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ABSTRACT

Broadening effects.of differential energyvspectra in modula-
tion spectroscopy héve 5een investigated for one-, two- and three-
dimensional crystal on various types of critical points, As
modulating external perturbation, electric field, photon energy,
critical point energy and broadening factor are considered.

In electrié field modulation, two broadening factors due to
thermal and electric field effects are taken into account as the
Lorentzian convolutions in the electrooptical functions.
Variations of the amplitudes in the field induced changes of
complex dielectric constants, Aej and Aes, with the amount of
broadening factorva‘T and FE are presented for a series of certain
realistic parameters., Parametric changes in the_broadened'
electrooptical spectra with the amount of broadening factors are
also discussed, Calculated electrooptical functions enable us‘to

compare quantitatively with the spectra measured in the electro~



optical experiments, and considerable agreements between the
theory ‘and experimental result are obtained.

A generalizéd expression of broadened complex dielectric
functions near the critical points has been presented as functions
of parameters of photon energy Hw, critical point energy'ﬁwg and
. broadening factor I'. A systematic relationship has been found in
differential dielectric functions modulated with energy parameters
of w, wg and T, By using the relationship, the line shapes of |
the modulated spectra for any dimensional critical point can be
easily figured from a differgntial function.

Density of states functions for anisotropic crystals were
calculated by assuming that the eiectronic band energy E(k)=Eq-
EI(COSkx + q cosky + r coskz), where q and r are continuogs
anisotropic parameters, and their variations with changing
crystal symmetry from one- or’ two- tdlthree-dimensional crystal
are examined. Third derivatives of dielectric 'spectra with a
broadening factor, which can be compared to electrooptical spectra,
were calculated as a function of the continuous anisotropic param-
eter, The same kinds of calculations are extended to the other
energy parameter modulated dielectric function, Change of the

spectral responce with anisotropic parameters is also examined.
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1. INTRODUCTION

It has been well known that the study of optical properties
is one of useful experimental approaches for investigations of the
energy band structuré of solids. In recent ten years, electro-
. optical gffect in éemiconductors has been intensively investigaﬁed
by use of lock-in technique and recognized as a useful tool for
the assignment of fine structures in the band structure parameters.
On therther hand, theoretical aspect of the band structure stud-
ies has also well developed by an aid of large scale electronic
computer on éome new approaches of' pseudopotential method, k-+p
méthod, Fourier expansion method etc, The current interest
yielded from these both éxperimental and fheoretical developments

has born the study of modulation spectrosc0py.1_3)

Modulation
spectroscopy is an experimental pertufbétion method to take changes
in the absorption; refiectance or the other optical respoﬂce by
applying an exﬁernal perturbation, such as electric field, temper-
ature, incident photon energy or stress. The modulated spectrum
obtained has some excellent informations of band parameters
inqluding the energy aﬁd effective mass of the réspective critical
point. However if there is some broadening effect e,g. due to
electron—phbnon interaction, the stfuéture of the measured spectra
becomes dim and it is difficult to analyze the experimental

results with the theory.

Generally broadening effect in absorption, reflectance or



luminescence spectra is very important because it makes fine
structures smooth out, For example, as D-line of sodium is
radiated by the transition of electron between two energy levels,
the spectra must be a §-function-like energy dependence, but the
measured spectra have a broad energy dependence with a line width,
This is attributed to the broadening effect caused by the finite
lifetime of electron in the energyklevel and the motion of sodium
atom in the sodium-vapor lamp, Recently as a result of the rapid
development of experimental techﬁiques in modulation spectroscopy,
the characteristic points in the electronic band structure of
solids coﬁld be discussed in detail. 1In order to analyze these
informative experimental results quantitatively, the calculations
of theoretical spectra taking account of the broadening effects
are earnestly desired, In modulation spectroscopy having an
external perturbation applied ' to the éample, an additional broad-
ening may appear in the measufed spectra.

The purpose of this ﬁhesis is to- investigate the broadening
effects in modulation spectroscopy, in order to analyze the
experimeptal data precisely and obtain valuable informationsabout
electronic band structure, In electrooptical measurements it has
been found by several workers that the speétra do drastically
change by large broadening effect. For example; the effect of
broadening in electroreflectance spectra of germanium in higher
interband transition region is sﬁown in Fig.,1,1. Around 2eV it

is known that there are an M; type critical point and its spin-
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Fig.l,1 Electroreflectance spectra in the energy region 2,0-2,5eV
at three different temperature with the same effective electric

field4)(solid line) and the calculated spectra(dashed line).



orbit split edge in germanium. These two critical points have
been observed at v2,2eV(Ej) and &2.4eV(E1+A1) in the spectrum
taken at 24°K, It can be seen in the figure that electroreflect-
ance signal decreases with increasing temperature. And at room
temperature characteristic spectrum of M; critical point is so
much destroyed that Ei and Ej+A; signals cannot be.distinguished
because of large broadening effect, In the case of large broadf
ening which is encountered especially in the higher interband
transition region, it is very important to take account of
the broadgning effects in the analysis of electroreflectancé
spectra. |

In chapter 2 of this thesis, optical properties in solids are
simply reviewed to clarify the theoretical background of the
results obtained in this work, Modulation spectroscopy is-
classified into two parts of électric‘field and energy parameter
modulation, and their spectra are dgrived from the first principle.
Chapter 3 describes the studies of the broadening effects in
electrooptical signal, The broadening effects in electrooptical
signal are classified by the physical sources, and thermal and
electric field broadening are the most important in experimentally
observed spectra, The electrooptical signals with these broad-
enings are calculated for some realistic cases aﬁd compared with
the spectra measured in electroabsorption and electroreflectancep)
Chapter 4 describes energy parameter modulation spectra for one-,

two- and three-~dimensional crystals, A generalized expression



of complex dielectric functions is derivedé? Energyv parameter
modulation spectra are easily calculated from this generalized
expression and summarized by using the relation between these
spectra. In chapter 5 modulated spectra in anisotropic crvstal
such as layer compounds or-chain—like crystals are obtained based
upon the simple model closer to the realistic crystals., Broad-
ened complex dielectric functions are derived from the calculation
of joint density of states for intermediate dimensional band
structure, Energy parameter modulation and electrooptical spectra
are calculated by the’differentiation of the complex dielectric
functions?)' The conlusions 6f this work are summarized in chapter

6.
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2, ENERGY BAND STRUCTURE AND MODULATION SPECTROSCOPY

2,1 Introduction

The study of the optical properties in solids, such as
absorption, reflectance or emission of light, hés been worked out
for the investigations of their electronic band structures, The
absorption, reflectance and emission are closely related to the
energy band structure of solids through the transitions from one
state to another state in the energy band, Hence these optical
measurements can be utilized to get some parameters of the
energy band structure, The interband transitions can be classified
to the direct and indirect in the view of the momentum conservation
of electron, and to the allowed and forbidden in the view of the
selection rule of momentum matrix element. In this chapter, we
have investigated only the ditrect and:allowed transitioﬁ which is
more directly related to the electronic band structure than the

others,

2,2 Relation between Optical Constants and Electronic Parameters
in Solids

2)

The optical constants in solidsl’ are characterized by the
complex dielectric constant, The{}éff;EEiVé1indéx n and the
extinction coefficient k are related to the real part e; and

imaginary part e, of dielectric constant as follows,

€] = n? - k2 2.1



and

€y = 2nk, (2.2)

In the absorbing material, the energy of light is reduced at the
ratio of exp(-ax), where a is the absorption coefficient, The

absorption coefficient a is related to €5,

c nc

On the other hand, the reflectance is the good probe to investi-
gate the electronic band structure over all the photon energy
region, while it is very difficult to measure the absorption
spectra in the high energy region above the fundamental edge,

~In the normal incidence from a vaccum, the intensity reflection
coefficient, R, mostly called reflection coefficient is formulated

by using Fresnel's formula as follows,

R= D7+ 2 (2.4)
A general relationship to connect €7 and €, exist and is
well known as fﬁggﬁbrs-Kronig relations, This dispersion

relation is formulated for e; and ez%)

eq (@) =1+%pg pea) g, (2.5)
0
and
£5 () =%9-pg %}—E—‘;l,l%-dw', (2.6)
Q



where P means the Caucy principal part of integration,
From the first perturbation theory, e€9(w) can be presented

, . coa 244
for direct interband transition,’ )

ep () = %;—272-?—2- z g gf?;d% |e-Mfi|2 §(E. B ~tw)  (2.7)
m,n JB,Z,

where the summation is over all pair of possible band and the

integral is over the first Brillouin zone, and the other notatioms

are the same asin the usual text, Considering the transition

between one pair band such as from a valence band to a conduction

band and assuming the invariance of the matrix element M_, on wave

fi

vector k, the imaginary part of dielectric constant e5(w) becomes

42h2e2 Ie-M ‘2 N(E),
—rr— cv

7 (2.8)

gg(w) =

where N(E) is the joint density of states for energy E=tw,

2 ds
N(E) = gT-g- jE £ Tv—k(Tc:rv)—r (2.9)
C v

and the integral is over the surface of constant energy,

EC-EV=E . The joint density of states, which is proportional to

the imaginary part of dielectric constant e,(w), has | the rapid

change in the case of Vk(EC—EV)=O from Eq.(2.9).* This singular
behavior of the joint density of states is called a van Hove's
singularitg)or a critical point in k-space, The energy difference
EC-EV can be expanded about‘a critical point of energy difference

Eo(ko) in a Ta&ﬂor series in effective mass approximation,



N
_ d %2
Eeby = Bolkg) + I 5=

- 2
Lo (ki kOi) (2.10)

where Nd is the number of dimension of the crystal considered.
In three-dimensional crystal, depending on the sign of the reduced
effective mass, there are four types of critical points denoted by
Mi i=0, 1, 2, 3 where i denotesthe number of the negative mass.
When the absorption begins from the lowest MO critical point, it is
well known as the fundamental absorption and has the energy
dependence of (w—wO)Lé. In the case of a two-dimensional k-space
which is an éppropriate model to treat some aspects of layer
structure materials, e;g., graphite and gallium selgnide, the

~N

density of states N(E) has a step function singularity for the

MO and M2 critical point and a logdiﬁthmic divergence for M1

critical point, It is also of interest to mention the energy
dependence of a'one-dimensional k~-space which is appropriate ;o
treat some aspects of chain-like structure materials, e.g., ShSI,
For MO or Ml critical point the density of states has the inverse
square root singularity,

The behaviors of the optical spectrum near critical points
such as edée, peak or step, have been alredy demonstrated both in
experimental and theoretical works, Fig,2,1 shows the imaginary
part of dielectric constant e, (w) of germanium worked out by . .

6
Brust.) The theoretical curve is derived from pseudopotential

calculation and the experimental curve is calculated from reflec~

- 10 -



' Ge
Zy =L —— EXP.

=== THEOQORY

€2(w)

Fig.2,1 Spectral structure of e,(w) in germanium,

Solid liney experiment. ; dashed line:theory,

based on pseudopotential energies, (after Brust6))

(0,0,0)

The pseudopotential energy bands forigermanium

along the Brillouin zone, Important direct interband

transitions are indicated by arrows, (after Brust6))
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tiviﬁy measurement, ' The dominant peaks and edges have been
interpreted as compared with the theoretical considerations,

The corresponding pseudopotential energy band for Ge along the
principal axes in the Brillouin zone6%s shown in Fig.2,2, Some
impértant interband transition edges are indicated by arrows and

correspond to the singular behavior remarked in Fig,2.1,

2.3 Modulated Spectra of Optical Constants
2,3.1 Introduction

In modulation spectroscopy, the signals are detected as a
change of the optical constant by the application of the external
perturbation such as electric field, stress, temperature or wave-
length of incident light, The resulting spectra are well-resolved
and include fine structures than in the conventional method, They
are observed only near the critical péint and do not contain the
background signal observed in the ordinary optical spectra which
are the superposition of the spectra caused by some transiﬁions
of electron, Modulation spectroscopy can therefore pick up the
information about the band structure parameters near critical
point, And also it has such advantage that it is possible to
analyze the measured spectra by using»[ﬁiéibrs*Kronig relation in
the small energy region near the critical point,

Modulation spectroscopy canbe classified into two categories,
The classification is due to the fact whether the external pertur-
bation affects either matrix element or not, The former is elec-

.
tric field modulation or electrooptical effect, where electric

- 12 -



field changes the matrix element by the deformation of wave func-
tion of electron-hole pair, The latters are wavelength, temper-
ature and stress modulation spectroscopy, and we name them energy
parameter modulatlon as their spectraare represented by the die-
lectric constant differentiated by the energy parameter such as
energy of incident light, critical point energy or broadening

factor,

2,3.2 Electric Field Induced Changes in Dielectric Constant
Electrooptical effect has been investigated both theoretically

7-9)

and experimentally since the earlier calculation of absorption

coefficient under uniform electric field by Franioeand Keldyshll)
The theory of electrooptical effect has been extensively developed
by many workers, for example, for effective mass approximation by
Thaq@alinga%%)for indirect interband rransition by Penchin%3gnd
unified for all kind of critical point by Aspnéé}ls) Recently the
excitonic effects in electrooptical signal have also been studied
by several workers16 ~24)
The field induced change in the complex dielectric constants
vwill be derived, According to Dresselhaus'ZS) and Elliot's26)
work, the matrix element Mcv in Eq,(2.8) 1is expressed as multipli~
cation of the amplitude of wave function of electron-hole pair in

the same unit cell, ¢(0) and the matrix element between the peri-

odic parts of Bloch function, Cp,

- 13 -



= ¢(0) Coe . (2,11)

The wave function of electron-hole pair affected by an electric
field can be expressed by using Airy function, For three-
dimensional.crystal, the imaginary part of dielectric constant
near the Mg critical point can be calculated by using an analytic

27)

relationship of Airy function,

b
—‘19}— t[AL°2(n) - n AL2(m)1, (2.12)

eg glw)
where

2
B = 2e C% (8U1U9U%)

m?ch ’
E -Hw
- S
46 ’
o3 _ e2E2
- 1
2uF

and Eg is band edge energy, E electric field, Hp the reduced
effective mass in the direction of electric field, Thus, the

dielectric constant without field e5(w,0)
. 1 »
eop(w) = --z-z-(m-uog)/5 u(w—wg) (2,13)

where u(x) is the unit step function, One can easily imagine

that this expression shows well known square root‘energy dependence
of the dielectric function at the parabolic edge, The'fiéld
induced change in the dielectric constant, Aey(w) is defined as

the difference of Eq,(2.,12) and (2,13),

- 14 <



Aes (w) €2E(w) - €20 (w)

L
BO 2
‘—w'z-—F(n), (2,14)

where F(n) is called the first kind of electrooptical function,
- . . L
F(n) = 7 [A1%2(n) < n Ai2(n)] - (-n) 2 u(~n) (2.15)

and drawn with the solid line in Fig,2.3.

The field induced change in the real part of complex dielec-
tric constant,Aeq (w) can be obtained through | Kramers-Kronig
transformation of Eq.(2.5)

. 1 X
) BS/2
hey (w) = -z G(n)., (2.1'6)
G(n) is the second kind of electrooptical function,

G(n) = v_[Ai‘(n) Bi”(p) - n Ai(n) Bi(m)1 + V0 u(n) (2,17)

and also drawn with the dashed line in Fig,2,3,

N It is shown by Aspnes that in the same way, Aei(w) and Aecy(w)
for other types of critical points can be expressed by some combi~
nations of the Airy functions, namely the first and second kinds
of the eleétrooptical functions, F(n) and G(n)., Hamakawa et al?s)
have calculated spectra of the dielectric functions,and the'line
shapes of the field-induced changes of complex dielectric constants

at the various critical points for three-dimensional crystals are

summarized in Fig.2.4,

- 15 «



Pig.2.3 Three-dimensional electrooptical functions

F(n) (solid line) and G(n)(dashed line).
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*
Type €(w,0)and €, (w,E) Aefw,E) x 10* Aey(w,E) x 10

of edge
+AG(-n) 4. +A-F(-7)
, e

-40 20 20\/40
hw-Eg(meV)
-4

-A-F(+ 17) 4

Transverse,Bz<B8xy| Parallel, 8z>0Oxy

Transverse,0z<Oxy| Parallel,8z>8xy

Eg hw
* Line shopes of A€|(w,E) and A€y {w,E) colculoted at the condition: 18=10 meV,
Eg=0.8 eV and B=l. Here n=(hw-Eg)/h8, A=(B-6"2)/w?

Fig;2.4 A summary of field induced change in the real and Imaginry parts

of dielectric function at various types of edges,(after Hamakawa et al.28)

)
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2.3.3 Energy Parameter Modulation in Dielectric Constant

In this section, energy parameter modulated dielectric func-
tions will be derived, as the external perturbations, incident
photon energy‘ﬁw, critical point energy ﬁwg and broadening factor
I are considered, Cenerally the modulated spectra can be express-
ed by a linear combination of the derivatives of €] and €5 with
respect to some perturbatiogé?) In wavelength modulation the
. complex signal is expressed by the one differentiated with respect

to angular frequency of photon, w,

Ae () = %ﬁ—‘ﬂ)— Ao, (2.18)

In temperature modulation, the temperature modulated complex
dielectric constant is expressed by the differentiated by angular

frequency of critical point energy wg and broadening factor T,

w

d
_ de(w) g de(w) dT
Ae(w) = T a7 AT + T ar AT. (2.19)
g
dw .
ﬁﬁﬁg-is the temperature coefficient of critical point energy
' T .
and the absolute value is usually larger than %T' In stress

modulation the dielectric constant modulated by hvdrostatic pres-

sure is expressed by the derivative with respect to wg,

dw_ dP ) )
g

In the following chapters we will show detailed spectra of the

energy parameter modulation and also discuss their mutual relation-

- 18 -



ships which might be very useful for the snalvsis of experirental

29)
daga, )
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3, THERMAL AND ELECTRIC FIELD BROADENING IN ELECTROOPTICAL EFFECT

3.1 Introduction

A number of investigations on the elctrooptical effect have
been recentiy made for the study of band structure parameters in
solids, However, sevéral unresolved problems have been still
remained, One of them is an effect of exciton which gives an
important role iﬁ the low temperature electrooptical effect and
this has'been studied by several workersl—6>. Another problem
is a broaden%ng effect which is a serious trouble for the quanti-
tative analysis of the electroopfical spectra observed. Espe~
cially in the higher interband Lransition region the effect of
broadening is usually dominated by a shortening of the life time
of electron and also a spacial inhomogenity by reduction of the
penetration depth of photon, Sometimes an oyerlapping of the
signals coming from adjacent critical point destroys its own line
shape of the respective edges. In a recent year, a great prog-
ress in the band structure studies by the use of computer calcula-
tions, and on the other hand experimentally, improvement of the
resolutions with the modulation technique makes a study of broad-
ening effect one of the required work in the modulation spectroé-
cory, There has been only a few works concerned in this problem
so far, The effect of life time broadening on the electrooptiéal

7)

functions has been demonstrated first by Seraphin °, Hamakawa et

8)

al. ’ have pointed out that there is another broadening effect
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depending upon electric field. Aspnesg) has derived a general
expression of electrooptical functions with the convolution of

10,11) has also

Lorentzian type broadening effect, Enderlein
calculated the broadened electrooptical spectra. Quite recently
Forman et al.lz) has analyzed the data of transverse electro-
reflectance of GaAs near the fundamental edge in terms of ther-
mally broadened electrooptical spectra, However there has been

no work demonstratingithe systematic treatment of both thermal and
electric field broadening which might be very useful for the
analysis of the electrooptical spectra observed,

In this chapter we have calculated the Lorentzian convolu-
tions in the electrooptical functions by taking account of two
broadening factors due to thermal and electric field broadenings%

A feature of the parametric changes in the broadened electrooptical
functions with two broadening factors |[is| examined, We have also
obtained a consistent relationship between the calculated results

and the experimental data taken at a series of combined conditions,

The physical sources of the broadening effects are also discussed,

3,2 Broadening Effect in Electrooptical Signal

As it can be seen elsewhere, the optical spectra observed‘by
experiments are usually much smoother than those expected from the
theory. For example, Fig.3.1l shows the temperature dependences
of the electroabsorption signals near I'55-T5 transition edge of

germanium, The life time broadening is the most familiar source
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Fig.3.1 The example of thermal broadening effect in electroabsorption
in T'35-I'5 transition edge of germanium, (after Hamakawa, Germano and

8
Handler ))
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Fig.3.2 The amplitude dependence of the first two positive
and first negative peak as a function of the magnitude of

8)

the electric field, (after Hamakawa, Germano and Handler )
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to be considered and intensively investigated for various optical
spectroscopy. In the electrooptical effect, however, there are
some additional sources resulting from the application of high
electric field, At first, we have tried to enumerate possible
sources forkthe broadening effect in the electrooptical spectra as
following}

a) thermal broadenihg, (that is, life time bfoadening)

b) broadening due to the spacial field inhomogenity,

c) broadening due to the chronological field inhomogenity,

d) electrig field broadening arisen from other high field effects.

Thermal broadeningveffect in the electrooptical signal has

been demonstrated first by Seraphin and Bottka7), Enderleinlo’ll)

and Forman et al.lz) In a recent year the effect of spacial
inhomogenity of electroreflectance signal has been studied by some
Workers%3_l6) It has been shown that it is avoidable by a care-
ful sample preparation and-the electrode alignment to get uniform
field on the sample and also in some case that this spacial inhom-
ogenity can be reduced by a proper choice of impurity concentration
for a certain electric field applied in the case of surface bar-
rier electrqreflectancel7). Chronological inhomogenity of
electric field applied also gives broadening in the electrooptical
signal as a time averaging effect. This kind of broadening appears,
forexample, in the case of‘measurements with a sinusoidal electric

field modulation, This broadening could be eliminated by using

the square wave pulse modulation field having the duration larger
/
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enough than the relaxation time, A drastical change in the
electroreflectance line shape ﬁas been observed in lead salts by
Aspnes and Cardonals). This change has been explained by the
relaxation time effect in electric field applied across the sample,
" There is still remained broadening effect in the electrooptical
signals, The experimental data show that the electric field
dependence of the amplitude in the electrooptical signal does not
follow the El/3 law as expected by the theory. The slope of logha
vs. log E, for example, in the Fig.3,2 shows more than unity in
the low elecFric field region; and decreases gradually with
increasing electric figld, and eventually changes its sign at
certain high electric field. This behavior cannot be interpreted
by any broadening sources mentioned above a)nc), The cause of
the broadening might be based upon an effect of high electric

field on the electronic states for optical transitions, Then we

call this source an electric field broadening.

3.3 Broadened Electrooptical Functions in Three-dimensional Crystal
3.3.1 Derivations of I, and FE

According to thg theory of the electrooptical effect in the
absence of Coulomb interaction, the field induced change in the
real and imaginary part of complex dielectric constant in the
interband transition near the critical point of the enérgy band,

Aej and Aey, can be expressed by the first and second electro-

optical function from chapter 2,
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391/2 F(n) , '

Aei(w) = + v { i=1,2 (3.1)
G(n)

where B, 6 and n are same as that defined in section2,2, The

signs of n énd Aei(w) are determined by the type of respective

critical point,

In order to examine the effect of broadening on electro-
optical functions, we have taken two different broadening faétors
FT and FE in the Lorentzian convolution integral, where FT means
the thermal broadening and FE the electric field broadening factor,
The broadened spectrum of the field induced change in the imaginary
part of dielectric conétant, {Aez(w,FT,FE)}groad can be calculated

by the form,

{Aez(w,FT,P )}brdad = {ezE(w,PT+F )lﬁ:,{azo(w.F )3} (3.2)

E Ebroad T

broad '

I

where the Lorentzian convolution of a function F(w) is generally

defined as;
I‘ e
{F(w'r)}broad_?r-g [CRED LT (3.3)

As it can be seen from Eq.(3,1) that in the electrooptical func~-
tion we usually employ a normalized energy scale n, one can also
convert the broadening factor T' into the dimensionless expréssion
of TTN and PEN having the same unit of n, Inserting fhe Adry
function expression of the imaginary part of dielectric constants

with and without electric field into Eq,(3.2), we can calculate
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{Aez(w,PT,PE)}broad at MO critical point by the form;

1 o
L, T, 4T
_BO2 TN EN | AL2(n)-n"Ai2(n7) , .
{Aez(w,PT,PE)}broad = = = o) 2 (T ATy 2 4n
. TV INT EN
T
TN Y=n" u(-n?), . _
- (n,_n)z__'_fz‘ dn ]c (3'4)

The analytic function of Eq, (3.4) is given by Aspneg)using %omplex
Airy functions, It may be assumed that the coefficient E%;? in
front of F(n) or G(n) can be taken away from the integrand

Eq. (3.3) becguse it does only slightly depend upon temperature
through the reduced effective mass, the momentum matrix element
and angular frequency in the region integrated. Therefore we
normalize the dielectric constant by the factor Bﬁ;’z/w2 and calcu-
late the broadening effect on the electrooptical functions to be
applicable at any critical point for both electroabsorption and

electroreflectance , not in form of Ae. The first and second

kind of broadened electrooptical function are designated as F(n,

Toye Tgyy? 2nd G(ny Loy Tp)

3.3.,2 Temperature Dependence

Fi;st of all, we will consider only the thermal broadening
effect, The typical curvés of the thermally broadened electro-
optical functionms, F(n,PTN,O) and G(n,PTN,O), are shown in Fig,3,3,
when T .. is changed from 0 to 1.0, The solid 1line is the one

N

without the broadening which is the original function, F(n) or
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G(m), As shown in these figures, the spike at n=0 corresponding
to the critical point, is rounded off and the other peaks in

oscillations at n<0 are gradually damping with the increase of FTN

as already pointed out, In the spectra of F(n,T 0) the peak 1

TN’

following the exponential tail shifts f§r;from the position of n=0
¥ ,
with increasing of PTN’ and at TTN20.5'the shift of this peak

attains to more than 0.5 in 16 unit, As to G(n,l...,0), on the

TN’

other hand, the peak 1 moves slightly to the negative n side and

when the broadening factor T attains to about 1.0, it does

TN

inversely shift to the positive n side, It should be noticed

Thus,

that the other positions do not almost change with FTN'

the introduction of thése thermal broadenings gives the electro-
optical function the effects to round off the spike at n=0 and
damp the other peaks.

The broadened electrooptical functions including an addi-
tional electric field broadening can be also calculated by Eq,(3.,4),

These spectra of F(n.FTN,PEN) and G(n,T PEN) are shown in Fig,3.4,

TN®

The parameter Ty i1s fixed at 0,1 and another parameter PE is

N N

changed from 0 to 0.1, The variation of FEN indicates the various
steps of the electric field effect and so this figure does not
directly correspond to Fig.3.3. It can be seen in the figure that
for F(n,FTN;PEN) the peak 1 increases with the electric field

broadening and the amplitudes of the other oscillation peaks’

TN’

greater and the other peaks decrease, In Fig.3.5 the dependences

become small, and for G(n,T FEN) the negative peak 1 becomes
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Fig.3.3 Electrooptical functions including thermal broadening effect
13)

() F(n,Ty,0) and () G(n,Tpy,0)
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Fig.3.4 Broadened electrooptical functions with both thermal and

13)

electric field broadening.
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of the absolute values of the several peaks of F(n,FTN,TEN) and

G(n,FTN,TEN) upon FTN are shown. In the case of only the thermal

broadening, they are shown in Fig,3,5(a) and (c). For both

F(n,T »0) and G(n,T, . ,0), it can be seen that the amplitudes of

TN’ TN’

these peaks do not decrease so much when FT is below 0,1, but the

N
amplitudes are decreasing abruptly with PTN beyond a larger FTN
above 0,1, In the case of both the thermal and electric field
broadening, the subsidiary oscillation peaks are decreasing with
FEN agd the decrease of the peak 1 with FTN is smaller than with-
out ghe elecFric field broadening, These curves correspond to
the temperature dependgnces of the peak values of the signals
observed experimentally; and thérefore by comparing with experi-
mental data, we can decide the relation between temperature and
PTN'
3.3,3 Electric Field Dependence

We will examine the dependence of Ael(w,PT,FE) and Aez(w,FT,
FE)_én electric field, Here we suppose that temperature, there=

fore, T,,, is constant and PE is proportional to electric field,

T

Since 6 is proportional to two-third powers of electric field E
from Eq.(2,12), and T, _ and oy 8re equal to FT/9 and PE/G, respec—

-2

i - 4 Z
is proportional to E and FEN to E °, Only the

TN

tively, FTN
relative behavior of the calculated spectra is treated here in

order to utilize them at any critical points for the comparison

with both electroabsorption and electroreflectance. In the
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electric field dependence of the electrooptical signal, one must
take account of the electric field dependence of the coefficient
BO 2/w in Eq (3.4). Then we introduce an electric field Eg
which is a function of temperature and 63 is equal to (e E0/2uh)
Hence the electric field dependence of the coefficient BG;&/w can
Be represented by normalized (E/E())l'{'3 and the electric field de-
pendent term in Aeq(w, T’P ) or Aez(w,PT,FE) becomes (E/Eg) 7

). The electric field depend-

F(n, PT ) or (E/Eo)

e n, Tewe e
Y .
T ) and (E/EO)' G(n,FTN,FEN), that is,

N!
ences of (E/EO) F(n Towe Tg

Aeq (w, T’P ) or Aey(w,T )}, are shown in Fig,3.6,(a) and (b),

T’PE
It is assumed now that at E=Eg TTN=1.0 and FEN=0.01. These
graphs correspond to the relative change of the electrooptical

signal with electric field, For (E/EO) F(n T ), when

N® EN
electric field is relatively small, the peak 1 is almost in the
same position in energy for any electric field in spite of the
different -ho, When electric field is large, the ﬁeak 1 grows
much with electric field than the other peaks, For (E/EO);é

G(n,T ), the peak 1 at n=0 varies little in the position,

TN' EN
At the large electric field range the subsidiary oscillation
peaks do not so much increase with electric field and tend to
saturate, The logarithmic dépendence of peak to peak

value on electric field is shown in Fig.3.7. In the theory
without thevbroadining, all peaks increase with electric field

: 1
according to E/é relation, In the case of only the thermal

broadening, they increase abruptly below E/E(=10, and in the
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large electric field region the gradients of the logarithmic
dependences of the amplitudes on electric field become about 1/2,

12)

Forman et al, also calculated this dependence only for the
peak 1 and 2 in the electric field range of E/Ey=0,1"40, This
behavior of the thermal broadening can be explained as follows.

When electric field is small, T and its change with electric

TN
field are large and so the gradient is abrupt, When electric

field is large, T, is very small and so the influence of the

TN
broadening to the signal becomes a little and thé gradient de-
creases to be about 1/2, When the electric field broadening

is included, the electric fielq dependence is a little different
from the above result.> For both (E/Eo)LéF(n,FTN,PEN) and
(E/Eo)LéG(n,FTN,PEN), in the case of T',=0,05 at E/Eg=1 the peak
to peak values have the linear dependences on the electric field
at E/Eg=1 and their gradients become gradually small with elec~-
tric field, The peak to peak values except the one between

the peak 1 and peak 2 exhibit a tendency of saturation near

is larger, they even decrease,

8)

E/Eg=100, Moreover when FEN

These results correspond to the experimental data that in the
weak fields the signal grows up abruptly, and in the electric
field being still more large it saturates, and finally a little
decreases at very large electric fields,

As concerns about the oscillation periods above the energy

band edge, the periods are precisely proportional to E%/3 in the

electrooptical theory without broadening effect, In the calcu-
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lations of broadened electrooptical functions mentioned above,
it has been found that the effects of broadening on the oscillation

periods are negligibly small,

3.4 Broadened Electrooptical Functions in One~ and Two-dimensional
Crystal

3.4.1 Electrooptical Signalé in One- and Two-dimensional Crvstal
In this section, the broadened electrooptical spectra for 1-

and 2-dimensional critical point are palculated with parameters,

similarly as Grover et al%?)and also their temperature and electric

field dependences are investigated. Near one-dimensional My crit-

ical point, the field induced change in dielectric constant, Agj

~and Aey, can be obtained similarly as in the 3-dimensional case;

Aeq = A Gl(n) . (3.5)
and '
bep = Ay Fi(n) , (3.6)
where
2 Lz
Fi(n) = 2mAi%2(n) - u(-n)V/=m
and -
G1(n) = 2mAi(n) Bi(n) .- u(n)/n .

F1(n) and Gj(n) functions are plotted with the solid line in Fig.
3.8.. In two-dimensional case near Mg critical point, Aey and Aesp

can be obtained similarly,
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Aey = Ay Go(M) , (3.7)

and

it

A€2 A2 Fz(n) , (3.8)

where

m“h‘w

212e2C 174
Ay ='—§~§~7ﬁ (uyug) 72,

Fy(n)

Aij(kn) - u(-n),

Gy (n)

Giq(kn) +‘% 1n|Kn| + C,

Aiy;(n) and Gil(n) show thé integral of Ai(n) and Gi(n), respec-
tively, K=2%3 and C is constant. Fy(n) and G,(n) functions are
plotted with the solid line in Fig.3.9. Ae; and Aej near the
other two-dimensional cfitical points can be also represented by
Fo(n) and G, (n), These spectra near critical points have the
characteristic structures reflecting the forms of joint density
of states, that is the inverse square root and logarfithmic
divergence, step-liké and square root dependence, We examine
the effect of lifetime broadening on electrooptical signals. The
field induced dielectric constant is calculated in the forms of
broadened electrooptical functions. The first and second kind
of thermal broadened electrooptical function for n-dimensional
(n=1,2) are designated as Fn(n,FTN) and Gn(n’PTN>"
3.4.1 Temperature Dependence

The typical curves of ﬁhe broadened electrooptical functions,

Fl(n,FTN) and Gl(n,FTN) for l1-dimensional case are shown in Fig,.3.8,
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Vgﬁd FZ(nEFfN) ?nd:Q2éﬁfPiN).fof-Z-dimgnéiénal case invFig.3.9.

“As shown iﬁfthése figﬁres, the spikes;‘the discontinuties én&_the
}diyergénces af'criticai poiﬁt.are rounded off aﬁd the other peaks

iﬁ the oscillationé_at n<0.are gradually damping with the increése-
of T, and this behaviors are similar as in the threeédimensiénal
case, When'P_isvpropQrtional to thermal energy kT; these curves
show the temperature dependences, For one—dimensionél case, the
peaR_Q of‘FiCn;FTﬁj and the peak 1 Of,Gl(n'FTN) are reduced

ébruptly than the others with the increase of FTN’ which are caused
by'tﬁg.inverge square root dependence of photon energy. For
FiCﬂ’rTN)]the peak 1 fgllowing the band edge tail shifts far from| n=0
and|the peak 2 shifts slightly to the negative n side with the

increase of FT On the other hand, for Gl(n,PTN) the peak 1

Nl

'shifts to the positive n side at large T, .. and the peak 2 shifts

™~
to the negative n side at-small FTN' The other peaks do not almost
change the position with T, Comparing withthree-dimensional case,
the peak width of the peak 2 of Fl(n,fTN) and the peak 1 of Gl(n,
TTN) are narrow, and these peaks are very sharp at small PTN'.

For two-dimensional case, in the spectra of Fz(n,PTN), ;he peak 1
following the band edge tail and She peak 2 shift far from the

band edge n=0 with the increase of FTN’ whereas in the three dimen~
sional case the peak 2 does not change its energy position,s The
change between the peak 1 and peak 2 is much more abrupt than the
others ét small value of T whereas ;he change is not so much

abrupt in the three~dimensional, These. behaviors are attributed
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Fig.3.8 Electrooptical functions including thermal broadening effect

for l-dimensional crystal. Solid line is the one without broadening,

- 42 -



Fig.3.9 Electrooptical functions including thermal broadening effect

for 2-dimensional crystal, Solid line is the one without broadening.
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to the fact that the joint density of states in the 2-dimensional
IS

case is step~function-like at MO and M2 critical point of wvan Hove
singularity and its electrooptical signal has the discontinuty if

)

the broadening effect is not taken into account, As to Gz(n,FTN

only peak 1 shifts to the positiven side when T is fairly large,

TN
And also the energy separation of the peak 1 and the peak 2 is

smaller than the others for both Fz(n,FTN) and Gz(n ). The

’FTN

ratio of the energy separations of the peak 1-2 and the peak2-3
is about 0,6 at I'=0,2 for both Fz(n,PTN) and Gz(n,FTN), where in

the three-dimensional case it is 0,7 for F(n,l.._,0) and 1.0 for

N’

G(,T.n,0).

TN?

3.4,3 Electric Field Dependence

The electric field dependences of A€y (w) and Aes(w) are

examined in this section, Here we assume that temperature is
constant, therefore I' is constant, The normalized broadening
factor FTN is proportional to E %6. Only the relative behavior

of the calculated spectrum is treated here as well as in the three-

dimensional case, An electric field Ey is introduced in order
that rTN is equal to 1 at E=Eg, and therefore is constant for a
certain temperature, And also B8p is introduced to be equal to

! -L
(eZE%/ZUﬁ)/%. For one-dimensional case, (E/Eg) 3Fl(n,FTND and
s e
(E/Ep) Gl(n,FTN) are calculated where (E/Eg) “°is the electric
field dependent prefactor of electrooptical functions in Asi(w),

and for two-dimensional case Fz(n,PTN) and Gz(n,PTN) are calcu-~
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Fig,3,10 The change of normalized dielectric constant for l-dimensional

2
crystal with electric field, The unit of the abscissa is (E/Eg) én
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Fig.3.11 The change of normalized dielectric constant for 2~dimensional

2
crystal with electric field. The unit of abscissa is energy (E/Eg) én.
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lated because of the absence of the electric field dependent
factor, The eleétric field dependences of (E/Eo);;%Fl(n,FTN) and
(E/Eo)-}éGl(n,PTN) corresponding to Aei(w) are the shown in Fig,3.
10. It can be seen from these curves that at the small field
range below‘E/EoﬁlO all the amplitudes of the signals grow up, and
at the 1argg field the peak 2 of (E/Eo)-LéFl(n,FTN) and (E/Eo)--;’3
Gl(n,TTN) sfill}grow up becayse of greater divergence of e(w) at
critical point than the broadening effect, but the other peaks do
not grow up or damp because of ~the field dependent factor (E/EO)F
The electric.field dependences of Fz(n;FTN) and Gz(n,FTN) are

shown in Fig,3,11, When electric field becomes large, the

amplitudes and oscillation periods of the signals grow up.

3.5 A Comparison with Experiments
In the case that the exciton effect is relatively small, one

can directly determine the broadening factors T, and PE from the

T
temperature and electric field dependences of the experimeﬁtally
observed sig@als. Even when the exciton effect cannot be neg-
lected, FT and'l"E can be determined by dealing with the subsidiary
peaks which are not so much affected by the exciton effect,

Figure 3,12 shows the comparison of the temperature dependences

of the third and fourth peaks of the experimental signal with the
calculated ones, The experimental data quoted are electro-

8)

absorption of germanium worked out by Hamakawa et al, In this

method using the electric field modulation in p-n junction, the

- 47 -
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effect of the electric field inhomogenity might be considered to

be small. The curves in Fig.3,12 represent the peak dependences

of Fns Ty Tpy

) calculated with PEN=0.05. As can be seen in the
figure the calculated curve of the fourth peak follows well the
experimental plots, Broadening factors can be evaluated from

this comparison; = 0.45 , 0,13 and 0,020, those are corre-

Ty
sponding to 5,0, 1,4 and 0,2 meV, are obtained for 300, 83 and 14
°K respectively, Figure3.;3(a) shows a direct comparisop of the
calculated curve with the experimental signals for 14°K |

at lOAV/cm, while the fitting point is chosen at'thé fourth peak
where the contributions of electric field quenching in the exciton
absorption might be sufficientl& small, A large\:igijations of
the peak 1, 2 énd 3 may be.attributed to a certain amount of
superposition of exciton effect, The calculated curve has the

broadening factors of FT = 0,020 and FEN = 0,05 whose values are

N
estimated from the temperature dependences of the amplitudes
mentioned above, An attempt has been made to plot thevdifference
between the experimental and calculated curves and the result is
also shown in Fig,3,13(b),. An interesting fact obsereved here

is that the line shape of the plot is very similar to that of the
exciton electroabsorption, for example, the exciton absorption
spectra obtained by Nishino et al, at the same temperéture region%o)

Figure 8.14 shows a comparison between the electroreflectance

signal of GaA%Dand a calculated curve with Ty It is noticed

in the analysis that an expected electroreflectance signal
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Fig.3.12 The temperature dependences of the third and fourth

peak values of the calculated electroabsorption signal. The

8)

experimental data of germanium ' are also plotted.
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Fig.3.13 A comparison between the experimental sigﬁals) and the

calculated curve with thermal and electric field broadening.

(b) The difference between two spectra shown in(a),
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Fig.3.14 A comparison between the electroreflectance signal at 25°K

and the caléulated spectrum in the case of T N=0.5.(after Nishino,

T
Okuyama and Hamakaw%l))
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around 3 eV in GaAs is a nearly equal mixture of Ae; and Aey, and
the mixted | signal caused by boﬁh contributions of MlCiQ and Ml(”)
type critical point, is attemped for the different mixture ratio

D by considering the anisotropy of the reduced effective mass at

A critical ﬁoint. In the figure the calculated spectrum is
normalized at the peak position and amplitude qf El(l), and also
the width of the E1(2) structure are put together to the experi~
mental data, Based upon a good agreement between the calculated
and experimental line shape, the electroreflectance spectra were

interpreted by the contribution from M, critical points including

1
both types of MlCJQ and Ml(ﬂ), in spite of the discussion of the
existence of hyperbolic exciton near this Az~A; transition edge by

Shaklee et al%z)

3.6 Summary

In this chapter, the various sources of broadening effect in
electrooptical signals have been discussed, The effects of
electric field broadening in addition to thermal broadening in the
electrooptical function have been calculated, Parametric changes
in the amplitudes and oscillation periods with thermal andbelec—
tric field broadening factors are presented so as to be able to
utilize in the‘quantitative analysis of experimental data. -
Moreover, the estimations of the broadening factors have been
tried from the comparison between the calculated and experimental

spectra of Ge and GaAs, The result in Ge shows a considerable
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contribution from the exciton electroabsorption at low tempera-

tures,
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4, ENERGY PARAMETER MODULATION SPECTRA

4.1 Introduction

In recent years, the investigations of optical properties bv
using the electrooptical effect have been greatly progressed both
thedretically and experimentallyl’z). Among these investigations,
the electrooptical effects on the semiconductors have been done not
only in three—dimens&onal crystals but also in chain-like and laver-
type crystals%) However in progressing the detailed experiment on
anisotropic qrystal, many difficult problems in the analysié bf
experimental result open up for the assignment of energy param—
eters., These difficulties are mainly based upon the broadening
effect and their overlapping effect from adjacent edges, which are
discussed in the last chapter on three-dimensional crystal, devi-
ations from ideal crystal symmetry etc,

In this chapter the author wishes to expand the theory of
broadened dielectric functions of three-dimensional crystals to
one~ and two-dimensional crystals, In beginning of this calcu-
lations a generalized expressions of dielectric functions for 1-,
2- and 3-dimensional crystal is derived. In the calculation of
broadened dielectric functions these modulating external pertur-
bations, photon energy tw, critical point energy’ﬁwg and broad-
ening factor I'y, are considered. A systematic relationship has
been found in the differential dielectric function modulated with

energy parameters of‘hw,’hwg, and T, By using the relationship,
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one can easily figure the line shape of the modulated spectra for
any dimensional critical point from a differential dielectric

functions,

4,2 Dielectric Function for l~, 2- and 3—dimensionaiCrysta1

The complex dielectric function with Lorentzian broadening
for direct and allowed interband transition at Mr critical point
in n-dimensional érystal may be expressed as the follwing gener-

4)

alized expression,

w-w +il' n
r-n 7" 2
e(w) = 1 Cn t dt, (4.1)
where
. 2 1
c. = re? € Pif[ (2111)/2
1 méw? +° i
. 2 1
B 2028 Pif’ 4uius %
Co 7 T CF)
e-P, ]?- L
o =& 1f]  Bwipousy 2
3 mew? 4>
and other notations are same as in the usual text, Complex

dielectric function for each dimension can be easily expressed
from this expression, For example,in three-dimensional case it

has the square-root singularity near Mr critical point,

1
elw) « 17T (m-wgﬁr)’é

@ 17 {~83(-x) + i 03(x)} , (4.2)
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where

L
 x+/XTT, 2
23(x) = =)
w=w
X =
and i=v-1 , In two~-dimensional case it has step-like discontinqiéj

or loga@hthmic divergence near Mr critical point,

e(w) « ir+2 log(w—wg+iP)

« 1F {83 (x) + 1 03(x)}, (4.3)
where
3 (x) =i log(x2+1)
2m T
L1, 1.9
0% (x) = 7 + — Tad'x
and the logdﬂithmic function is fixed in a Riemann plane, In

one~dimensional case it has inverse-square-root divergence near

Mr critical point,

1
e(w) « 17 (w-wg+iF) % (4.4)

« 1" {o1(~x) + i o1 (x)} ,

where

1
By (x) = {x+Vx2+1}/§
1 2 (x2+1) )
The energy spectra of these dielectric constants with and without
broadening near 1-, 2- and 3~dimensional critical points can be
simply illustrated in Fig.4.l, The corresponding line shapes

are designated'by the number of critical point, r, for each curve
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outside the circle to the real part and inside to the imaginary
respectively, The real parts shift in phase of 90° from the

imaginary,

4,3 Some Relationships between Energy Parameter Modulation Spectra
In modulation spectroscopy, the modulated spectra as wave-
length, temperature and stress modulation spectra are expressed
by the linear combination of the change in the dielectric constant
modulated by some energy parameters, The enérgy parameter noti-
fied here is_photon energy fw in wavelength modulation, critical
pointvenergy“ﬁwg and broadening factor T in temperature modulation
and‘ﬁwg in stress modulation, These modulation spectra have a
close relationship each other since e(w) can be expressed as the

4)

function of w—wg+ir,

de(w) _ _ de(w) - -4 de (w)
dw dw dr .
. 3-2
= i"hC (- 4iD) . C(4,5)
n g

Separating this to the real and imaginarv part,

dey(w) _ _ dej(w) _ deo(w)
dw dw 4T
g
and
deo(w) _ _ des(w) _ _ dej(w) 4.6)
dw dwg ar '

By using the equation(4.5), one might know the modulated spectra

for all energy parameter modulation once one modulation spectrum
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is calculated, The physical basis of the relations is that the
complex dielectric constant for interband transition can be
expressed by the function of the complex energy‘ﬁ(w-wg+iF), where

w2

included in the vnrefactor Cn may be neglected because of the
small energy dependence to the spectra near critical point,

These spectra canbe divided into the real and imaginary parts

concretely, In three~dimensional case near Mr critical point,5’6)
d LT+l ,
delo) = 5™ 6irh3(0 - 1 93(-0)), 4. 7)
where
W=
X = -3
and :
ba(x) = 1 {x+/x2+l}L§
VX ST &I
ez
Peak value of this spectrum is proportional to T 2, 1In two-
dimensional case near Mr critical point,
cde(w) _ T .
——= =i C, {~x¢,(x) + i ¢5(x)}, (4,8)
dw 2
where
¢ (%) = ———%———
2 T (x2+1) .
Peak value of this spectrum is proportional to r-1, In one-
dimensional case near Mr critical point,
delw) _ it ¢ {$1(x) + 1 ¢1(=x)1, (4.9)
dw 1
where .
oy () = EEEED) "2 (2% /X FT)

Y2T3 (x2+1) 7
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Table 1 A summary of the spectral functions in

one-, two- and three-dimensional crystal.

modulation spectroscopv at various types of edges for

Dimen-
sions

Critical
point

D D,

My

Sign
of p

€1

€2
Ael(w,E)

Aey (w,E)

dey
dw
dey
dw
dey
dug

des
dwg

de;
dr

dep
dr

o1 (=x) -2 (x)
01 (x)  21(-x)
Gy (-n) ;Gl(n)
Fi(-n) Fi1(n)
-6y (=x) -9 (x)
$1(x)  —¢1(-x)
¢1(-x) ¢ (x)
-01(x) 91 (=x)
-01 () ¢1(-x)

~¢1(=x) -¢;(x)

2} (%)

03 (x)

G (-n) -Fp (n)

Fp(-n)

43 ()
93 (x)
-3 (x)
-¢5 (x)
~$5 (x)
3 (x)

-3 (x)

G2 (n)

-3 (x)

-63 (%)

~$5 (x)

~23 (x)
93 (x) -5 (x)
Fo (-n) -G ()

Go (-n) Fa(m)

-3 (x)
$3 (%)

93 (x)
¢3 (x)
93 (x)
$3 (x)
63 (x)

—$3 (x)

-93 (x)

-®3(-x)
QS(%)
Gz (-n)
Fg(;n)
$3(-x)
$3(x)

—¢3(-x)

-3 (x)
~-$3(x)
b3 (-x)

-F3(n)

~03 (%)
=03 (-x)

Gz ()

—$3(x)
$3(-x)
$3(x)

-$3(-x%)

~¢3(-x)

~¢3(x)

23 (-x)

=93 (x)
~F3(-n) =G3(-n) F3(n)

G3(-n) -F3(-n) G3(n)

~$3(-x)
=3 (x)
$3(=x)
$3(x)
$3(x)
—$3(-x)

3 (x)
83 (-x)
~G3(n)
F3(n)
$3(x)
~$3(-x)
~$3(x)
$3(-x)
$3(-x)
$3(x)




1-dim. 2-dim. 3-dim..

Fig.4.2 A summary of the energy spectra in modulation spectroscopy

at one-, two- and three~dimensional critical point.
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1-dim. 2 —dim. 3-dim.

Fig.4.3 A summarized expression of the energy spectra in energy parameter modulation for one-, two- and three~
dimensional crystals, the real(outside) and imaginary(inside) parts of the differential dielectric constants

4
modulated by the photon energy Hw, the criticalpoint energy‘ﬁwg and the broadening factor F.) The sufffix O

indicates the M0 critical point, and the arrow means the order of critical point number counterclockwise.
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1-dim. 2-dim. 3-dim.
Fig.4.4 A summarized_expression of the energy spectra‘in electrooptical effect with large broadening
Tﬁe numerals noted in the figure express type of the

for one-, two- and three-dimensional crystals.

critical point for the real (outside) and for the imaginary (inside).



Peak value of this spectrum is proportional to T—/é. These
expressions imply that their configurations are not changed with
value of T, that is temperature, but the amplitudes of the peaks
decrease with I' and their dependences are different in each dimen-
sional case; Frém the measurement of temperature dependences of
the amplitude in any energy parameter modulated spectra, one might
know whether electronic structure tends to be chain-like,layer-type
or cubic, All modulated spectra near all dimensional critical
point are summarized in Table 4,1, where ¢3 (x)=-x¢,(x) and 65 (%)
=¢o (%), Mo?eover all the spectra are figured in Fig.4.2 in order
to call in our minds immediately, Eventually, using these rela-
tionships, the real and imagin;ry parts of these broadened differ—
ential spectra of complex dielectric constant are simply expressed
in Fig,4.3. The electrooptical spectra with large broadening
expressed by the third derivative of the dielectric constant7

are also summarized in Fig.4.4.

4,4 A Comparison with Experimental Results
A direct comparison between the experimental data and the
calculated spectra can be achieved when an exciton effect is

relatively small, In Fig.4.5 the sﬁectra of temperature modula-

8)

tion of PbS worked out by Nishino et al,”are shown and the best

fitted curves of the calculated %ﬁz are plotted together, PbS
8

is a very relevant material here as its exciton Bohr radius is

\

very large and therefore the effect to the absorption spectra can
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Fig.4.,5 An example of the comarison between thermoabsorption

8)

spectra of lead sulphide’and the calculated curve,

- 67 -



dw
be neglected, The sign of the temperature coefficient —2 of

dT
band gap energy in PhS is positive, whereas in ordinary semicon-
dutors ‘it is negative, Hence the measured spectra are directly
proportional to the imaginary part of the derivative of dielectric
constant dréwn in Fig.4.3. The calculated curves agree well
\with the experimental and it is sﬁown that these spectra of
temperature modulation almost consist of only the spectra differ-

entiated by critical point energy, The component of the modu-

lated spectra by T is very small as compared with the spectfa by

(dE -4 dr 4
wg because of Efg =5,5x10 'eV/deg, and ET-=O.3X10 eV/deg.

4.5 Summary

A generalized expression of broadened complex dielectric func-
tions near one-, two- and three-dimensional critical points has
been demonstrated as functions of parameters of photon energy Hw,
cfitical point energv'ﬁwg and broadening factor T, This expres-
sion is resolved to the real and imaginarv part of dielectric
constant near each critical point and is summarized in Fig.4.l,
_A systematic felationship has been found in differential dielec~
tric function modulated with energy parameters of w, wg, and T
and their spectra are easily calcﬁlated by the differentiation of
the generalized expression. By using the relationship, the line
shapes of the modulated spectra for any dimensional critical point
can be easily figured from a differential function.in Fig.4.3,

A comparison between the theoretical curve and the thermo-
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absorption spectra of PbS was tried and showsa good agreement

because of the weak effect of exciton.
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5. MODULATED SPECTRA IN ANISOTROPIC CRYSTALS

5.1 Introduction
The investigations of optical properties in solids have been

made mainly in three-dimensional crystal whose electronic structure

L)

is well known, Recently for the anisotropic materials such as

chain-like or layer-type crystal the experimental investigations
have been accumulatgd in the optical property but the systeﬁatic
informatibns in electronic band structure have not yet been ob-
tained Well.‘ One~dimensional motion of electron is realized not
only in the chain-like crvstal such as AVBVICVII 2) but also in
the solid under strong magnetic‘field, and is restricted in the
direction parallel to the applied magnetic field,. For laver-type
crystal, the energyrband structure and optical properties have
been discusséd as concern about the two-dimensional crystal by
many workers, It is found that for the electroreflectance in

the higher interband§)the spectra agree with the two-dimensional

calculated spectra rather than the three-dimensional. Quite

4)

recently it is also reported by Jellito’that the densitv of states

/in the f. c. c. latfice.has a logarithmic divergence at the
critical point. Aé concerns about two-dimensional Wannier exciton
the absorption spectra are calculated with and Without.magnetic
field by a few Workers§—7) But these complete one- or two-

dimensional calculation, which was treated in the last section,

could not obtain a good agreement with the experimental. Recent~-



ly morphology in the optical spectra in the intermediate aniso-
tropic crystals, which include the interaction between layers or

8)

chains, was discussed by Nakao and he found the characteristic
transition corresponding to the anisotropic parameter. In this

section, the modulated spectra with broadening are calculated for

these intermediate anisotropic crystals.

5.2 Dielectric Constants with Broadening in Layer~type and
Chain-like Anisotropic Crystals
We assume ﬁhe dependence of energy on wave vector k for
orthorhombic crystal structure and nearest—neighbor tight binding

8)

approximation as Nakao's work;

E(k)

E.(k) - E_(k)

Eo - Eq(p cosk_ + q cosky +r coskz). (5.1)

In the case of p=q=r the structure is simple cubic, the case of
p=q>>r is layer-type anisotropic and the case of p>>a=r is chain-
like anisotropic. Then the joint density of states multiplied by

473 for energy E=tw is represented as follows;

Sgg ak 8 (E=E(k))
B.Z.

P 9 orT
dx dy dz

-p /-q%-r

N(E)

]

8 (E+x+vy+2)
1/ n(5.2)
[ (p2-%2) (q2-y2) (r2-22)172

where energy E(k) is normalized as (E(k)-Ey)/E;, and x=p coskx,

y=q cosky and z=r cokz. By the substitution of F » -F, x » -x,
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y > -y and z > -z, neither the integrand mnor the limits of the
integral is modified, so that N(E) is an even function and that

its configuration is symmetric. N(E) is represented by using
either elliptic integrals or Bessel functions, and the represen-
tation of eiliptic integrals is selected in our case because of

the easy understanding of physical meaning and the easy'computé—
tion by finite limits of integrals., The behavior of the variation
of joint density of states, especially the critical point, among
1-, 2- and 3-dimensional crystal was discussedﬁglﬂetail by Nakao?)
using Bessel function,

First of all, N(E) is considered for layer~type anisotropic
crystals, where p=q=1 and O<r<l: Then N(E) has the finite value
in the range of E from -2-r to 24r. The integral in Eq.(5.2) can
be carried out in some separate energy regions having theAboundary
at critical point energy. Equation (5.2) is calculated as

follows, for |E|>2+r
N(E) = 0,

for 2-r<|E|<2+r

1+r-E
N(E) = S dx I;(x), (5.3)
-1 '
for r<|E|<2-r
1-r-E 1+r-E
N(E) = dx I,(x) + dx I (%) (5.4)
-1 oo 1-r-E '
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and for ]E|<r

r-E-1 ~r—-E+1
N(E) = g dx 11(x) + dx I,(x)

-1 © Jr-E-1
1
+ g dx I)(x), (5.5)
-r-E+1
where
1 (1+r) %= (E+x)?
I;(x) = ———— K( ),
{r(1-x2)}72 \/ 4r
1
Ip(x) = )
[(1—x2){(l+r)2-(E+x)2}]/2 \/(l+r)‘ (F+x)“
and K(x) is the first complete elliptic integral?) These

density of states functions with some anisotropic parameters, are
shown in Fig 51, = ° The inflections of N(E) in the fiéure
correspond to each critical point, The critical points at F=-2-r
and 2+r are minimum and maximum point, that are My and M3 point,
and those at E==2+r and Z-f are saddle point, The critical point
at E=—r and r are also saddle point and doublv degenerate.
‘On the other hand, in the chain~like anisotropic crystal,

that is p=1 and O<g~r<l, N(E) has non-zero value in the range of E

from -1-2r to 1+2r, The integral in Eq.(5.2) can be carried out

in some cases of energy region having - the 1imit at 'critical

point energy. Then Ea.(5.2) is calculated as follows,

for |E|>1+2r,
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N(E) =0

and for 1<|E|<1+2r

r-E+1

N(E) = % dx I3(x), (5.6)
-r
where
I3(x) = 1 g JQH) 2= Er) 2
frr2-xy} 2V br

For the lower energy thanl, the integration is devided into two
cases according to the value of_anisotropic parameter, This

division results from the fact that two saddle point pass each
other in energy with anisotropic parameter, r. In the case of

r<0.5, for l—2r<|El<l

-r-F+1 T
N(E) =g dx I,(x) + g dx ig(x) (5.7)
-r -r~E+l
and for |E|<l-2r
T
N(E) = g dx I (x), (5.8)
-r
where
1 | 4y
Iu(x) = K( <7)
) [(1'2-}{2){(l+r)2-(E'*‘X)2}]1/2 \I(l+r)2-(E+x)2 .

In the case of r>0,5, for 2r-1<|E|<1
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-r-E+1 r

N(E) = dx I, (x) + g dx Ig(x) (5.9)
-r -r-E+1
and for |E|<2r-1
r-g-1 -r—-E+1
N(E) = g dx Iz(x) + S dx Iy (x)
-r r-F-1
T
+ S dx I3(x): (5.10)
~r-F+1

These density of states_functions with some anisotropic parameter
are shown in Fig.5,2. The inflections of N(E) in Fig.,5.2
correspond to the critical points at E=-1-2r,-1+2r, -r, r, 1-2r and
1+2r, The critical points at E=-1-2r and 142r are minimum and
maximum point, that are My and M3 critical point. The ones at
E=-142r and 1-2r are saddle points, and are separated from degen-
erate saddle point at F=~1 and 1 and incorporated to the minimum

and maximum point at E=1 and ~1 with incrqasigg*ft The critical

point at E=-1 and 1 are saddle point and doubly degenerate.
These spectra are reduced to the complete 1-, 2- and 3~ dimensional
case when r=0 or 1,

In three-dimensional case,4) for |E|>3
N(E) = 0,

for 1<|E|<3

< 76 <



2-F
N(E) = g dx I(x) (5.11)
and for |E|<1

N(E) (5.192)

]
[ N
o,

"
=
—~
b
~

where

]

I(x) -——l-I; K'(lfgfig
(1-x2)72

and K“(x) is the first complete elliptic integral of the comple-
mentary modul,

In 2-dimensional case for |E|>2

N(E)

0,
and for |E|<2

N(E) =« K’(lgi). : (5.13)

In one-dimensional case for |E|>1

N(EY = 0
and for |E|<1
2
N(E) = 2= (5.14)
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These 1-, 2- and 3~-dimensional spectra are shown in Fig. 5.1 and
5.2 together with the intermediate anisotropic spectra.

The imaginary part of complex dielectric constant for direct
interband transition is proportional to the joint density of states.
Generally tﬁe complex dielectric‘constant>is affected by the finite
lifetime of electron on crystalline level and the spectral behavior
is modified and smoothed‘out. This lifetime broadening effect
can be represented as the coﬁvqlution integral of density of
states with Lorentzian as in Eq.(3.3) and Lorentzian factor is
assumed to bg constant over all the photon energy for simplicitv.
This assumption may bé oversimﬁlified, but is Very useful to give
the outline of the imaginary pa;t of complex dielectric constant.

The optical constants are calculated using the following

substitution the §-function by a normalized Lorentzian peak,

1 r2
S(Eh) > ¢ G et

The contribution of the density of states to the imaginary part of

complex dielectric constant is thus given by

-]

e (w) = A %— &%_NBQE%; df , (5.15)

0

where A is the constant containig the momentum matrix element,
The real part of complex dielectric constant, £j(w), results from
| Kramers~Kronig transformation of this equation, In fact, for a

narrow Lorentzian line e](w) is obtained by replacing the Lorentzian
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- Fig.5.1 The densities of ststes for layer-type electronic

structures with some anisotropic parameters,
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Fig.5.2 The densities of states for chain<like electronic

sttuctureswith some anisotropic parameters,
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2-3 dim.

Fig.5,3 The real and imaginary parts of broadened dielectric constants fbr layer-type

and chain-like electronic structure with some anisotropic parameters.



peak by thedispersive Lorentzian line, The broadened real part

is given by

1 (E-h)N(E)
T

(5.16)
The real and imaginary part of complex dielectric constant are
plotted with some anisotropic parameters for layer~type and chain-
like anisotropic crystals in Fig.5.3. The flections of the
density of states at critical points are smeared out by broadening

effect,

5.3 Energy Parameter Modulation and Electrooptical Spectra in
Anisotropic Crystals

In this section, we calculate the spectra of energy parameter
magdulation and electrooptical signals for layer-type and chain-
like @gisotropic crystals from the real and imaginary parts of
diglé;trié copstants, and discuss the behavior of the variation
of thé’spectra among l-, 2- and 3-dimensional crvstal with
anisotropic parameter r, In energy pafameter modulation the
signals can be expressed as the linear combination of the differ-
entiated spectra of the imaginary and real part of complex
dielectric constant as known from the discussion in chapter 2,
Some relationships betweenlenergy parameter modulation spectra
near critical point exist as mentioned in chapter 4, and so all

the energy parameter modulation spectra are called in our minds
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immediately, if only the differentiated spectra of £1(w) and e5(w)
by photon energy is calculated. In electrooptical effect, the
spectra can be also obtained with help of the third derivatives
of.dielectric constant as derived by Aspnes%o) According to this
third derivétive theory, the electrooptical signal in the case of

the large broadening is given by

1 2
Ae(w,T) = ;Eztma—gﬁ E2 e(w,D), (5.17)

where

1

ta)® = 5 e (E-V? £k
_ e2p2n2
8u’

and E is electric field. This simple relation between the electro-

optical signal and the unperturbed dielectric constant is justi-
fied in the case that broadening factor is much larger than the
characteristic electrooptical energy. When effective mass has
no energy dependence, this relation may be more simplified as

follows,

Ae(w,T) = 3 3—[_:—58(w,1"). (5.18)

In these considerations, the spectra of energy parameter modulation
and electrooptical effect for anisotropic crystals can be repre-

sented by the first and third derivatives of complex dielectric
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constant. E2 hardly affects the spectra of Ae(w,l) near critical
point and therefore that component is neglected in the differ-
entiation. The assumption of constant reduced mass in the direc~
tion of electric field is justified by the fact that electric
field applied on sémple is transverse to z-axis for 1ayer—typé
crystal and parallel to z-axis for chain-like crystal.

The real and imaginary parts of the first and third deriva-
tives of complex dielectric constants are drawn for some layer-
type anisotropic crystals in Fig.5.4 and 5.5, and for some chain-
like anisotropic crystals in Fig.5.6 and 5.7, In the 2-dimen-
sional spectré the spectral behavior near critical point justly
resembles the differential spectra calculated in the last section
where the spectra near critical point are degenerate, As the
interaction between layers, that is, anisotropic parameter r,
increases, the differential signal near 2-dimensional Mp and My
critical point is separated into two parts}l) The one goes far
from the former energy position and gradually forms the spectra
near 3-dimensional My and M3 critical point with increasing r.

The others move to the former 2-dimensional M; critical point in
energy position, incorporate with the former doubly degenerate

one at the former M; critical point and gradually form the one
near 3-dimensional M; and My critical point triply degenerated.
The bottom spectra in Fig.5.4 and 5.5 are the one for simple cubic
crystal, In Fig.5.6 and 5.7 the upper spectra are l-dimensional

ones and the spectral behavior near critical point justlv resembles
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the differential spectra calculated in the last chapter, which is
triply degenerated. As the interaction between the chains, that
is anisofropic parameter r, increases the differential spectra
located near the former l-dimensional My and M; critical point are
separated into three parts}z) The one goes far from the former
energy position and gradually forms the one near 3-dimensional Mg
and M3 critical point. The another at M; critical point rests
at the same position, incorporateswith the one at M, critical
point separated from the former l-dimensional Mj critical point
and gradualiyvformsthe one near M; critical point similar to the
- one near 3-dimensional critical point calculated in the last
section, The other in M, critical point incorporateswith the
doubly degenerate one located at the former l~dimensional M;
critical point and gradually forms the triply degenerate one near
3-dimensional M, critical point similar to the one calculated in
the last chapter.

Electroopticél signals are proportional to the third deriva-
tives of dielectric constant multiplied by (iQ)3 under the condi-

tion of the constant effective mass in the direction of electric

field. When electric field is in the direction of the positive
mass, electrooptical signals are proportional to %%% in Fig,5.5
and 5.7. But when electfic field isin the direction of the
negative mass, they are proportional to - %%%. These consider-

ations are complicated near the energy region in which two types

of critical points do interfere each other, as shown in Fig.5.5
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Fig.5.4 The real and imaginary parts of the first derivatives of
complex dielectric constants for layer-type electronic structures

with some anisotropic parameters,
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2-dim. | » /‘v'~ Vv

r=0.2 4A“A AA__

r=0.5

r=0.8

3~-dim.

Fig.5.5 The real and imaginary parts of the third derivatives of

complex dielectric constants for|layer-type; electronic structures

with some anisotropic parameters.
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Fig.5.6 The real and imaginary parts of the first derivatives of
complex dielectric constants for chain-like electronic structures

with some anisotropic parameters.
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d€, dt,

1-dim. \ — J

r=0.2

+
R R e

3~dim. w’L' N ~T

Fig.5.7 The real and imaginary parts of the third derivatives of
complex dielectric constants for chain-like electronic structures

with some anisotropic parameters,
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Aand 5.7. However, in the case of electric field perpendicular to
z-axis in layer-type crystal the relation mentioned above is kept

a good approximation between electrboptiqal spectra and the third

derivative of dielectric constant because of ghe invariance of the
effective mass in the field direction, In chain-like crystals,

for the good approximation the electric field must direct to z-axis.,

5.4 Summary

In this section, energy parameter modulation and electro-
optical signals were given in the intermediate anisotropic crys-
tals. The dgnéity of states functions for the Anisotropic crys—-
tals were calculated by*assuminé that the electronic band energy
E(k)=E0—E1(cost + q cosk»V +r coskz), where q and r are continuous
anisotropic parameters. The complex dielectric constants with
lifetime broadening are obtained by the convolution integral of
density of states with Lorentzian type function and its disper-
sive line. From these calculations, variations of density of
states function with changing crystal symmetry from one- or two-
to three-dimensional crystal are represented and examined. Third
derivatives of dieleétric spectra with a broadening factor, which
can be compared to electrooptical spectra from Aspnes' theory, are
calculated as a function of continuous anisotropic parameter,
The same kinds of calculations are extended to the other energy
parameter modulated dielectric function, Change of the spectral

responce with anisotropic parameters is also examined,
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6. CONCLUSIONS

Broadening effects of differential energy spectra in various
energy parameter modulation have been investigated. Calculations
were made fér one-, two- and three-dimensional crystals on various
types of critical points. Derivations and considerations on broad-
ened energy spectra in modulation spectroscopy have been discussed
by two separate categories, i.e,, eléctric field modulation and
other energy parameter modulation. The main results ﬁorked out
in this thesis work are enumerated as following,

1) In electrooptical effect, two broadening factors due to
thermal and electric fielﬁ effects were taken into account
as the Lorentzian convolutions in the electrooptical func-
'tions for three—dimensional crystal,

2) Variations of the amplitudes in the field induced changes of
complex dielectric constants, Ae; and Ae,, with the amount

of broadening factors I,, and FE were presented for a series

T
of certain realistic parameters,

3) Parametric changes in the broadened electrooptical spectra
With_the amount of broadening factors were also discussed,.

4) Calculated electrooptical functions enabled us to compare
quantitatively with the spectra measured in the electro-
optical experiments, and considerable agreements between fhe

theory and experimental result were obtained.

5) One- and two-dimensional electrooptical functions with
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6)

7)

8)

9)

10)

broadening were also calculated, Until now, no typical
experimental results have been reported, but the calculated
broadened electrooptical functions on these anisotropic
crystals would be a useful theoretical background for exper-
imental work.,

A generalized expression of broadened complex dielectric
functions near one-, two- and three-dimensional critical
pointsvhas been demonstrated as functions of parameters of
photon energy hw, critical point energy’ﬁwg and broadening
factor r.

A systematic relationship has been found in differential
dielectric functions modulated with energy parameters of w,
wg and T, By using the relationship, the line shapes of
the modulated spectra for any dimensional critical point can
be easily figured from a differential function.

Density of states functions for anisotropic crystals were
calculated by assuming that the electronic band energy E (k)
=E0—E1(cost + q cosky +r coskz), where q and r are contin-
uous anisotropic parameters.

Complex dielectric constants with lifetime broadening are
obtained by the convolution integral of density of states
with Lorentzian type function and its dispersive line,
Variations of density of states functions with changing
crystal symmetry from one~ or two~ to three-dimensional

crystal are represented and examined,

- 93 -



11) Third derivatives of dielectric spectra with a broadening
factor, which can be compared fo eleétrooptical spectra,were
\calculated as a function of continuous anisotropic parameter,
The same kinds of calculations were extended to the other
energ§ parameter modulated dielectric function, Change of
the spectral responce with anisotropic parameters is also

examined.
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