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Minimizing the Maximum Delay
for Reaching Consensus in

Quorum-Based Mutual Exclusion Schemes
Tatsuhiro Tsuchiya, Member, IEEE, Masatoshi Yamaguchi, and Tohru Kikuno, Member, IEEE

AbstractÐThe use of quorums is a well-known approach to achieving mutual exclusion in distributed computing systems. This

approach works based on a coterie, a special set of node groups where any pair of the node groups shares at least one common node.

Each node group in a coterie is called a quorum. Mutual exclusion is ensured by imposing that a node gets consensus from all nodes in

at least one of the quorums before it enters a critical section. In a quorum-based mutual exclusion scheme, the delay for reaching

consensus depends critically on the coterie adopted and, thus, it is important to find a coterie with small delay. In [5], Fu introduced two

related measures called max-delay and mean-delay. The former measure represents the largest delay among all nodes, while the

latter is the arithmetic mean of the delays. She proposed polynomial-time algorithms for finding max-delay and mean-delay optimal

coteries when the network topology is a tree or a ring. In this paper, we first propose a polynomial-time algorithm for finding max-delay

optimal coteries and, then, modify the algorithm so as to reduce the mean-delay of generated coteries. Unlike the previous algorithms,

the proposed algorithms can be applied to systems with arbitrary topology.

Index TermsÐQuorums, coteries, communication delay, mutual exclusion, distributed systems.

æ

1 INTRODUCTION

THE distributed mutual exclusion problem is to guarantee
that at most one computing node can enter a critical

section at a time. This problem is widely recognized as one
of the most fundamental problems in distributed comput-
ing since it arises in various kinds of distributed systems.
For example, consider a system in which its nodes share an
exclusive resource. If two or more nodes try to access the
resource, a conflict occurs. To avoid such a situation,
mutual exclusion has to be ensured.

The use of coteries is known as an elegant approach to

mutual exclusion in distributed systems. A coterie is a

special set of node groups such that any two node groups

have at least one node in common (intersection property) and

no node group is a superset of any other node group

(minimality property) [4]. Node groups in a coterie are called

quorums. Given a coterie, mutual exclusion can be achieved

as follows: Before entering the critical section, a node has to

acquire permission from all the nodes in at least one

quorum. On the other hand, each node is allowed to give its

permission to at most one node. By the intersection

property, it is guaranteed that no more than one node can

enter the critical section at a time.
Since the performance or robustness of such a mutual

exclusion scheme depends critically on the coterie adopted

by the scheme, many researchers have studied methods of

designing coteries that optimize various objective functions
[7], [8], [9], [14], [15]. In addition to availability and message
complexity [12], the communication delay needed for
achieving quorum consensus is also recognized as an
important factor. Especially for systems requiring short
response time, such as replicated database systems, mini-
mizing the delay for reaching consensus is a very significant
task.

Recently, the notions of max-delay and mean-delay of
coteries have been introduced by Fu [5]. The max-delay
of a coterie is the maximum of the delays among all
nodes, while the mean-delay is the average. Fu has
shown that there must be a delay-optimal coterie in a
special subset of coteries, called nondominated (ND)
coteries. Based on this result, she has proposed poly-
nomial-time algorithms to find max-delay optimal and
mean-delay optimal coteries for systems with special
topologies, such as trees and rings. Since the number of
ND coteries in such networks is very small, the
algorithms can efficiently find delay-optimal coteries by
enumerating ND coteries.

However, finding delay-optimal coteries on general
graphs has been left as an open problem. The difficulty
of this problem is mainly due to the fact that
enumerative approaches are impractical for systems with
general topology. This is because the number of ND
coteries explodes when the number of nodes exceeds
only five [4]. Recently, Bioch and Ibaraki developed an
enumeration method based on Boolean algebra [1].
According to [1], however, the maximum size of the
system that the method was able to handle was only
seven nodes.

In this paper, we consider the problem of finding
max-delay optimal coteries in systems with arbitrary
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topology. We propose two algorithms to solve this

problem. These algorithms take a completely different

approach from Fu's in the sense that they do not use the

notion of ND coteries. The first algorithm we present

finds a max-delay optimal coterie on an arbitrary net-

work with time complexity O�n3 logn�, where n is the

number of nodes. The second algorithm is a modification

of the first algorithm. By incorporating heuristics, this

algorithm finds a max-delay optimal coterie with smaller

mean-delay than that found by the first algorithm. The

time complexity of the second algorithm is also

O�n3 logn�.
The remainder of the paper is organized as follows: In

Section 2, we explain the system model and basic notions

about coteries. In Section 3, we propose an algorithm to find

max-delay optimal coteries. In Section 4, we extend the

proposed algorithm in order to generate max-delay optimal

coteries with smaller mean-delay. In Section 5, we show the

results obtained by applying the proposed algorithms to

several sample systems. Finally, we conclude this paper

with a brief summary in Section 6.

2 PRELIMINARIES

We adopt the system model used in [5]. We consider a

distributed system modeled by an edge-weighted undir-

ected graph G � �V ;E;w�, where V � fv1; v2; � � � ; vng is a set

of n nodes and E is a set of edges. We assume that G is

connected and has neither self-loop nor parallel edges. Each

edge e 2 E is assigned a positive real number w�e��> 0� as

the weight of the edge. Fig. 1 illustrates an example of a

system. The number attached to each edge represents its

weight.
For two distinct nodes vi and vj, the virtual distance

dist�vi; vj��� dist�vj; vi�� between the two nodes is defined

as the length of the shortest path on G, where the length of a

path is the sum of the weights assigned to the edges in the

path. The virtual distance represents the communication

delay between the two nodes. In Fig. 1, for example,

dist�v1; v6� is 5.6. We assume that, for any node vi, the

virtual distance dist�vi; vi� is zero.
Given a subset V 0 of V , we assume that a node vi can

communicate with all members of V 0 with delay

maxv2V 0 fdist�vi; v�g. We let delay�vi; V 0� denote this delay,

i.e.,

delay�vi; V 0� � max
v2V 0
fdist�vi; v�g;

where V 0 is a nonempty subset of V .
In the following, we give the formal definition of a

coterie. The notion of coterie was first introduced by Garcia-

Molina and Barbara [4].

Definition 1 (Coterie). A coterie C is a set of nonempty subsets

of V such that the following conditions hold:

1. (Intersection property) Q \Q0 6� ; for any pair
Q;Q0 2 C.

2. (Minimality property) There is no pair Q;Q0 2 C such
that Q � Q0.

Each element in a coterie is called a quorum. Given a

coterie, mutual exclusion can be achieved using some

distributed mutual exclusion algorithms [2], [9], [13]. In the

following, we use the term node group to refer to a nonempty

subset of V .

Example 1. Let the set of all nodes V be fv1; v2; v3; v4; v5; v6g.
Now, consider the following sets of node groups,

C1; C2; C3, and C4.

C1 � ffv1gg
C2 � ffv2; v4g; fv2; v5g; fv4; v5gg
C3 � ffv1; v2; v3g; fv4; v5; v6gg
C4 � ffv1g; fv1; v2; v3gg:

Among the four sets of node groups, C1 and C2 are

coteries. C3 is not a coterie because it does not satisfy the

intersection property. C4 is not a coterie either because it

does not satisfy the minimality property.

Adopting definitions from [5], we now introduce the

notions of the delay of a node in a coterie and the max-delay

and the mean-delay of a coterie. The delay of node vi in

coterie C, or Delay�vi; C�, is given by

Delay�vi; C� � min
Q2C
fmax
v2Q
fdist�vi; v�gg

� min
Q2C
fdelay�vi; Q�g;

and the max-delay and the mean-delay of coterie C are

given by

maxÿdelay�C� � max
v2V
fDelay�v; C�g

meanÿdelay�C� � 1

jV j
X
v2V

Delay�v; C�:

Intuitively, the delay of a node in a coterie is the

communication delay for achieving consensus when the

node accesses its nearest quorum. The max-delay of a

coterie is the maximum of the delays among all nodes and

the mean-delay of a coterie is the arithmetic mean of the

delays of all nodes.

Example 2. Consider the system shown in Fig. 1. Let C �
ffv2; v4g�� Q1�; fv2; v5g�� Q2�; fv4; v5g�� Q3�g be a cot-

erie in the system. Now, take the node v1 as an example.

Among the three quorums, Q2 is the nearest quorum

from v1, and Delay�v1; C� is
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delay�v1; Q2� � dist�v1; v5� � 4:1:

For v2; v3; v4; v5, and v6, the nearest quorums are

Q1; Q2; Q1; Q3, and Q3, respectively. Since

Delay�v1; C� � 4:1;

Delay�v2; C� � 2:5;

Delay�v3; C� � 2:2;

Delay�v4; C� � 2:5;

Delay�v5; C� � 2:6;

and

Delay�v6; C� � 2:0;

maxÿdelay�C� and meanÿdelay�C� are 4.1 and 2.65,

respectively.

Now, a max-delay optimal coterie is defined as follows:

Definition 2 (Max-delay optimal coterie). Let UC be the set of

all coteries. A coterie C 2 UC is said to be max-delay optimal if

and only if

maxÿdelay�C� � min
C02UC
fmaxÿdelay�C0�g:

3 FINDING MAX-DELAY OPTIMAL COTERIES

As mentioned before, the problem we consider in this paper

is to find a max-delay optimal coterie for a given

G � �V ;E;w�.
Suppose that virtual distance dist�vi; vj� for any vi; vj 2 V

has been computed from G. In fact, this is possible in

polynomial time by using some previously proposed

algorithms (e.g., [10]). We can then restate the problem by

explicitly specifying a quorum from which each node gets

consensus.
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Problem 1. Given V and virtual distance dist�vi; vj� for any
vi; vj 2 V , f i n d a n n- t u p l e o f n o d e g r o u p s
�N1; N2; � � � ; Nn� that minimizes maxvi2V fdelay�vi; Ni�g,
under the conditions that 1) for any two groups Ni and
Nj, Ni \Nj 6� ;, and 2) for any two groups Ni and Nj,
Ni 6� Nj.

Suppose �N1; N2; � � � ; Nn� is an optimal solution to
Problem 1 and let C be the set of all Nis �i � 1; 2; � � � ; n�.
Note that the number of elements in C is not necessarily n
since Ni may be equal to Nj for some i; j�6� i�. Then, C is
obviously a max-delay optimal coterie.

In order to solve this problem, we consider a more
tractable problem, removing Condition 2) from Problem 1.

Problem 2. Given V and virtual distance dist�vi; vj� for any
vi; vj 2 V , f i n d a n n- t u p l e o f n o d e g r o u p s
�N1; N2; � � � ; Nn� that minimizes maxvi2V fdelay�vi; Ni�g,
under the condition that 1) for any two node groups Ni

and Nj, Ni \Nj 6� ;.
Lemma 1. Suppose that �N1; N2; � � � ; Nn� is an optimal

solution to Problem 2. Let C be the set of Nis such that
no other Nj�i 6� j� is a proper subset of Ni, i.e.,

C � fNijNi 2 N such that 8Nj 2 N ÿ fNig; Nj 6� Nig;
where N is the set of all Nis �i � 1; 2; � � � ; n�. (Note that the
number of elements in N is not necessarily n since Ni may be
equal to Nj for some i; j�6� i�.) Then, C is a max-delay optimal
coterie.

Proof. By definition, it is clear that C is a coterie. IfNi is not in
C, then there is another node group Nj in C such that
Nj � Ni. Now, consider another n-tuple �M1;M2; � � � ;Mn�
such that if Ni 2 C, then Mi � Ni; otherwise, Mi is equal
to a node group Nj in C such that Nj � Ni. Then, since
Mi � Ni holds for any i, delay�vi;Mi� � delay�vi;Ni� also
holds for any i. It is then clear that

max
vi2V
fdelay�vi;Mi�g � max

vi2V
fdelay�vi;Ni�g:

In addition, since �N1; N2; � � � ; Nn� is an optimal
solution to Problem 2,

max
vi2V
fdelay�vi;Mi�g � max

vi2V
fdelay�vi;Ni�g:

Hence, maxvi2V fdelay�vi;Mi�g � maxvi2V fdelay�vi; Ni�g.
This implies that �M1;M2, � � � , Mn� is also an optimal
solution to Problem 2.

Since Problem 2 differs from Problem 1 only in that it
does not impose Condition 2) on solutions, the inequality
maxvi2V fdelay�vi;Mi�g � maxvi2V fdelay�vi; Li�g holds if
�L1; L2; � � � ; Ln� is an optimal solution to Problem 1.
Notice that �M1;M2; � � � ;Mn� satisfies Conditions 1) and
2) in Problem 1. Hence, it is also an optimal solution to
Problem 1. By definition, C is equal to the set of Mis, thus,
C is a max-delay optimal coterie. tu

Now, we define NBi�r� as the set of all nodes whose
virtual distance from vi is equal to or smaller than r,
i.e., NBi�r� � fv 2 V jdist�vi; v� � rg. In addition, let min
be the smallest positive real number such that for any
vi; vj 2 V , NBi�min� and NBj�min� intersect, i.e.,

NBi�min� \NBj�min� 6� ;. Then, the following lemma
holds.

Lemma 2. �NB1�min�; NB2�min�; � � � ; NBn�min�� is an
optimal solution to Problem 2.

Proof. (By contradiction) If

�NB1�min�; NB2�min�; � � � ; NBn�min��
is not an optimal solution to Problem 2, there must exist
another n-tuple �N1; N2; � � � ; Nn� such that Ni \Nj 6� ;
for any i; j and min > maxvi2V fdelay�vi;Ni�g. Let

d � max
vi2V
fdelay�vi;Ni�g:

Then, since Ni � NBi�d� holds for any i, NBi�d� \
NBj�d� 6� ; for any i; j. Because

max
vi2V
fdelay�vi;NBi�d��g � d;

�NB1�d�; NB2�d�; � � � ; NBn�d�� is also an optimal solution
to Problem 2. Since d < min, this is a contradiction to the
definition of min. tu
Let Copt be the set of NBi�min�s such that no

NBj�min��i 6� j� is a proper subset of NBi�min�, i.e.,

Copt � fNBi�min�jNBi�min� 2 NB such that

8NBj�min� 2 NB ÿ fNBi�min�g;
NBj�min� 6� NBi�min�g;

where NB is the set of all NBi�min�s �i � 1; 2; � � � ; n�. Then,
we obtain the following theorem.

Theorem 1. Copt is a max-delay optimal coterie.

Proof. The proof is clear from Lemma 1 and Lemma 2. tu

Theorem 1 leads to an algorithm for finding a max-delay
optimal coterie. Fig. 2 shows this algorithm. It consists of
three steps.

In Step 1, the virtual distance between every pair of
nodes is calculated. This can be done, for example, by using
Floyd's classical algorithm with time complexity O�n3� [6].
(There are also faster algorithms, such as [10].)

In Step 2, min and NBi�min�s are calculated. At the
beginning of this step, elements of fdist�vi; vj�jvi; vj 2 V g,
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that is, all candidates for min, are sorted in ascending order

and stored in a1; a2; � � � . Using this data structure and

Function Intersection_Check, min can be obtained by a

binary search. Function Intersection_Check checks whether

NBi�r� \NBj�r� 6� ; holds for any i; j or not.
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TABLE 1
Max-Delay Optimal Coteries



Since the number of candidates for min is at most n�nÿ1�
2 ,

in the worst case, it takes O�n2 logn2� time to sort them by
merge sort or heap sort. The while loop in Step 2 is iterated
O�logn2� times. Function Intersection_Check requires O�n3�
time per invocation because the for loop in this function is
repeated at most n�nÿ1�

2 times and the if statement checking

whether or not Di \Dj is empty takes O�n� time. Hence, it
takes O�n3 logn� time to complete the while loop. Thus, the
time complexity of Step 2 is O�n3 logn�.

In Step 3, all supersets are removed from NBi�min�s.
The remaining elements form a max-delay optimal coterie.
The time complexity of this step is O�n3� because each if

statement takes O�n� time and the for loop is iterated n�nÿ1�
2

times. Consequently, it is seen that the time complexity of
this algorithm is O�n3 logn�.
Example 3. Consider the system shown in Fig. 1. The

proposed algorithm works as follows: In Step 1, the
virtual distance between every pair of nodes is calcu-
lated. Then, in Step 2, the values of min and NBi�min�s
are calculated. First, candidates for min are sorted as
follows:

1:5; 1:8; 2:0; 2:1; 2:2; 2:5; 2:6; 3:6; 4:1; 4:3; 4:5; 5:6:

Using a binary search, the value of min is calculated. In
this case, min � 3:6. Then, each NBi�min� is calculated
and stored in Di as follows:

D1 � fv1; v2; v3g
D2 � fv1; v2; v3; v4g
D3 � fv1; v2; v3; v5; v6g
D4 � fv2; v4; v5; v6g
D5 � fv3; v4; v5; v6g
D6 � fv3; v4; v5; v6g:

In Step 3, we obtain a max-delay optimal coterie by
removing all supersets from the NBi�min�s. In this case,
the max-delay optimal coterie is

ffv1; v2; v3g; fv2; v4; v5; v6g; fv3; v4; v5; v6gg:
Obviously, the max-delay of the coterie is 3.6, while its
mean-delay is 2.533.

4 EXTENSION fOR REDUCING MEAN-DELAY

The algorithm presented in the previous section can

successfully find a max-delay optimal coterie Copt for any

given system G. However, there may be other max-delay

optimal coteries whose mean-delay is smaller than Copt. In

order to find such a max-delay optimal coterie with smaller

mean-delay, we propose a new algorithm by modifying the

original algorithm.
Specifically, we insert a new step (referred to as Step

2') into the original algorithm between Step 2 and Step 3.

At the end of Step 2, NB1�min�, NB2�min�, � � � ,
NBn�min� have been obtained. Each NBi�min� is stored

in Di in the algorithm shown in Fig. 2. In Step 2', we

examine the nodes in D1; D2; � � � ; Dn one by one, in a

certain order, and remove those nodes whose removal

does not destroy the property that every pair of Di and

Dj intersect. Even with such an additional stage that

reduces the sizes of the Dis, it is guaranteed that the

coterie obtained is max-delay optimal and its mean-delay

is not larger than Copt. The following theorem ensures

this.

Theorem 2. Let �N1; N2; � � � ; Nn� be an n-tuple of node groups

such that Ni \Nj 6� ; for any vi; vj 2 V and Ni �
NBi�min� for any vi 2 V . Let C be the set of Nis such that

no other Nj�i 6� j� is a proper subset of Ni, i.e.,

C � fNijNi 2 N such that 8Nj 2 N ÿ fNig; Nj 6� Nig;
where N is the set of all Nis �i � 1; 2; � � � ; n�. Then, C is a

max-delay optimal coterie and mean-delay�C� � mean-

delay�Copt�.
Proof. Since Ni � NBi�min� for any i, delay�vi;Ni� �
delay�vi;NBi�min�� holds for any i. By Lemma 2,

�NB1�min�; NB2�min�; � � � ; NBn�min�� is an optimal

solution to Problem 2. Hence, maxvi2V fdelay�vi;Ni�g �
min and �N1; N2; � � � ; Nn� is also an optimal solution to

Problem 2. By Lemma 1, it is then clear that C is a max-

delay optimal coterie. By definition, for any quorum

Q 2 Copt, there is a Q0 2 C such that Q0 � Q. Note that if

Q0 � Q, then, for any node vi, delay�vi; Q0� � delay�vi; Q�.
Hence, mean-delay�C� � mean-delay�Copt�. tu
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In order to determine which nodes are checked and

removed, we do the following: Let the tuple �Di; vj� denote

a node vj in Di. (There are then
P

vi2V jDij tuples that have

to be considered.) We choose �Di; vj� with the largest value

of dist�vi; vj� first, since this is most intuitive. If there is

more than one tuple with the largest value, a node is chosen

from Di such that jDij is the largest. Fig. 3 shows Step 2' of

the modified algorithm. (Steps 1, 2, and 3 are omitted since
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they are exactly the same as the original algorithm shown in

Fig. 2.)
Since the total number of tuples considered is less than

n2, the while loop in Step 2' is repeated no more than n2

times. It takes O�n� time to select one tuple during each

iteration of the while loop by sorting the nodes in each Di

according to their distances from vi. Unlike in the first

algorithm, whether or not the intersection property con-

tinues to hold after removal of the selected tuple can be

determined in O�n� time by maintaining the number of

nodes shared by every pair of Dis. (The details of Step 2' are

shown in the Appendix.) Hence, the time complexity of this

step is O�n3�. Since the original algorithm (the one without

Step 2') is of O�n3 logn� time complexity, the modified

algorithm is also of O�n3 logn� time complexity.

Example 4. Consider the system shown in Fig. 1. Since Steps 1

and 2 of the modified algorithm are the same as the

original algorithm, each Di in the modified algorithm

has been set to NBi�min� at the end of Step 2, as shown

in the previous example. Thus, there are 24 tuples that

have to be considered in this case.
Step 2' reduces the sizes of the Dis as follows: First,

among the 24 tuples, tuple �Di; vj� is selected such that
the value of dist�vi; vj� is the largest. In this case, �D3; v6�
a n d �D6; v3� h a v e t h e g r e a t e s t v a l u e ,
3:6�� dist�v3; v6� � dist�v6; v3��. Since jD3j�� 5� is larger
than jD6j�� 4�, �D3; v6� is chosen first. Because D3 ÿ fv6g,
i.e., fv1; v2; v3; v5g has at least one common node with
each of D1; D2; D4; D5, and D6, v6 is removed from D3.
Then, the Dis become as follows:

D1 � fv1; v2; v3g
D2 � fv1; v2; v3; v4g
D3 � fv1; v2; v3; v5g
D4 � fv2; v4; v5; v6g
D5 � fv3; v4; v5; v6g
D6 � fv3; v4; v5; v6g:

Next, �D6; v3� is chosen for checking. If v3 were
removed from D6, D6 would no longer intersect with D1.
Thus, this node is not removed. �D4; v5� is chosen next
since dist�v4; v5� is the largest among the remaining
unchecked tuples. This process is repeated until all
tuples have been checked. Consequently, the Dis become
as follows:

D1 � fv2; v3g
D2 � fv2; v3g
D3 � fv2; v3g
D4 � fv2; v6g
D5 � fv3; v6g
D6 � fv3; v6g:

A max-delay optimal coterie is derived from the Dis
i n S t e p 3 . I n t h i s c a s e , t h e c o t e r i e i s
ffv2; v3g; fv2; v6g; fv3; v6gg. The mean-delay of this coterie
is 2.433. (Recall that the mean-delay of the coterie
obtained by the original algorithm was 2.533.)

5 EVALUATION

Using the C language, we coded the original algorithm and
the modified algorithm. For Step 1, we adopted Floyd's
algorithm [6]. We took a collection of networks from [3], as
shown in Fig. 4, and used them to represent the topologies
of sample systems. Random weights were assigned to the

edges. For each system in Fig. 4, we executed the programs
on a SUN Ultra 1 workstation and obtained max-delay
optimal coteries. In all cases, the running time needed for
generating a max-delay optimal coterie was less than 0.1
second.

Table 1 shows the max-delay optimal coteries obtained
by the two algorithms. Table 2 summarizes the max-
delays and mean-delays of the coteries. These results
clearly show that max-delay optimal coteries generated

by the modified algorithm have much smaller mean-
delays than those generated by the original algorithms.
For System 6, for example, the mean-delay of the coterie
generated by the modified algorithm is about 35 percent
smaller than that of the coterie generated by the original
algorithm.

6 CONCLUSIONS

In this paper, we have proposed two algorithms to find

max-delay optimal coteries for systems with arbitrary
topology. The first algorithm finds a max-delay optimal
coterie on an arbitrary network with O�n3 logn� time
complexity, where n is the number of nodes. The second
algorithm is a modification of the first algorithm. By
incorporating heuristics, this algorithm finds a max-delay
optimal coterie with smaller mean-delay than the original
algorithm. The time complexity of the second algorithm is

also O�n3 logn�. Through case studies, we have shown that
this modification can lower the mean-delay effectively.

The modified algorithm is an approximation method for
solving the problem of finding a max-delay optimal coterie
such that its mean-delay is minimized. Unfortunately, we
have not yet developed an optimal algorithm to solve this
problem nor do we know the complexity of this problem.
Further, how to find mean-delay optimal coteries in
arbitrary networks is still left as an open problem. In

addition, evaluation of the proposed algorithms using
measures other than delay, such as availability or load
[11], also needs further study.

APPENDIX

Fig. 5 shows the details of Step 2' of the modified algorithm.
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