAL and presented in previous papers.9 10

2514 APPLIED OPTICS / Vol. 29, No. 17 / 10 June 1990

B*<tK8XI NA;48RftiBlviz\il7No l a_
- da-leI.. I-

Se.

fI

'I
I11I

3

i

I

Step : 10 Step : 15

Step : 1

Step : 3 Step : 8 Step : 13 Step : 18

Fig. 11. Experimental results of image thinning.

Input B Output

Fig. 12. Algorithm for binary addition with pattern logic.

Here, we demonstrate binary addition with pattern
logic.9 Figure 12 illustrates the algorithm in which
images B and A are used to hold two operands and their
discriminating tags, respectively. Feeding back out-
put B into input B and iteratively executing the same
processing, the result of addition is obtained at the
sum location in the output.

Figure 13 shows the experimental results of binary
addition for six sets of 8-bit numbers and four sets of
18-bit numbers. Figure 13(a) is input data. Input
signals for ten independent binary additions are
placed in input image B as shown in Fig. 13(b). The
discriminating tags are set in input image A as shown
in Fig. 13(c). Intermediate processed, results of the
first four steps and the final result after eighteen itera-
tions are displayed in Figs. 13(d)-(h). The numerical
data decoded from Fig. 13(h) is shown in Fig. 13(i),
which indicates the correct answers expressed in a
decimal system.

D. Turing Machine
A Turing machine is simulated on the constructed

H-OPALS. A Turing machine is categorized into a
class of the most discriminating automation.15 As a
result, if a Turing machine can be simulated on the H-
OPALS, computational capabilities of the H-OPALS
can be proved. In addition, the parallel drive of multi-
ple Turing machines can reveal parallelism inherent in
the OPALS.

A Turning machine is composed of a tape and a
reading head. Several kinds of symbol are written on
the tape. The head moves on the tape, reads the
symbol at the head position, and rewrites a symbol at

10 June 1990 / Vol. 29, No. 17 / APPLIED OPTICS 2515

Input Image Step

(a)

(d)

(g)

(b)

(e)

__

=l
,,,,,_,.......

=l
=

I I,,, I I I, I I I I I I I as

=
(c)

_R

*1111111_111-1_

=
A_
_

1 1 1 1 1 1 1 1 1 1 1 1 1 1_

(I)

(h)

o0 l 71
2 30

-1 | -10

256
0

32768

0

(i)

Fig. 13. Experimental results of addition: (a) input
data; (b) image form of the input data; (c) attribute pat-
terns for the input data; (d)-(h) output images at first,
second, third, fourth, and final steps; (i) the decoded

numbers in a decimal system.

the same position. The head has an internal state,
which determines the moving direction and the symbol
to be rewritten according to the symbol at the head.
The operation of a Turing machine is described by a
transfer function such as QiTiQoToM, where Qi is the
state of the head when reading and Tj is the read
symbol; Q0and To are the rewritten symbol and the
state of the head at the next step, and M is the moving
direction of the head.

The characteristics of the simulated Turing machine
are denoted in Fig. 14(a), and pixel patterns for sym-
bols and internal states are shown in Fig. 14(b). The
manner of data arrangement in a Turing machine is
shown in Fig. 14(c). The transfer function is assigned
by parallel neighborhood operations in OAL. The
parallel neighborhood operation is applied in parallel
to all the Turing machines placed in the image plane.
As a result, we can operate multiple Turing machines
in parallel.

Figure 15 shows the result executed on the H-
OPALS. In this example, four Turing machines are
driven in parallel. Observing the movement of each
head, we can verify the capabilities of the constructed
H-OPALS as a parallel computer.

V. Discussion
We have presented a preliminary system of the hy-

brid version of OPALS and demonstrated capabilities

Internal States

Tape Symbols
Transfer Functions

Initial State

3bit(A,B,C,D,E)
2 bit (0, ib)
AOAOR C1D1R A11B11R CbEbL

BOAOR DODiR B1C1R D1D1R
COEbL DbD1R

A

(a)

Tape Symbol Internal States

M~~~~ [1 l 1 M 2 WE
b 0 1 A B C D E

(b)

Image HT

._Tape Position
Head Position

Image SS

nTape Symbols
Internal States

(C)
Fig. 14. Preparation of the Turing machine simulated on the
OPALS: (a) characteristics of the target Turing machine; (b) pixel
patterns for coding symbols and interval status; (c) data arrange-

ment.

2516 APPLIED OPTICS / Vol. 29, No. 17 / 10 June 1990

0 +0 3 +4
1 1+1 0 +20

1 + (-2) 10 + (-20)

255 + 1
255 + (-255)

16384 + 16384

131071 + 1

Initial Input Image

INPUT A

Step : 1

OUTPUT A

Ste p:2

OUTPUT A

Step: 3

OUTPUT A

Step :4

OUTPUT A

INPUT B

Cl_

I_
qua_

w_
E _

I

OUTPUT B

OUTPUT B

OUTPUT B

OUTPUT B

Step :5

OUTPUT A

Step 6

OUTPUT A

Step 7

OUTPUT A

Step 8

OUTPUT A

Step 9

OUTPUT A

Table 1. Processing Time Required for One Interatlon In Executed
Programs

Program Processing time

Maze Solution 9.2

Image Thinning 6.0

Binary Addition 5.5

Turing Machine Simulation 50.0

Table 11. Processing Time Required for Each Procedure In OAL

Procedure Processing time
(s)

Encoding 0.054

Displaying Coded Image 1.300

Controlling Galvano Mirror 0.001

Switching LEDs 0.001

Sampling with Filtering 0.117

Summation for Sub-Correlation 0.060

Inverted-OR 0.044

OUTPUT B

OUTPUT B

OUTPUT B

OUTPUT B

OUTPUT B

Fig. 15. Experimental results of the Turing ma-
chine simulated on the H-OPALS. Four Turing

machines are driven in parallel.

of parallel processing through some kinds of processing
on the system. The H-OPALS can execute various
kinds of parallel processing with its flexible program-
mability. However, processing speed of the construct-
ed system is still quite slow. Table I shows the average
time required for one iteration in each program. To
analyze the bottleneck factor of the system, processing
times for individual processing in OAL are measured.
Table II tabulates the result, which shows that slow
response of the LCD is the main factor to restrict the
total processing speed of the system. Therefore, a
high speed display device as an interface between opti-
cal and electronic systems is strongly desired for the
system.

As seen from Table II, most of the procedures exe-
cuted by electronics require more time than the optical
system does, because these procedures are processed
sequentially with a PC. Therefore, as we increase the
number of pixels, the procedures take longer. Howev-
er, this problem can be solved by specially designed
electronic circuits working on pixel by pixel in parallel.
The procedures executed by the circuits do not require
complex data flow; namely, all can be achieved by

10 June 1990 / Vol. 29, No. 17 / APPLIED OPTICS 2517

operations for individual pixels. Such devices can be
constructed by designing an elementary circuit for one
pixel and duplicating it. Fabrication is not difficult
with a current very large scale integration technology.
If using such devices, the performance of the H-
OPALS would be drastically improved.

Appendix
An easy description of programs is important for

developing various programs and archieng them. In
OAL, any program can be described with kernel ex-
pressions and additional control statements. The au-
thors have developed a simple programming language,
which is a modification of conventional programming
languages. Here, the notation is briefly explained.

A skeleton program is as follows:
Program statement;

Variable declarations;
Execute Statements;

End Statement;
Program statement is followed by a program name

and indicates the beginning of a program. Integers,
images, and operation kernels are treated as either
constants or variables. If they are used as variables,
they must be declared with either a var, image, or
kernel statement according to their type.

Integers are allowed to be added, subtracted, multi-
plied, and divided. Images are allowed to substitute
only for an image-type variable. Operation kernels
are allowed to be added and multiplied, which are most
important in OAL programming, as we explain later.
Exec and several control statements, such as for and
while, are used for program execution. Exec (A,B,K)
statement indicates execution of a parallel operation.
This statement means that images A and B are as-
signed as inputs and processed with the operation
kernel K. A program is terminated with end state-
ment.

Any operation kernel is described by a matrixlike
expression. We call an individual term in the expres-
sion a matrix. A matrix is composed of symbols speci-
fying kernel units as shown in Table III. Each kernel
unit assigns a two-variable binary logic function,
fjj(ajj,bij), for the corresponding pixels in inputs A and
B. Total operation indicated by a matrix is the result
of a logical product of all the symbols in the matrix,
which is expressed by

17 fjj(ajjsbij), (Al)
ije Neighbors

where II means logical product and Neighbors refers to
a set of location of neighborhood pixels.

Addition for matrices means that OR operation is
required for the results obtained by operation kernels
corresponding to the matrices of the addends. Multi-
plication for matrices is introduced to clarify the
meaning of the operation.l Using multiplication, we
can retrieve an operation kernel from multiple opera-
tion kernels; for example, [1.] [.1] can be converted into

Table ll. Symbols for Specifying Kernel Units

Function Symbol Function Symbol

1 .. a + b PP

a + b NN a b UU

a + b NP b .1

a 0. a b 01

a +b PN a 1.

b .0 ab 10

a b EE a b 11

a 00 0 DD

[11]. Not multiplication itself but a neighborhood
operation indicated by the resultant operation kernel
is executed in OAL. To create a retrieved operation
kernel, calculate a logical product of functions indicat-
ed by symbols at the same position in all the matrices
of the multiplicands, and simpley convert the resultant
function into the symbols shown in Table III.

For convenience of program input, a matrix is ex-
pressed with the character I as follows:

(A2)I . 111 1_ 0111

or

I .. .11
I.1_.01
I .. .iI.

These expressions indicate the same operation kernel
as that of the second term shown in Fig. 2(a). As seen
from the expression, symbols enclosed by two charac-
ters I and I indicate one row of a matrix. The difference
between both expressions is whether a new line code is
inserted between successive delimiters I 1. Therefore,
if an interpreter for the OAL program ignores a new
line code, we can use a comprehensive expression such
as expression (A3). An underbar is a prefix which
indicates that the attached symbol corresponds to the
origin of the neighborhood area. Using this notation,
an OAL program can be put into the system with a
standard keyboard.

The following are programs used for processing pre-
sented in this paper. They are fed into the system and
the system controller executes them sequentially.

A. Maze Solution

program MazeSolution;
var N i;
image dummy, imageB = MazeData;
kernel maze;

N= 9;

(A3)

2518 APPLIED OPTICS / Vol. 29, No. 17 / 10 June 1990

maze = .. .1 .. I
I .1_.0 .I

+1 .. .iI
I.1_.0!

I .. .1
+1 .1_.0 .1

I
+1I .1 . . I

l .o .11
I .1 .. 1+1 .11;

for i = 1 to Ndo
imageB = exec(dummy, imageB, maze);

end;
end MazeSolution.

B. Image Thinning
program Thinning;

var i, N;
image dummy, imageB = ImageData;
kernel maskla, mask2a, mask3a, mask4a,

masklb, mask2b, mask3b, mask4b, I;

N= 3;

I = .1 1;
maskla = .1 .1.. I

1.1_.0.o1
I .. .0.. I+I;

masklb = I .1 .1 .1
I.._.0..1
I . .0. .I+ I;

mask2a=I.. .1.1!
I.o_.0 .1I
I...O.. I+I,

mask2b = .0 .. .1
I.o_.0.1I
I.111+I;

mask3a=I.. .= . .
.0_.0o.1I

I II1 1 +I;
mask3b = .0.01

I.1 .1 .11 +I;
mask4a =I.. .. .I

I .1.0.0
II11I+I;

mask4b I

| .1_.0.0 1
I .. O. +I,

fori = ltoNdo
imageB = exec(dummy, imageB, maskla);
imageB = exec(dummy, imageB, masklb);
imageB = exec(dummy, imageB, mask2a);
imageB = exec(dummy, imageB, mask2b);

imageB = exec(dummy, imageB, mask3a);
imageB = exec(dummy, imageB, mask3b);
imageB = exec(dummy, imageB, mask4a);
imageB = exec(dummy, imageB, mask4b);

end;
end Thinning.

C. Binary Addition
program Addition;

var i, N;
image attr = Attribute, data = Data;
kernel add;

N= 18;

add = I 1. I
Lo. I * I .o I

. 1 I
+1 1.1

Lo. I *1 I
L. ol

+ 11. I
I1o.1*1 ... iI

I ... I1;
for i = to N do

exec(attr, data, add);
end;

end Addition.

D. Turing Machine
program Turing;

var i, N;
image imageHT = HeadTape,

imageSS = StateSymbol,
latchImage;

kernel htDrive, ssDrive;

N= 9;

htDrive=I .. .0
I .. 11

I_.. lo
I .. loI +l .oI

I .oI
1_1. I
I o I
I .oI+l .I I

I .o
11b I

I 1.1+ I .o .
I .
110.
110 .

.

.

.

.

10 June 1990 / Vol. 29, No. 17 / APPLIED OPTICS 2519

+1 .o .
I .1 .
I 11-.
I 1.

+ I .o .. I
I .1 .. I
110 .. I
Ill .. I
I .o .. I

+l .ol
I 10 I
I 101
_ .1I

.1

.1

.1
+1 .1

I .oI
I 10 I
111 I
I .oI

+l .oI
I .o
1 11 I
I 10 I
1_.1I+IO.

1_i

I 1. I
111I
I- I.+ .oI

I .11
I 11 I
11. I

1. 1+ o.
I 1. 1. I

ssDrive = _. . .0 I
I .. .I
I .. oI
I.. oI+1_.iI

I .ol
I 10 I
I 1. I

+ I . .. I
I .1-.. I
I 10 .. I
I 11 .. I
I .0 .. I+

+l .ol
I .o
_11 I
I 10 I
I .ol

I .0 .. I
I .1_.. I
I 11 .. I
I1. ..

for i = 1 to N do
latchImage =
imageSS =
imageHT =

end;
end Turing.

+1 .
I .0
I .
I .
I .0

+ I O .. I
I.. .. I
I10_.. I
Ill .. I
I o .. 1

exec(imageHT, imageSS, htDrive);
exec(imageHT, imageSS, ssDrive);
latchImage;

References
1. D. G. Feitelson, Optical Computing. A Survey for Computer

Scientists (MIT Press, Cambridge, MA, 1988).
2. A. Huang, "Design for an Optical General Purpose Digital Com-

puter," Proc. Soc. Photo-Opt. Instrum.Eng. 232, 119-127
(1980).

3. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, and
B. H. Soffer, "Sequential Optical Logic Implementation," Appl.
Opt. 23, 3455-3464 (1984).

4. B. S. Wherrett, "All-Optical Computation-a Parallel Integra-
tor Based Upon a Single Gate Full Adder," Opt. Commun. 56,
87-92 (1985).

5. M. J. Murdocca and B. Sugla, "Design for an Optical Random
Access Memory," Appl. Opt. 28,182-188 (1989).

6. G. Stucke, "Parallel Architecture for a Digital Optical Compu-
ter," Appl. Opt. 28, 363-370 (1989).

7. Y. Ichioka and J. Tanida, "Optical Parallel Logic Gates Using a
Shadow-Casting System for Optical Digital Computing," Proc.
IEEE 72, 787-801 (1984).

8. J. Tanida and Y. Ichioka, "Programming of Optical Array Logic.
1: Image Data Processing," Appl. Opt. 27, 2926-2930 (1988).

9. J. Tanida, M. Fukui, and Y. Ichioka, "Programming of Optical
Array Logic. 2: Numerical Data Processing Based on Pattern
Logic," Appl. Opt. 27, 2931-2939 (1988).

2520 APPLIED OPTICS / Vol. 29, No. 17 / 10 June 1990

+l .o ..
I o ..
I 11_..
I 10 ..
I .1 . +1 .0 .. I

I .o .. I
I 1...I
I 11 .. I
I .o .. I

+ I 0 .. I
I .1 .. I
I 11..I
I 1. . . +1_1. 1. 1;

L_.1 . . 1;

10. M. Fukui, J. Tanida, and Y. Ichioka, "Flexible-Structured Com-
putation Based on Optical Array Logic," Appl. Opt. 29, (1990),
in press.

11. J. Tanida and Y. Ichioka, "OPALS: Optical Parallel Array
Logic System," Appl. Opt. 25, 1565-1570 (1986).

12. J. Tanida and Y. Ichioka, "Modular Components for an Optical
Array Logic System," Appl. Opt. 26, 3954-3960 (1987).

13. J. Tanida and J. Nakagawa, and Y. Ichioka, "Birefringent En-
coding and Multichannel Reflective Correlator for Optical Ar-
ray Logic," Appl. Opt. 27, 3819-3823 (1988).

14. K. Preston, Jr., and M. J. B. Duff, Modern Cellular Automata.
Theory and Applications (Plenum, New York, 1984).

15. M. Minsky, Computation: Finite and Infinite Machines
(Prentice-Hall, Englewood Cliffs, NJ, 1967).

10 June 1990 / Vol. 29, No. 17 / APPLIED OPTICS 2521

