
Title Programming of optical array logic. 1 : Image
data processing

Author(s) Tanida, Jun; Ichioka, Yoshiki

Citation Applied Optics. 1988, 27(14), p. 2926-2930

Version Type VoR

URL https://hdl.handle.net/11094/3108

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Programming of optical array logic. 1: Image data
processing

Jun Tanida and Yoshiki Ichioka

Procedures for planning and executing arbitrary parallel processing with optical array logic are generalized as
a systematic programming technique of optical parallel processing. Optical array logic is a technique for
achieving any parallel neighborhood operation with simple coding and optical correlation. An original
symbolic notation facilitates programming of parallel processing with optical array logic, so that many
problems can be optically solved using optical array logic. Two examples of image data processing are
presented to illustrate the programming procedure of parallel processing with optical array logic.

1. Introduction

Parallel nature is one of the attractive characteris-
tics of optical information processing, as well as its
communication capabilities. Using the parallelism of
optics, massive data such as images can be processed
efficiently. However, conventional optical informa-
tion processing lacks controllability and flexibility, so
that it is important to develop efficient methods for
controlling optical information processing.

One of the promising methods for this purpose is the
use of digital schemes. It is not too much to say that
today's prosperity of electronic computers is based on
the flexibility of digital processing, so that, using a
digital scheme in optical information processing, con-
trollable and flexible optical parallel processing can be
expected. Under this concept a wide range of optical
digital processing has been studied.1 -5

We have developed an optical implementation of
parallel logic gates using image coding and shadow-
casting,6 and have generalized the method as optical
array logic (OAL).7 OAL is a technique to achieve any
parallel neighborhood operation for two binary im-
ages. Using OAL, controllability and programmabili-
ty of processing can be obtained and an effective opti-
cal parallel computing system can be constructed.
The optical computing system is called the optical
parallel array logic system (OPALS).8

The authors are with Osaka University, Department of Applied
Physics, Suita, Osaka 565, Japan.

Received 6 May 1987.
0003-6935/88/142926-05$02.00/0.
© 1988 Optical Society of America.

In this paper we describe the procedure for program-
ming OAL for space-invariant processing. In Sec. II
OAL is explained with logical expressions to clarify the
correspondence between OAL and logical neighbor-
hood operation. In Sec. III a generalized procedure
for programming parallel processing with OAL is dis-
cussed. In Sec. IV two kinds of image data processing
are presented as programming examples of OAL.

11. Concept of OAL

OAL is a way of achieving any parallel neighborhood
operation for two 2-D binary data or binary images.

To help the following illustration, the logical mean-
ing of OAL will be clarified in this section. A more
intuitive explanation of OAL was presented in Refs. 7
and 8.

Let us consider two input binary images A and B
consisting of N X Npixels. Any parallel neighborhood
operation can be expressed by

cij = Aaijbij), (ij = 1,...,N), (1)

where f(aij,bij) is the logical function for vectors of
logical variables aij and bij defined as

ai = ai+mj+nlm,n =-L L, (2)

bi = bi+mj+nlmn =-L .L. (3)

In this paper the neighborhood area is defined as a
square area of size L around a current pixel as shown in
Fig. 1; a and b mean binary data in binary images A and
B, respectively; the subscripts denote location of the
data in the image.

Figure 2 shows the processing procedure of OAL.
Two objects to be processed are encoded by the coding
rule shown in Fig. 2 and converted into a coded image.
The coded image is separately correlated with differ-

2926 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988



L (i-Lj-L) (i-Lj+L)

(i+m,j+n)

7 (i+LJ-L) (i+L,j+L)

2L+1

Fig. 1. Neighborhood area.

CODING CORRELATION SAMPLING

( a )

INVERTED-OR

-> 0 0 
i E j 9 ] E _ _ I) B X T g H ~~a 0 a _ _

INPUT A CODED CORRELATED SAMPLED

IMAGE IMAGE #l IMAGE #l

KERNEL #l PRODUCT TERM OPERATION Al

INPUT B
PRODUCT TERM OPERATION #2 |

CODING RULE

\bl 

0 0

1I 
PRODUCT TERM OPERATION #K

OUTPUT C

Fig. 2. Processing procedure of OAL.

ent pointwise function patterns called operation ker-
nels. Individual correlated images are spatially sam-
pled at one pixel intervals (double the size of a
structural cell of the correlated images) along vertical
and horizontal directions. After sampling, parallel
NAND, or more exactly inverted-OR, operation for all
the sampled images gives the result of parallel neigh-
borhood operation. Throughout the operation corre-
lated images are binarized as black-and-white images.

Parallel neighborhood operation executed in OAL is
designated by a set of operation kernels used for the
correlation. Using logical expressions, we can write
the parallel neighborhood operation in Fig. 2 as fol-
lows:

K L L

ci = E I II fmn;k(ai+mj+nAbi+m+n), (is; = 1.N), (4)
k=1 m=-L n=-L

where y and II denote logical sum and logical product,
respectively; fm,n;k(a,b) means a two-variable binary
logic function for pixels a and b at the corresponding
location in two input objects; subscripts m and n indi-
cate relative address of the pixel in the neighborhood
area centering on (i]) pixels; and k is the identifier of
product terms in parenthesis in Eq. (4). Note that any
parallel neighborhood operation can be expressed by a
combination of the fm,n;k terms, which corresponds to
selecting a set of operation kernels in OAL. Thus it is
obvious that programming in OAL is nothing but de-

4411111#

# # (

( b )
Fig. 3. Decomposition of an operation kernel into kernel units.

KERNEL FUNCTION SYMBOL KERNEL FUNCTION SYMBOL
UN IT FNTOSYBL UNIT

41111 .. 4i#i a+b PP

4 a+6 NN 4 aDb UU

# a+b NP i b .1

4 a O. 
4
1 ab 01

a+5 PN 4 a 1.

4 5 .0 4 aS 10

44# Ea EE 4 ab 11

4 ab 00 4 0 DD

Fig. 4. All patterns of a kernel unit corresponding to a two-variable
binary logic function. Function symbols used for symbolic notation

of OAL are also tabulated.

fining a set of operation kernels required for current
processing.

To clear the relationship between fm,n;k and the oper-
ation kernel, we introduce the concept of a kernel unit
to describe operation kernels. As presented in Ref. 7,
an array pattern of four-point sources configures an
operation between the corresponding pixels in two
input images, namely, the array pattern of the four-
point sources is a primitive of operational configura-
tion. A kernel unit is defined as an array pattern of the
four points comprising operation kernels, so that any
operation kernel can be decomposed into several ker-
nel units as shown in Fig. 3. Using the kernel unit
concept, a pattern of a kernel unit directly corresponds
to a function of fm,n;k as shown in Fig. 4. Subscripts m
and n of fm,n;k designate location of a kernel unit in the
kth operation kernel. Figure 5 shows location of a
kernel unit designated by (m,n).

Consequently, only if a desired parallel neighbor-
hood operation is described by logical expressions in
the form of Eq. (4) can operation kernels used for
correlation be determined and the target operation be
achieved according to the procedure shown in Fig. 2.
All the procedures in OAL can be executed in parallel
with optical techniques over an entire pixel data in

15 July 1988 / Vol. 27, No. 14 / APPLIED OPTICS 2927

i



ARRAY OF
LED

CODED SCREEN SAMPLING
INPUT MASK

Z dM I I

m

I I I I

Fig. 5. Location map of kernel units referenced by (m,n).

objects to be processed, and hence N2 neighborhood
operations can be carried out simultaneously.

Attractive features of OAL are that (1) the process-
ing principle of OAL is the same as that of array logic9

in electronics except for parallelism7 and (2) the
OPALS based on OAL is an optical implementation
system of cellular automata.1 0 Hence, software re-
sources in array logic and cellular logic in electronics,
such as methods of planning and processing algo-
rithms, can be fully utilized in OAL.

III. Programming in OAL

In this section we describe a generalized program-
ming procedure of parallel processing with OAL and
demonstrate the flexibility of OAL. To execute paral-
lel processing with OAL, the following procedures are
necessary:

(1) Modeling current problems as binary patterns.
(2) Formulating an algorithm with parallel neigh-

borhood operations in the form of Eq. (4).
(3) Coding the parallel neighborhood operations

with the programming language of OAL.
(4) Compiling the programming codes to generate

operation kernels of OAL.
(5) Executing parallel processing according to the

procedure of OAL.
Assuming that modeling problems and the formu-

lating algorithm have already been done and the paral-
lel neighborhood operation to be executed is expressed
by Eq. (4), we consider how to code the operation and
how to compile the coded program.

For convenience of programming in OAL, a symbolic
notation, or in-a-broad-sense programming language,
is used.7 When an objective operation is expressed by
Eq. (4), the fmn;k terms can be uniquely determined.
Thus the procedure for coding a product term (kth
product term) is (1) to express the fm,;k terms by the
function symbols in Fig. 4, (2) to put them at locations
corresponding to m and n referring to Fig. 5, and (3) to
enclose by parenthesis each set of symbols concerned
with the same k.

The function symbol at (m = 0,n = 0) is underlined
to mark the center of the neighborhood area. Apply-
ing the coding process to all product terms of the target

I f _ P z
Ad -

Fig. 6. Modified shadow-casting system for OAL.

operation and joining the parenthetical terms with +
operators, we can code the given operation by OAL
programming language. Note that our OAL symbolic
notation does not necessarily restrict only in the man-
ner of arrangement and size of neighborhood area.
Using this notation, any parallel processing can be
expressed.

Compiling the coded programs is to replace the func-
tion symbols in parenthetical terms with kernel unit
patterns and to compose operation kernels. In this
process, position adjustment is needed so that the
underlined function symbol may be replaced with the
kernel unit at (m = O,n = 0). All operation kernels for
the desired operation can be obtained from all paren-
thetical terms in the coded program.

Using the operation kernels obtained by compila-
tion, the target operation can be executed according to
the procedure of OAL. Figure 6 shows an example of
an optical setup for executing OAL, which is a modi-
fied shadow-casting system without magnification of
projected images. Switching configurations of a light
emitting diode (LED) array corresponds to an opera-
tion kernel for correlation. The result of a product
term operation is obtained from the correlated image
through a sampling mask in contact with a screen.

Since one product term operation is executed by a
set of the optical system, many copies of the optical
system should be prepared for simultaneously per-
forming all product term operations in the current
operation. When only one optical system in Fig. 6 is
used, sequential control of the switching pattern of the
LED array is required. In any case, several optical
function devices must be used to execute parallel
NAND operation in OAL.

IV. Image Data Processing with OAL

To demonstrate the usefulness of OAL, we attempt-
ed two examples of image data processing: edge detec-
tion and region extraction of connected area. Practi-
cal operational procedures in these examples can be
applied to other processing.

A. Edge Detection

An object to be processed is assumed to be a binary
image we call image A. An edge pixel to be detected is
defined as a pixel satisfying the following conditions:
(1) the value of itself, aij, is 1, and (2) the value of any
one of four connected neighbors, aii,.j, ai+1,j, aj- 1 , and
ai,+i, is 0.

2928 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988

(1,1) (1O) (1,1)

(0,1 ) (0,0) (0,1 )

(1,1 ) (1 ,O) (1 ,1 )

l j j -

and

n



(c) (a)

(d) (e) (Z)

Fig. 7. Experimental results of edge detection with OAL: (a)
object to be processed, (b)-(e) results of product term operation, (f)

resultant image of edge detection.

Then the neighborhood operation for detecting edge
pixels is formulated as

cij = aij(ai-i + ai+l + aij1 + aij+1), (5)

where cij is the detected pixel. Equation (5) is devel-
oped into

cij = aijai-ij + aijai+i + aijaij-, + aijaij+1. (6)

Equation (6) is the same form as Eq. (4). Therefore,
Eq. (6) is coded by the following symbolic notation:

(7a)

Hence, (7a) can be compiled into a series of four opera-
tion kernels:

TT i -=F _ _0_ _ (7b)

Using these operation kernels for correlating operations
in Fig. 2, we can execute edge detection in parallel.

Figure 7 shows an experimental result of edge detec-
tion using the optical system of Fig. 6. Figure 7(a) is the
object to be processed which consists of 64 X 64 pixels.
This object is encoded and recorded on a slide 32 mm
square. Figures 7(b)-(e) are the results of product term
operations with the above four operation kernels. Fig-
ure 7(f) is the resultant image obtained by NAND opera-
tion for images in Figs. 7(b)-(e). For the NAND opera-
tion a photographic technique using lithographic film is
used.7 In Fig. 7 the results are expressed by dark-true
logic, so that dark signals indicate detected edge pixels.

B. Region Extraction of Connected Area

As shown in an earlier use of cellular logic,10 iterative

(d) (e) (f)

Fig. 8. Simulation results of extracting connected area: (a) object
to be processed, (b) core pixel pointing to extracted area, (c)-(f)
output of first, second, fifth, and thirteenth iteration, respectively,
(f) final result of extraction of connected area including the sign

pixel.

processing is useful for some kinds of image processing.
We attempt to extract a region connected to a core pixel
as an example.

An object to be processed in a binary image we call
image A, and a core pixel, or an initial position of the
extraction, is set in image B. They are depicted in Figs.
8(a) and (b). For the region extraction, the following
augmentation is iteratively executed to image B. The
output image at the kth processing step is used as input
image B at the k + Ith step. After appropriate itera-
tion, the connected area including the core pixel is
extracted as the output.

The augmentation is expressed by the following
neighborhood operation:

cij = aijbij + aijai_1jbi_1j + aijai+Jbi+1j

+ aijaij-1bij-1 + aijaij+1bij+1. (8)

This operation can be coded by symbolic notation, i.e.,

[. 11 . + [. -. + [. -. ].. .. .. .. ..... 1 ..11

(9a)

Compiling of Eq. (9a) produces the following five oper-
ation kernels:

+1 I 1. L L I+ -1. __* I I I t I lt-I-
I T I I _1- _ ..- _ ±J~ : _2 _ _____ _ I 8&*:

TTTT . I T .. I 

(9b)

15 July 1988 / Vol. 27, No. 14 / APPLIED OPTICS 2929

(b) ( c)(aY I (b)

.. .. .. '' '' ''
+ 11 1. .. + .. 1. 11

.. .. . .



Using these five operation kernels, one step of augmen-
tation is executed. The process is repeated until the
output image becomes unchanged.

Figures 8(c)-(f) show results of a computer simula-
tion for region extraction. After the first iteration four
neighbors connected to the core pixel are obtained as
shown in Fig. 8(c); Figs. 8(d) and (e) are the output
images after the second and fifth iterations, respec-
tively. The connected area grows step by step as the
number of the iteration increases. Figure 8(f) shows
the final result of region extraction of connected area
including the core pixel after the thirteenth iteration.
After that, the output of the process became unchange-
able.

V. Conclusion

In this paper we have generalized the procedure for
planning and executing arbitrary parallel processing
with OAL as a systematic programming technique of
optical parallel processing. The processing in OAL is
formulated by logical expressions, so that practical
processing can easily be implemented by OAL. The
processing principle of OAL has a close relationship to
those of array logic and cellular logic in electronics
except for parallelism. Thus their software resources
can be easily used in OAL.

Processing of OAL can be described by an original
symbolic notation. Although this notation is incom-
plete as a programming language, it would serve to
compose a powerful programming language capable of
describing parallel processing linked to a conventional
programming language.

Once target processing is described with symbolic
notation, it can be executed by simple procedures for
binary pattern data. We have applied the technique
of OAL to two kinds of image data processing and
verified the appropriateness of our discussion. Al-
though the image processing is rudimentary, the im-
portant point is not the capability of such image data

processing but the programmability of OAL. Use of
OAL is not restricted to image data processing; by
modeling problems to be solved as binary patterns, we
can process those problems with OAL. Numerical
data processing in OAL will be reported in part 2.11

The hardware to implement OAL has not been de-
veloped. However, procedures for executing OAL are
simple, so that its implementation should not be diffi-
cult. We have been studying several kinds of hard-
ware for OAL. Practical problems about the hardware
were discussed in a previous paper. 1 2

References

1. A. A. Sawchuk and T. C. Strand, "Digital Optical Computing,"
Proc. IEEE 72, 758 (1984).

2. T. K. Gaylord, M. M. Mirsalehi, and C. C. Guest, "Optical
Digital Truth Table Look-Up Processing," Opt. Eng. 24, 48
(1985).

3. K-H. Brenner, A. Huang, and N. Steibl, "Digital Optical Com-
puting with Symbolic Substitution," Appl. Opt. 25,3054 (1986).

4. Y. Fainman, C. C. Guest, and S. H. Lee, "Optical Digital Logic
Operations by Two-Beam Coupling in Photorefractive Mate-
rial," Appl. Opt. 25, 1598 (1986).

5. A. W. Lohmann and J. Weigelt, "Spatial Filtering Logic Based
on Polarization," Appl. Opt. 26, 131 (1987).

6. J. Tanida and Y. Ichioka, "Optical Logic Array Processor Using
Shadowgrams," J. Opt. Soc. Am. 73, 800 (1983).

7. J. Tanida and Y. Ichioka, "Optical-Logic-Array Processor Using
Shadowgrams. III. Parallel Neighborhood Operations and an
Architecture of an Optical Digital-Computing System," J. Opt.
Soc. Am. A 2, 1245 (1985).

8. J. Tanida and Y. Ichioka, "OPALS: Optical Parallel Array Logic
System," Appl. Opt. 25, 1565 (1986).

9. H. Fleisher and L. I. Maissel, "An Introduction to Array Logic,"
IBM J. Res. Dev. 19, 98 (1975).

10. K. Preston, Jr., and M. J. B. Duff, Modern Cellular Automata
Theory and Applications (Plenum, New York, 1984).

11. J. Tanida, M. Fukui, and Y. Ichioka, "Programming of Optical
Array Logic. 2: Numerical Data Processing Based on Pattern
Logic," Appl. Opt. 27(1988), same issue.

12. Y. Tanida and Y. Ichioka, "Modular Components for an Optical
Array Logic System," Appl. Opt. 26, 3954 (1987).

NASA continued from page 2921

Fig. 5. In the data-analysis-and-display mode, the laser light is
pulsed, and the moire pattern is converted to digital information in
the frame grabber. The digital picture information is sent to the

computer for processing and display.

imposed on the second grating, which is laid out on a fiber-optic plate
that has a receiving-surface shape identical to that of the circular
grating. Moire fringes are produced by the differences between the
second grating and the reflected image of the first grating. Only
these fringes, not the high-frequency grating structure, are transmit-
ted by the plate to the moire fringe TV camera.

If the corneal surface is aspherical, the location and number of
moire fringes differ from those produced by the spherical aberration
of the optical system alone. The difference is measured as a change
of transverse aberration resulting from asphericity of the corneal
surface. The analysis is conducted along an azimuth, and a mea-
surement of eight azimuths suffices to define the corneal shape.

The eye-fixation plane contains the ends of eight fiber-optic
guides arranged uniformly around the axis. By focusing on each of
these light spots as each is illuminated in turn, the patient cumu-
latively presents a large portion of the corneal surface for mapping.

The data-analysis-and-display system is shown in Fig. 5. The
moire pattern is scanned at the standard TV scanning rate. This
rate plus the pixel resolution necessary to define a full-field moire
pattern require analog video signals to be converted to digital at a
rate -10-20 times as great as the maximum transfer speed possible
using a typical desktop computer; consequently, a frame grabber is
used between the TV camera and computer. The frame grabber

continued on page 2948

2930 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988


