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 We investigate the real-time dynamics of spin current pumped from a quantum dot driven by 

pulsed magnetic resonance.  Based on the nonequilibrium Green’s function formalism, we obtain 

an exact solution to the time-dependent spin current occurring in such nonstationary situations.  

Performing numerical calculations, we demonstrate that a Rabi oscillation is exhibited in the 

transient spin current at the resonance, while the spin current eventually reaches its 

time-independent stationary value after a prolonged excitation.  The spin current response in the 

time domain correlates directly to the time evolution of the spin state in the dot, suggesting the 

possibility of real-time spin measurement via pumped spin current. 

 

KEYWORDS: spin pumping, spin current, quantum dot, magnetic resonance, real-time dynamics 

 

*E-mail: hattori@ee.es.osaka-u.ac.jp 



 2

1. Introduction 

 

 Extensive investigations have focused on the manipulation and measurement of electron spin 

in a mesoscopic quantum dot.  These studies are motivated from the fine tunablity of system 

parameters, easy preparation of a localized spin, and a long spin coherence time, all of which open 

up avenues for applications in spintronics and quantum information schemes.1-4)  A primary 

element in this context is the ability to induce transitions between spin-  and spin-  states in a 

controlled way and to prepare arbitrary superpositions of these two basis states.  This is commonly 

accomplished by magnetic resonance, in which an oscillating or equivalently rotating magnetic field 

resonantly couples two Zeeman levels in the presence of a static magnetic field.  The coherent spin 

oscillation driven by magnetic resonance, and its measurement via charge current, have been 

demonstrated in quantum-dot systems theoretically 5) and experimentally 4). 

 On the other hand, in the field of spintronics, which aims to exploit electron spin rather than 

charge in solid-state systems, a pure spin current composed of spin-  and spin-  electrons 

coherently moving in opposite directions without any net charge flow has attracted tremendous 

interest because of its intrinsically dissipationless nature.6-9)  In particular, a quantum dot driven by 

magnetic resonance has been proposed as a generating source for stationary spin current.10-12)  The 

spin-pumping mechanism is intuitively understood as follows.  If the electrochemical potential is 

suitably positioned between the two spin levels in the dot, a spin-  (spin- ) electron created by 

spin-flip transition is transferred into an infinitely extended reservoir coupled to the dot, leaving a 

hole which is subsequently filled with a spin-  (spin- ) electron supplied by the reservoir.  This 

process repeats to establish a continuous outgoing (incoming) flow of spin current in the 

steady-state. 
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 In contrast to the stationary property of spin current, the time dependence of spin current is 

less studied, although the investigation of the temporal response to driving field is of prime 

importance for understanding spin generation and transport processes as well as their applications.  

In this paper, we address the real-time dynamics of spin current pumped from a quantum dot driven 

by pulsed magnetic resonance.  An exact formulation for time-dependent spin current occurring in 

such nonstationary situations is derived using the nonequilibrium Green’s function formalism.  

Numerical calculations implemented for a quantitative study of spin current dynamics reveal that a 

Rabi oscillation is exhibited in the transient spin current at the resonance while the spin current 

eventually becomes time-independent after a prolonged excitation.  The spin current response in 

the time domain is basically explained in terms of the spin-current continuity equation as well as the 

spin Bloch equation, suggesting the possibility of spin measurement of the single dot via pumped 

spin current. 

 

2. Theoretical Analysis and Formulation 

 

 Throughout this paper, we shall work in units where   e  kB  1.  We consider a 

noninteracting single-level quantum dot subjected to a rotating transverse magnetic field 

B1(t)  B1(t)(ex cost  ey sint)  in addition to a static longitudinal magnetic field B0  B0ez , 

where ex,y,z are unit vectors in Cartesian coordinates.  Note that we allow the magnitude of the 

rotating field B1(t)  to vary in time.  The Hamiltonian describing the dot is expressed as 

 Hd  d d
† d


 

1(t)

2
d

†deit


 , (1a) 

where d  denotes the annihilation operator for an electron with spin   in the dot, and 

d  d 0 /2 is the spin-dependent particle energy in the absence of the rotating field.  The 
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Zeeman interactions under the external fields are characterized by the Larmor frequencies 

0,1  B0,1 , where   is the gyromagnetic ratio.  For simplicity, the present model neglects 

electron-electron interaction in the dot.  Spin pumping from the interacting dot is analyzed 

separately in Appendix A.  The dot is coupled via tunneling to an infinitely extended reservoir, 

described by 

 Hr  kck
† ck

k
 , (1b) 

where ck  stands for the annihilation operator for an electron with momentum k  and spin   in 

the reservoir, and k  k 0 /2 .  We assume a uniform static field spanning the reservoir 

region, and the same   in the dot and the reservoir.  This choice is not crucial for the following 

theoretical analysis.  The identical formulation for spin pumping is derived (in the wideband limit) 

even for different Zeeman splittings.  The coupling Hamiltonian reads 

 Hc  (Vkd
†ck Vk

*ck
† d )

k
 , (1c) 

where the coupling coefficient Vk  is assumed to be spin independent.  The total Hamiltonian is 

thus modeled by the sum of these three contributions, H  Hd  Hr  Hc . 

 It is convenient to introduce the unitary transformation R(t)  exp(itstot
z ) with the total spin 

stot
z  in the dot and the reservoir, which defines the Hamiltonian in the rotating reference frame as 

˜ H  R(t)(H  i t )R
†(t) .10,12,13)  In the nonequilibrium Green’s function formalism,14,15) we employ 

the retarded and lesser Green’s functions defined by 

 G 
 (t, t )  i {d (t),d 

† ( t )} (t  t ), (2a) 

 G 
 (t, t )  i d 

† ( t )d (t) , (2b) 

respectively.  In the rotating frame, the retarded Green’s function is described by 

 
  
˜ G (t, t )  i(t  t )e



2

(t t )
T exp[i dt1 ˜ H d (t1)t 

t

 ], (3) 
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where   is the levelwidth due to the dot-reservoir coupling, and   T  denotes the time-ordering 

operation.  The Hamiltonian matrix is given by 

 ˜ H d (t) 
˜ 

d

1(t)
2

1(t)

2
˜ d















, 

where ˜ d  d  (0 ) /2 .  The equal-time correlation function in the rotating frame is 

calculated to be 

 ˜ G  
 (t, t)  i

d
2

f () ˜ A  (,t) ˜ A  
† (,t)







 , (4) 

where f ()  f (  /2)  with f () being the Fermi function in the reservoir, and the function 

˜ A   (, t)  is defined by 

 ˜ A   (, t)  dt1e
i ( t t1 ) ˜ G  

 (t, t1)



 . (5) 

These results are also obtained from the nonequilibrium Green’s functions in the laboratory frame 

(see Appendix B for details) via the general relation 

 G 
, (t, t )  e


i

2
t

e
i

2
 t ˜ G  

, (t, t ) , (6) 

between the two correlation functions in the laboratory and rotating frames. 

 The charge current consists of two contributions: Jc (t)  Jout
c (t) Jin

c (t) , where Jout
c (t)  

describes the current flowing out from the dot, and Jin
c (t) concerns the current flowing into the dot.  

Each component is represented as 

 Jout
c (t)  N c (t)  2 d

2
f () ˜ A  (, t)

2







 , (7a) 

 Jin
c (t)  

d


f ()Im ˜ A  (, t)






 , (7b) 

where N c (t) denotes the dot charge.  The classification into out- and in-currents is based on the 

property that Jout
c (t)  0  and Jin

c (t)  0, where the overbar denotes the time average.  The latter 
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relation is easily shown from the charge-current continuity equation 

 
d

dt
N c (t)  Jc (t)  0. (8) 

Analogously, the spin current J z(t)  Jout
z (t)  Jin

z (t) is expressed with 

 Jout
z (t)  Sz(t)  2 

d
4

f () ˜ A  (, t)
2







 , (9a) 

 Jin
z (t)   

d
2

f ()Im ˜ A  (,t)






 , (9b) 

where Sz(t) denotes the dot spin.  In eq. (9), we extend the terminology used for charge current 

to two distinctive components involved in spin current, although each component and its time 

average are not always positive.  The spin-current continuity equation 

 
d

dt
Sz(t)  Jz (t)  Gz(t), (10) 

contains the spin torque contribution Gz(t).  In the rotating frame, the dot spin projected onto the 

xy  plane is described by ˜ S x (t)  Im ˜ G 
 (t,t)  and ˜ S y (t)  Re ˜ G 

 (t, t) .  The out-of-plane spin 

torque is simply represented with ˜ S y (t)  as 

 Gz(t)  1(t) ˜ S y (t). (11) 

Note that eq. (11) is identical to Gz(t)  [ ˜ (t)  ˜ S (t)]z , where ˜ (t)  1(t) 0 0   is the 

precession vector in the rotating frame. 

 Finally, we address applications of our general result to some particular cases.  We first 

consider a continuous wave (CW) excitation, for which 1(t)  1 is time independent so that 

˜ A (,t)  ˜ G () .  In this case, the dot Hamiltonian in the rotating frame is diagonalized with the 

rotation matrix    cos 
2    sin 

2 ,   such that 10,12) 

 ˆ H d   ˜ H d
† 

ˆ 
d 0

0 ˆ d







, 

where ˆ d  d  ˜ /2  and tan  1 /(0 ) .  The retarded Green’s function ˜ G ()  is 
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expressed as ˜ G ()  † ˆ G () , where ˆ G  
 ()    (  ˆ d  i /2)1 is the retarded function 

defined in the transformed coordinates in which the z -axis points to the precession vector.  

Applying these analytical results to eq. (7) proves that J c (t)  0.  In terms of eq. (8), the 

vanishing charge current is a natural consequence in stationary situations.  On the other hand, eq. 

(9) predicts that the spin current is expressed as 

 J z(t)  2 d
2

[ f()  f()] ˜ G 
 ()

2





 , (12) 

which is nonvanishing and time-independent.  It is straightforward to show that eq. (12) 

reproduces the previous results for CW spin-pumping.11,12)  Next we proceed to a pulsed excitation 

described by 

 1(t) 
1, t0  t  t1,

0, otherwise.





 

Since the Hamiltonian matrix ˜ H d (t) is time-independent within each time region separated by t0 

and t1, the time-ordered exponential contained in eq. (3) can be factorized into a product of 

ordinary exponentials.  This feature allows us to easily handle the two-time propagator ˜ G (t, t ).  

Note that such a simplification is not possible for eq. (B·8) in the laboratory frame.  Performing 

the time integration prescribed by eq. (5), we find a compact expression for ˜ A (, t) , 

 

˜ A 0(, t)  ˜ G (0)(), t  t0,
˜ A 1(, t)  † ˆ (,t,t0) ˜ A 0(, t0)  †[1 ˆ (, t, t0)] ˆ G (), t0  t  t1,
˜ A 2(, t)  ˜ (0)(, t, t1) ˜ A 1(, t1)  [1 ˜ (0)(, t, t1)] ˜ G (0)(), t1  t,









 (13) 

with ˆ (,t, t )  i ˆ G (t, t )ei ( t t )  and ˜ (0)(,t, t )  i ˜ G (0)(t, t )ei (t t ) .  Here, we use an auxiliary 

retarded function ˜ G  
( 0)()    (  ˜ d  i /2)1, which corresponds to ˜ G  

 ()  for 1  0.  As 

is easily found, the CW result ˜ A (,t)  ˜ G ()  is reasonably recovered when t0   and 

t1  .  The time-dependent charge and spin currents for the pulsed excitation are numerically 

evaluated by plugging eq. (13) into eqs. (7) and (9). 
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3. Numerical Calculation and Discussion 

 

 In the rest of this paper, we discuss the numerical results for a pulsed excitation.  In the 

following, the levelwidth   is taken as an energy unit (  1).  Correspondingly, the time unit 

becomes 1 .  The pulse starts at t  0  and ends at t  6 .  The pulse duration   6  is 

sufficiently long that the system nearly settles to its nonequilibrium steady-state under a continuous 

excitation.  The Zeeman splitting is chosen to be as large as 0  50 so that the two spin levels 

are well separated from each other.  We restrict our consideration to usual experimental situations 

where 0  1.  All the results shown below are obtained at the resonant frequency   0 .  In 

this case, the Rabi oscillation in a two-level system is expected to occur during the excitation.  In 

the calculation, the dot level d  is assumed to be located at the Fermi level (in this case, the 

particle-hole symmetry is established) so that the dot always maintains single occupancy, i.e., 

N c (t)  1 and hence J c (t)  0.  In this condition, we can explore the real-time dynamics of a pure 

spin current with no charge current. 

 Figure 1 displays the time-dependent spin current Jz(t)  flowing out from the dot as a 

function of the excitation intensity 1  at zero temperature.  Initially, the system remains in 

equilibrium, and no spin current is observed.  After the excitation is turned on, the spin current 

abruptly increases and thereafter decays to its new steady-state value, which corresponds to the CW 

solution given by eq. (12).  The steady-state spin current is independent of the excitation intensity 

1 when 1  .  After the turnoff, the spin current decays exponentially back to zero.  The 

exponential decay is simply characterized by the levelwidth  , which describes how fast an 

electron escapes from the dot.  A most striking observation is a Rabi-type oscillation superposed 



 9

on the transient spin current.  The spin-current oscillation occurs at the precession (or Rabi) 

frequency ˜  1 at resonance.  The oscillation damps down exponentially at the rate  . 

 Figure 2 explains the spin dynamics in the rotating frame.  The dot spin is initially polarized 

in the z  direction under the static field.  After the excitation is turned on, the spin vector ˜ S (t) 

rotates around the precession vector ˜  1 0 0  at the resonance.  Reflecting the spin 

rotation, ˜ S y,z (t)  oscillate with time while ˜ S x (t)  remains around zero.  Note that the projections 

onto the z -axis are identical in the laboratory and rotating frames, i.e., Sz(t)  ˜ S z (t).  For a 

sufficiently prolonged excitation, ˜ S y (t)  decays but remains finite whereas Sz(t) goes to zero.  

The spin torque Gz(t) directly relates to ˜ S y (t) , as explicitly indicated in eq. (11).  Therefore, the 

nonzero ˜ S y  occurring in the steady state accounts for the CW spin pumping, for which Jz  Gz  in 

terms of eq. (10).  After the turnoff, ˜ S (t) eventually returns to its equilibrium value.  The spin 

relaxation time is isotropic in the present model, and is simply characterized by 1. 

 The spin-current continuity equation, eq. (10), holds exactly in the numerical results.  Figure 

3 (a) shows its components, dSz /dt , J z(t) , and Gz(t) , separately.  Just before the turnoff, 

dSz /dt  0 since Sz(t) approaches its steady-state value.  As a result, the relation J z(t)  Gz (t)  

is established.  After the turnoff, Gz(t)  0 so that J z(t)  dSz /dt , indicating that in this time 

region, the nonequilibrium excess spin accumulated on the dot is released into the reservoir.  

Figure 3 (b) displays the out- and in-current components involved in the pumped spin current 

Jz(t)  Jout
z (t)  Jin

z (t).  Remarkably, the in-current component Jin
z (t) is almost time-independent 

over the entire time range.  This feature is commonly observed for   0  1. 

 From these observations, a close correlation is expected between the time-dependent spin 

current and the time-dependent spin state in the dot.  The equation of motion for the dot spin can 

be derived from the Kadanoff-Baym formulation of nonequilibrium Green’s functions, in which we 
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address integro-differential equations.15)  This method is mathematically equivalent to the Keldysh 

formulation employed for analyzing the time-dependent spin current in the preceding section, in 

which we deal with integral equations.  The results are cast into a Bloch-type equation 16) 

 
d

dt
S(t)  (t)  S(t)  R(t). (14) 

It is immediately noticed that in regard to the z -projection, the Bloch equation, eq. (14), is 

structurally equivalent to the spin-current continuity equation, eq. (10).  As described above, 

Jin
z (t) is independent of time in usual situations where   0  1.  Obviously, the in-current 

component should obey Jin
z  Seq

z  in thermal equilibrium.  Consequently, we arrive at the 

important conclusion that J z(t)  Rz (t)  [Sz(t)  Seq
z ], showing that the time evolution of the dot 

spin is monitored by the spin current pumped from the dot.  Thus, spin pumping naturally 

constitutes a spin measurement (or readout) process.  The output spin current can be detected 

electrically, e.g., by exploiting the inverse spin-Hall effect whereby a spin current is converted into 

a transverse charge imbalance (and a Hall voltage).17-20)  On the other hand, the identity 

J z(t)  Rz (t)  implies an underlying Zeno effect, i.e., a coherent Rabi oscillation tends to be 

suppressed by a strong coupling to the reservoir for extracting a large spin current. 

 Finally, we explain briefly the temperature dependence of pumped spin current.  Figure 4 

illustrates that the spin current J z(t)  remains unchanged at low temperatures while it 

monotonically decreases in magnitude with increasing temperature T  when T  0 /2.  However, 

the fringe visibility of Rabi oscillation in J z(t)  is essentially temperature-independent.  Actually, 

J z(t,T)  is logarithmically shifted with T .  As demonstrated in Fig. 5, the temporal spin 

information of the dot is probed via spin current even at high temperatures as well. 

 

4. Summary 
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 The real-time dynamics of spin current pumped from a quantum dot driven by pulsed 

magnetic resonance have been investigated using the nonequilibrium Green’s function formalism.  

In the wideband limit, an exact formulation was derived for the time-dependent spin current 

occurring in nonstationary situations.  Numerical calculation based on the theoretical result was 

implemented for a quantitative study of spin current response to a burst of a rotating field.  The 

transient spin current was found to exhibit a Rabi oscillation due to the resonance with the driving 

field, while the spin current eventually becomes time-independent after a prolonged excitation.  

The spin current dynamics are explained in terms of the spin-current continuity equation, or 

equivalently, the spin Bloch equation, including the spin torque exerted on the dot as the driving 

term and the spin current flowing out from the dot as the relaxation term.  The time-dependent 

spin current reflects the time evolution of the dot spin, enabling a spin measurement in the time 

domain. 
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Appendix A: Coulomb Interaction 

 

 In this appendix, we explain spin pumping from a quantum dot in which a strong Coulomb 

interaction U  exists between two electrons.  The dynamics of an interacting dot coupled to a 

macroscopic reservoir may be described by a reduced density matrix, which is defined by tracing 

out the reservoir variables in the total density matrix.  Assuming the infinite Coulomb interaction 

(U ) and the Fermi level located between two Zeeman levels, the equation of motion for the 

reduced density matrix  is formulated within the Born-Markov approximation as 

 
d

dt
00(t)  [(t)  00(t)], 

 
d

dt
(t)  1(t)Im[eit(t)] (t) , 

 
d

dt
 (t)  1(t)Im[eit (t)] 00(t), 

 
d

dt
 (t)  i0 (t) 

i1(t)

2
e it[(t)  (t)]


2
(t), 

at zero temperature.5,21,22)  Note that double occupation is prohibited so that there are only three 

available states: 0  (empty dot),   (dot occupied with a spin-  electron), and   (the same 

with a spin-  electron).  In terms of the density matrix, the charge and spin currents flowing out 

from the dot are simply expressed as J c  (  00)  and J z  (  00) /2 , respectively.  

The numerical solution for pulsed excitation is illustrated in Fig. A·1.  The pumped spin current 

exhibits the Rabi oscillation, while in this case, the nonzero charge current occurs because of the 

elimination of double occupancy and the resulting particle-hole asymmetry.  The time-dependent 

charge and spin currents contain the information on the time evolution of the system.  Particularly, 

the diagonal elements of density matrix, 00 ,  , and   1 00   , can be directly 

evaluated from J c  and J z , enabling a simultaneous measurement of the dot charge 
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N c      and the dot spin Sz  (  ) /2 .  It is also worth noting that the direct 

correlation between  and Jc,z  is not affected by a possible intrinsic spin decoherence due to 

hyperfine interaction, spin-orbit coupling, etc. 

 

Appendix B: Laboratory Frame 

 

 In this appendix, we describe the theoretical formulation based on the nonequilibrium Green’s 

functions in the laboratory frame.  Before going into a detailed theoretical analysis, it may be 

worth explaining that the underlying physics of spin pumping can be captured at the operator level.  

It is straightforward to show that the Heisenberg equations for number operators 

nd (t)  d
† (t)d (t)  and nr (t)  k ck

† (t)ck (t)  lead to the standard continuity equation for 

charge current dnc /dt  j c (t)  0 , where nc (t)   nd (t)  is the dot charge, and 

j c (t)  d
dt  nr (t)  is the charge current flowing in the reservoir.  The continuity equation is 

written in a sourceless form owing to charge conservation.  The situation is different for spin 

current because spin conservation is violated in the presence of the rotating field.  The continuity 

equation for spin current is formulated in a similar manner as dsz /dt  j z(t)  gz (t) , where 

sz(t)  1
2 nd (t)  is the dot spin, and j z(t)  1

2
d
dt  nr (t)  is the spin current flowing in the 

reservoir.  The spin torque operator gz(t)  1 (t )
2i  d

† (t)d (t)e it  appearing as a source term 

accounts for spin generation due to the rotating field.  It is easily found that the spin torque may be 

expressed as gz(t)  [(t) s(t)]z  with the angular velocity of Larmor precession 

(t)  1(t)cost 1(t)sint 0 . 

 We begin our analysis with the general expression for the time-dependent particle current 

 J (t) 
d

dt
nr (t)  2Re dt1[G

 (t, t1)
 (t1,t) G

 (t, t1)
 (t1, t)]



 , (B·1) 



 14

where 
, (t, t )   k Vk

2
gk
,(t, t ) are the lesser and advanced self-energies, respectively.  The 

Green’s functions of the reservoir gk
,(t, t )  are explicitly written as gk

 (t, t )  if (k )e i k ( t t )  

and gk
 (t, t )  iei k ( t t )( t  t) , where f () is the Fermi function in the reservoir.  In energy 

representation, eq. (B·1) becomes 

 J (t)  Im dt1
d


ei (t t1 )( 
0

2
)[G

 (t,t1) f () G
 (t, t1)]





t

 , 

where ()  2()V ()
2
 is the linewidth function, and ()   k (  k )  is the density of 

states per spin in the reservoir.  To simplify discussion, we adopt the wideband limit where   is 

taken to be independent of energy.  In this case, the above expression is reduced to 

 J (t)  
d


f ()Im A (, t)




  N (t) , (B·2) 

where N (t)  nd (t)  iG
 (t, t)  is the dot occupation number, and the function A  (, t)  is 

defined by 

 A  (, t)  dt1e
i ( t t1 )G 

 (t, t1)



 . (B·3) 

In stationary situations, G 
 (t, t )  depends only on the time difference t  t , and thereby A  () 

simply coincides with the Fourier transform of the retarded Green’s function G 
 () .  However, 

this is not what we address.  It must be borne in mind that here we deal with the time-dependent 

case so that G 
 (t, t )  as well as G 

 (t, t )  depend on the two time variables separately.  The 

lesser Green’s function obeys the Keldysh equation, expressed generally as 

 G(t, t )  dt1dt2G
 (t, t1)

(t1,t2)G(t2, t )




 , (B·4) 

in matrix notation.  Applying the wideband approximation, the equal-time correlation function is 

formulated as 

 G(t,t)  i
d
2

f ()A(, t)A†(, t)




 , (B·5) 
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in terms of A(, t) , and hence the dot occupation number is given by 

 N (t)  
d
2

f () A (, t)
2







 . (B·6) 

Thus the whole knowledge of the time evolution of the system is contained in A(,t)  or 

equivalently G(t, t ).  In the wideband limit, the retarded Green’s function obeys the equation of 

motion 

 [i

t
 Hd (t) 

i
2

]G(t, t )  (t  t ) , (B·7) 

where the time-dependent matrix 

 Hd (t) 


d

1(t)

2
e it

1(t)

2
eit d















, 

represents the dot Hamiltonian.  The solution is easily found to be 

 
  
G(t, t )  i(t  t )e



2

(t t )
T exp[i dt1Hd (t1)t 

t

 ]. (B·8) 
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 FIGURE CAPTIONS 

 

FIG. 1 

(Color online) Time-dependent spin current Jz(t)  as a function of excitation intensity 1 at zero 

temperature.  The excitation pulse length is set at   6.  The parameters used in the calculation 

are   0  50. 

 

FIG. 2 

(Color online) Time evolution of dot spin ˜ S (t)  ˜ S x (t) ˜ S y (t) Sz(t)  in the rotating frame (a) 

and its trajectory projected onto the yz  plane (b).  The z -projections are identical in the 

laboratory and rotating frames ( Sz  ˜ S z).  The vertical lines in (a) indicate the duration of the 

excitation pulse.  The parameters used in the calculation are   0  50 and 1  10. 

 

FIG. 3 

(Color online) (a) Spin current Jz(t) , spin torque Gz(t), and time-derivative of dot spin dSz /dt .  

(b) Two components Jout,in
z (t) contained in Jz(t) .  The vertical lines indicate the duration of the 

excitation pulse.  The parameters used in the calculation are   0  50 and 1  10. 

 

FIG. 4 

(Color online) Time-dependent spin current Jz(t)  as a function of temperature T .  The 

excitation pulse length is set at   6.  The parameters used in the calculation are   0  50 

and 1  10. 
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FIG. 5 

(Color online) Time-dependent spin current Jz(t)  and its two components Jout,in
z (t) at T  100.  

The vertical lines indicate the duration of the excitation pulse.  The parameters used in the 

calculation are   0  50 and 1  10. 

 

FIG. A·1 

(Color online) (a) Diagonal elements of density matrix 00(t) ,  (t)  and  (t) .  (b) Charge 

and spin currents J c (t) and Jz(t) .  The vertical lines indicate the duration of the excitation pulse.  

In the calculation,   0  50, 1  10 and U    are assumed. 
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