
Title BROADENING EFFECTS OF ENERGY SPECTRA IN
MODULATION SPECTROSCOPY

Author(s) Oikuyama, Masanori

Citation 大阪大学, 1973, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/30777

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



BROADENING EFFECTS OF ENERGY SPECTRA 

   IN MODULATION SPECTROSCOPY 

            Masanori Okuyama 

           February 1973 

           Osaka University 

   Faculty of Engineering Science 

           Toyonaka, Osaka



                          BROADENING EFFECTS OF ENERGY SPECTRA 

                               IN MODULATION SPECTROSCOPY 

                                           Masanori Okuyama 

                                Department of Electrical Engineering 

                                   Faculty of Engineering Science 

                                 Osaka University, Toyonaka, Osaka 

                                        February, 1973 

                                     ABSTRACT 

                     Broadening  effects.of differential energy spectra in modula-

                tion spectroscopy have been investigated for one-, two- and three-

                dimensional crystal on various types of critical points . As 

                modulating external perturbation, electric field , photon energy, 

                critical point energy and  broadening factor are considered. 

                      In electric field modulation, two broadening factors due to 

                thermal and electric field effects are taken into account as the 

                Lorentzian convolutions in the electrooptical functions . 

               Variations of the amplitudes in the field induced changes of 

                complex dielectric constants,  AE1 and  Ae2, with the amount of 

                broadening factors rT and rE are presented for a series of certain 

                realistic parameters. Parametric changes in the broadened 

                electrooptical spectra with the amount of broadening factors are 

                also discussed. Calculated electrooptical functions enable us to 

                compare quantitatively with the spectra measured in the  electro-
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            optical experiments, and considerable agreements between the 

            theory and experimental result are obtained. 

                 A generalized expression of broadened complex dielectric 

           functions near the critical points has been presented as functions 

           of parameters of photon  energy-nw, critical point  energy-nw and 

           broadening factor  r. A systematic relationship has been found in 

           differential dielectric functions modulated with energy parameters 

           of w,  w
g and  r. By using the relationship, the line shapes of 

           the modulated spectra for any dimensional critical point can be 

           easily figured from a differential function. 

                Density of states functions for anisotropic crystals were 

           calculated by assuming that the electronic band energy  E(k)40- 

           El(cosk
x + q  cosky + r  coskz), where q and r are continuous 

           anisotropic parameters, and their variations with changing 

            crystal symmetry from one-  or.  two-  to-three-dimensional crystal 

           are examined. Third derivatives of  dielectric. spectra with a 

           broadening factor, which can be compared to electrooptical spectra , 

           were calculated as a function of the continuous anisotropic param-

           eter. The same kinds of calculations are extended to the other 

           energy parameter modulated dielectric function. Change of the 

           spectral responce with anisotropic parameters is also examined. 

                                    ii
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                                  1. INTRODUCTION 

                     It has been well known that the study of optical properties 

                is one of useful experimental approaches for investigations of the 

                energy band structure of solids. In recent ten years,  electro-

                optical effect in semiconductors has been intensively  investigated 

                by use of lock-in technique and recognized as a useful tool for 

                the assignment of fine structures in the band structure parameters. 

                On the other hand, theoretical aspect of the band structure stud-

                ies has also well developed by an aid of large scale electronic 

                computer on some new approaches  of pseudopotential method,  k•p 

                method, Fourier expansion method etc. The current interest 

                yielded from these both experimental and theoretical developments 

                has born the study of modulation  spectroscopy.1-3)                                                                     Modulation 

                spectroscopy is an experimental perturbation method to take changes 

                in the absorption, reflectance or the other optical responce by 

                applying an external perturbation, such as electric field,  temper-

                ature,incident photon energy or stress. The modulated spectrum 

                obtained has some excellent  informations of band parameters 

               including the energy and effective mass of the respective critical 

 point. However if there is some broadening effect e.g. due to 

                 electron-phonon interaction, the structure of  the measured spectra 

                becomes dim and it is difficult to analyze the experimental 

                results with the theory. 

                     Generally broadening effect in absorption, reflectance or 

                                                                .4- 1 v-



luminescence spectra is very important because it makes fine 

structures smooth out. For example, as D-line of sodium is 

radiated by the transition of electron between two energy levels, 

the spectra must be a  6-function-like energy dependence, but the 

measured spectra have a broad energy dependence with a line width . 

This is attributed to the broadening effect caused by the finite 

lifetime of electron in the energy level and the motion of sodium 

atom in the sodium-vapor lamp. Recently as a result of the rapid 

development of experimental techniques in modulation  spectroscopy, 

the characteristic points in the electronic band structure of 

solids could be discussed in detail. In order to analyze these 

informative experimental results quantitatively, the calculations 

of theoretical spectra taking account of the broadening effects 

are earnestly desired. In modulation spectroscopy having an 

external perturbation  applied'to the sample, an additional  broad-

                                                                                                                                                                                                       . ening may appear in the measured spectra. 

     The purpose of this thesis is to investigate the broadening 

effects in modulation spectroscopy, in order to analyze the 

experimental data precisely and obtain  valuable  informations  about 

electronic band  structure. In electrooptical measurements it has 

been found by several workers that the spectra do drastically 

change by large broadening effect. For  example, the effect of 

broadening in electroreflectance spectra of germanium in higher 

interband transition region is shown in  Fig.1.1. Around 2eV it 

is known that there are an  M1 type critical point and its  spin-
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Fig.1.1  Electroreflectance spectra in the energy region  2.0-2,5eV 

at three different temperature with the same effective electric 

 field4)(solid line) and the  calculated ,spectra(dashed line). 
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          orbit split edge in germanium. These two critical points have 

          been observed at  %2.2eV(E1) and  '‘,2.4eV(E1+A1) in the spectrum 

          taken at 24°K. It can be seen in the figure that electroreflect-

           ance signal decreases with increasing temperature. And at room 

          temperature characteristic spectrum of  M1 critical point is so 

         much destroyed that E1 and  E1+.61 signals cannot be distinguished 

          because of large broadening effect. In the case of large broad-

          ening which is encountered especially in the higher interband 

          transition region, it is very important to take account of 

          the broadening effects in the analysis of electroreflectance 

            spectra. 

               In chapter 2 of this thesis, optical properties in solids are 

          simply reviewed to clarify the theoretical background of the 

          results obtained in this work. Modulation spectroscopy  is• 

          classified into two parts of electric'field and energy parameter 

         modulation, and their spectra are derived from the first principle. 

          Chapter 3  describes the studies of the broadening effects in 

          electrooptical signal. The broadening effects in electrooptical 

          signal are classified by the physical sources, and thermal and 

          electric field broadening are the most important in experimentally 

          observed spectra. The electrooptical signals with these broad-

          enings are calculated for some realistic cases and compared with 

          the spectra measured in electroabsorption and  electroreflectance  5) 

          Chapter 4 describes energy parameter modulation spectra for one-, 

          two- and three-dimensional crystals. A generalized expression 
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of complex dielectric functions is derived6). Energy parameter 

modulation spectra are easily calculated from this generalized 

expression and summarized by using the relation between these 

spectra. In chapter 5 modulated spectra in anisotropic crystal 

such as layer compounds or chain-like crystals are obtained based 

upon the simple model closer to the realistic crystals. Broad-

ened complex dielectric functions are derived from the calculation 

of joint density of states for intermediate dimensional band 

structure. Energy parameter modulation and electrooptical spectra 

are calculated by the differentiation of the complex dielectric 

 7). 
functions. The conlusions of this work are summarized in chapter 

6. 
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         2. ENERGY BAND STRUCTURE AND MODULATION SPECTROSCOPY 

  2.1 Introduction 

       The study of the optical properties in solids, such as 

  absorption, reflectance or emission of light, has been worked out 

  for the investigations of their electronic band structures. The 

  absorption, reflectance and emission are closely related to the 

  energy band structure of solids through the transitions from one 

  state to another state in the energy band. Hence these optical 

  measurements can be utilized to get some parameters of the 

  energy band  structure. The interband transitions can be classified 

  to the direct and indirect  in the view of the momentum conservation 

  of electron, and to the allowed and forbidden in the view of the 

  selection rule of momentum matrix element. In this chapter, we 

  have  investigated only the  direct  and  allowed transition which is 

 more directly related to the electronic band structure than the 

  others. 

  2.2 Relation between Optical Constants and Electronic Parameters 

     in Solids 

      The optical constants in  solids1,2)  are  characterized by the 

  complex dielectric  constant.  TheLrefractive  index n and the 

  extinction coefficient k are related to the real part  el and 

  imaginary part c2 of dielectric constant as follows, 

        El =  n2 k2  (2.1) 
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      and 

         e2 =  2nk. (2.2) 

     In the absorbing material, the energy of light is reduced at the 

      ratio of exp(-ax), where a is the absorption coefficient. The 

     absorption coefficient a  is related to  e2, 

                             a                           2wk  =we2(2.3) 
                                         nc 

     On the other hand, the reflectance is the good  probe to investi-

     gate the electronic band structure over all the photon energy 

     region, while it is very difficult to measure the absorption 

     spectra in the high energy region above the fundamental edge. 

     In the normal incidence from a vaccum, the intensity reflection 

     coefficient, R, mostly called reflection coefficient is formulated 

     by using Fresnel's formula  as  follows, 

                            (n..1)2k2       R -   (2 .4)  (
n+1)'  +  k2 

          A general relationship to connect  el and  e2 exist and is 

     well known as  1Kramiers-Kronig  relations.• This dispersion 

                            )      relation is formulated for  El and 6
2,3 

             2WE(W (2  .5)  el  (w) = 1 +—P dw 
                   7W-W-- 

                                O 

     and 
                                                            co 

 e2(w)  =—P 
                      2wcEWl(w',z)                    dw', (2.6) 

         7-W 
                               0 
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where P means the Caucy principal part of integration. 

     From the first perturbation theory,  c2(w) can be presented 

for direct interband transition,2,4) 

      4
m2110322e 

m,n22 
 c2(w)C 7-7d3k ie.mfi12 S(Efm-inE1(0)  (2.7)        2

B.Z.,Z, 

where the summation is over all pair of possible band and the 

integral is over the first Brillouin zone, and the other notations 

are the same asin the usual text. Considering the transition 

between one pair band such as from a valence band to a conduction 

band and assuming the invariance  of the matrix element  Mf
i on wave 

vector k, the imaginary part of dielectric constant £2(w) becomes 

                      471.t2e2ie.miE.                                           ^),       c2(w) =cvl2 N,(2.8) 

where N(E) is the joint density of states for energy  E=hw, 

   2 d    N(E) =(2 .9)                    87
-E =EIVk(ES-E                                  cv)I 

                      c v 

and the integral is over the surface of constant energy, 

E
c-Ev. The joint density of states, which is proportional to 

the imaginary part of dielectric constant  e2(w), has the rapid 

change in the case of  Vk(Ec-Ev)=0 from  Eq.(2.9).• This singular 

behavior of the joint density of states is called a van Hove's 

singularity)or a critical point in k-space. The energy difference 

Ec-Evcan be expanded about a critical point of energy difference 

E0(k0) in a Taylor series in effective mass approximation, 
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                                 Nd

21115.2              Ec-Ev= E0(k0) + E(k.—kOi)2 (2.10)                                              i =1 1 

 where Nd is the number of dimension of the crystal considered. 

In  three-dithensional crystal, depending on the sign of the reduced 

effective mass, there are four types of critical points denoted by 

Mi  i=0, 1, 2, 3 where i denotesthe number of the negative mass . 

When the absorption beginsfrom the lowest  Mo critical point, it is 

well known as the fundamental absorption and has the energy 

 dependence  of (w-w0 2,) 2In the case of a two-dimensional k-space 

which is an appropriate model to treat some aspects of layer 

structure materials, e.g., graphite and gallium selenide, the 

density of states N(E) has a step function singularity for the 

M0and  M2 critical point and a  logdrithmic divergence for M1 

critical point. It is also of interest to mention the energy 

dependence of a one-dimensional k-space which is appropriate to 

treat some aspects of chain-like structure materials, e.g.,  SbSI. 

For M0or  M1 critical point the density of states has the inverse 

square root singularity. 

    The behaviors of the  optical spectrum near critical points 

such as edge, peak or step, have been  alredy demonstrated both in 

experimental and theoretical works.  Fig.2.1 shows the imaginary 

part of dielectric constant  e2(w) of germanium worked out by 

Brust6) The theoretical curve is derived from pseudopotential 

calculation and the experimental curve is calculated from  reflec-
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 Fig,2,1 Spectral structure of  c2CwE in  germanium. 

                   Solid  line;  experiment  ; dashed line:theory, 

                   based on pseudopotential  energies.(after  Brust6)) 
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             Fig 2,2 2,2 The pseudopotential energy bands  for'lgermanium 

             along the  Brillouin zone. Important direct interband 

             transitions are indicatedby arrows.(after  Brust6)) 
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tivity measurement. The dominant peaks and edges have been 

interpreted as compared with the theoretical considerations. 

The corresponding pseudopotential energy band for Ge along the 

principal axes in the Brillouin zone61ls shown in Fig.2.2. Some 

important interband transition edges are indicated by arrows and 

correspond  td the singular behavior remarked in  Fig.2.l. 

2.3 Modulated Spectra of Optical Constants 

2.3.1 Introduction 

     In modulation spectroscopy, the  signals  are detected as a 

change of the optical constant by  the application of the external 

perturbation such as electric field, stress, temperature or wave-

length of incident light. The resulting spectra are well-resolved 

and include fine structures  than  in the conventional  method. They 

are observed only near the critical point and do not contain the 

background signal observed in the ordinary optical spectra which 

are the superposition of the spectra caused by some transitions 

of electron. Modulation spectroscopy can therefore pick up the 

information about the band structure parameters near critical 

point. And also it has such advantage that it is possible to 

analyze the measured spectra by using  IKramers-Kronig relation in 

the small energy  region near the critical  point.' 

     Modulation  spectroscopy  cube classified into two categories. 

The classification is due to the fact whether the external pertur-

bation affects either matrix element or  not. The former is  elec-

tric field modulation or electrooptical  effect, where electric 
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field changes the matrix element by the deformation of wave func-

tion of electron-hole pair. The latters are wavelength, temper-

ature and stress modulation spectroscopy, and we name them energy 

parameter modulation as their  spectra  axe represented by the  die-

lectric constant differentiated by the energy parameter such as 

energy of incident light, critical point energy or broadening 

 factor. 

2.3.2 Electric Field Induced Changes in Dielectric Constant 

     Electrooptical effect has been investigated both theoretically 

and  experimentally-9) since the  earlier calculation of absorption 

                     10) 11) 
coefficient under uniform electric field by Franz  and Keldysh . 

The theory of electrooptical effect has been extensively developed 

by many workers, for example, for effective mass  approximation by 

TharMalingam,12)for indirect interband transition by Penchina13)and 

                                           14, unified fora_kind of criticalpoint byAspnes:15)                                                      Recently the 

excitonic effects in electrooptical signal have also been studied 

by several workers16-24) 

     The field induced change  in the complex dielectric constants 

will be  derived. According to  Dresselhaus'25) and  Elliot's26) 

work, the matrix element M
cvin  Eq.(2.8) is expressed as multipli-

cation of the amplitude of wave function of  electron-hole pair in 

the same unit  cell,  gO) and the matrix element between the peri-

odic parts of Bloch function,  Co, 
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       M
cv=4)(0)  Co.  (2.11) 

The wave function of electron-hole pair affected by an electric 

field can be expressed by using Airy  function. For three-

dimensional.crystal, the imaginary part of dielectric constant 

near the  M0 critical point can be calculated by using an analytic 

relationship of Airy function,27) 

                1102 
 E2E(w)  = 77-• 7[Ai'2(n) - n  Ai2(n)1,  (2.12) 

where 

                  2e2C
hg81111-191112       B -() •                    mzc 

                      E - tcl.) 

                 tO 

                .e2E2  2
pt. ' 

and  E
g is band edge energy, E electric field,  pF the reduced 

effective mass in the direction of electric field. Thus, the 

dielectric constant  without field  E2(w,0) 

 C20(03) =()  2  u(w-W  ) (2,13) 

where u(x) is the unit step function, One can easily imagine 

that this expression shows well known square root energy dependence 

of the dielectric function at the parabolic edge, The field 

induced change in the dielectric constant,  Ac2(w) is defined as 

the difference of Eq.(2.12) and (2.13), 
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              AE2(w) =  62
E(w)  620(0 

                            1"; 
            =

uB-37— F(n), (2,14) 

where  F(n) is called the first kind of electrooptical function, 

 F(n) =  7  [Ai'1201)  n  Ai2(n)] - (-0  u(-n)  (2.15) 

and drawn with the solid line in Fig.2.3. 

    The field induced change in the real part of complex dielec-

tric  constant,Aci(w) can be obtained through   Kramers-Kronig 

transformation of Eq.(2,5) 

                         1/; 
                         BO-      66 = G(n)  • (2.16) 

 G(ra is the second kind of electrooptical function, 

 G(n) =  7  [Al.*(11)  Bif.(n)  n  Ai(n)  Bi(n)] +  in  u(n) (2.17) 

and also drawn with the dashed line in  Fig.2.3. 

    It is shown by Aspnes that in the same way,  Aci(w) and  Ae2(w) 

for other types of critical points can be expressed by some combi-

nations of the Airy functions, namely the first and second kinds 

of the electrooptical functions, F(n) andG(n). Hamakawa et al.28) 

have calculated spectra of the dielectric functions,and the line 

shapes of the field-induced changes of complex dielectric constants 

at the various critical points for three-dimensional crystals are 

summarized in Fig.2.4. 
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Fig.2.3 Three-dimensional electrooptical functions 

 F(n)(solid line) and  G(n)(dashed 
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* Line shapes of  Ael(co ,E) and  AE2(w,E) calculated at the condition:  18=10 meV, 

 Eg  =0.8 eV and  B=I. Here  17=  (bw-Eg)/719,  A=(3•81/2)/0)2 

 Fig,2,4 A summary of field induced change in the real and imaginry parts 

of dielectric function at various types of edges,(after Hamakawa et a128)) 

 -17-



2.3.3 Energy Parameter  Modulation in Dielectric Constant 

     In this section, energy parameter modulated dielectric func-

tions will be derived, as the external perturbations, incident 

photon  energyllw, critical point energy  fiiwg and broadening factor 

r are considered. Generally the modulated spectra can be express-

ed by a linear combination of the derivatives of  ci and E2 with 

respect to some perturbation7g.9) In wavelength modulation the 

complex signal is expressed by the one differentiated with respect 

to angular frequency of photon,  w, 

         de(w)A
w.  (2.18)  Ae(w) =                         d

w 

In temperature modulation,  the temperature modulated complex 

dielectric constant is expressed by the differentiated by angular 

frequency of critical point energy  wg and broadening factor r, 

                     de(
dww)dTdwde+1-dr dT de(w) dr          AC (W) =----- LT AT. (2.19) 

    dw 
   "t---
d1- isthe temperature coefficient of critical point energy                                         dr 

                                                                                                               . and the absolute value is usually larger than—In stress                                         dT 

modulation the dielectric constant modulated by hydrostatic pres-

 sure is expressed by  the derivative with respect to w , 

          Ac (w) = de(w)dAP. (2.20)                    dw dP 

 In the following chapters we will show detailed spectra of the 

 energy parameter modulation and also discuss their mutual relation-
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4h :p#  whtch  ptght bo Yti toofyi fear tbo ofo#lykt# oaf *Ap#ripopp0, 

  29) d
4c4. 
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         3.  THERMAL AND ELECTRIC FIELD BROADENING IN ELECTROOPTICAL EFFECT 

           3.1 Introduction 

               A number of investigations on the elctrooptical effect have 

           been recently made for the study of band structure parameters in 

           solids. However, several unresolved problems have been still 

           remained. One of them is an effect of exciton which gives an 

           important role in the low temperature electrooptical effect and 

          this has been studied by several  workers1-6) Another problem 

          is a broadening effect which is a serious trouble for the quanti-

           tative analysis of the electrooptical spectra observed. Espe-

          cially in the higher interband transition region the effect of 

          broadening is usually dominated by a shortening of the life time 

          of electron and also a spacial inhomogenity by reduction of the 

           penetration depth of photon. Sometimes an overlapping of the 

          signals coming from adjacent critical point destroys its own line 

           shape of the respective edges. In a recent year, a great prog-

           ress in the band structure studies by the use of computer calcula-

           tions,  and  on the other hand experimentally, improvement of the 

          resolutions with the modulation technique makes a study of broad-

          ening effect one of the required work in the modulation spectros-

          cory. There has been only a few works concerned in this problem 

          so far. The effect of life time broadening on the electrooptical 

          functions has been demonstrated  'first by  Seraphin7) Hamakawa et 

 al.8) have pointed out that there is another broadening effect 
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depending upon electric field.  Aspnes9) has derived a general 

expression of electrooptical functions with the convolution of 

                                          11)10, L
orentzian type broadening  effect.Enderleinhas also 

calculated the broadened electrooptical spectra. Quite recently 

Forman et al.12) has analyzed the data of transverse electro-

reflectance of GaAs near the fundamental edge in terms of ther-

mally broadened electrooptical spectra. However there has been 

no work  demonstratingthe systematic treatment of both thermal and 

electric field broadening which might be very useful for the 

analysis of the electrooptical spectra observed. 

     In this chapter we have calculated the Lorentzian convolu-

tions in the electrooptical functions by taking account of two 

broadening factors due to thermal and electric field broadenings13) 

A feature of the parametric changes in the broadened electrooptical 

functions with two broadening factors  iislexamined. We have also 

obtained a consistent relationship between the calculated results 

and the experimental data taken at a series of combined conditions. 

The physical sources of the broadening effects are also  discussed, 

 3,2 Broadening Effect in Electrooptical Signal 

     As it can be seen elsewhere, the optical spectra observed by 

experiments are usually much smoother than those expected  from the 

theory. For example,  Fige3.1 shows the temperature dependences 

of the electroabsorption signals near transition edge of 

germanium. The life time broadening is the most familiar source 
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 Fig.3.1  The example of thermal  broaderahg effect in electroabsorption 

in  r25-r5 transition edge of germanium.(after Hamakawa, Germano and 

Handler8)) 
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 Fig.3.2 The amplitude dependence of the first two positive 

and first negative peak as a function of the magnitude  of 

the electric  field.(after Hamakawa, Germano and  Handler8)) 
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to be considered and intensively investigated for various optical 

spectroscopy. In the electrooptical effect,  however ,, there are 

some additional sources resulting from the application of high 

electric field. At first, we have tried to enumerate possible 

sources for the broadening effect in the electrooptical spectra as 

following; 

  a) thermal broadening, (that is, life time broadening) 

  b) broadening due to the spacial field inhomogenity, 

  c) broadening due to the chronological field inhomogenity, 

  d) electric field broadening arisen from other high field effects. 

     Thermal broadening effect in the electrooptical signal has 

been demonstrated  first by Seraphin and  Bottka7),  Enderlein10,11) 

and Forman et al.12)                         In a recent year the effect of spacial 

inhomogenity of electroreflectance signal has been studied by some 

workers13-16) It has been shown that it is avoidable by a care-

ful sample preparation and the electrode alignment to get uniform 

field on the sample and also in some case that this spacial inhom-

ogenity can be reduced by a proper choice of impurity concentration 

for a certain electric field  applied  in the case of surface bar-

rier  electroreflectance17)                              Chronological inhomogenity of 

electric field applied also gives broadening in the electrooptical 

signal as a time averaging effect. This kind of broadening appears, 

 for  example, in the case of measurements with a sinusoidal electric 

field modulation. This broadening could be eliminated by using 

the square wave pulse modulation field having the duration larger 
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     enough than the relaxation time. A drastical change in the 

     electroreflectance line shape has been observed in lead salts by 

     Aspnes and  Cardona18) This change has been explained by the 

     relaxation time effect in electric field applied across the sample . 

     There is still remained broadening effect in the electrooptical 

     signals. The experimental data show that the electric field 

     dependence of the amplitude in the electrooptical signal does not 

                   1/, 
     follow the E' law as expected by the theory. The slope of  logAa 

     vs. log E, for example, in the Fig.3.2 shows more than unity in 

     the low electric field region, and decreases gradually with 

     increasing electric field, and eventually changes its sign at 

     certain high electric field. This behavior cannot be interpreted 

     by any broadening sources mentioned above  a)%c). The cause of 

     the broadening might be based upon an effect of high electric 

     field on the electronic states for optical transitions. Then we 

     call this source an electric field broadening. 

     3.3 Broadened Electrooptical Functions in  Three-dimensional Crystal 

     3.3.1 Derivations of rT and rE 

          According to the theory of the electrooptical effect in the 

     absence of Coulomb interaction, the field induced change in the 

     real and imaginary part of complex dielectric constant in the 

     interband transition near the critical point of the energy band, 

 Acl and  Act, can be expressed by the first and second electro-

     optical function  from  chapter 2, 
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              B814f."71) 
          ±

1(13 
    Ac.(w) = i=1,2 (3 .1) 

 G(71) 

where B,  8 and n are same as that defined in  section2.2 . The 

signs of n and  Asi(w) are determined by the type of respective 

critical point. 

     In order to examine the effect of broadening on electro-

optical functions, we have taken two different broadening factors 

 rT and  rE in the Lorentzian convolution integral, where  F
T means 

the thermal broadening and  r
E the electric field broadening factor. 

The broadened spectrum of the field induced change in the imaginary 

part of dielectric constant,  {6,62(w,FT'rE)}br
oad can be calculated 

by the form,                                                                 

t   {ilE2(w,rT'rE)}broad.{62E(w,FT+FEIlc{E20(w'FT)}broad  (3.2)Te. 

where the Lorentzian convolution of a function F(w) is generally 

defined as; 

    {F(w,( w_r)}-w;,+r          broad=77.7.dw'  (3.3) 

As it can be seen  from  E4.(3.1) that in the electrooptical func-

tion  we usually employ a normalized energy scale  n, one can also 

convert the broadening factor  r into the dimensionless expression 

of  rTN and  rEN having the  same unit of  n, Inserting the Airy 

function expression of the imaginary part of dielectric constants 

with and without electric field into  Eq.(3,2), we can calculate 
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 {As2(w,rT'rE)}b road at M0critical point by the form; 

                      1/0r+r 
                     BO- TNEN  Ai'2(n')-n'Ai2(n")   62(w

'rT'rE))broad=-77-1 IT  (n"-n)+(r
TN+rEN)z  dn' 

 m 

                                                              00 

                          - rTN /777 u(-n-)                                           dn" ] .  (3.4)                                  71(11- -r)z+rz 
                                                                            .... 

The analytic function of  Eq .(3.4) is given by Aspnes9)using complex 
                                                       1 
                                                     B0/2 Airy functions. It may be assumed that the coefficient--7- in 

                                                                  w 
front of  F(n) or  G(n) can be taken away from the integrand 

 Eq.(3.3) because it does only slightly depend upon temperature 

through the reduced effective mass, the momentum matrix element 

and angular frequency in the region integrated . Therefore we 

 1.; normalize the diel
ectric constant by the factor  BO  ̀ -/w2 and calcu-

late the broadening effect on the electrooptical functions to be 

applicable at any critical point for both electroabsorption and 

electroreflectance , not in form of  As. The first and second 

kind of broadened electrooptical function are designated as  F(n
, 

 rTN,FEN) and G(n,  N,rEN). 

3.3.2 Temperature Dependence 

     First of all, we will consider only the thermal broadening 

effect. The typical curves of the thermally broadened  electro-

optical functions, F(n,rTN,O) and  G(n,r
TN,O), are shown in  Fig,3.3, 

when rTN is changed from 0 to  1.0. The solid line is the one 

without the broadening which is the original function,  F(n) or 
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 G(n). As shown in these figures, the spike at n=0 corresponding 

to the critical point, is rounded off and the other peaks in 

oscillations at n<0 are gradually damping with the increase of r
TN 

as already pointed out. In the spectra of F(n,r
TN,O) the peak 1 

following the exponential tail shifts  far from the position of  n=0 

with increasing of  rTN, and at  r
TN=0.5 the shift of this peak 

attains to more than  0.5 in  110 unit. As to c(n,r
TN''0)on the 

other hand, the peak 1 moves slightly to the negative n side and 

when the broadening factor rT
N attains to about 1.0, it does 

inversely shift to the positive  r  side. It should be noticed 

that the other positions do not almost change with  r
TN. Thus, 

the introduction of these thermal broadenings  gives  the electro-

optical function the effects to round off the spike at n=0 and 

damp the other peaks. 

     The broadened electrooptical functions including an addi-

tional electric field broadening can be also calculated by Eq.(3.4). 

These spectra of F(n,r
TivrEN) and G(n,rTN,rEN) are shown in Fig.3.4. 

The parameter rTN is fixed at 0.1 and another parameter r
EN is 

changed from 0 to 0.1. The variation of r
EN indicates the various 

steps of the electric field effect and so this figure does not 

directly correspond to  Fig.3.3. It can be seen in the figure that 

for  F(n'rTN'rEN) the peak 1 increases with the electric field 

broadening and the amplitudes of the other oscillation peaks 

become small, and for  c(n,rTN'rEN) the negative  peak .1 becomes 

greater and the other peaks decrease. In  Fig.3.5 the dependences 
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Fig.3.3 Electrooptical functions including thermal broadening effect 

                         13) (
a)  F(nO"TN'0) and (b)  c(n,rTN'0). 
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Fig.3.4 Broadened electrooptical functions with both thermal and 

                  13) 
electric field broadening. 
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Fig.3.5 The dependence of the peak amplitudes on  rTN (a) and (c) with 

only thermal broadening, and (b) and (d) with rEN=0.05.13) The left hand 

side corresponds to  F(n,rTNJEN) and right hand side to G(fl,FTN'rEN). 
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of the absolute values of the several peaks of  F(n,F
TN'FEN) and 

G"rTNJEN)upon  rTN are  shown. In the case of only the thermal 

broadening, they are shown in  Fig.3.5(a) and (c). For both 

 F(l,rTN'0) and  c(n,rTN'0)' it can be seen that the amplitudes of 

these peaks  do not decrease so much when  r
TN is below 0.1, but the 

amplitudes are decreasing abruptly with  rTN beyond a larger  r
TN 

above 0.1. In the case of both the thermal and electric field 

broadening, the subsidiary oscillation peaks are decreasing with 

rENand the decrease of the peak 1 with r
TN is smaller than with-

out the electric field broadening. These curves correspond to 

the temperature dependences of the peak values of the signals 

observed experimentally, and therefore by comparing with  experi-

mental data, we can decide the relation between temperature and 

 FTN* 

 3.3.3 Electric Field Dependence 

     We will examine the dependence of  Acl(w,FT,FE) and Ac2(w,rT, 

 FE) on electric field. Here we suppose that temperature,  there-

fore,  FT, is constant and rE is proportional to electric field. 

Since  0 is proportional to two-third powers of electric field E 

from  Eq.(2.12), and  rTN and  FEN are equal to  rTo and  rE/0, respec-

tively,  rTNis proportional to E?3 and  rEN to E 3. Only the 

relative behavior of the calculated spectra is treated here in 

order to utilize them at any critical points for the comparison 

with both electroabsorption and electroreflectance. In the 
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electric field dependence of the electrooptical signal, one must 

take account of the electric field dependence of the coefficient 

     2 BO%7-/w in  Eq .(3.4). Then we introduce an electric  field  E0 

which is a function of temperature and  80 is equal to (e2E02                                                  /201)  3. 

Hence the electric field dependence of the coefficient B8-/w2 can 

be represented by normalized (E/E0) - and the electric field de-

                                                                1/, 

pendent term in Aci(w,rT'rE) or AE2(w,rT'rE) becomes (E/E0) 
                      1A 

F(n,rTN,rEN) or (E/E0)'G(n,rn,FTN), The electric field depend-

ences of  (E/E0)  -F(n,rTN'rEN) and  (E/E0)  -G(n,rTivrEN), that is, 

 tc1(w,rT,rE)  or  AE2(w,rvrE), are shown in Fig.3.6.(a) and  (b). 

It is assumed now that at E=E0  rTN=1.o and  rEN=0.01. These 

graphs correspond to the relative change of the electrooptical 

signal with electric field. For (E/E0)r)when                                              TN'EN' 

electric field is relatively small, the peak 1 is almost in the 

same position in energy for any electric field in spite of the 

 different-50. When electric field is large, the peak 1 grows 

much with electric field than the other peaks. For  (E/E0) 

Gthe peak 1 at  n=0 varies little in the position.  "rTN.FEN)' 

At the large electric field range the subsidiary oscillation 

peaks do not so much increase with electric field and tend to 

saturate. The logarithmic dependence of peak to peak 

value on electric field is shown in Fig.3.7, In the theory 

without the broadining, all peaks increase with electric field 

according to  E relation. In the case of only the thermal 

broadening, they increase abruptly below  E/E0=10, and in the 
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large electric field region the gradients of the logarithmic 

dependences of the amplitudes on electric field become about  1/2 . 

Forman et  al.12) also calculated this dependence only for the 

peak 1 and 2 in the electric field range of  E/E0=0.1q40. This 

behavior of the thermal broadening can be explained as follows . 

When electric field is  small, r
TN and its change with electric 

field are large and so the gradient is abrupt . When electric 

field is large,  r
TNis very small and so the influence of the 

broadening to the signal becomes a little and the gradient de-

creases to be about 1/2. When the electric field broadening 

is included, the electric field dependence is a little different 

from the above result. For both  (E/Eo)  3F(1r
TN'rEN) and      i

4 (E/E
0) 3G(11'TN'rEN)'in the case of FEN=0.05 at  E/E0=1 the peak 

to peak values have the linear dependences on the electric field 

at  E/Eel  and their gradients become gradually small with elec-

tric field. The peak to peak values except the one between 

the peak 1 and peak 2 exhibit a tendency of saturation near 

 E/E0=100. Moreover when  r
ENis larger, they even decrease, 

These results correspond to the experimental  data8) that in the 

weak fields the signal grows up abruptly, and in the electric 

field being still more large it saturates, and finally a little 

decreases at very large electric  fields, 

   As concerns about the oscillation periods above the energy 

band edge, the periods are precisely proportional to  E1 in the 

electrooptical theory without broadening effect. In the  calcu-
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                                                                       IA 
Fig.3.6 The change of the normalized dielectric constant,(a) (E/EO)° 

   113) 
          and (b)  (E/Eo)with electric field. F(nirTN'rEN),3G(ThrTN'rEN) 
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Fig.3.7 The dependence of  peak  to peak values on electric field E/Eo, at 

                                      1.• 
the left hand side for (E/Eo)3F '(n'rTN'rEN) and at the right hand side for 

(E/Eo)1/3G(1-1,rTN'rEN).13) (a) and (c) are the curve with only thermal broad-

ening. (b) and (d) are with  FTw=1.0 and  rEN=0.05 at  E/Eo=1. 
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lations of broadened electrooptical functions mentioned above
, 

it has been found that the effects of broadening on the oscillation 

periods are negligibly small. 

3.4 Broadened Electrooptical Functions in  One- and Two-dimensional 

    Crystal 

3.4.1 Electrooptical Signals in One- and Two-dimensional Crystal 

    In this section, the broadened electrooptical spectra for  l-

and 2-dimensional critical point are calculated with parameters
, 

                  9) similarly as Grover et al1, and also their temperature and electric 

field dependences are investigated. Near one-dimensional  Mo crit-

ical point, the field induced change in dielectric constant , AEI 

and  Act, can be obtained similarly as in the 3-dimensional case , 

         AE1  =  Al  G1(11) (3 .5) 

and 

         Del =  Al  Fl(n) , (3.6) 

where 

                     47e2C;,2111,11                  A
l-m2watTT) 

              Fl(n) =  27Ai2(n) - u(-n)17171 

and 

 G1  (i1) =  27Ai(n)  Bi(n)  -  u(n)/7- 

 F1(n) and  G1(n) functions are plotted with the solid line in Fig . 

 3.8. . In two-dimensional case near  Mo critical point,  Aci and  Eel 

can be obtained similarly, 
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         6.61 = A2  G2(n) (3.7) 

and 

          Ae2 =  A2 F2(n) , (3.8) 

where 

                '2112eCg2 
                          w2  (111112)        A2 = m2 

 F2(n) =  Ail(Kn) - u(-n), 

 G2(n) =  Gii(Kn) +1—  lnIKnI + C, 

 Ail(fl) and  Gil(n) show the integral of  Ai(n) and  Gi(n), respec-

tively, K=2-', and C is constant.  F2(n) and  G2(n) functions are 

plotted with the solid line in Fig.3.9.  Ael and  Ae2 near the 

other two-dimensional critical points can be also represented by 

 F2(n) and G2(n). These spectra near critical points have the 

characteristic structures reflecting the forms of joint density 

of states, that is the inverse square root and  logairlithmic 

divergence, step-like and square root dependence. We examine 

the effect of lifetime broadening on electrooptical signals. The 

field induced dielectric constant is calculated in the forms of 

broadened electrooptical functions. The first and second kind 

of thermal broadened electrooptical function for n-dimensional 

 (n=1,2) are designated as  Fn(n,rTN) and  Gn(n,rTN). 

3.4.1 Temperature Dependence 

     The typical curves of the broadened electrooptical functions, 

 F1(n,rTN) and  Gi  (n'FTN) for 1-dimensional case are shown in Fig.3.8, 
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          and F2(n,FTN') and G2(n,rTN) for 2,dimensional case in Fig.3.9. 

          As shown  in  these figures, the spikes, the discontinuties  and the 

          divergences at critical  point.are rounded off and the other peaks 

          in the oscillations at  n<0 are gradually damping with the increase 

           of  r, and this behaviors are similar as in the three-dimensional 

           case. When  r is proportional to thermal energy  kT, these curves 

           show the temperature dependences. For one-dimensional case, the 

         peak  2 of F1(n,rTN) and the peak 1 of G1(11,rTN) are reduced 

          abruptly than the others with the increase of  rTN, which are caused 

          by the inverse square root dependence of photon energy. For 

         F1(n,rTN) the peak 1 following the band edge tail shifts far from n=0/ 

 ;andIthe peak 2 shifts slightly to the negative  n side with the 

          increase of rTN,On the other hand, for  G1(n,rTN) the peak 1 

          shifts to the positive n side at  large  rTN. and the peak 2 shifts 

          to the  negative  aside at small  rTN. The other peaks do not almost 

           change the position with  r. Comparing withthree-dimensional case, 

         the peak width of  the peak 2 of F1(n,rTN) and the peak 1 of G1(n, 

 rTN) are narrow, and these peaks are very sharp at small rTN. 

          For two-dimensional case, in the spectra of F-(n                                                          z'''rTN)' the peak  1 
         following the band edge tail and  the peak 2 shift far from the 

          band edge  n=0 with the increase of  rTN, whereas in the three  dimen-

          sional case the peak 2 does not change its energy  position; The 

 change between the peak 1 and peak 2 is much more abrupt  than  the 

          others at small value ofrTN'whereas the change is not so much 

• abrupt in the  three-dimensional .  These.  behaviors are attributed 
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•  Fig .3,8 Electrooptical functions including thermal broadening effect 

          for 1-dimensional crystal. Solid line is the one without  broadening. 
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 Fig.3.9 Electrooptical functions including thermal broadening effect 

for 2-dimensional crystal. Solid line is the one without broadening. 
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     to the fact that the  joint density of states in the 2-dimensional 

      case is  step-function-like at  MO and  M2 critical point of van Hove 

      singularity and its electrooptical signal has the discontinuty if 

     the broadening effect is not taken into account, As to  G2(n,r
TN) 

     only peak 1 shifts to the  positive  n  side when r
TN is fairly large, 

     And also the energy separation of the peak 1 and the peak 2 is 

     smaller than the others for both  F2(r1,r
TN) and  G2(n,rTN). The 

     ratio of the energy separations of the peak 1-2 and the peak2-3 

     is about 0.6 at  r=0,2 for both F2(n,r
TN) and G2(n,rTN')where in 

     the  three-dimensional case it is  0,7 for  F(n,r
TN,O) and 1.0 for 

 G(-1,rTiv0). 

 3.4,3 Electric Field Dependence 

          The electric field dependences of  Aci(w) and  Ae2(w) are 

     examined in this section, Here we assume that temperature is 

     constant, therefore r is constant. The normalized broadening 

     factor rTN is proportional to  E  . Only the relative behavior 

     of the calculated spectrum is treated here as well as in the three-

     dimensional case. An electric field E0 is introduced in order 

     that rTN is equal to 1 at  E=E0, and therefore is constant for a 

     certain temperature, And also  80 is introduced to be equal to 

 (e2EP201) For one-dimensional case,  (E/E0)  ~3F1(n,rTN) and 
  -1,--LA 

 (E/E0)'3G1(n'rTN) are calculated where  (E/E0)"'is the electric 

     field dependent prefactor of electrooptical functions in Aei(w), 

     and for two-dimensional case F2(n,rTN) and  G2(n,rTN) are  calcu-
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 Fig,3,10 The change of normalized dielectric constant for 1-dimensional 

                                                   2/ 
crystal with electric field. The unit of the abscissa is (E/E0)3n. 
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 Fig.3.11 The change of  normalized dielectric constant for 2-dimensional 

        crystal with electric field. The unit of abscissa is energy (E/Eo) in. 
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lated because of the absence of the electric field dependent 

factor. The electric field dependences of  (E/Eo)  -Fl(n,FTN) and 

 (E/E0) 3G1(n,rTN) corresponding to  Aci(0 are the shown in  Fig.3. 

10. It can be seen from these curves that at the small field 

range below  E/Eo=10 all the amplitudes of the signals grow up, and 

                                    at the large field the peak 2 of (E/E10)3F1(1,FTN) and (E/Eo)-;,3 

 G1(n,FTN) still grow up  because of greater divergence of  s(w) at 

critical point than the broadening effect, but the other peaks do 

not grow up or damp because  of-thefield dependent factor (E/Eo)-;/0 

The electric field dependences of  F2(n,rTN) and  G2(n,I'TN) are 

shown in  Fig.3.11, When electric field becomes large, the 

amplitudes and oscillation periods of the signals grow up. 

3.5 A Comparison with Experiments 

     In the case that the exciton effect is  relatively small, one 

can directly determine the broadening factors rT and rE from the 

temperature and electric field dependences of the experimentally 

observed signals. Even when the exciton effect cannot be  neg-

lected,T and rE can be determined by dealing with the subsidiary 

peaks which are not so much affected by the exciton effect, 

Figure 3.12 shows the comparison of the temperature dependences 

of the third and fourth peaks of the experimental signal with the 

calculated ones. The experimental data quoted are electro-

absorption of germanium worked out by Hamakawa et  al.8)                                                      In this 

method using the electric field modulation in p-n junction, the 
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          effect of the electric field inhomogenity might be considered to 

          be small. The curves in  Fig.3.12 represent the peak dependences 

          of  F(n,rTN,rEN) calculated with  rEN  0,05, As can be seen in the 

          figure the calculated curve of the fourth peak follows well the 

          experimental  plots, Broadening factors can be evaluated from 

          this comparison;rTN=0.45 , 0,13 and  0,020, those are corre-

          sponding to 5.0, 1.4 and 0,2 meV, are obtained for 300, 83 and 14 

          °K respectively . Figure3,13(a) shows a direct comparison of the 

          calculated curve with the experimental signals for 14°K 

         at 104V/cm, while the fitting point is chosen at the fourth peak 

          where the contributions of electric field quenching in the exciton 

         absorption might be sufficiently small. A large   deviations of 

         the peak 1, 2 and 3 may be attributed to a certain amount of 

          superposition of exciton effect. The calculated curve has the 

         broadening factors ofrTN=0.020 and rEN  = 0.05 whose values are 

          estimated  from  the temperature dependences of the amplitudes 

          mentioned above. An attempt has been made to plot the difference 

          between the experimental and calculated curves and the result is 

         also shown in  Fig.3.13(b). An interesting fact obsereved here 

          is that the line shape of the plot is very similar to that of the 

 exciton electroabsorption, for example, the exciton absorption 

          spectra obtained by Nishino et al, at the same temperature region.20) 

 Figure8.14 shows a comparison between the electroreflectance 

               ZD          signal of GaAsand a calculated curve with  r
TN, It is noticed 

• in the analysis that an expected electroreflectance signal 
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Fig.3.12 The temperature dependences of the third and fourth 

peak values of the calculated electroabsorption signal. The 

experimental data of  germanium8) are also plotted. 
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Fig.3.13 A comparison between the experimental signal8) and the 

calculated curve with thermal and electric field broadening. 

(b) The difference between two spectra shown in(a). 
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Fig.3.14 A comparison between the electroreflectance signal at 25°K 

and the calculated spectrum in the case of  rTN=0.5.(after Nishino, 

Okuyama and Hamakawa21)) 
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around 3 eV  in GaAs  is a nearly equal mixture of  AEI and  Ac2, and 

the  mixted  j signal caused by both contributions of  Ml (1)and  M
1(11) 

type critical point, is attemped for the different mixture ratio 

D by considering the anisotropy of the reduced effective mass at 

A critical point. In  the  figure the calculated spectrum is 

normalized at the peak position and amplitude of  E1(1), and also 

the width of the E1(2) structure are put together to the experi-

mental data. Based upon a good agreement between the calculated 

and experimental line shape, the electroreflectance spectra were 

interpreted by the contribution from M1 critical points including 

both types of  M1(_L) and M1(#)in spite of the discussion of the 

existence of hyperbolic exciton near this  A3-A1 transition edge by 

 22) Sh
aklee et  al. 

3.6 Summary 

     In this chapter, the various sources of broadening effect in 

electrooptical signals have been discussed. The effects of 

electric field broadening in addition to thermal broadening in the 

electrooptical function have been calculated. Parametric changes 

in the amplitudes and oscillation periods with thermal and elec-

tric field broadening factors are presented so as to be able to 

utilize in the quantitative analysis of experimental  data.. 

Moreover, the estimations of the broadening factors have been 

tried from the comparison between the calculated and experimental 

spectra of Ge and  GaAs. The result in Ge shows a considerable 
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contribution from the exciton electroabsorption at low tempera -

tures. 
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            4. ENERGY PARAMETER MODULATION SPECTRA 

4.1 Introduction 

     In recent years, the investigations of optical properties by 

using the electrooptical effect have been greatly progressed both 

theoretically and  experimentally1,2) Among these investigations, 

the electrooptical  effects  on the semiconductors have been done not 

only in  three-dimensional crystals but also in chain-like and  layer-

type  )   crystals. However in progressing the detailed experiment on 

anisotropic crystal, many difficult problems in the analysis of 

experimental result open up for the assignment of energy param-

eters. These difficulties are mainly based upon the broadening 

effect and their overlapping effect from adjacent edges, which are 

discussed in the last chapter on three-dimensional crystal, devi-

ations from ideal crystal symmetry etc. 

     In this chapter the author wishes to expand the theory of 

broadened dielectric functions of three-dimensional crystals to 

one- and two-dimensional crystals. In beginning of this calcu-

lations a generalized expressions of dielectric functions for 1-, 

2- and 3-dimensional crystal is derived. In the calculation of 

broadened dielectric functions these modulating external pertur-

bations, photon  energy-hw, critical point  energy  -tw and broad-

ening factor r, are considered. A systematic relationship has 

been found in the differential dielectric function modulated with 

energy parameters of  tu,
gtand r. By using the relationship, 
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one can easily figure the line shape of the modulated spectra for 

any dimensional critical point from a differential dielectric 

functions. 

4.2 Dielectric Function for 1-, 2- and  3-dimensionaiCrystal 

     The complex dielectric function with Lorentzian broadening 

for direct and allowed interband transition at M
r critical point 

in n-dimensional crystal may be expressed as the follwing gener-

alized expression;) 
                        w-w

g+ir n 2 
      e(w) = it-n  C

n  t2  dt, (4.1) 

where 

                                1 
                 Tre2 e-Pifl'212         C

1= mw(7Ft) 

                                   1 

              2e2le.P'f12                                 4u1119   C
2  = mzz (4 ) 

                          w 

                                                     17,< 

 C3=e2 e'Pif (81-111-t?l-11) 
 m  w 

and other notations are same as in the usual text. Complex 

dielectric function for each dimension can be easily expressed 

from this expression. For  example,in three-dimensional case it 

has the square-root singularity near M
r critical point,5) 

              c(w) ir+1 (w-w +ir)-2 

 .r 
 f-(1)3 (-x) + i  (1)3(x)} , (4.2) 
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where 

                  x+V7771"2            (1)
3(x)  - ( 2 ) 

                   X = 

and  i=147. In two-dimensional case it has step-like  discontirOityl 

or  logalrithmic divergence near M
r critical point, 

 c(w) ir+2  log(w-w  +ir) 

                                     ,r               cc {0i(x) + i  (Di(x)}, (4,3) 

where 

                  1 

          

. 44(x) = log(x2+1), 
                     27 

 (Di(x) =  + Tarilx 

           2 and the  logaJrlithmic function is fixed in a Riemann plane, In 

one-dimensional case it has inverse-square-root divergence near 

M
r critical point, 

 e(w) ir+1  (w-w  +ir)  2 (4.4) 

                                        .r                  ccf01(-x) + i  01(x)1 , 

where 

                     X+4777.14              )
1(X) = (777Ti<o 

The energy spectra of these dielectric constants with and without 

broadening near 1-, 2- and 3-dimensional critical points can be 

simply illustrated in  Fig.4.1, The corresponding line shapes 

are designated by the number of critical point, r, for each curve 
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 Fig.4.1 A summarized expression of the energy spectra in dielectric constants for one-
, two- and three-

dimensional crystals; the real(outside) and imaginary(inside) parts of dielectric constant with(solid line) 

and without(broken line)  broadening. The numerals noted in the figure express type of the critical point .



outside the circle to the real part and inside to the imaginary 

respectively. The real parts shift in phase of  90° from the 

imaginary. 

 4.3 Some Relationships between Energy Parameter Modulation Spectra 

     In modulation spectroscopy, the modulated spectra as wave-

length, temperature and stress modulation spectra are expressed 

by the linear combination of the change in the dielectric constant 

modulated by some energy parameters.  The  energy parameter noti-

fied here is photon  energy -No in wavelength modulation, critical 

point energy  -hw and broadening factor r in temperature modulation 

and tw in stress modulation. These modulation spectra have a 

close relationship each other since  e(w) can be expressed as the 

function of w-w+ir,4) 

            dc(w)  de(w) - de(w) 
     dw dw dr 

                                             - 2 
                = C

n (w-w +ir)2                                                  (4.5) 

Separating this to the real and imaginary part, 

 del  (w)  _  del (w)de2(w)  
      dw dw dr 

                        g 
and 

 cle2  (w)  _  dc2  (w)  _  (1E1  (w)   (4 .6)       dw dw  dr • 
                        g 

By using the equation(4.5), one might know the modulated spectra 

for all energy parameter modulation once one modulation spectrum 
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is  calculated, The physical basis of the relations is that the 

complex dielectric constant for interband transition can be 

expressed by the function of the complex  energy'n(w-w  +iF), where 

w2 included in the  prefactor C
nmay be neglected because of the 

small energy dependence to the spectra near critical point. 

These spectra canbe divided into the real and imaginary parts 

concretely. In three-dimensional case near  M
r critical  point,5,6) 

 dc(w) .r+1             = C3-43(x) - i  (1)3(-x)} , (4,7)           dw 

where 
                     w-w 

              x = 

and 
                 1 rx+1.77-71,1/2         (I)3(1) =v7 1.277271775 . 

                                            1/ 
Peak value of this spectrum is proportional to F0In two-

dimensional case near M
r critical point, 

     de(w).rr//\l 
                , (4.8)              = u21-xnx)1ynx)r           dw 

where 

        (1)2(x) =7771 .77 . 

Peak value of this spectrum is proportional to  I-1. In one-

dimensional case near Mr critical point, 

 do  (w) == C1  {4)1(x) +  i  c1)1(-,x)), (4.9)           d
w 

where 

        4)1(x)  - (x+^X2+1)2(-2x+^X2+1)                   /77  
(x2+1)  2 
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rn

Table 1 A summary of the spectral functions in modulation  spectroscopy at various types of edges  for

one-, two- and three-dimensional crystal.

 Dimen-

sions

Critical 

 point

Sign 
of p

 61 

    62 

 Ael(w,E) 

 Ae2(w,E) 

 del  
  dw 
 deg  
  dw 
 del  
  dwg 
 deb. 

  dwg 
 del  
 dF 
 dc2  
  dr

1

 Po P1

 01(-x) 

01(x) 

 Gi(-n) 

 F1  (-n) 

 -(1)1(-x) 

 (1)1(x) 

 -(1)1(x) 

- (x) 

-(1)1(-x)

 -01(x) 

 43.1 (—x) 

 -Gl  (n) 

 Fl  (n) 

 -(P1  (x) 

 -4)1  (-x) 

 4)1(x) 

 W-x) 

 4)1(-x) 

 -4)1(x)

2

 Do D2

(1)1 (x) 

  2 0200 

G2(-11) 

 F2(-11) 

4(x) 

(
12 (x) -44 (x) 

 -cpi(x) 

 -4(x) 

4(x)

 -1)i(x) 

 -200 

 -F2  (n)  F2  (-n) 

 G2  (n)  G2  (-n) 

 -(1)(x) 

 4(x) 

    q2 (x) 

 -4-(x) 

 -4(x) 

 -(1)(x)

-4)1(x) 

 -(1)i  (x) 

-G2(n) 

 F2  (n) 

 -44(x) 

-(p2 (x) 

 (1)1(x) 

(p2 (x) 

 (1)2  (x) 

 -4-(x)

3

mo  142  M3

 -(1)3(7x) 

 0300 

 G3  (-T) 

 (-11) 

 (P3(-x) 

 (P3  (x) 

 -(1)3(-x) 

 -4)3(x) 

 -(1)3(x) 

 (1)3(-x)

 -(1)3(x) 

 -43(-x) 

 G3  (n)  -F3(-11) 

 -F3(n)  G3 (-n) 

    -(1)3(x) 

 (1)  3  (-30 

 (1)3(x) 

 -4)3(-x) 

 -(1)3(-x) 

 -(1)3(x)

     (P3 (-x) 

   -43(x) 

 -G3  (-n)  F3  (n) 

 -F3  (-n)  G3  (n) 

 -4$3 (-x) 

 -4)3  (x) 

 (P3(-x) 

 (P3(x) 

 4)3(x) 

 -4)3(-x)

03(x) 

 (1)3(-x) 

 -G3(n) 

 F3  (n) 

 4)3  (x) 

-4)3 (-x) 

 -4)300 

 4)3(-x) 

 (1)3(-x) 

 (1)360



Fig.4.2 A summary of the energy spectra in modulation spectroscopy 

 at one-, two- and three-dimensional critical point. 
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 2-{lim. 3-dim.

 Fig.4.3 A summarized expression of the energy spectra in energy parameter modulation for one-, two- and  three-

dimensional crystals, the real(outside) and imaginary(inside) parts of the differential dielectric constants 

modulated by the photon energy11w, the criticalpoint energy11w and the broadening factor F4) The  suffix 0 

indicates the M0critical point, and the arrow means the order of critical point number counterclockwise.



Fig.4.4 A summarized expression of the energy spectra in electrooptical effect with large broadening 

for one-, two- and three-dimensional crystals. The numerals noted in the figure  express  type of the 

critical point for the real(outside) and for the imaginary(inside).



Peak value of this spectrum is proportional to  P_/2,These 

expressions imply that their configurations are not changed with 

value of  r, that is temperature, but the amplitudes of the peaks 

decrease with F and their dependences are different in each dimen-

sional case. From the measurement of temperature dependences of 

the amplitude in any energy parameter modulated spectra, one might 

know whether electronic structure  tends  to be chain-like,layer-type 

or cubic. All modulated spectra near all dimensional critical 

point are summarized in Table 4.1, where  44(x)=-x42(x) and  4)i(x) 

 =4)2(x). Moreover all the spectra are figured in Fig.4.2 in order 

to call in our minds immediately. Eventually, using these rela-

tionships, the real and imaginary parts of these broadened differ-

ential spectra of complex dielectric constant are simply expressed 

in  Fig.4.3. The electrooptical spectra with large broadening 

expressed by the third derivative of the dielectric  constant) 

are also summarized in Fig.4.4. 

4.4 A Comparison with Experimental Results 

     A direct comparison between the experimental data  and the 

calculated spectra can  be achieved when an exciton effect is 

relatively  small. In Fig.4.5 the spectra of temperature  modula-

tion of PbS worked out by Nishino et  al.  are shown and the best 

                            L1E2. fitted curves of the calculatedare plotted together. PbS 
                             dw 

is a very relevant material here as its exciton Bohr radius is 

very large and therefore the effect to the absorption spectra can 
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Fig.4.5 An example of the comarison between thermoabsorption 

               ) spectra of lead sulphide8 and the calculated curve . 
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          be neglected. The sign of the temperature coefficient  
crrl of 

          band gap energy in  PhS is positive, whereas in ordinary  semicon-

          dutors it is negative. Hence the measured spectra are directly 

          proportional to the imaginary part of the derivative of dielectric 

          constant drawn in Fig,4.3. The calculated curves agree well 

          with the experimental and it is shown that these spectra of 

          temperature modulation almost consist of only the spectra differ-

          entiated by critical point energy. The component of the modu-

          lated spectra by  r is very small as compared with the spectra by 
                  dE                                           dr 

 w
gbecause of-2-1=5.5x10-4eV/deg,and— =0,3x10-4eV/deg.     dTdT 

           4.5 Summary 

              A generalized expression of broadened complex dielectric func-

           tions near one-, two- and three-dimensional critical points has 

          been demonstrated as functions of parameters of photon  energy  1w, 

          critical point energy tugand broadening factor r. This expres-

          sion is resolved to the real and imaginary part of dielectric 

          constant near each critical point and is summarized in  Fig.4.l. 

          A systematic relationship has been found in differential dielec-

          tric function modulated with energy parameters of  w, wg)and  r 

          and their spectra are easily calculated by the differentiation of 

          the generalized expression. By using the relationship, the line 

          shapes of the modulated spectra for any dimensional critical point 

          can be easily figured from a differential function.in Fig.4.3. 

• A comparison between the theoretical curve and the  thermo-
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absorption spectra of PbS was tried and  showsa good agreement 

because of the weak effect of  exciton. 
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           5. MODULATED SPECTRA IN ANISOTROPIC CRYSTALS 

5.1 Introduction 

     The investigations of optical properties in solids have been 

made mainly in three-dimensional crystal  who'se electronic structure 

is well known. Recently for the anisotropic materials1) such as 

chain-like or layer-type crystal the experimental investigations 

have been accumulated in the optical property but the systematic 

informations in electronic band structure  have  not yet been ob-

tained  well. One-dimensional motion of electron is realized not 

only in the chain-like crystal such as AVBVICVII 2) but also in 

the solid under strong magnetic field, and is restricted in the 

direction parallel to the applied magnetic field. For  laver-type 

crystal, the energy band structure and optical properties have 

been discussed as concern about the two-dimensional crystal by 

many workers. It is found that for the electroreflectance in 

the higher interband,3)the spectra agree with the two-dimensional 

calculated spectra rather than the three-dimensional. Quite 

recently it is also reported by Jellito4)that the density of states 

 in the f. c. c. lattice has a logarithmic divergence at the 

critical point. As concerns about  two-dimensional Wannier exciton 

the absorption spectra are calculated with and without magnetic 

field by a few workers5-7) But these complete one- or two-

dimensional calculation, which was treated in the last section, 

could not obtain a good agreement with the experimental. Recent-
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  ly morphology in the optical spectra in the intermediate aniso-

  tropic crystals, which include the interaction between layers or 

  chains, was discussed by  Nakao8) and he found the characteristic 

  transition corresponding to the anisotropic parameter. In this 

  section, the modulated spectra with broadening are calculated for 

  these intermediate anisotropic crystals. 

  5.2 Dielectric Constants with Broadening in Layer-type and 

      Chain-like Anisotropic Crystals 

       We assume the dependence of energy on wave vector k for 

 orthorhombic crystal structure and nearest-neighbor tight binding 

 approximation as  Nakao's work;8) 

            E(k) =  Ec(k) -  Ev(k) 

                   = E0  El(p  cosk
x + q cosky + r  coskz)• (5.1) 

 In the case of p=q=r the structure is simple cubic, the case of 

 p=q>>r is layer-type anisotropic and the case of  p>>a=r is chain-

 like anisotropic. Then the joint density of states multiplied by 

 473 for energy  E=hw is represented as follows; 

  N(E) = dk  6(E-E(k)) 
                  B.Z. 

 p q  r 
                S(E+x+y+z)= dx dy dz,(5.2) 
            -p -q -r[(p2_x2)(e_y2)(r2_z2)1 2 

 where energy E(k) is normalized as (E(k)-E0)/E1, and x=p  cosk
x, 

 y=q  cosky and z=r  cokz. By the substitution of F -F, x -x, 

 -  72  -



y  + -y and z  + -z, neither the  integrand  -nor the limits  of the 

integral is modified, so that N(E) is an even function and that 

its configuration is symmetric. N(E) is represented by using 

either elliptic integrals or Bessel functions, and the represen-

tation of elliptic integrals is selected in our case because of 

the easy understanding of physical meaning and the easy computa-

tion by finite limits of integrals. The behavior of the variation 

of joint density of states, especially the critical point, among 

1-, 2- and 3-dimensional crystal was  discussedlin,detail by  Nakao;) 

using Bessel function. 

    First of all, N(E) is considered for layer-type anisotropic 

crystals, where  p=q=1 and  0<r<1. Then N(E) has the finite value 

in the range of E from -2-r to 2+r. The integral in Eq.(5.2) can 

be carried out in some separate energy regions having the boundary 

at critical point energy. Equation (5.2) is calculated as 

follows, for  IEI>2+r 

        N(E) = 0, 

for  2-r<  El<2+r 

                    l+r-E 

    N(E) = dx  Il(x), (5.3) 

 -1 

for  r<IEl<2-r 

        sl-r-E  1+r-E       N(E) = dx  12(x) + dx  I1(x) (5.4) 
      -1  1-r-E 
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and for  lEkr 

 r-E-1  -r-E+1 

N(E) = dx  I1(x) + dx  I2(x) 

   -1  r-E-1 

                      + 1 

                   dx  Il(x), (5.5)      r_E+1 

where 

 I1(x)=K(           1 \/(1+02-(E+x)2), 
     {r(1-x2)}24r 

   1  4r   I
2(x)-                          1K(\0                             /(1+'-(E+x)L)        [(1-x2){(1+02-(E+x)2}0 

and K(x) is the first complete elliptic integral. These 

density of states functions with some anisotropic parameters, are 

shown in Fig  .Sa. The inflections of N(E) in the figure 

correspond to each critical point. The critical points at  E=-2-r 

and  2+r are minimum and maximum point, that are  M0 and  M3 point, 

and those at  E=-2+r and 2-r are saddle point. The critical point 

at E=-r and r are also saddle point and doubly degenerate. 

     On the other hand, in the chain-like anisotropic crystal, 

that is  p=1 and  0<q-r<1, N(E) has non-zero value in the range of E 

from  -1-2r to  1+2r. The integral in Eq.(5.2) can be carried out 

in some cases of energy region having the limit at'critical 

point energy. Then  Eo.(5.2) is calculated as follows, 

for  lEl>1+2r, 
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        N(E) = 0 

and for  1<lEl<1+2r 

 r-E1-1 

    N(E) = dx  I3(x), (5.6) 

                         -r 

where 

 I3(x)  -K( 
                 1 \/(1+02-(E+x)2)• 

             {r(r2- x2)}2 4r 

For the lower energy  thanl, the integration is devided into two 

cases according to the value of anisotropic parameter. This 

division results from the fact that two saddle point pass each 

other in energy with anisotropic parameter, r. In the case of 

 r<0.5, for  1-2rdEl<1 

             

. -r-E+1 

       N(E) =c dx  I4  (x) + dx  I3(x) (5.7) 
      -r  -r-E*1 

and for  lEl<1-2r 

                      r 

    N(E) = dx  I4(x) , (5.8) 
                       -r 

where 

 I4(x)  -                                          1
,/K(1+02-r                                             (E+X)2).                [(

r2_1x2){(1+02-(E+x)2112 

In the case of r>0.5, for  2r-1<lEl<1 
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   N(E) = dx  I4  (x) + dx  I3(x)  (5 .9) 
                  -r 

and for  lEk2r-1 

 r-E-1  -r-E+1 

 N(E) = dx  I3(x) + dx  I4  (x) 

     -r  r-E-1 

                               +r                                dx  I3(x). (5.10) 

                                         -r-E+1 

These density of states functions with some anisotropic parameter 

are shown in Fig.5.2. The inflections of N(E) in Fig .5.2 

correspond to the critical points at  E=-1-2r,-1+2r , -r, r,  1-2r and 

 1+2r. The critical points at  E=-1-2r and  1+2r are minimum and 

maximum point, that are  M0 and M3 critical point. The ones at 

 E=-1+2r and  1-2r are saddle points, and are separated from degen-

erate saddle point at E=-1 and 1 and incorporated to the minimum 

and maximum point at  E=1 and  -1 with  increlasing  r. The critical 

point at E=-1 and  1 are saddle point and doubly degenerate. 

These spectra are reduced to the complete 1-, 2- and 3- dimensional 

case when r=0 or 1. 

    In three-dimensional  case,4) for  IEI>3 

            N(E) = 0, 

for  ldEl<3 
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 2-E 

 N(E) = dx  I  (x) (5.11) 

                           -1 

and for  lEl<1 

 1 

 N(E) = dx  I(x), (5.12) 

                              -1 

where 

                    1-lx+El 
 1(x) =K( 2 ) 

                     (1-x2) 2 

and  K-(x) is the first  complete elliptic integral of the comple-

mentary modul. 

    In 2-dimensional case for IEI>2 

            N(E) = 0, 

and for  IEI<2 

       N(E) =  K'(4i). (5.13) 

    In one-dimensional case for  lEI>1 

 N(E)  =  0 

and for  I  El  <1 

                        2 

                      Tr  
    N(E) -(5.14) 
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These 1-, 2- and 3-dimensional spectra are shown in Fig. 5.1 and 

5.2 together with the intermediate anisotropic spectra. 

     The imaginary part of complex dielectric constant for direct 

interband transition is proportional to the joint density of states. 

Generally the complex dielectric constant is affected by the finite 

lifetime of electron on crystalline level and the spectral behavior 

is modified and smoothed out. This lifetime broadening effect 

can be represented as the convolution integral of density of 

states with Lorentzian as in Eq.(3.3) and Lorentzian factor is 

assumed to be constant over all the photon energy for simplicity. 

This assumption may be oversimplified, but is very useful to give 

the outline of the imaginary part of complex dielectric constant. 

    The optical constants are calculated using the following 

substitution the  6-function by a normalized Lorentzian peak, 

                1   r2  6(Ph
w)  -4-  

7  (1ftw_E)2+r2' 

The contribution of the density of states to the imaginary part of 

complex dielectric constant is thus given by 

                                                   co 

 c2(w)  ' A                           (t _)+N(E1,2 dE                                                  (5.15) 

                         0 

where A is the constant containig the momentum matrix element, 

The real part of complex dielectric constant,  el(w), results from 

 Kramers-Kronig transformation of this equation. In fact, for a 

narrow Lorentzian line  El(w) is obtained by replacing the Lorentzian 
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   Fig.5.1 The densities of ststes for layer-type electronic 

   structures with some anisotropic parameters. 
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Fig,5.2 The densities of states for  chain.Tlike electronic 

 structureswith some anisotropic parameters. 
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Fig.5.3 The real and imaginary parts of broadened dielectric constants for layer-type 

and chain-like electronic structure with some anisotropic parameters.



peak by  the'dispersive Lorentzian line. The broadened real part

is given by 

      E1(w) = A 2-. ((tElIN2  dE. (5.16) 

                     0 The real and imaginary part of complex dielectric constant are 

plotted with some anisotropic parameters for layer-type and chain-

like anisotropic crystals in Fig.5.3. The flections of the 

density of states at critical  points are smeared out by broadening 

effect. 

5.3 Energy Parameter Modulation and Electrooptical Spectra in 

    Anisotropic Crystals 

     In this section, we calculate the spectra of energy parameter 

 modulation and electrooptical signals for layer-type and  chain-

like  anisotropic crystals from the real and imaginary parts of 

 dielectric constants, and discuss the behavior of the variation 

of the spectra among 1-, 2- and  3-dimensional crystal with 

anisotropic parameter r. In energy parameter modulation the 

signals can be expressed as the linear combination of the differ-

entiated spectra of the imaginary and real part of complex 

dielectric constant as known from the discussion in  chapter 2. 

Some relationships between energy parameter modulation spectra 

near critical point exist as mentioned in chapter 4, and so all 

the energy parameter modulation spectra are called in our minds 
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       immediately, if only the differentiated spectra of  c1(w) and  e2(w) 

       by photon energy is calculated. In electrooptical effect, the 

      spectra can be also obtained with help of the third derivatives 

      of dielectric constant as derived by Aspnes10) According to this 

       third derivative theory, the electrooptical signal in the case of 

      the large broadening is given by 

              Ae(w,r) = —1,-20103 E2 c(w,r), (5.17)                  3Ea 

       where 

               (10)3 = -e2  (E.4k)2 E(k)                     8 

                             e2 E2.12 
                         8p 

      and E is electric field. This simple relation between the electro-

      optical signal and the unperturbed dielectric constant is justi-

      fied in the case that broadening factor is much larger than the 

       characteristic electrooptical energy. When effective mass has 

       no energy dependence, this relation may be more simplified as 

       follows, 

                     (liQ) 3D3          As(w0")  -3  c(w,r). (5.18) 

       In these considerations, the spectra of energy parameter modulation 

       and electrooptical effect for anisotropic crystals can be repre-

      sented by the first and third derivatives of complex dielectric 
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constant. E2 hardly affects the spectra of  Lc(w,r) near critical 

point and therefore that component is neglected in the differ-

entiation. The assumption of constant reduced mass in the direc-

tion of electric field is  justified by the fact that electric 

field applied on sample is transverse to z-axis for layer-type 

crystal and parallel to z-axis for chain-like crystal. 

     The real and imaginary parts of the first and third deriva-

tives of complex dielectric constants are drawn for some layer-

type anisotropic crystals in Fig.5.4 and 5.5, and for some chain-

like anisotropic crystals in Fig.5.6 and 5.7. In the 2-dimen-

sional spectra the spectral behavior near critical point justly 

resembles the differential spectra calculated in the last section 

where the spectra near critical point are degenerate. As the 

interaction between layers, that is, anisotropic parameter r, 

 increase; the differential signal near 2-dimensional  Mo and  M2 

critical point is separated into two parts.11) The one goes far 

from the former energy position and gradually forms the spectra 

near 3-dimensional  Mo and  M3 critical point with increasing r. 

The others move to the former 2-dimensional  M1 critical point in 

energy position, incorporate with the former doubly degenerate 

one at the former  M1 critical point and gradually form the one 

near 3-dimensional  M1 and M2 critical point triply  degenerated. 

The bottom spectra in Fig.5.4 and 5.5 are the one for simple cubic 

crystal. In  Fig,5.6 and 5.7 the upper spectra are 1-dimensional 

ones and the spectral behavior near critical point justly resembles 
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             the differential spectra calculated in the last chapter, which is 

              triply degenerated. As the interaction between the chains, that 

               is anisotropic parameter r, increases, the differential spectra 

              located near the former 1-dimensional  Mo and M1 critical point are 

              separated into three parts.12) The one goes far from the former 

              energy position and gradually forms the one near 3-dimensional  Mo 

             and  M3 critical point. The another at  M1 critical point rests 

              at the same position, incorporateswith the one at M2 critical 

              point separated from the former 1-dimensional M1 critical point 

             and gradually  forms  the one near M1 critical point similar to the 

              one near 3-dimensional critical point calculated in the last 

              section. The other in M2 critical point incorporateswith the 

              doubly degenerate one located at the former 1-dimensional M1 

             critical point and gradually forms the triply degenerate one near 

             3-dimensional  M2 critical point similar to the one calculated in 

              the last chapter. 

                  Electrooptical signals are proportional to the third deriva-

             tives of dielectric constant multiplied by  (Th  )3 under the condi-

             tion of the constant effective mass in the direction of electric 

             field. When electric field is in the direction of the positive 

 d3e               mass, electrooptical signals are proportional to  —3- in Fig.5.5  dw 

             and 5.7. But when electric field  is  in the direction of  the 

                                                     d3c                negative mass, they are proportional to -T u--3-3-. These consider-

              ations are complicated near the  energy region in which two types 

              of critical points do interfere each other, as shown in Fig.5.5 
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 del  d  £2 
   dw dw 

2-dim. 

 r=0.2   ALA             rir 

 r=0.5   Ada 

 r=0.8   ,461111 

                  Jima_ 3-dim.  

Fig.5.4 The real and imaginary parts of the first  deriyatiyes'of 

complex dielectric constants for layer-type electronic structures 

with some anisotropic parameters. 
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 AI d3C2 
    dw3 dw3 

2-dim. -1-----*-- 4, 

                             ! 

                          li1 

                                I ' I 1             1 - r i 1 
               T ! A ̂  . i 1                       I1                                         I1 - 1 I 

                                             si 

 r=0.5AA        111--rr!4 kkiii                             ! 1. 

          I 

r=0.8  f  `----  ___  1                                       rk 

                    !iI                            11 I 

                   .....t____.* 3-dim. 1r A- -7 if 

Fig.5.5 The real and imaginary parts of the third derivatives of 

complex dielectric constants  forllayer-type electronic structures 

with some anisotropic parameters. 

 -  87  -



  dw 

1-dim.    d d£2                d0.) 

 r=  0.2 

              Ala  r=  0.5 

   141‘ 

                 i1111111461.  r=0.8   

                     Am1114._ 
3-dim.  

Fig.5.6 The real and imaginary parts of the first derivatives of 

complex dielectric constants for chain-like electronic structures 

with some anisotropic parameters. 
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 Al  de2 
 dw3 dW3 

                                           Al 1-dim. 1•,,rI iv 

 r=0.2' 1,        11.'11AIIAI                 I'r 
                             ll1. 

r=0 5A_         I"r !1----II 1.1-r 

 r=0  8,        1I-i1.1                                 1k / I.  I          1 1-F r rA                       ! 

                          ll1 1 
       I I 

3-dim.  _4,-  -\,---  -r-  1  

Fig.5.7 The real and imaginary parts of the third derivatives of 

complex dielectric constants for chain-like electronic structures 

with some  anisotropic parameters. 
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and 5.7. However, in the case of electric field perpendicular to 

z-axis in layer-type crystal the relation mentioned above is kept 

a good approximation between electrooptical spectra and the third 

derivative of dielectric constant because of the invariance of the 

effective mass in the field direction. In chain-like crystals, 

for the good approximation the electric field must direct to z-axis. 

• 5.4 Summary 

     In this section, energy parameter modulation and electro-

optical signals were given in the intermediate  anisotropic crys-

tals. The density of states functions for the anisotropic crys-

tals were calculated by assuming that the electronic band energy 

 E(k)=E0-E1(cosk
x + q  coskv + r  coskz), where q and r are continuous 

anisotropic parameters. The complex dielectric constants with 

lifetime broadening are obtained by the convolution integral of 

density of states with Lorentzian type function and its disper-

sive line. From these calculations, variations of density of 

states function with changing crystal symmetry from one- or two-

to three-dimensional crystal are represented and examined. Third 

derivatives of dielectric spectra with a broadening factor, which 

can be compared to electrooptical spectra from Aspnes' theory, are 

calculated as a function of continuous anisotropic parameter. 

The same kinds of calculations  are  extended to the other energy 

parameter modulated dielectric function. Change of the spectral 

responce with anisotropic parameters is also examined. 
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                      6. CONCLUSIONS 

       Broadening effects of differential energy spectra in various 

 energy parameter modulation have been investigated. Calculations 

 were made for one-, two- and three-dimensional crystals on various 

 types of critical points. Derivations and considerations on broad-

 ened energy spectra in modulation spectroscopy have been discussed 

 by two separate categories, i.e., electric field modulation and 

 other energy parameter modulation. The main results worked out 

 in this thesis work are enumerated as following. 

    1) In electrooptical effect, two broadening factors due to 

        thermal and electric field effects were taken into account 

       as the Lorentzian convolutions in the electrooptical func-

        tions for three-dimensional crystal. 

    2) Variations of the amplitudes in the field induced changes of 

       complex dielectric constants,  Acl and  Act, with the amount 

       of broadening factors FT and  rE were presented for a series 

        of certain realistic parameters. 

    3) Parametric changes in the broadened electrooptical spectra 

       with the amount of broadening factors were also  discussed, 

    4) Calculated electrooptical functions enabled us to compare 

       quantitatively with the spectra measured in the electro-

        optical experiments, and considerable agreements between the 

        theory and experimental result were obtained. 

    5) One- and two-dimensional electrooptical functions with 
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           broadening were also calculated. Until now, no typical 

           experimental results have been reported, but the calculated 

           broadened electrooptical functions on these anisotropic 

           crystals would be a useful theoretical background for exper-

           imental work. 

       6) A generalized expression of broadened complex dielectric 

            functions near one-, two- and three-dimensional critical 

          points has been demonstrated as functions of parameters of 

          photon  energy-hw, critical point energy  -iwg and broadening 

           factor F. 

       7) A systematic relationship has been found in differential 

          dielectric functions modulated with energy parameters of w, 

          w and  F, By using the relationship, the line shapes of 

          the modulated spectra for any dimensional critical point can 

          be easily figured from a differential function. 

       8) Density of states functions for anisotropic crystals were 

          calculated by assuming that the electronic band energy  E(k) 

 =E0-E1(cosk
x + q coskY+ r  coskz), where q and r are contin-

           uous anisotropic parameters. 

       9) Complex dielectric constants with lifetime broadening are 

          obtained by the convolution integral of density of states 

          with Lorentzian type function and its dispersive line; 

      10) Variations of density of states functions with changing 

           crystal symmetry from one- or two- to three-dimensional 

           crystal are represented and  examined, 
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11) Third derivatives of dielectric spectra with a broadening 

    factor, which can be compared to electrooptical spectra,were 

    calculated as a function of continuous anisotropic parameter. 

   The same kinds of calculations were extended to the other 

    energy parameter modulated dielectric  function, Change of 

    the spectral responce with anisotropic parameters is also 

    examined. 
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