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The valve action of intensity receptor has the following properties which
are essential to an encoder. (1) The response amplitude corresponds to the
stimulus intensity in a one-to-one manner. (2) The dynamic ranges of
the stimulus intensity and the response amplitude are respectively set and
able to move in parallel with their axes. (3) The probability density
distribution of the stimulus intensity may be transformed into that of
the response amplitude by a stimulus-response relation. Concerning
stimulus-response relations, three empirical formulae, i.e. Iogarithmic,
power and tanh log functions, are well known. These formulae can be
arranged for the forms to express the above three properties. Then, power
and tanh log functions are converted to a logarithmic function as the
exponents of them approach zero. From a viewpoint of information
theory, the stimulus-response transforrnation may play a role to improve
the probabilistic nature of stimuli in order to make an eMcient code for
a given channel of sensory fibre.

                         1. introduction

The valve action of intensity receptor is the stimulus of different forms
(energies or chemical substances) controlling the flow of ionic current
through a cell membrane. The stimulus intensity is transformed into the
amplitude of slow potential with non-linear relationships. It is as if
grid potential would control the fiow of plate current in a vacuum tube
amplifier with grid characteristics. Slow potential evokes propagative
impulse discharges at the root of axon (Eyzaguirre & KuMer, 1955). The
potential amplitude is transformed into the impulse frequency propor-
tionally (Katz, 1950; Fuortes, 1958, 1970). Thus, as we can see in a typical

model of communication system (Fano, 1963), the encoding is performed
by two steps in the intensity receptor. First there is a source encoder depen-

dent on the characteristics of an information source, which transforms the
stimulus intensity i into the potential amplitude v non-linearly. The other
is a channel encoder dependent on the characteristics of a communication
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channel, which transforms the potential amplitude into the impulse frequency

flinearly.
  So far, concerning the relationships between the stimulus intensity and
the potential amplitude (or the impulse frequency), three empirical formulae

are well known. The first is a logarithmic function called Weber-Fechner's
law,

                       h,(i) =a log i+b (1)
which has been recorded by a number of electrophysiological investigations
of various sensory systems at least in the intermediate range of stimulus
intensities (Matthews, 1931; Hartline & Graham, 1932; Galambos & Davis,
1943). The second is a power function introduced by Stevens (1961) at first
in psychophysics,

                        h,(i) =cin+d. (2)
Werner & Mountcastle (1965) studied the neural activity of mechano-
receptive first-order sensory fibers, and showed that the power function
holds with a high degree of statistical validity. The third is a tanh (hyperbolic

tangent) log function,

               h3(i)= i, i"..=S+l tanh (: log i) (3)

which was reported recently (Boynton & Whitten, 1970; Ernst & Kemp,
1972). This function in general shows sigmoidal shapes. As a special case
that the exponent n is equal to one, it reduces to the same form as the
adsorption isotherm of Langmuir which is recorded in some sense organs
(Beidler, 1954; Baylor & Fuortes, 1970).

  We assume that the stimulus intensity and the impulse frequency are
several sets of random variables and the probability density distributions
of them are well-defined. It is an important feature that the non-linear
one-to-one transformation from the stimulus intensity to the impulse
frequency also aocompanies the conversion of the probability density
distribution of the former into that of the latter. The change of the proba-
bility density distributions is one of the essential meanings of the stimulus-

response relation from a yiewpoint of information theory. Stein (1967)
calculated the capacity of nerve cells to transmit information using a fre-
quency code. The mutual information transmitted by a channel is the
response uncertainty minus the conditional uncertainty. The conditional
uncertainty depends on the noise characteristics of a given channel. The
response uncertainty is a function of the probability density function (p.d.f.)

of the mean impulse frequency which depends on the stimulus intensity
via the stimulus-response relation. The channel capacity is obtained when
the p.d,f, of the mean impulse frequency is optimal so as to give the maximum
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of the mutual information. It is considered that the stimulus-response
relation may play a role to improve the probabilistic nature of stimuli in
order to make an ethcient code for a given channel of sensory fibre.

                  2. Properties of Valve Action

  (1) The source of stimulus energy and the source of response energy are
independent of each other.
     (a) Various forms of stimulus energies (chemical substances are
   considered a form of energy, i.e, chemical potential) in the outer
   environment are convertible into a common form of response energies
   (i.e. receptor potential) to perform the internal transmission of infor-
   mation. In fact, there are many sense organs of different kinds, each
   response amplitude of which may be controlled by the stimulus of its
   modality.
     (b) In general the response amplitude is controlled by the relatively
   small amount of the stimulus energy. The ratio of the amount of energy
   involved in response to the amount of energy involved in stimulus can
   vary with certain freedom. The variability of this ratio is a necessary
   condition of the adjustment of dynamic ranges (i.e. gain control).
  (2) The stimulus intensity prescribes the response amplitude.

     (a) The response amplitude corresponds to the stimulus intensity
   in one-to-one manner. One-to-one correspondence between two
   variables is a necessary condition for uniquely decipherable encoding in

    receptor.
     (b) The dynamic ranges of the stimulus intensity and the response
   amplitude are respectively set and able to move in parallel with their
   axes. The adjustment of dynamic ranges is the adaptation of receptor
   to the oecasional changes of a stimulus condition in outer environment.
     (c) The probability density distribution of the stimulus intensity
   may be transformed into that of the response amplitude by a stimulus-
   response relation. A non-linear transformation between them is neces-
   sary to make an eMcient code for a communication channel of sensory
   fiber. The amount of information transmitted is defined by an entropy
   function of the p.d.f. of the response variable, presuming the noise
   characteristics of channel.

           3. Formalization of Stimulus-Response Relations

  The response amplitude is a function of the stimulus intensity. Three
empirical formulae (i.e. Iogaritlmic, power and tanh log functions) are one-

value, continuous and strictly increasing functions. These represent the one-
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to-one correspondence between the stimulus and the response variables
and also the non-linearity in that the first differentials are not constant. The

usual expressions of empirical formulae do not represent the dynamic
ranges of the stimulus intensity and the response amplitude explicitly. The
dynamic range defines a set of random variables, on which probabilities are
well defined. Namely, the probability distributions on the sets ofthe stimulus

intensity and the response amplitude which are the random variables are
not defined until both dynamic ranges are set.

  An empirical formula h(i) represents one-to-one and non-linear trans-
formations from the stimulus intensity into the potential amplitude [Fig, 1(a)].
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 FiG. 1. (a) One-to-one and non-linear transfomiation from the stimulus intensity into
the potential amplitude. (b) The adjustment of dynamic ranges of the stimulus intensity
and the potential amplitude.

The dynamic ranges of the stimulus intensity and the potential amplitude
can move in parallel with their axes respectively (Naka & Kishida, 1966).
Both are inter-related proportionally [Fig. 1(b)]. Then,

                         v=Ah(i)+B. (4)
The minimum io and the maximum i. of the stimulus intensity correspond
to the minimum vo and the maximum v. of the potential amplitude,

                        Vo=Ah(io)+B (5)
                        Vm=Ah(im)+B• (6)
A and B satisfying the simultaneous equations of (5) and (6) are derived as

                            Vm-Vo '                      A=: h(im)-h(io) (7)
                      B=Vohh((llm.))iVh?ih,()io). (s)
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Substituting equations (7) and (8) into equation (4), the following propor-
tional expression is obtained,

                      v-vo h(i)-h(io)
                     "m-vo == h(i.)-h(io)' (9)

Hence, an intensity-amplitude relation is

                               h(i)-h(io)
               v = g(i) == (v.-Vo)                                        +vo. (10)                               h(im) - h(io)

  In the case of logarithmic function, substituting equation (1) into equa-
tion (10) gives

                             logi-log io
                gi(i) = (v.-vo)                                        +vo• (11)                             log i.-log io

In the case of power function, substituting equation (2) into equation (10)
gives

                   g2(i) == (v.-vo) l,"-i.6.+vo. (i2)
                                lm-lo
In the case of tanh log function, some remarks are necessary for constant ct.
Regarding the empirical formula, h(i) = 1!2 is given for i = ct. ct has been

introduced at such a value that the response amplitude might become equal
to half ofthe maximum when the stimulus intensity equals ct. Then, in order
that v == 112 might be given for i = ct,

                         ct =(i. io)'/2 (1 3)
is a necessary condition. Substituting equations (3) and (13) into equa-
tion (10) gives

                            in ino
                        in + (i. io)n/2 ino +(i. io)n/2
          g3(i)=(Vm'Vo) i.n ino +vo (14a)
                       i:, +(i. io)n12 ion +(i. io)n12

                         tanh {: IOg (i. i/t)ii2} 1

               = ("M-"O) 2tanh (Z log llm:,) +i + VO (14b)

 Consider the following part of equation (12),

                           i.".-i.lo (15)
                           lm-lo
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which is a function of the exponent n. This function is satisfied with the
propositions that are necessary for the application of L'Hospital's theorem.
  (1) Differentiations of numerator and denominator are possible.

                 d
                 d-n (i"-i"o) = i" log i-i"o log io

                 d
                ail (i." -ion) = in. Iog i.-ino log io.

  (2) A differential of denominator is not equal to zero.

                  d
                 d-.(i.n-in,)so (•.• i.7E i,).

 (3) A fractional expression (15) takes an indeterminate form OIO for

n=O.
                   io-ioo = i.o -ioo == 1-1 = o.

  (4) A limiting value of the fractional expressjon of differentials as the
exponent n approaches zero exists.

                 d
                 ail (i" - ino)
              lim =lim i"logi-ion log io
                           n.o i". Iog i.-i"o log io              n-o d
                 iiTn (i." - ino)

                            log i- log io
                                      .                           Iog i.-log io
Therefore, taking the limit of formula (15) as the exponent n approaches
zero yields

                   . in •- i"o logi-log io
                   li.M.o ik - i"o == log i. --- log io' (16)

This is equivalent to the part of equation (11). Similarly, taking the limit
of the part of equation (14a) as the exponent n approaches zero yields

                  in i.n
              in +(i. io)"i2 ie" +(i. io)"/2 log i-log io
           li.Mo i". i"o == iog i.-iog io' (i7)
              in.+(i. io)n12 ino +(i. io)n/2

This is equivalent to the part of equation (1 1).

  Thus in the limit as the exponent n approaches zero, equations (12) and
(14) change into equation (11). We show the changes of the power functions
and the tanh log functions into the logarithmic function for several values
of the exponent in graphic form. In the following, dynamic ranges are set
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as io = 1, i. = 100, vo = O and v. = 100. Intensity-amplitude curves of
power functions are illustrated in Fig. 2 by using equations (1l) and (12)
for n = 1•5, 1O, O•5, O•2 and O (corresponding to the logarithm). Intensity-
amplitude curves of tanh log functions are illustrated in Fig. 3(a) and also
3(b) by using equations (11) and (14a, b) for n = 5, 3, 2, l and O (corres-
ponding to the logarithm). The abscissa of the stimulus intensity is plotted
out by the uniform scales in Fig. 3(a), and again by the logarithmic scale
in Fig. 3(b). Curves shown in Fig. 3(b) have a point of symmetry.

             4. Relationship of Probability Distributions

  We suppose that a series of intensities of the stimuli coming into a single
intensity receptor is composed of statistically independent random variables
which constitute a stationary stochastic process. Let the stimulus intensity
I = (ilio <N i x< i.) be a set ofone-dimensional, continuous random variables,

then the response amplitude V = (v[vo <x v N< v.) which is dependent on
the stimulus intensity by a one-to-one representation V= g(I) becomes
a set of onedimensional, continuous random variables too.
  Let ut(i) be a function showing a probability density distribution of the
stimulus intensity, and NP(i) be a primitive function of ut(i). A p,d.f. of the

stimulus intensity is

                      q(i) =: g,(i.IIISii),?(i,)• (ls)

And a distribution function corresponding to q(i) is

                     e(i)=,,ii,',[.:),--kYJ,i,?3,. (ig)

Let ip(v) be a function showing a probability density distribution of the
response amplitude, and Åë(v) be a primitive function of ip(v). A p.d.f. of
the response amplitude is

                     p(v)=Åë(,.9SiVlts(,,)• (2o)

A distribution function corresponding to p(v) is

                     P(v)-.Åë(gV.))--Åë.((V;,)). (2i)

The intensity-amplitude transformation v = g(i) is one-value, continuous
and strictly monotonic function, Therefore, a relation between the p.d,f.'s
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of the stimulus intensity and the response amplitude is

                                 dg(i)
                      q(i)-p{g(i)} di '

Namely,
                 di(i) ip{g(i)} dg(i)
             'P(i.)-il'(i,) O{g(i.)}-Åë{g(io)} di •

A relation between the distribution functions of them is

                     P(v) - e(i) = P{g(i)}.
Namely,
          Åë(v)-Åë(v,) 'Y(i)-iP(i,) Åë{g(i)}-O{g(io)}
         O(v.)-Åë(vo) '?(i.)-'P(io) Åë{g(i.)}-Åë{g(io)}'

Hence, if any two of P(v), e(i) and v =
determined by relations (24).

261

(22)

(23)

(24)

(25)

g(i) are settled, another one can be

                     5. Increment Threshold

  When an increment Av of the response amplitude corresponds to an
increment Ai of the stimulus intensity, taking the first approximation of
Taylor's series,

                  Av-g(i+Ai)-g(i) "- Aig'(i). (26)
Let Av be an increment threshold of the potential amplitude, which is
determined by the variability of neural activity. Then,

                                 1
                                                        (27)                         Ai = Av
                               g'(i)

is an increment threshold of the stimulus intensity. Weber's ratio is expressed

as
                          Ai Av                          7' =ig'(i)' (28)

                      6. Channel Capacity

  Stein (1967) derived approximate equations for the amount of information
a nerve cell can transmit about a stimulus of a given duration using a fre-
quency code. The characteristics of a stimulus in outer environment and a
stimulus-response relation in sensory receptor is beyond the scope of his
study. We shall form a connection between the above-stated results and some
general results derived by him.
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  Impulse discharges inherently have variability. Stein (1967) made a
summary of experimental findings in which the standard deviation a of
the interspike interval distribution is a power function of the mean interspike
interval pt. Then,

                          a= bpt' (29)
where b and r are constants and generally r -> 1. He introduced an important

result based on the central limit theorem of mathematics (Cox & Miller,
1965). It can be stated as follows: if the intervals between successive nerve

impulses are independent, random variables (renewal process) whose
probability distribution has mean pt and variance a2, the distribution of the

number of nerve impulses is asymptotically normal as t . co, with x tv t/p
and variance

                         s2 rv a2tl"3. (30)
  According to his model, the stimulus is defined in terms of the mean
number of impulses during a given period it generates. The optimum p.d.f.
ca(x) of the mean number of impulses necessary to attain the channel capacity
of a nerve fibre is given by

                        to(x) == D/s(x) (31)
where D is aconstant such that

                       D-i = .X.i, ".X s{xX)' (32)

Equation (31) states that the p.d.f. for the occurrence of particular stimuli
(i.e, mean number ofimpulses) must vary inversely as the standard deviation
in number of impulses. We assume that the potential amplitude may be
transformed into the mean impulse frequencyfproportionally at channel
encoding,

                       vV.--VvO,--ff.-.ffO,' (33)

Then the impulse frequency corresponds to the stimulus intensity via the
transformation ofv = g(i). Assuming that each duration t ofsuccessive and
individual stimuli is suMciently large and constant, the mean impulse
frequency f can be adopted as variable instead of the mean number of
impulses x which is used in his paper. The averages of the interspike interval

and the impulse frequency during a given period, have a reciprocal relation
p = 1/f Then, the mean number of impulses is also expressed as

                           x-ft. (34)
  Substituting equations (29) and (34) into equation (30) yields

                       srv bt'/2f312", (35)
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A calculation of equations (31) and (32) by using equations (34) and (35)
yields

                       `o(f') == l xk.i{ il}',k (36)

where k = r-O•5. Changing the variable from x intof, the optimum p.d.f.
pU) of the mean impulse frequency is given by

                              dx                    P(f) == tu(X) Iif-tu(ft)t. (37)

Therefore, the optimum p.d.f. of the mean frequency is

                              kfk-i .                        P(f) =fA ..-f,k (38)
In this case, the channel capacity of the nerve fibre which is characterized

by equation (29), is approximated as

                    crv iog [Vi, fAifok] (3g)

which follows in one step from equation (2.12) of Stein (1967).

  Since the potential amplitude is proponional to the mean impulse fre-
quency, the optimum p,d.f. of the potential amplitude is

                              kvk-1 ,                         p(v)=, ,. (40)
                              Vm-Vo
The distribution function corresponding to p(v) is

                        p(,)=vl-v9. (4i)
                              Vm-Vo
When a sensory nerve characterized by the stimulus-response relation
v = g(i) and the coeMcient k acts at the fu11 capacity of itself, the distri-

bution functions of the stimulus intensity and the response amplitude is
related as

                     vk - v5 g(i)k-g(i,)"
                     V:-vko -- g(i.)k-g(i,)k (42)
by using equation (25).

     '
                    7. Remarks and Discussion

 ' Consider a special case of sensory nerve fibre whose noise characteristics
are given by k = 1 (or r = 1•5, i.e. the standard deviation s is constant).
We assume that the increment threshold of the potential amplitude Av may
be determined by the corresponding increment threshold of the impulse
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frequency Af, then proportional to the standard deviation s. Ifs is constant,
so Av is too.

  Weber's ratios Ai/i, vvhich are the functions of background intensity i,
are illustrated for Av!(v.-vo) = O•1. The curves in the case of power
function are shown in Fig. 4 by using equations (11), (12) and (28). The
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 Fia. 4. The Weber's ratios (Ai/i) in the receptor with power transformations and constant
noise. The axes of co-ordinates are uniform scales. For n = 1•5, 1•O, O•5 and O•2
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                         l>.li = "o log 1oo•

axes of co-ordinates are uniform scales. The curves in the case of tanh log
function are shown in Fig. 5 by using equations (ll), (14) and (28). The
axes of co-ordinates are logarithmic scales. The curves of the latter have an
axis of symmetry.
  The relation between the probability distribution functions of the stimulus
intensity and the potential amplitude is obtained by substituting k = 1 into
equation (42).

                v-v, g(i)-g(io) h(i)-h(i,)
                v.-vo =g(i.)-g(io)=h(i.)-h(i,)' (43)

Although equation (43) has the same form as equation (9), they never
indicate the same meaning. The differential of the right side of equation (43)
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                  Ai i tanh (Z iog ioo) 4

                   i iOi - {tanh (g iog fo)}2 n'

For n = O (log)

                        Ai 1                        U}: = ro iog ioo.

that is the distribution function of the stimulus intensity, produces the
optimum p.d.f. of the stimulus intensity for the sensory nerve possessing a
given stimulus-response relation. Namely,

                      q(i) == h(i.l'-/i)h(i,)' (44)

  The shapes of probability density distributions expressed by equation (44)

are shown in Fig. 6 in the case of power function by using equations (1)
and (2), then 'in Fig. 7 in the case of tanh log function by using equations (1)

and (3). The abscissa of the stimulus intensity is a uniform scale and the
ordinate of the probabi!ity density is a logarithmic scale.
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  Werner & Mountcastle (1965) studied stimulus-response relations for
mgchanoreceptive fibres ending in Iggo corpuscles of the skin of cats and
monkeys. They expressed the stimulus intensities (S) for each fibre as the
per cent of maximum stimulus intensity used for that fibre (S.,.); then the
response magnitudes (R) as per cents of the maximum response to S... for
each individual fibre. It was proved that the new, normalized variables
were related in this form,

                        R=(1oo)(i-n)sn. (45)
Here, the proportionality coeMcients are represented by a function of the
exponent n. Equation (12) can be rewritten as

                        v== (loo)(i-n)in (46)
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                           10n + 1 10nnin-1                      q(i) = lon - 1 (in + lon)2'

For n = O (log)
                         q(i)-i-.gli-ooi-r.

when we substitute O(%) for io and vo, and 1oo(O/,) for i. and v.. Formula
(46) coincides with the empirical formula (45). Since io is equal to zero,
in the limit as the exponent n approaches zero, equation (46) cannot change
into the logarithmic formula.
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