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The analytical method of optical critical-point structures by low-
field electroreflectance (ER) is described. The three fundamental param—
eters of optical~critical points, i.e., energies, symmetry locations in
the Brillouin zone, and interband-reduced masses are obtained by the line
shapes and the polarization dependences of low-field ER spectra. In addi-
tion, uniaxial-stress effects on low-field ER give the symmetry locations
and the deformation-potential parameters at critical points.

These methods are applied to the E., El’ and E_ optical structures

2

in Si using the Schottky-barrier ER technique. The fundamental features
of critical points related to these structures are analyzed precisely.

From the line-shape analysis using the low-field resonant function, we

show that the 3.4 eV complexities consist of two critical points, Ed

(Eg = 3.294 + 0.005 eV; 300K) and E1 (Eg = 3.412 +* 0.005 eV; 300K).

Moreover, the E, structures consist of three critical points, Ez(l)

2
(Eg = 4.336 £ 0.010 eV; 90K), E,(2) (Eg = 4,459 + 0.010 eV; 90K), and

E2(3) (Eg = 4,598 * 0,010 eV; 90K). As for the symmetry analysis (and

the reduced-mass relation), El is assigned conclusively to the Ag - Ai
v c i i
or Ly, > L transition (b << |UL|, Mp > 0, up < 05 M, type), Ez(l) 1s

conclusively to the ZZ - 5

3
v c .
Moo Hp < 03 Mi type), and E2(3) is probably to the A5 > Al transition near

transition (l/uT2 + l/uL = 4/uTl, Mg >0,

the X point ([uTI >> uL, UT < 0, uL > 0; M2 type). The interband defor-

mation-potential parameters of the E. critical point are also determined

1
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from the uniaxial-stress measurements.

+ .
As a synthesis, the E (k) energy contours of Si are constructed

4-5

from the experimental results.
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I. INTRODUCTION

A useful technique for studying the energy band structures of
crystals is to look for optical critical points,l’2 where the gradignt
of the interband energy vanishes in the Brillouin zone, and to analyze
their essential features, i.e., critical-point energies, symmetry loca-
tions, and interband-reduced masses. The information of these critical
points, together with appropriate smooth curves connecting them, will
give a good approximation to the exact interband-energy contours.z’3
Moreover, knowledge of optical critical points and the interband en-
ergy contours is prerequisite to interprete the optical properties of

crystals in the energy range above the fundamental absorption edge.

Since the introduction of electroreflectance (ER) technique by

Seraphin, “° various types of modulation methods,7’8 such as piezo-
reflectanc:e,g__12 thermorefleo:tance,lg'm15 and wavelength-modulated
reflectance,l6-l8 have been developed and applied to analyze the op-

tical-critical-point structures of crystals. The power of these methods
lies in the fact that modulation techniques enhance the signals at
critical points in the Brillouin zone. In recent years, it has been
shown by Aspneslg“23 that the low-field ER technique is suitable for
the precise study of optical-critical-point structures. The advantages
of low~field ER are as follows:

(i) Low-field ER spectra give the strongly enhanced critical-point
structures with strongly suppressed background effects, since they are
described by the third-derivative of the unperturbed dielectric func-
tion € @hw).?1:?3
(ii) Low-field ER spectra simply scale quadratically in the applied
19,23

field and the line shapes are invarient to changes in the field.

Therefore, low-field ER spectra modulated in the surface space charge



region are proportional to the surface potential, which is used to find

the low-field modulation limit experimentally.zz’23

(iii) These linearlized spectra are rigorously independent of dc
bias and modulation waveform when they are detected by a phase sensi-
22,23

tive system.

(iv) Quantitative ER spectra can be obtained in the low-field modu-

lation limit without the need for modulation from the flat band.22

Thus, the most accurate values of the optical-critical-point pa-

0,23

rameters are obtained from low-field ER spectra.2 The polarization

dependences of (low-field) ER spectra give in principle the symmetry

27 26,28 —31

properties of nondegenerateza__ and degenerate critical

points. Moreover, it is clear that the symmetry-breaking perturbation

32,33 Deforma-

of uniaxial stress is useful for the symmetry analysis.
tion potential parameters can also be obtained from the uniaxial stress
effects.

We use the Schottky-—barrier34 configuration for our ER measurements.
It is ideal for low-field ER experiments,29 because (i) Schottky diodes
are easy to control the surface potential in a fully depleted space-
charge region, (ii) they are majority-carrier devices relatively insensi-
tive to surface states, and (iii) they permit ER measurements to be made
over wide ranges of temperature and wavelength., In addition, this tech-
nique is advantageous for applying static uniaxial stress, because the
evaporated metal on a semiconducting surface may remain in uniform con-
tact with it when the sample is elastically deformed by the stress.

It is the purpose of this paper to describe a method of precise
analysié on optical-critical-point structures by low-field ER and apply

31, 35

it to Si, which is a widely used semiconducting material. In this

paper, we shall concentrate on the E.', El’ and E, optical structures

0 2



of Si in the energy range between 3.0 and 5.0 eV.

The Ed and E1 optical structures (3.0—4.0 eV) have been the sub-
ject of controversy for a long time. A number of experimental and the-
oretical investigations have been made in this energy region. From the
experimental point of view, reflectivity measurements on Ge - Si alloys,36
dc piezoreflectivity m.easurements,33 ac piezoreflectance,10 wavelength-
modulated reflectance,17 and uniaxial-stress effects on the wavelength-

37,38

modulated spectra have been performed. As for the ER measurements

39,40

of Si, the pioneering work has been made by Seraphin in the MIS

(metal-insulator-semiconductor) configuration; later works have followed

41—43 and in the transverse—electric—field44 configu~-

in the electrolyte
rations. Schmidt and Vedam45 have measured the hydrostatic-pressure
effects of the Ge - Si alloys using the MIS-ER technique. The uniaxial
stress effects on the ER spectra of Ge, GaAs, and Si have been measured
by Pollak and Cardonal,}6 for the first time, though their analysis was
insufficient in the sense that the measured ER spectra were out of the
low-field conditions and the quantitative comparison with the ER theory19
was unsatisfactory. Most of the experimental results suggest equally
except for details that the 3.4 eV structures arise from at least two
distinct critical points with different symmetries. On the other hand,
the existence of an extremely complex nest of critical points in this
energy region has been predicted by detailed energy-band-structure cal-
culations.m—-50 Kane47 has pointed out that the energy gaps at T, X,
and L are very close inenergy in this region and eritical points along
the A line give a dominant contribution to the 3.4 eV structures.

Saravia and Brust49 have shown that the 3.4 eV structures come mainly

from two regions near the I point and the A line (including the L point).

To be short, the above experimental and theoretical evidences may be



divided into two parts for the symmetry assignment of the dominant crit-

ical point in this energy region: the Ag > A; (or Lv, - Li) transi-

n17,31,32,38,45,48,51-—53

tio and Ag - Ai transition near the I' point

(including the FZS' - F;Stransition).3’10’16’33’36’37’46’47’54_—60
The existence of a cluster of critical points in the E2 spectral

region (4.0—5.0 eV) has been predicted by Brust,3 Cardona and Pollak,60

Kane,47 and Saravia and Brust49 in their band-structure calculations.
Especially, Kane47 and Saravia and Brust49 have shown that the E2 peak
in the imaginary part of the dielectric function, 62 ¢hw) , originates
from the large region in the Brillouin zone and not from the high sym-
metry points or axes. On the other hand, two structures have been ob-
served experimentally in the modulated-reflectivity spectra, such as

gr, s 42 16,17

thermoreflectance,15 and wavelength-modulated-reflectance;

and the critical points related to these structures have been attributed

to the XZ - Xf and Z; - Z; transitions. The assignment, however, may be tenta-
tive because it depends largely on the results of the existing energy-

band-structure calculations.3’47’49’52’60

‘The outline of this paper is as follows: Theoretical background is
given in Sec. II. 1In Sec. II A, the optical properties of crystals, es-
pecially the interactioné between the propagating photon field and elec-
trons in crystals, are described in terms of the optical dielectric func-
tion. The concept of optical-critical point is explained in connection
with the dielectric function. In addition, the topological types and
symmetry properties of critical points are presented. The theoretical
concept and the general expressions of low-field ER are explained in
Sec. IIB., 1In Sec. IIC, a method of symmetry analysis by low-field ER
is presented. Uniaxial stress effects on low-field ER spectra are de-

scribed in Sec. II D.



In Secs. IIT A and III B, experimental details of sample prepara-
tion, measurement techniques, and stress arrangement are discussed.

The data for the Ed and El structures are presented and analyzed
in Sec. IVA and the data for the E_, structures in Sec. IV B,

2

Section V shows a synthesis of the optical-critical points analyzed
in Sec. IV: A method of synthesis is explained and the interband energy
contours of Si are constructed from the experimental results.

In Sec. VI, the results obtained in Secs. IV and V are discussed
and compared to other experimental and calculated results.

The conclusions obtained in this paper are summarized in Sec. VII.

The Seraphin coefficients for the three-phase optical system are
given in Appendix A. Appendix B shows the theoretical basis for meas-

uring doping inhomogeneity on semiconductor surfaces by the low-field

ER technique.



II. THEORY

A. Optical Dielectric Function and Critical Point
a. Optical Dielectric Function

We first consider the interaction of light with solid in order to
explain the optical dielectric function. An electromagnetic wave prop-
agating in an isotropic and homogeneous solid can be described by its

->

electric field Ea. When the solid is electrically neutral with no ex-
ternal current flow, the electric field induces a microscopic current
T2 . . . > . .
j(r, t), which gives rise to a polarization p(r, t) of the microscopic
charge distribution. Since we consider the wavelength of the electro-
magnetic wave to be much larger than the atomic dimensions of the solid,
P . T >
it is convenient to perform local averages of j(r, t) and p(r, ¢t). For

sufficiently weak fields, the Fourier transform of an average displace-

-5
ment D of the system is defined by

= ->
E €hw) + 4T <p €w)>, (1)

<y
E6w) » Ethw) . (2)

D ¢hw)

The tensor € (Aw) in Eq. (2) is defined to be the optical dielectric
function. Because of time reversal, € (Aw) is always a symmetric tensor,
€Eij = E%i’ in the absence of external magnetic fields.61 The impor-
tance of the dielectric function is that it completely describes the
interaction of an electromagnetic wave with elementally excitations in
the solid on macroscopic scale.6

The photon field with sufficient energy interacts strongly with
electrons in crystals. The field excites electron from the filled states
to an empty state and makes an electron-hole pair. Considering an

-
electron~hole pair band " t", whose wave vector is represented by KO

in the Brillouin zone, and ignoring the small wave vector of the light,



. . . . 6
we can describe the pair state by a two-particle function 3

t > -

t, > - N t _ - >
Vo (F12 Tp) = ‘?f ?51 52 leotl,jZocZ;jubojlonl (ry= 1) Usnyp(rys 1y, (3)
I’

-> -
where the coordinate T and r, refer to the electron and hole, the fac-

tor " a" is the normalization constant, and Y is the unitary Clebsch-

Gordan matrix.64 Some useful Yy matrices are tabulated by Koster et al.65
for the thirty-two point groups. ff)and U in Eq. (3) are the envelope
and the Bloch parts of the pair state function. The subscript j, jl1,
j2 of Y, :?, U denote the irreducible representations of the group of EO
and the symbols 0, 0l, 02 label the partner functions of j, jl, j2.

The irreducible pair band Uja consists of  the product of one-

electron Bloch function uja(;)exp(iﬁo°;) as63

> - + -
= *
Uy (s Ty) % Y4101, (j202) ;jaujlal(rl) U002 (T)
S

x exp[iﬁo°(;l";2)]- (4)

Here we take the usual "one-electron” view so the hole wave function is
the adjoint (f) of the corresponding one-electron wave function.

The functional form of the envelope part :fga and the normali-
zation constant " a'" can be found from the solution of the effective-mass

. . . . .6
equation, using the effective Hamiltonian 3,66

H=E" + Heps (5)
where

E" = Ec,t(ﬁo) - Ev,t(ﬁ()), (6)

g = %(wjjf?’jast, (7)

<jlalea|j2a2> = /oy (8)

*
jlal, (j202) ;jo’



Here the Coulomb interaction is neglected. E' is the interband energy

>
at KO. The kinetic-energy operator HKE acts only on EP and can be

written in the irreducible form shown in Eq. (7), where an operator W

+
is quadratic in the crystal momentum operator p and its irreducible form

s _ > s .
Wja is constructed from Wij pipj/2 under the group of KO. Rj is a

reciprocal reduced-mass parameter. Equation (7) is also applicable to
the degenerate bands due to the term ¥ja.

We wish to discuss the optical-matrix element of the momentum oper-
ator. The electron-photon interaction operator Hopt can be written in

an irreducible form63

- & *
Hopt " me Z:' AjOL Pya > ©)
J,Q
T . . . 67 63
where A is the vector potential. Following Elliott and Kane, the
optical-matrix element Pj;: between the ground state |0> and the excited

t .
state ijai> can be written

P, t
jo

t > -+
<0|Pja|wjvul (rl’ r2)>$ (10)

t t -> ->
a, &Pl (0) f‘?<0|pja|Uja(r, r)> 6jj' 8t 2 1y

where V is the crystal volume, :fi(O) is the envelope function evaluated

> > ->
at the origin, r, = r, = r. It is very important that only the envelope

1
function with identity symmetry, éPl(O), is involved in Eq. (11); there-
fore, the selection rules of the optical transition can be determined by
> >
the pair band Uja(r,r).

On the basis of the above arguments, the optical dielectric tensor

. . 68
for nondegenerate electron-hole pairs can be written

6ij @w+il) = 1 + ZZ: éijt(ﬁw+ ir, EO), (12a)

t KO

1+ 23 €, Yeu+iD), (12b)
¢



where for a single electron-hole pair band " t"

t > t >
RS RS

t e%ﬁz 3
€, S Bu+il) = - —— 5 —— d’k, (13)
J ™ m" ¢hw+ i) BZ‘ﬁw+iI‘-E (k)
to -> -
E (k) = Ec,t(k) - Ev,t(k). (14)

Here, hw is the photon energy, I is the phenomenological broadening
energy (phenomenological life time parameter T V-h/T), and Et(ﬁ) is the

4 dependence of the single electron-hole pair-band (interband) energy.

b. Optical Critical Point

As shown in Eqs. (12) through (14), the dielectric function
€(hw+il) is mainly determined by the k dependences of the interband
energy Et(ﬁ); and it is closely related with certain points in the
Brillouin zone, called "critical pointé", where the gradient of the
interband energy vanishes. We will show this point clearly. We first
transform Eq. (13) from a volume integration in k space to a surface

integration using the coordinate transformation

t..t
d3k = __ig__%g:_ , (15)
|v§E (k) |
where dSt represents an element area of the constant interband energy

t

t > - t . . .
surface E (k) = E  in k space and dE  is the energy increment in that

space. The result is

t_ t t ©
2,2 P, P, dS t
. ! i
eijt('ﬁw+1r) - - S s e 169
wn’ o+ 1TF e [T ES@) | o Fw+il- E
Using the relation
1 ..
(S(x—xo) == 1im e , an

p-*O(x—xO)2+p2
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the imaginary part EE ijt of the optical dielectric function may be
E

written in the limit of ' = 0 as

ez’ijt(‘ﬁw) = rlimo Im{eijteﬁw+ ir)} , (18)
2 ptp tast ”
= - —5 LI | sehu-&% at, (19)
MW )t IVKE (k) | 0
o2 P Cast 20

t >
Tm™ W St |V1-€E (k)l “ﬁw=Et

Then, the singularities may occur where the gradient of the interband
energy vanishes, i.e., when V+E (k) 0 atfw=E" This type of sin-
gularities are called the Van Hove singularities.1 We assume here that
critical points belong to the single electron-hole pair band are inde-
pendent of each other because of the lifetime broadening effects.

Then, the topological properties of the pair band (interband) energy Et(ﬁ)

n n

->
at K in the Brillouin zone

T 0

in the vicinity of a critical point
can be explicitly written in a Taylor series

T, 1 3%t (k) . e e
BT = E ]+ Z %, B, K=i€(ki-1<0’i)(kj-Ko’j) + , (21)

0
where the summation indices i, j represent the coordinate axes x, y, zZ.
We neglect the terms higher than triplet in Eq. (21) in the parabolic
approximation. For nondegenerate critical points, Eq. (21) can be re-

written in the coordinate in which the quadratic term is diagonalized

2 2 2
2 ( ) ( -K ) (k. -K. )
" (k) - g T4+ B 'ﬁ kpy - O,Tl + ko 0,72 . L 0,L 1, 22)
g Hpp Mo M

where the longitudinal axis L is defined to be parallel to the repre-
3 —)' . .

sentative vector KO of the critical point. uTl’ UTZ’ and UL are the

diagonal components of the second-rank interband reduced-mass tensor,

which is defined as
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- < ' ®. (23)

. . s
The relation between the interband reduced-mass tensors, My and Rj

(defined in Eq. (7)), can be calculated for some specific cases.69a

For degenerate critical points, we neglect the warping effect69b of the
interband energy surfaces,in addition to the parabolic approximation,
which is equal to neglecting the non-diagonal terms of the kinetic
energy Hamiltonian in Eq. (7). These simple parabolic models of the
effective-mass approximation enable us to treat the transition between
degenerate bands as the sum of transitions between nondegenerate bands.31
This assumption may be accepted only in the case of optical transitions
with large broadening energy.

Critical points are characterized by four distinct combinations
of signes of the masses: The critical point is said to be of type MZ

(2=0,1,2,3) when 2-number of the principal reduced-masses uTl’ uTZ’

and uL are negative, Then, the types are as follows:

My: Hpp 7 05 Mgy > 05 W >0,
Mpio Mg 2 05 Mgy > 05 <0,
(24)
M,: M., <0, Y, <0,u >0
2 1 © 0 P S0 M 70
My i Mpg <05 Mgy <0, W < 0.

We wish to discuss the symmetry characters of critical points.
Since we consider only the excited states which couple strongly to light
(see Eq. (11)), the critical points at EO may be represented by the ir-
reducible pair states Uja which transform in the same way as the irre-
ducible components of the momentum operator pju under the group of EO'

For example, we show in Table I the symmetry characters of critical



TABLE I.

in diamond-type crystals.

12

Symmetry properties for I'y A, A, L, and Z critical points

Critical Pair R
point state Basis B
location symmetry function Yo
T ; Oh ( m3m) U4_ x ; §4Tl = (1,0,0)
y 3 ﬁ4T2 = (0,1,0)
z ;ﬁ4L= (0,0,1)
A g C4v ( 4mm ) U1 z s ﬁl = (0,0,1)
U, x ;§5T1= (1,0,0)
y $ Bggy = (0,1,0)
Ascy, (3m) U Hy+ 3B = (F)(1,1,1)
Uy (x-y)IVZ s Bypq = (71:2-)(1,—1,0)
(x+y-22)//8 5 B = (F)(1,1,-2)
LDy, U, +y+ /3 5By = (5)(1,1,1)
U GeWWT s By = (F5)(1,-1,0)
(x+y-22) /8 3 By = (F)(1,1,-2)
D, (m2) U NI 5B = (F5)(1,1,0)
U, z ; B, = (0,0,1)
U, =T 5 By= (5)(1,-1,0)
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points at K= (0, 0,0) : T, &N (0, 0,k):4, ED(k.,k, k) : A
O b £l 9 a H 3 0 . 9 a 0’ o’ 0 . b

(Zﬂ)(l, 1,1) : L, and (gﬂé(k s k., 0) : 2 in diamond-type crystals. 1In
a a 0

O,
Table I, Bya is the unit vector transforming in the same way as the

basis function.

B. Low-Field Electroreflectance

The electric-field effects in crystals were first treated by Franz70

and Keldysh.71 The general formula of the electric-field effects on the
dielectric function have been derived and summarized by Aspnes in the
series of papers.nm75
When an electric field is applied to a crystal, basically two dif-

ferent effects occur: the relative positions of the atoms in the crystal
lattice shift, and the electron~hole pair state functions in the crystal
become distorted. The first effect is weak in most crystals except for
ferroelectric crystals and, then, we consider the second effects only.

The effective Hamiltonian for electron-hole states in the presence

of uniform electric field can be written as

T
Ho= B +Hep + Hp, (25)
where
- > >
Hy = -e E* (r1 - r2). (26)

The Hamiltonian is therefore no longer invarient to lattice translations
in the direction of the field depending on the potential energy term
HEL which varies linearly in position. The electron and hole accelerate

-> >
and their quasi-continuous wave vectors k. and k2 will be mixed in the

1
field direction asm’75
g
-> _ -> e t
kl(t) = kl(O) - 27)
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iz(m = k. (0) + , (28)

where ¢ is an independent variable. Consequently, the pair state wave
functions of the unperturbed crystal become mixed. This is equivalent
to spreading the formerly sharp vertical transitions over a finite range
of initial and final momenta, as shown in Fig. l.76 If the field is
sufficiently small and the phenomenological broadening energy of the state
is reletively large, the accelerated electrons and holes may be imme-
diately scattered or recombined; and, then, the mixing of the wave func-
tions will be restricted to those near the originally vertical allowed
transition. This will smear out structure in the unperturbed dielectric
function, yielding a complicated difference spectrum as indicated in
Fig. 1.

Following Aspnes,19 the optical dielectric function can be written

in the presence of sufficiently low fields

éijT(‘ﬁw+ ir,g) = éichﬁm+ ir) + AéijT(-ﬁw+iP,§), (29)
where
Aeij%ﬁmﬂ,g) . zegﬁz 2 2(ﬁ9)3pf(ﬁi PET(E) e o0
T fe+iDT L [Rw+il-E @]
) = %E.vﬁ)-’-f . (31)

The equation (30) will be valid only in the case of Pﬁﬂl;;%, which

is the low-field modulation limit. When we assume that the momentum
matrix element is ﬁ independent in the vicinity of a critical point

and the K dependence of the interband energy is written in the parabolic
form shown in Eq. (22), the integral in Eq. (30) can be extended to
infinity in all three dimensions, and we obtain the three-dimensional

low-field line shapelg’ 23
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UNPERTURBED
— — — PERTURBED
——— DIFFERENCE

ELECTRIC
FIELD

FIG. 1. Schematic diagram of electric field modulation process where
the lattice periodicity is destroyed. The effect of the perturbation on
the energy band structure and optical transition is shown at the left.

(After Aspnes.76)
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1
= 5
el L 2]8U W |2 _2
E R+ iT, E) - fz LR L‘ 3 o +1r) 2 6ﬁw+il"—EgT) 2
4t il
2
(En (ETZ) (E) 2
" P 11 Hr2 L o, o

where ETl’ ETZ’ and EL are the three principal components of the
A
unit vector Ei in the electric field direction. £ is the number of
negative reduced masses at a critical point.
General expression relating the field-induced change A€ in the

dielectric function to the relative reflectivity change AR/R can be given23

R es, )-Re{c[a(»ﬁw)-lscﬁw)]zz:nn b€, thu+ T, )} (33)

T i,j

where i is the unit polarization vector of the incident radiation.

n,
The quantity C is a product of complex functions which represent the

effect of a nonuniform modulating field,77

n
C.
in

0
- iz—cw-(n+ik)J: o (8@ /E1° expl- 122 (+ 1121, (34)

and the electron-hole effect in the contact-exciton approximation,

¢, = [l+g(€dw -DI"?;  g<o, (35)

where g is the strength parameter, which can be assumed to be constant
for a given structure. The function a(fw) —iBC¢hw) is the complex

Seraphin coefficient.79 By substituting Eq. (32) into Eq. (33), we

obtain
—Aig(ﬁw, r = Re{r(\f[a(‘ﬁw) - ipthw)] 2ot 3LTeﬁw+iP)} F 52, (36)
T
where the line shape part L 1819’23 ]_
L @w+iT) = ez;ﬁl; = 8uT1u6T2uL o+ i)~ Cﬁw+iI‘-ET)—%, (37)
4Tm A g
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and the symmetry part F may be written31

Eop? ErpE ED?
+ +

T AV A~ (2
FU=) @8 ) (e = 0, (38)
Vv,a T1 T2 L
0 _ T.2
£ E <0lpy,lv > (39)

~

here, BYa is the unit vector transforming in the same way as the pair
state wva with symmetry UY under the group of ﬁO' Z:a represents the
sum over the order of degeneracy of a critical point and,Z:v represents
the sum over all the equivalent critical-point set, in which the super-
script v of fi and gé shows that it is the effective component at the
v-th equivalent critical point.

2-'3LT(ﬁw4-iF) mainly determines the line shape of

The function i
ER spectra and we can use Eq. (37) for determining the energy Eg’ the
phenomenological broadening parameter [', and the type MQ of the critical
point. The symmetry part represents the effects of the polarization of
the light and the applied electric field on low-field ER spectra. We
can use this anisotropy factor for determining the location ﬁo and the
31

reduced-mass relation at critical point,”  which will be described in

Sec., IIC.

C. Symmetry Analysis by Low-Field Electroreflectance

A theoretical basis for symmetry analysis using ER has been reviewed
by Seraphin79 and later by Rehn.27 In this section, we describe a new
method of symmetry analysis by low-field ER and apply it to diamond-type
crystals.31

At sufficiently low fields, ER spectra can be factored into line-
shape and symmetry parts as shown in Eq. (36). The symmetry location EO

of a critical point may be deduced from the combination of the polari-

zation anisotropy and the line shape of the low-field ER spectrum. The
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relation among the interband-reduced masses at the critical point may
also be obtained from the analysis.

We wish to calculate the polarization dependences of low-field ER
spectra using Eq. (38) and show the criteria of symmetry analysis for
high symmetry critical points in diamond-type crystals. We will consider
only a longitudinal ER geometry in order to analyze the Schottky-barrier
ER spectra, where the directions of the incident light and the modulation
field are normal to the plane of reflection. Moreover, we will choose
the (110) face for the plane of reflection, since this surface includes
all the four high~symmetry directions ([001], [112], [111], and [110])
obtained for diamond-type crystals.29 Thus the unit vectors of the ap-
plied electric field gé and the polarization of the incident light i are

A

g

Gs» =755 0, (40)
and

in0 in®
(Sl7121 s Sl?; , cosf) , (41)

8>
I

respectively. When we neglect the effect of the spin-orbit interaction,

A

the unit vectors Bya for high symmetry F(Oh), A(CAV)’ A(CBV)’ L(D3d),
and Z(sz) critical points in diamond-type crystals can be easily ob-
tained from the Koster's table,65 which are listed in Table I.

Since the interband reduced masses uTl’ UTZ’ and uL are the diagonal
components of the second-rank tensor, UT1==UT2=Iﬁ,EU (spherical sym-

metry) for the I' critical point and U EuT (local rotational sym-

11" P12

metry) for the A, A, and L critical points.61 Next, we sum over the

star of EO for A, A, L, and £ critical points by summing over the effective

~ \ .
components of nv and éé in Eq. (38). Let gv be a minimal set of sym-

metry operators of the crystal point group which generates the star of

Z 63
Ko,
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g KO = KO . (42)

Thus effective irreducible components of the vector potential for points

.—)
in the star of KO can be given

= ("R, (43)

We present the apparent components of A in Table II, where we consider
only the half part of the minimal set, since the dielectric function is
> : - ->
bilinear in A and, then, KO and -K0 are equivalent.
The calculated results for the polarization dependences of the ER
form factor on the (1I0) face are listed in Table III. In Table III,
we also list conditions on the polarization anisotropy r = F[OOl]/F[llO]

(or s = F ]) for the four types of critical point, which can

(1111/F 1117
be used as criteria of symmetry analysis combined with the type of crit-
ical point determined from the line shape analysis.

In the case that the effect of the spin-orbit interaction is large
compared to the lifetime broadening effect, the polarization dependences
of the low-field ER spectra for the two split-off critical points can be
easily calculated. The results are the same as listed in Table III for
each of the two split-off structures.

This method of symmetry analysis, however, cannot lead us to the
unique conclusion in some cases, since the criteria for some critical
points are not exclusive of each other, as seen in Table III. We can
get rid of this difficulty with help of the results of band structure
calculations. Moreover, the three-dimensional ER line shapes of Ml_L
and M

s OT MZJ_and M, critical point380 may not be distinguished from

1| 2||

each other in the low-field modulation limit or in the large broadening

region. It may be useful to measure ER spectra in the Franz-Keldysh (or

23,74

Airy convolution) range in order to determine the critical point types

correctly.



TABLE II. Effective components of the vector potential for the
-> .
star of KO = (0, O,ko), (kO’lﬂ)’kO)’ and (ko, ko, 0) in diamond-type
crystals. The effective components are primed and the actual com-

ponents are unprimed. (After Kane.63)

A critical point

20

(o, 0, ko) (o, ko, 0) (ko, 0, 0)
Al A A A
X X z y
A A A A
y y X 4
A A A A
z z vy X

A’ A A -A - A
X X X X X
A A -A A -A
y y y y y
A A -A -A A
4 V4 z z Z

L critical point

(kgoks0) (kgsKg0) (kgs0,k0) (kgs0,K0) (0, 5kg) (0K 5K)

A A A A -A A A
X X b4 b4 z y y
A A -A A A A -A
y y y X X z z
Al A A A A A A

z z z y y X X




TABLE III. Polarization dependences of low-field electroreflectance form factor F for I', A, A, L, and

Y critical points in diamond-type crystals. }.ongitudinal geometry is used and (110) face is preferred

for the plane of reflection; electric field 8 = (1/V2, -1//2,0). 6 is the polarization angle of the

incident light measured with respect to the crystallographic Z direction. The polarization anisotropy

is defined as r = F[OOl] /F[llo] (or s = F[lll] /F[llﬁ]); the subscript of F denotes the polarization of

the incident light. (After Kondo and Moritani, Ref. 31.)

Critical Pair Polarization dependences of
point state low-field electroreflectance Conditions of the polarization anisotropy
location  symmetry form factor F r(or s) for all types of critical point
T U lfo for all cases; M., M
4— u O A
A U I+ v Ao Dos201 0 0<r<2 (4/5<s<2); M, M
1 2 My Wy Mo Hp ="= =" = 0 3
r<0, 2<r (s<4/5, 2<s); Ml’ M2
U 2+ o E-Dycos201 2 2/3<r<2 (4/5<s<8/M;s M, M
5 2 o My M uL ="= =" = 0 3
r<2/3, 2<r (s<4/5, 8/7<s); M., M
4.5 1 11 0 - — = N o2
A Ul §[ (1—J—+-‘_—LL-) - (-ﬁ——u—-)cosze] f 2/3<r (1/25s<8/7); M, M3
T T L r<2/3 (s<1/2, 8/7<s); M,, M
4.7 .5 101 0 = - = o2
U3 6-[ (—+— + (——F—)COSZS] T 2/3<r<4/3 (10/11<s<8/7); MO’ M3

Hp M Hp Mg

r<2/3, 4/3<r (s<£10/11, 8/7<s); Ml, M2

1¢



TABLE III. (Continued)

Critical Pair
point state
location  symmetry

Polarization dependences of
low-field electroreflectance
form factor F

Conditions of the polarization anisotropy
r(or s) for all types of critical point

2 0
g[(]—J5—+-ﬂl—) - (il-l--uinosze] fF
T L T L
1

'g—[ (ﬁz—'i'f—) + (ﬂ———ﬁl—) cos20] f'O
T L T L

%[ (—2—+—!'—) (3 +cos26)
Hpp g

+ (2 (7 - 3c0520) 7 f°
Hro

%[ (——l-— +-L) (3 + cos26)
Hpp Mg

+ (=29 (1 - cos20)] £°
Hepy

1

Al 2 +Ly(3+cos26)

Hry Mpo

+ (25 (7 - 3c0s20) ] 0
My

2/3<r (1/2<s<8/7); M, M3
r<2/3 (s<1/2, 8/7<s); My, M,
2/3<r<4/3 (10/11<s<8/7); MO, M3

r<2/3, 4/3<r (s<10/11, 8/7<s); Ml’ M

2
255x <2 ; SCEpg. T 20
(4/5<s<4/3) M1 ML Mr2

Fi2/5, 22r o 2 +"L)_ul -<0
(s<4/5, 4/3<s) "1 ML M2

<

0sr2 (1,131 .4
(4/5<s<2) "2 Mutm
r<0, 2<r . .1 , 1.1

(s <4/5, 2<s) ‘12 Yo Mm

2/5<r<2 ’(2+1)1;0
(4/5<s<4/3) Fr1 M2 1
r<2/5, 2<r L2 1

; (T+U_-)UL;O
(s<4/5, 4/3<s) TL T2 "L

(44
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D. Uniaxial-Stress Effects on Low-Field Electroreflectance31

The application of a uniaxial stress and the induced strain produces
a change in the lattice parameter and the symmetry of solids, which
results in significant changes in the electronic band structures, such as

shifts of energy 1eve1546’63,81'-85 46,63

and mixing of wave functions.
Considering optical transitions, strain induces changes of the interband
energy E(K) and variations of the optical matrix element P including the
selection rules. The stress effects on low-field ER spectra may be

easily treated theoretically, when the stress applied to a solid is small
enough and the k dependence of the interband energy E(E) in the vicinity
of critical point can be assumed to be still described in the parabolic
model shown in Eq. (22). 1In this stress region, low-field ER may be
divided into line-shape and symmetry parts as shown in Eq. (36) even in
the presence of strain. Thus, we can calculate the stress-induced changes
in the line-shape part (the energy shifts and splittings) and in the
symmetry part (the stress-dependences of the ER form factor F) using the
effective strain Hamiltonian and the pair state functions to first order
in the strain. These treatments may be accepted when the phenomenological
broadening energy is large compared to the stress-induced energy shifts;
in higher interband transitions, the shifts are nearly always small com-
pared to the broadening energy even for large stress.

The effective Hamiltonian for electron-hole states in the presence

of uniaxial stress and uniform electric field may be written

— T
H—Eg+HKE+HEL+Hstr, (44)

where Hstr is the effective strain Hamiltonian. Since the strain has
infinite wavelength, HStr commutes with the envelope wave function Ef

and operates on the pair band U. On the other hand, the electric field
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may be considered to operate on EP rather than U, when the field is very
weak and the electron (and hole) acceleration mechanism is dominant,23
which is the case treated in Sec. IIB. Then, we can consider the effects
of strain and electric field independently.

When the strain applied to a solid is small in the sense that the
strain-induced splittings are small compared to the exciton binding en-
ergy or the phenomenological broadening energy, the effective strain
Hamiltonian can be written63

_ s\ % S,T
H ., -Z: (eja) Yjaﬁ. , (45)

s,3,0 1

s . . .
where eja is the irreducible component of the second-rank strain tensor,

"
Yju is an operator on the wjofsubspace, and‘ij's are the pair-band defor-

mation potential parameters. Since ejais real, the * in Eq. (45) is not
needed effectively. Equation (45) is sufficient to calculate the energy
shifts of the pair state wj&t to first order in the strain.

Next we wish to write the pair state function to first order in the
strain for the purpose of computing optical matrix elements to that order.
We can write63

% ]‘DjOtT + T Y4101, 3202350 ejlals ijazT’s ’ (46)

jl,al,s
j2,02

where, Y is the Clebsch-Gordan coefficients,64 ej;; is the strain tensor,
and ijT’S is the pair state function which is mixed with the state ij:
by the strain.

The strain [e] and the stress [T] are both symmetric second-rank
tensors; the strain tensor eij is related to the stress tensor Tkl by the

elastic compliance constants Sll’ 812’ 844 in cubic crystals. The re-

lations are61’85’86
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(47)

On the other hand, the stress tensor [T] for the applied force T can be

written
[T] = Txx Txy TXz =l aax oB oy |T,
T T T o
xy lyy Tyz B BB BY
<z Tyz L. ay By Yy

where 0, B, Y are the direction cosines between the applied force

> >

-).
the three prinecipal coordinates x, y, z, respectively.

tude of the applied force; its sign is minus for compression.

(48)

->
T and

T is the magni-

For example, we show the stress and the strain tensors for the [001] and

[111] stresses

[001] stress

oa=0,B8=0,Yv=1,
Tzz =T Txx - Tyy = Tyz = sz - Xy =0,
®xx eyy - SlZT’ €22 = S11T’ eyz T Cxz T exy =0,
[111] stress
a=8=y=1//3,
T ™ Tyy ™ Toz ™ Ty ™ T = Ty T/3,
e = yyl— e, = (slli-Zslz)T/3, eyz =e_, exy = 544/6.

On the basis of the above arguments, we calculate the stress
of the degenerate A; - Ai,critical point. The optical properties

this critical point are represented by the U3

(49)
(50)

(51)

(52)
(53)

(54)

effects

of

pair band in the A direction
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(1"3 X I‘l = I‘3, in Koster's notation).65 First, the strain Hamiltonian

of Eq. (45) can be written down as

Hoep = DyeyT + D7 e T +dJ3 (e Vyo + e37a0)
Dt ST, 69
where
S R o, B |{ e | (56)
1 V6 xx |’
ega -1 -1 2 eyy
ege V3 /3 0 e .
e Vi VI Ville
1 vz
ega -1 -1 2 e .
\egB/ L V3 /3 OJkeny
I=(1 o”,¥3a= -1 0 ’%B: o 1). (57)
PEY Al I A P

Equation (57) refers to the basis set 11)3; . wBBT .
Second, we may write the pair state functions to first order in the

strain using Eq. (46)

3 1,3 3 ., 1,3
30 Y30 +638“’38

T,30 _ T
_e5 " Ts5 e5 v Tsd
b2t I8 (58)
e3 " Ty3 e3 " T,3
T,38 _ T 30”38 38 "3a
1 = V35 + ( 75 + =7 )
5 TS 5 To5
€34 Y38 ©38 V34
+ 75 + 75 ) . (59)

. T T .
Here, the irreducible pair state functions, lp3a and leB , in the absence

of strain can be written down using Eq. (3):
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T T
a a
T Tt Tt 73 T 3 T T
Vi = 2 501 Usey = % &?2 Usg 72—3)30L U3a+72_3;36 Usg » (60)
aT aT
T T_aT T.nT 3 T 3 T, T
3g = 2y Py Ugg + 2y Py Ugy + 75 Fay Ugg + 75 Fag Ugy - (61)

From Eq. (11), only the first terms in the right sides of Eqs. (60)
and (61) may be important in order to calculate the optical matrix ele-
ment P. Due to this fact, the calculations of the strain-induced changes
of P using Eqs. (10), (11), and (58) through (61) may be much simplified.
Third, the A; - Ai critical point consists of the eight equivalent com-
ponents along the <111> lines in the Brillouin zone. Since uniaxial
stress does not remove the inversion symmetry of the crystal, we need not
consider all eight components but four along the [111], [111], [I11],
[1I1] lines. The simplest way to sum over the star of K is to keep K

0

fixed and sum over a complete set of the effective components of the

0

strain tensor. The effective irreducible components of the strain tensor
> 2T > > >

for the star of K0 = (:;)(ko,ko,ko) are presented in Table IV. The

effective components of the vector potential are already given in Table II.

The energy shifts of the U, band for stresses in the [001] and [111]

3
directions can be obtained by diagonalyzing Eq. (55) with use of Eqs. (51),
(54), (56), (57), and Table 1IV. The stress-induced changes of the ER

form factor F can also be calculated from Eq. (38) with use of Eqs. (10),
(11), (39) through (41), (51), (54), (56), (58) through (61), and Tables

I, I1, 1Iv, The results are presented in Table V. In Table V, Di’(=4:)i)
is the hydrostatic deformation parameter, Di G=;3i) is the interband
deformation parameter for [11ll] stress, andﬂg(gsg) is the intraband
deformation parameter for [001] ([111] ) stress. The factor F is given

for the polarizations in the [100], [0101, [001], [110], and [110] direc-

tions with [001] stress and for the polarizations in the [110], [112],



TABLE IV, Effective irreducible components of the strain tensor for the star of EO = (ko,ko,ko)

in diamond-type crystals. The effective components are primed and the actual components are unprimed.

(After Kane.63)

d A A d
(3 3 3 3 3 3

3o 30 30 30 3o
(eg )! e3 e3 e3 e3

B 38 38 38 38
() o5 15 /25 /25 15 Y25 /25 _1.5,272 5
1 1 35173 %30 /3738 31773 %307 /3%38 3%17 73 30
5 ., 5 V25 25 15 V25 25 1 5 2/2 5 1 5
(el ) e —-—el ->e e - el -Te, +7e el +=e
30 30, 3 °173%307V/3538 3°173%307V/3°%38 3 17 3%3
(S ) 5 Ji's_les _/i'es+1e5 S
€38 €38 73%1 T V3% V38173 %30 3B
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and [111] directions with [111] stress. fo is a unit of the optical
matrix element defined by Eq. (39) in the unstrained crystal and fs is a
change due to admixture of first-order wave function w&; in the strain.
The uniaxial-stress effects on low-field ER spectra for the degener-
ate A; - A; critical point are presented in Table VI. The optical prop-
erties of this critical point are represented by the U5 pair band in the
A direction., In Table VI, D3

1
[001] stress and.dj% QEj4) is the intraband deformation parameter for

is the interband deformation parameter for

[001] ([111]) stress. fs is a change of the optical matrix element due
to admixture of first-order wave function w&f in the strain.

The uniaxial stress effects on low-field ER spectra for the degener-

v C
250 ~ T1s

properties of this critical point are represented by the UA— pair band

ate T critical point are presented in Table VII., The optical

at the ' point. 1In Table VII’J:jBQEjS) is the intraband deformation pa-
rameter for [001] ([111l]) stress. fs is a change of the optical matrix

element due to admixture of first-order wave function w4;; in the strain.



TABLE V. Energy shift AE and electroreflectance form factor F for the degenerate U

Spin-orbit interaction is neglected. The factor F has been summed over the eight equivalent components.

script of F denotes the polarization of the light.

3 band in the A direction.
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(After Kondo and Moritani. )
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TABLE V.

(Continued)

Energy shift?

Electroreflectance form factor
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D
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a
These energy shifts have been calculated by E. 0. Kane.

See Table VII of Ref. 63.
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TABLE VI. Energy shift AE and electroreflectance form factor F for the degenerate U5 band in the A direction.
Spin-orbit interaction is neglected. The factor F has been summed over the six equivalent components. The sub-
script of F denotes the polarization of the light. (After Kondo and Moritani.3l)

Energy shift? Electroreflectance form factor
[001] stress
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(Continued)

Energy shift?

Electroreflectance form factor
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These energy shifts have been calculated by E. 0. Kane.

See Table III of Ref. 63.
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TABLE VII. Energy shift AE and electroreflectance form factor F for the degenerate Ua-band at the I' point.

Spin-orbit interaction is neglected. The subscript of F denotes the polarization of the light.

Energy shift? Electroreflectance form factor

[001] stress

1
ag® =‘g%(sll'*zslz)T'“§%£j3(511f'Slz)T F?100] = F?010] = F?liO] = F?llo] =0
F?001] - "{fp'+%¥:k511 12)Tf3]
1
bx” = %(511+2312)T‘715J33(311' 51207 P00 = Froto) = Frafo] = Fruoy = i '7/%_(811'
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. [111] stress
oe =';%3;(911"'2812)“3"&:;7}'5l S44T Frito) = Fruzy = % Friiag T me Y458,
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SlZ)Tf3]

2 These energy shifts have been calculated by E. 0. Kane. See Eqs. (3.39) through (3.42) of Ref. 63.
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II1I. EXPERIMENTAL

A. Sample Construction

The Si single-crystal samples used in the experiment were all n-type
and had a room—-temperature resistivity of about 0.5 Qcm. The crystal
orientation of the samples was determined from x-ray diffraction with an
accuracy of 1 degree. These samples were cut into rectangular paralle-
lepipeds to dimensions of 12.0x1.0x1.0 mm3 such that the long axis was
in either the [001] or [111] direction.

The surfaces of all the samples were mechanically polished and chemi-
cally etched in order to remove surface damages. An optically flat (110)
face was chosen as a plane of reflection and the Schottky-barrier was
formed by evaporating a semitransparent Ni film on the surface. The
thickness of the Ni film is estimated to be 10 —20 nm from the reflec-
tivity measurements of the air-Ni-Si system.88 A thick In film was evap-
orated onto the back surface of the sample in order to make a nonrecti-

fying contact.

B. Measurement Techniques

Electroreflectance spectra were measured with standard optical and
phase-sensitive electronic detection techniques.7 The block diagram of
the system is shown in Fig. 2.

The optical system consisted of a 500-W Ushio model UXL 500D =xenon
lamp, a JASCO model CT-50 0.5-m grating monochromator with a 1200-line/mm
grating blazed at 300 nm, a cryotip refrigerator on a cryostat in a stress
apparatus, and a Hamamatsu TV model R 376 photomultiplier. The polari-
zation measurements were made with a Glan-Thompson polarizer in the energy
range from 3.0 to 4.0 eV and with a Rochon prism in the energy range from

4.0 to 5.0 eV,
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FIG. 2. Experimental setup for electroreflectance measurements. The

details are shown in the text.
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The samples used in the stress experiment were mounted in a sample
cell of the stress apparatus such that the long axis of the sample was
parallel to the pushing rod. Schematic diagram of the sample cell and
the stress apparatus is shown in Fig. 3. In Fig. 3(a), a paper sheet (E)
was placed between the round piece (D) and the sample (F) in order to
reduce the imperfect alignment. The position of the light spot on the
sample was adjusted by replacing the rectangular piece (G). As shown in
Fig. 3(b), a static load was applied to the sample by a simple lever sys-—
tem.

The dc bias and 400-Hz square-wave ac-modulation voltage were applied
to the metal layer by means of a thin copper wire attached to the metal
film with a dot of silver paint. Since low-field ER spectra are inde-

22,23 the square-wave voltage was used

pendent of the modulafing waveform,
in our measurements.

The detection system was as follows: The dc signal of the photo-
multiplier, which is proportional to R+ARVR, was held constant by vary-
ing the photomultiplier gain electronically.89 Then, the ac signal of
the photomultiplier by the electric field modulation, which is a direct
measure of AR/R, was detected with a PAR HR-8 lock-in amplifier and re-
corded on a x-t recorder.

We check the observed ER spectra to be actually in the low-field mod-
ulation limit by inspecting the linear relation of the reflectivity change
AR/R versus ac-modulating voltage with holding the dc bias constant.zz’23

The energy shifts of the peak positions with ac-modulating voltage were

not observed in the measurements.
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FIG. 3. Schematic diagram of (a) the sample cell and (b) the stress apparatus. A: support tube,
B: sample cell, C: pushing rod, D: round piece, E: paper sheet, F: sample, G: rectangular piece.
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IV. RESULTS AND ANALYSIS

A. EO' and El Structures
a. Best-Fit Analysis

Figure 4 shows a Schottky-barrier ER spectrum of Si in the energy
range from 3.2 to 3.6 eV at room temperature. The spectrum shown in
Fig. 4 is rather complicated; however, it is reasonable to consider that
two different structures are found in this spectrum. One is a dominant
structure (SI) and the other is a weak one (SII) which is superimposed
on the low-energy negative peak of the SI structure. We have determined
the band-edge parameters by performing a least-squares fit of the three-
and two-dimensional low-field resonant functions to the observed spectra.
The determined parameters are listed in Table VIII with values quoted
from other modulation measurements in the literature. The calculated
line shapes are also illustrated in Fig. 4.

In the best-fit procedures, the field inhomogeneity effect (Eq. (34))
was neglected in our samples and the strength parameter g of the contact-
exciton effect (Eq. (35)) was considered as an adjustable parameter. The
Seraphin coefficients of the air-Ni-Si three phase system were used,
which is derived in Appendix A. The values of the Seraphin coefficients
calculated from the reflectivity spectra of Si and Ni are plotted in
Fig. 5 with the thickness of the Ni film as a parameter.92 As shown in
Fig. 5, both o and B decrease and become rather structureless on in-
creasing the thickness of the Ni film. Since the estimated thickness of
the Ni film may be 10 nm in our samples, a & B at 3.3 eV and Ia\ < |B|,

B > 0 around 3.4 eV in Fig., 5. Therefore, the S_._ structure of AR/R is

IT
affected by Ael and Aez in almost the same amount and the SI structure

is nearly A€2 dominant.

19,23
w

Returning to Fig. 4, the two-dimensional resonant function as
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FIG. 4. Schottky-barrier ER spectrum of Si in the energy range of E

modulation limit. Short-dashed and long-~dashed lines are the calculated
three-dimensional (L3D) and two-dimensional (LZD) line shapes, respectively.
Solid line is the sum of the above two line shapes. (After Kondo and

Moritani.Bl)
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FIG. 5. Seraphin coefficients of the air-Ni-Si three phase system at
room temperature (RT), calculated from the reflectivity spectra of Ni and

Si. The results are shown with the thickness of Ni film as a parameter.

(After Kondo and Moritani.3l)



TABLE VIII. Critical-point parameters of Si in the energy range of E

]
0andE

1

transitions as obtained from

electroreflectance (ER), wavelength-modulated reflectance (WMR), and thermoreflectance (TR) measurements.

RT stands for room temperature.

This workal

Grover and Handlerb

Luke\s, et al.C

Seraphin and Bottkad

ER (RT) ER (RT) ER (90K) ER (95K)
Eg (eV) 3.412 £ 0.005 3.360* 0.016 3.44 £ 0.05 3.41
I' (eV) 0.060 £ 0.005 0.05322 £ 0.00236 0.035
v, Vv c,.c v c
El Symmet ry A3 (L3,) > Al(Ll) A3 > Al
Type MiD M?)D MiD MiD
(reduced-mass (u << | ' >0 <0)
relations) Hep Hp s Hyp » M,
Eg (eV) 3.294 +0.005 3.281+0.007 3.34+£0.05 3.33
' (ev) 0.060+ 0.005 0.05177 £+ 0.01286 0.035
' v Cc v Cc
E0 Symmetry AS - Al near T I‘25, I‘l5
Type M(3)D MiD MgD MSD
(reduced-mass 4
relations) (UT/UL =173, Up> 0,3, > 0)

8 Reference 31.

Reference 43.

¢ Reference 90.

d Reference 40.

Y



TABLE VIII. (Continued)

Forman et al.® Zucca et al.f Braunstein and Wc—zlkowskyg Matatagui et al.h
ER WMR (5K) WMR (80K) TR (77 K)
Eg (eV) 3.485 £ 0.015 3.45%0.004 3.41 3.43
I' (eV)
v c v c v c
El Symme try A3 - ./\1 A3 - Al AS - Al
Type MiD MiD MiD
(reduced-mass
relations)
Eg (ev) 3.370%£0.030 3.40% 0.008 3.36 3.32
I (ev)
' v c v c v c
Ey  Symmetry a5t 7 Tys bs > 8y o5t > Tys
Type MgD MSD
(reduced-mass
relations)

€ Reference 443 see also Ref. 91. & Reference 16.

fReference 17; see also Ref. 50. hReference 15.

ey
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used for the S_ structure only because it gives the better~fitted result

I

for SI than the three-dimensional function. Almost the same values of
the critical point energy were obtained for the two line-shape functioms.
Note, however, that it is necessary to determine the type of a critical
point and the broadening energy with use of the three-dimensional func-
tion. Thus the critical points related to the SI and SII structures are
determined to be the three-dimensional M1 and MO types, respectively.

b. Symmetry Analysis

Next we consider the symmetry assignment for the critical points

related to the S_ and SI

I structures. The polarization anisotropies of

I
the Schottky-barrier ER spectra of Si are shown in Fig. 6. Data were
taken on the (110) face at 77K. The top pair of curves was obtained
at a low-field condition with two principal orthogonal polarizations,
A || [001] (dashed line) and A || [110] (solid line). The bottom pair of
curves was obtained at a low-field condition with two principal orthogo-
nal polarizations, fi || [111] (dashed line) and f |} [112] (solid line).
The line shapes of these spectra are analogous to that obtained by Forman
et al.44 using the transverse ER technique. As shown in Fig. 6, the SI
and SII structures, especially the latter one, become sharper at 77K
than at room temperature.

We analyze the SI structure first. From the results shown in Fig. 6,
we obtain the polarization anisotropies |r| = (AR/R)[001]/(AR/R)[110]
= 1.35 * 0.05 and |[s| = (AR/R)[llll/(AR/R)[lﬁ] = 0.86 * 0.05 at the
positive peak of the structure. The experimental results can be compared
to the theoretical criteria listed in Table III for high symmetry [, A,

A, L, and I critical points. First, the ' critical point may be ruled

out, since it gives the isotropic polarization effect. Second, the A
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FIG. 6. Polarization anisotropies of the Schottky-barrier ER spec-
tra of Si in the energy range of Ed and El transitions. Data are
taken on (110) face at 77k in the low-field modulation limit. (After

Kondo and Moritani.Bl)
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critical point may be ruled out, since the combinations of the observed
polarization anisotropiés and the critical point type (Ml) conflict

with the conditions of the A critical point with Ul and U5 symmetry.
Third, the A (or L) critical point with Ul (or UZ-) symmetry may be ruled
out because of the same reasons as in the case of the A critical point.
For the A (or L) critical point with U3 (or U3_) symmetry, the polari-
zation anisotropies may be written from Table III as

2(.2_. + i)
Hp My
r = T 7 , (62)
3G+ )
UT UL

and

s = ’ (63)

where My is the mass along the representative direction of the A criti-
cal point ([111] direction in this case). From Eqs. (62) and (63), the

. . . . . 0 .
theoretical polarization anisotropies become r = g-and s = %I if we as-

sume the reduced-mass relations to be |uT| << IuL|, My > 0, and M < 0.
In this case, the experimental results are well explained. Finally, the
I critical point may be ruled out, since it cannot explain the stress

effects, as will be shown in Sec. IVAc¢. Thus, we conclude that the SI

structure is attributed to the A (or L) critical point with U3 (or U3_)

v
3' 1

from the mass relation, uT << ]uL|, that the critical point may be

symmetry [Ag - Ai (or L., > Li); E. in Si]. In addition, we conclude

rather two-dimensional MO type (UT > 0).
We consider the SII structure next. In Fig. 6, the polarization
anisotropies are found to be |r| = 1.4 * 0.1 and |s| = 1.0 £ 0.1 at the

positive peak of the structure. The observed results can also be com-
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pared to the theoretical criteria listed in Table III. In this case,

—)
however, we cannot determine the location KO of the critical point

uniquely from the above method of symmetry analysis. Moreover, the

observed polarization anisotropy ratios may be uncertain because the SII

structure is much interfered with the SI structure.

The transitions T;5,+ Fis and A; - Ai near the I' point may be possible
for SII from the results of the band-structure calculations.98 The sym-—

metry location of the SII structure will be discussed further in Sec.

IVAc.

e. Uniaxial-Stress effects

Schottky-barrier ER spectra of Si for compression stresses along
the [001] and [111] directions are shown in Figs. 7 and 8, respectively,
with the light polarized parallel and perpendicular to the stress axis.
The stress-induced energy shifts and amplitude changes are apparent in
both cases. The spectra without stress are shown in Fig. 6, where the
top and bottom pair of curves correspond to the [001] and [11l1] stress
configurations, respectively.

First we analyze the SI structure. The energy shifts of the struc-
ture for [001] and [111] stresses are shown in Figs. 9(a) and 9(b), respec-
tively, where the energy positions of the positive and negative peaks

are plotted together. 1In case of [001l] stress, the S_ structure splits

I
into two parts for transverse polarization, i.e., one shifts to higher
energy and the other to lower energy; and, for parallel polarization, the
structure shifts to lower energy without any splitting. In case of [111]
stress, the shifts and the splittings of the structure are also observed,

though the shifts are smaller: For perpendicular polarization the struc-

ture splits into two parts, i.e., one shifts to higher energy and the
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other to lower energy; for parallel polarization the structure shifts to
higher energy without any splitting. These energy shifts and splittings
of the SI structure are well explained by the stress effects of the de-
v c v c - . . .

generate A3 - Al or L, - L1 (El) critical point in the following way:
The uniaxial stress effects on low-field ER spectra for the Ag - A;
critical point are summarized in Table V and the schematic features of
the band splittings and shifts derived from Table V are shown in Fig. 10.
In case of [001l] stress, the U3 (or U3 ) pair band splits into two parts
due to intraband splitting; one component labeled A is allowed for both
) > A > . A >
f]] T and AL T, while the other component B is allowed only for fi L. T.
Moreover, the relative ER form factor of the split bands for parallel and

. . . A B A B
perpendicular polarizations are F I[ : F Il =8 : 0 and F 1 s F] = 3:3
with zero stress in our experimental configuration: the unit vector of

A
the applied electric field 23 = (1/V2, - 1//5, 0) and the effective mass

relation is Mo << |uL . In case of [111] stress, the U3 (or U3_) pair

band splits into three parts due to interband and intraband splittings:
Two components labeled a and c are allowed only for i L T and the other
component b is allowed for both @ II;f and ﬁ,]_;f. However, the relative
ER form factor of the split bands for parallel and perpendicular polari-

C

zations are Fa” : Fﬁlz FCH =0 :80 :0 and Fai_: FEL: F_L =54 : 7 :

27 with zero stress. Then, the structure due to the intermediate component
b is negligibly small and the two components a and ¢ will be observed for

A > . »

o 1. T. We have calculated the deformation-potential parameters from the

stress-induced energy shifts using the compliance constants at 77 K (in

12

units of 10~ cmz/dyn)ggs

;= 0.762, s, =-0.213, and = 1.249. (64)

51 12 S44

The obtained values are listed in Table IX.

The stress-induced amplitude changes of AR/R are also explained by
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FIG. 10. Uniaxial stress effects of the A
stresses along the [001] and [111] directionms.
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TABLE IX. Deformation potentials of the Ag (Lg,) -A; (Li) critical point of Si. The previously
reported values for Si and Ge are listed for comparison. Experimentally determined and calculated

values of pressure coefficients of Si are also listed. RT stands for room temperature.

This workal Pollak and Rubloffb Sell and Kanec Pressure coefficients
Si (77K) Si (77K) Ge (RT) Experiment Calculated
Si Si
Di (eV) 9,8+1.3 -8z%1 -9,7%1
Di (eV) 6.5+ 1.4 10 + 2 7.5+0.8
3,3 +1
35 0 @n 4.7+0.5 551 2.2_, &
5 5 +0.6
433 0 (v 3.0+1.7 b1 1.5_, 4
dE d £
—d—Pﬁ 5.7+0.8 5.2+0.5 5.3 (RT)
6.2+ 0.4°  4.48 57"
(107 ev/bar) 5.6+ 0.6 (RT)™
4.83 5.9%

a Reference 31.
Reference 38.

¢ Reference 11.

19



dReference 100.
€ Reference 45.
Reference 52. The conversion from their units to ours is based on the identity - 1.00 eV/(unit

dilatation) = 1.02 ><10--6 eV/bar for Si at room temperature.

gReference 32. The conversion from their wnits to ours is based on the identity 1.00 eV/atm
= 0.987 eV/bar.

hReference 101.

iReference 102. See Ref. f for the conversion from their units to ours.

jReference 53.

kReference 103. The conversion from their units to ours is based on the identity 1.00 eV cmz/kg

= 1.02 eV/bar.

%S
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the stress effects of the degenerate Ag - Ai or LV, - L; critical point.
The amplitude changes of AR/R at the positive peaks are plotted in

Figs. 11(a) and 11(b) as a function of [001] and [111l] stresses, respec-—
tively. Since we observe these changes at the peak position of the struc-
ture, the observed changes consist of substantial stress-induced one and
unsubstantial one due to the splitting of the structure. We find in

Fig. 11(a) a large and nonlinear change for [001] stress and perpendicu-
lar polarization (SIBJ.)' It seems to be due mainly to the unsubstantial
change, because the energy shifts AEA and AEB are relatively large in

this configuration (as shown in Fig. 9(a)) and because the observed ampli-

tude change for parallel polarization (S ) is very small: The ampli-

1Al

tude of S and SIB.L should vary with the same value but different

14|

sign as shown in Table V., From the variation of § the optical-

1Al|?
) . . 3,0 . .
matrix element ratio was estimated to be f /107f ~ 0, This ratio shows

the admixture of wave functions from the U, symmetry multiplet under [001]

3
stress, and, in this case, the admixture of wave functions between the
split bands may be very small. On the other hand, the amplitude changes
of AR/R for [111] stress shown in Fig. 11(b) seem to represent the sub-
stantial changes of the optical-matrix element, because the energy shifts
of the §; structure are relatively small as shown in Fig. 9(b). The ob-
served amplitude changes may also be explained by the equations given in
Table V and we can estimate the optical-matrix element ratio to be
_7"5/103]"0 = -0.20 + 0.02., 1In this case, the admixture of wave functions
between the split bands may be relatively large.

The observed uniaxial-stress effects of the SI structure described
above cannot be explained by the behaviors of any I critical point under
stress. Since all the irreducible pair bands Ul’ U2, and U3 in the ¥ di-

rection are nondegenerate, the ER form factor F may not be changed with

stress,104 ignoring the mixing between the pair bands with different sym-
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metries. This is apparently incompatible with the observed amplitude
changes of AR/R with stress.

Next we consider the SI structure. Figures 12(a) and 12(b) show

I
the dependences of positive peak energy for [001] and [111] stresses,
respectively. As shown in Fig. 12, the structure splits into two parts
for both stress directions: The structure shifts to higher energy for
parallel polarization and to lower energy for perpendicular polarization,
though these shifts are very small. We also show the amplitude changes
in Figs. 13(a) and 13(b) as functions of [001] and [111] stresses, re-
spectively. It is interesting that the amplitude of AR/R for parallel
polarization decreases as increasing the stress in the [001] direction
and that the structure disappears at about 7 X 109 dyn/cmz, while the
amplitude for perpendicular polarization does not change with stress.
From these results, we can obtain the information about the location fo
of the critical point related to the SII structure if we assume the high-
symmetry critical point. First, the A critical point with Ul symmetry,
the A (or L) critical point with Ul (or U2_) symmetry, and the I critical
symmetry may be ruled out, since these critical

point with U ., U , and U

1° "2 3
points are strain decoupled and, therefore, the optical matrix elements
will not be changed by strain.63 Second, the A (or L) critical point
with U3 (or U3_) symmetry may be ruled out, since the observed energy
shifts and amplitude changes of the SII structure are much different from
those of the SI structure, which is attributed to the critical point with

this symmetry. Third, the I' critical point with U, symmetry (FZS' - FiS

4—
in Si) may be ruled out, since the theéoretical equations for the I' tran-
sition cannot explain the amplitude changes for [001] stress: From

Table VII, (AR/RQJ- for [001] stress should increase by %-times less than

(AR/R)I| if (AR/R)II decreases. The remaining high-symmetry critical
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points along the A axis with U, symmetry (Ag - A; near [' in Si) are now

5
more likely to explain the experimental results due to the manifold
splittings for [001] stress as shown in Table VI. The more detailed anal-
ysis, however, is difficult, since the observed energy shifts and ampli-
tude changes under stress are quite small. We may conclude at the present
stage that the S

structure is due to the A critical point with U, sym-

II 5

metry (E&) if we assume high~symmetry critical points. This assignment
is one of the possibilities obtained from the symmetry analysis in the
absence of strain. The effective-mass relations are uT/uL =1—-3, uT >0,

and uL > 0 in this case.

B. E2 Structures
a. Best-Fit Analysis

Figure 14 shows Schottky-barrier ER spectra for Si in the energy
range of E2 transitions measured at 90K in a low-field condition.

A small dip near 4.2 eV may be the structures for E0 and E0-+ AO, which

. v c v c -
have been found and assigned to the P8+ > F7+ and F7+ - F7_ transitions,

respectively, by Aspnes and Studna.105 We will consider larger struc-

tures above 4.2 eV, We hawve performed a least-squares fit of the three-
dimensional low-field resonant function (see Eq. (37)) to the observed
ER spectra. The calculated results assuming the existence of two and
three structures are shown in Figs. 14(a) and 14(b), respectively.

In the best-fit procedures, the Seraphin coefficients & and B of the
air-Ni-Si three-phase system were used. The values of o and B at 90K
from 3.3 to 5.0 eV are shown in Fig. 15 as a parameter of the thickness
of the Ni_film.106 Since B changes drastically in the energy range be-

tween 4.2 and 5.0 eV as increasing the thickness of Ni film, it is neces-

sary to take account of this effect in order to determine the type of a
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FIG. 14, Schottky-barrier ER spectrum of Si in the energy range of E2
transitions at 90K. Open circles are experimental results, taken on
(110) face in the low-field modulation limit. Line shapes obtained by a
least-squares fit assuming the existence of (a) two and (b) three struc-
tures are also shown. Long-dashed, dotted, and short-dashed lines are
the calculated three-dimensional line shapes for the Ez(l), E2(2), and
E2(3) structures, respectively. Solid line is the sum of the above (a)

two or (b) three line shapes. (After Kondo and Moritani.Bs)
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FIG. 15. Seraphin coefficients of the air-Ni-Si three-phase system
at 90K, calculated from the reflectivity spectra of Ni and Si. The

results are shown with the thickness of Ni film as a parameter.
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critical point from the line shape. We have estimated the thickness of
the Ni film to be 10 nm from the reflectivity measurements of the Ni - Si
system.88 The field inhomogeneity effect (Eq. (34)) can be neglected in
our samples and the strength parameter g of the contact-exciton effect
(Eq. (35)) was considered as an adjustable parameter.

Returning to Fig. 14, we can consider that three structures are
concerned to this spectrum. When we assume the existence of two struc-
tures (Fig. 14(a)), the calculated line shape for the structure in the
higher energy side is much broader and shifts a little to lower energy
than the experimental one. In addition, the experimental line shape near
4.45 eV cannot be represented exactly by the calculated line shape. If we
assume three structures in this energy region (Fig. 14(b)), the result
of fit is much improved. We name the three structures E2(l), E2(2), and
E2(3) from the lower-energy side. 1If one structure represented by the
low-field resonant function corresponds to one critical point, Ez(l),
E2(2), and E2(3) are determined to be three-dimensional Ml’ Ml’ and M2
types, respectively. The critical point parameters determined from the
best fit are listed in Table X for the above two cases. As shown in
Table X, the broadening parameter of the E2(3) critical point becomes
more reasonable assuming the existence of ﬁhree structures than two.

The obtained band parameters of the E2(2) critical point may be acceptable.
Moreover, the low-field ER spectra measured on samples with a rather
thick Ni film (v 20nm) as an electrode give an additional support of the

existence of E2(2) critical point.lo8

b. Symmetry Analysis
Next we consider the symmetry assignment of the Ez(l) and E2(3)

critical points. The symmetry assignment of the E2(2) critical point is



TABLE X. The results of the best-fit analysis assuming the
existence of two or three critical points in the E
region. The data were taken at 90K using the Schottky-barrier

electroreflectance technique. (After Kondo and Moritani.

2 spectral

35)

Two critical points

Three critical points

Eg (eV)
Ez(l) T (ev)
Type
Eg (eV)
E2(2) I (eV)
Type
Eg (eV)
E2(3) I (eV)

Type

4,333 £0.010

0.064 £ 0.010

3D
!

4,571+0.010

0.112 +0.010

3D
)

4,336 £0.010

0.066 £ 0.010
3D
!

4.459+ 0,010

0.086 + 0.010
3D
!
4,598 + 0,010

0.071+0.010

3D
¥,
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difficult because of the strong interference of the Ez(l) and E2(3) struc-
tures. The polarization dependences of the Schottky-barrier ER spectrum
were measured for the four typical polarizations, [001], [11Z], [111],

and [110]; and the direction of the applied electric field is [110].

The results for the [001] and [110] polarizations are shown in Fig. 16.

We analyze the Ez(l) critical point first. In this case, the polar-
ization dependences are (AR/R)[110] < (AR/R)[lll] < (AR/R)[llfl < (AR/R)[OOl].
Since polarization dependences must be independent of spectral position,
we obtain the ratio |r| = (AR/R)[OOl]/(AR/R)[llO] = 1.35 * 0.16 and

|s| = (AR/R) (AR/R) = 0.91 * 0.11 at the negative peak of the

[111]/ [112]

structure. The combination of the observed polarization anisotropies and
the type of the critical point (Ml) can be compared to the theoretical

criteria for high-symmetry critical points listed in Table III. We con-
sider only critical points along the I and A axes near the X point, since

the critical points of these symmetry may contribute to the E2 structures

3,47,49,52,60 __

as a result of the energy band-structure calculations d

the other high-symmetry critical points at ' and along A (or at L) are

immediately ruled out: The I' critical point (FXS. - F;S’ FZS, > Fis, etc.,

in Si) will show an isotropic polarization dependence. The A (Ag -+ Ai in

Si) or L (Lg, - Li in Si) critical point is assigned to the SI structure

in the 3.4 eV region and no other high-energy critical points may exist

along the A axis or at the L point due to the flatness of the Ag - Ai

interband differences (uT << |uL|), as shown in Sec. IVA. For the

c
3

written from Table III as

ZZ + I, critical point (U2 symmetry), the polarization anisotropies may be

L (65)
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FIG. 16. Polarization anisotropy of the Schottky-barrier ER spectrum of

Si in the energy range of E2 transitions. Data are taken on (110) face at

77K in the low-field modulation limit. Solid line is the spectrum for

fi || [110] and dashed line for A || [001]. (After Kondo and Moritani.35)
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and 1

u u u
. = T T2 L 66)

where uL is the mass along the representative direction of the I crit-
ical point ([110] direction in this case). If we assume the relationm,

l/uT2 + 1/uL = 4/u > 0, and Mo My < 0, in Egs. (65) and (66), the

11° M1
10

calculated polarization anisotropies become r = %-and s = ii-and the

effective-mass relation shows the Ml type, which explain the experimental

results. On the other hand, the critical points at X and along A, i.e.,

109 ,v

v c c
X, *X (U5_ symmetry; W, = 3uL, Hp > 0, W 0, Az, > Az, (Ul sym-

4 1
metry; W, = 2u_, 4., > 0, u. > 0), and AY » AS or AY » AS, (U, symmetry;
> L T> °T S i 5 1 5 2 5 i

H,., = 3uL, UT >0, uL > 0), are ruled out, because they must be of type M.0

T
in order to explain the observed polarization anisotropies. Although the
other critical points along I, i.e., ZX - Z; or ZX > Zg (U1 symmetry;

— v c .
2 My + LM = Ty s Mgy > 05 HpgHp < 0), and 2, > Iy (U; symmetry;

2/]1Tl + l/uT2 = 7/uL, M >0, HpqHo < 0), may be possible, they are not

practical as compared with ZZ - Zg in this energy region. Thus we con-
clude that the Ez(l) critical point is attributed to the ZZ > Zg transi-

tion.
We analyze the E2(3) critical point next. The polarization depend-

ences are (AR/R) < (AR/R)[llll < (AR/R)[llf] < (AR/R)[001]. We ob-

[110]

tain the polarization anisotropies |r| = 2.0 * 1.0 and |s| = 0.8 * 0.4 at

the positive peak of the structure. In this case, the symmetry is not

v AC

determined uniquely: AZ' Y (Ul symmetry; |uT| << Hps o <0, My > 0),

v c v c v c
As + Ay or Ag > Aj, (U5 symmetry; << |uT|, By < 0, Hy > 0), X, > X]
v c v c
(Ug_ symmetry; u << IuTl, Hp <0, 1 > 0), Ay > AJ or Ly, > Ly (U, or
_ v c v c .
U3_ symmetry; uL = ZIUTI, “T <0, M > 0), Zl - Zl or 23 - 23 (U1 symmetry;

v c
|uT1| and |uL| << Upgs Upg <05 Mgy > 0, W < 0), I, > Iy (U, symmetry;
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v C
gy | and [yl << wgys wpy > 05 1py <0, w < 0), and Iy > I (Uy sym-

metry; and |u <0, Moo <0, ML > 0) may be possible:

<<

The polarization anisotropies become r = 2 and s = 0.8 and the effective-

. v c LV c L,V c .V c
mass relation shows the M2 type. The AS -+ Al, X4 > Xl’ A3 Al, L3, - Ll’
and ZZ > Zg among the above transitions are ones between the highest-
valence and the lowest-conduction bands. Therefore, we believe that the
A; - Ai transition near the X point is more .practical for the E2(3) crit-
ical point. In this case, we find from the mass relation, Hp << |uT|,
that the critical point is rather one-dimensional.

The symmetry assignment of the E2(3) critical point may not be con-
clusive, because we have assumed critical points to be at (or along) high-
symmetry points (or axes) in the symmetry analysis: An M2 critical point

13 1 1 . . 49
at (Ez-, T Z—) in the T'XUL plane predicted by Saravia and Brust may be

possible. However, it is difficult to evaluate this possibility by this

method of symmetry analysis.
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V. SYNTHESIS

Interband-energy contours in the reduced Brillouin zonellO can be

constructed from the experimentally obtained optical-critical-point

>
set.lll First, the k dependences of the interband energy in the vicinity

of critical point may be written in the parabolic form as shown in Eq. (22)

2
2 (k.. -K ) ) k., =K. )

£ =£°© +‘ﬁ_{ Tl 0,T1 L
g 2 Uy )

0,L

1. ©2)
o3

\

Then, we can describe the interband-energy contours in the vicinity of
critical point if we know the energy Eg’ the location EO in the Brillouin
zone, and the relation among the interband-reduced masses uTl’ UTZ’ uL.
Second, we assemble the critical points obtained experimentally and
connect them as smooth curves with regard to their topological relations.
We construct the EA_S(K) energy contours of Si in the reduced
Brillouin zone. The first Brillouin zone of diamond lattice is shown in

Fig. 17. The k dependences of the experimentally obtained optical-crit-

ical points are as follows:

Ed : EO = <0, 0,k0>; A; > Ai near the I point,
2 2
1 ] 2 (k -K ) (k -K )
g0 @y = g0 +'f1__[ T_0,1 L 0L (67)
g 2 b | Ty |
Mp/up = 1=3, W, > 0, u > 0.
> . v c v c
E1 : K0 = <k0, ko,ko>, A3 > Al or L3, - Ll,
2 2
2 (k,-K, .) (k, =K. )
ETl(E) - Tl_kji_ T 0,77 L 0,L 1, (68)
g 2 [uo | [ |

Mo << fup |, wp >0, 1wy < 0.
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E (1) : K. =<k.,k.,05; V3¢
2 ¢ 020" 2 3°
2 (k. -K. )% . -K )2
Er2(1)(§)=E12(1) +—_ﬁ_[ TL 0,T1” _ T2 "0,T2
2
(kL'Ko L)

+ -———Tigjr-——-], (69)

Mgy + 1/0 = 4/Ugs Mpq > 0, Mgy < 0, 1 > 0, in this case.

E2(3) : EO = <0,(),k0>; A; - A; near the X point,

2
+

2
ey, = %o,1)

[uy |

N 2 (ko -k, )
g2 @y - EgT2(3) +h T "0,T

—_[ - IUTI ]’ (70)

2

The E4_5(K) energy contours in the TKWX, TKL, and T'XUL planes constructed
from Eq. (67) through (70) are shown in Fig. 18. This figure well ex-
plains the topological features of the optical-critical points of Si in
the energy range from 3.0 to 5.0 eV. The shaded areas around the I point

(EO') show that the D critical point on the A axis or some critical-

0
point set exists in this region (see Sec. VI A). The El critical point
(MiD type) is put at the L point and the contour lines near E1 are

written to be nearly flat along the A axis due to the relation Mo << IuL!.
There is the Ez(l) critical point (MiD type) on the I axis; the case

uTl >0, uTZ < 0, and uL > 0 is written in this figure in connection with
the E2(3) critical point (M‘;D type) on the A axis, in which the contour
lines near E2(3) are written to be nearly flat in the directions trans-
verse to A near the X point due to the relation, M << [uTl. Note, how-
ever, that the exact positions of the critical points along the symmetry

axes and the accurate shapes of the contour lines are not important in

this figure.



FIG. 17. The first Brillouin zone of diamond lattice showing

the symmetry points and axes.
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FIG. 18. The E4_5(K) energy contours of Si in the I'KWX, TKL,
and I'XUL planes constructed from the experimental results (in eV).

The critical points (c.p.) listed in this figure are as follows:

EO': MSD c.p. on the A axis near the I point (uT/uL =1-3,
uT >0, up > 0) or some c.p. set around the I point; Elz MiD c.p.

at the L point (uT << IuLI, M >0, M < 0); E2: MiD c.p. on the

T -axis (l/uT24-1/UL==4/uTl, Moy > 0, o <0, M > 0, in this case);

and MzD c.p., on the A axis near the X point (|uT| >> uL, uT < 0,

My > 0). (After Kondo and Moritani.lll)
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VI. DISCUSSION

A, EO' and El Structures

The experimental results obtained from the line-shape analysis in
this spectral region are summarized in Table VIII, together with the data
previously obtained with other modulation techniques. The critical-point
energy and the phenomenological broadening energy can now be determined
very accurately from ER line shapes; these values are estimated by Aspnes's

three-point methodzo’23

and more precisely by a method of least-squares
fit. When two or more structures interfere with each other, however,
which is usually seen in the higher-energy region, the best-fit analysis
becomes more complicated. Our results of the 3.4 eV structures of Si dis-
agree in some points with the results obtained by Grover and I-Iandler43
using the electrolyte ER technique in the flatband condition. The values
of the critical-point energies determined in this work are somewhat larger
than those determined by Grover and Handler. This is probably due to the
difference between the line-shape functions used in the best-fit analysis
(the two-dimensional electro-optic F and G functions75 in their work

19,23

and the low-field resonant functions in this work), and also due to

the large broadening effects in such a high-energy region. Moreover,
Grover and Handler have shown that the main strucutre in the 3.4 eV region
is attributed to the two-dimensional MO critical point along the A axis
and the weak structure in the lower-energy side to the three-dimensional
Ml critical point. The former result is consistent with our result but
the latter one is somewhat strange as was pointed out in their own paper.
On this point, Seraphin and Bottka4o have shown in their pioneering work

that the weak structure is due to the three-dimensional M_ critical point.

0

This is in agreement with our results. Moreover, the results obtained by

other authors listed in Table VIII agree with our results.
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The 3.4 eV complexities of Si have been the origin of some contro-
versy for a long time, as described in Sec. I. Pollak and Rubloff38 have
shown that the main structure is attributed to the Ag > A; or Lg, - Li
transition from the uniaxial-stress effects on the wavelength-modulated
reflectivity spectra. They also pointed out that the weak structure in
the lower-energy side is due to the A critical point near the I' point.
Their assignments are in good agreement with our results of the symmetry
analysis. The assignments are also supported by the results of the compo-
sition dependence of the Ge - Si alloy system reported by Kline et al.112
They have found that the El and EO' doublets of Ge merge into the 3.4 eV
structures of Si, indicating that both the A and A transitions may be
responsible for this energy region.

Our measurements can also be compared to the energy-band-structure
calculations of Si. The representative results are listed in Table XI.
In the theoretical calculations, the relative position of the energy
levels rather than their precise values may be important, and the results
calculated by Herman et al.,52 Dresselhaus and Dresselhaus,48 Sravia and
Brust,49 Van Vechten,115 Zucca et al.,50 Kane,114 and Van Dyke (orthogo-
nalized plane wave)ll6 may be conéistent with our experimental results
for the structures in the 3.4 eV energy region. It has been pointed out
by Kane,47 and by Saravia and Brust,49 that the A3 valence and the Al
conduction bands of Si are nearly parallel from the T point to the L point
The reduced-mass relations My << |uL|, Mo, > 0, and M < 0 at the A; - A;
(or Lv, - L;) critical point obtained from the polarization anisotropies
of the low-field ER spectra verify these situations.

The deformation-potential parameters determined from the stress
effects of the A' - Ai (or LV, - Li) critical point are summarized in

3
Table IX, together with other experimental results of Si and Ge. The



TABLE XI.

Calculated critical-point energies of Si in the E

'and E, spectral region (in eV).

0 1

Brust? C:};Zn Kanec’d Herman et al.® Dresz:zléhaus
Transition Bergstresser 1966 1971 E (PERT) E (PERT) E (PERT) Dresselhaus
ng' - ris 3.4 3.4 3.2 2.98 2.8 2.75 2.7 2.43 .
A‘37->A§ 3.15 3.1 2.9 3.01 3.1 3.3 3.5 3.22
L‘B’, +'L§ 3.0 3.2 3.4 3.20
v Cc
by > A7 3.3 3.35 3.4

Saravia and Brust® Van Vechtenh St;l:;l Zucca et al.’ Van Dykek

Transition I IT I1IT IV Euwema OPW Pseudo
1"‘2’5, -~ Pis 3.44 3.39 3.34 3.39 3.40 2.79 3.01 3.15
A‘3’+ A‘i 3.13 3.37 3.60 3.33 3.60 2.78 3.13 3.08 3.11
L‘3’, - L; 3.49 3.54 3.46
A; - Ai 3.42 3.49 3.54 3.33 3.42

aReference 3.
Reference 113.

¢ Reference 47.

dReference 114.
e Reference 52.

£ Reference 48.

g Reference 49.

h Reference 115.

* Reference 102.

J Reference 50.

k Reference 116.

St
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values of the deformation parameters Di

ments under [001] stress are in good agreemént with those determined by

andJ:jg determined from measure-

Pollak and Rubloff.38 However, the values of D5 andgf§g determined from

1
measurements under [111] stress are smaller than those determined by them.
It is probably due to the fact that our values were obtained in relatively
low-stress region, while their values were obtained in high-stress region.
These four values obtained in this work are in agreement with those de-
termined by Sell and Kanell for the E1 structure of Ge, which may be due
to the analogy of the crystal structure between Si and Ge.

The pressure coefficient dE/dP is calculated from the pair-band hydro-

static~deformation parameter Di in the form

dE

ap (71)

1
- ijl (s11 + 2812),

and the value determined in this work is also listed in Table IX, together
with previously reported experimental and calculated results for compar-
ison., We find good agreement between our value and the other experimental
and calculated values within the limit of our experimental errors.

We wish to point out the possibility that the weak SII (Ed) struc-
ture is contributed by the critical point located at different points and
axes or by some critical-point set located at different points in the
Brillouin zone. With respect to this point, Saravia53 has shown in his
calculations that the weak structure is produced by some critical points
surrounding the I' point rather than the high-symmetry one and that the
piezo-optical properties, especially the changes for [001] stress and

parallel polarization, are explained by this critical-point set.
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B. E2 Structures

The experimental results obtained from the line-shape analysis in

this spectral region are summarized in Table XII, together with the data

previously obtained with other modulation techniques. Lukég'et a1.9O and

. 15 . .
Matatagui et al. have shown that the E, structures consist of two crit-

2

ical points of type M1 and M2 from the lower energy side. Their results

do not conflict with our results. However, Welkowsky and Braunstein16

have shown that the Ez(l) critical point is of type M2 from the wavelength-
modulated reflectivity measurements, which does not agree with our results.
As for the symmetry assignment, Zucca and Shen17 have shown that the Ez(l)

and E2(3) critical points are attributed to the ZZ - Zg and A; - A; tran-

sitions, respectively, which is in agreement with our results of symmetry
analysis,

Our measurements can be compared to the energy-band-structure cal-
culations of Si. The representative results of the calculations are

listed in Table XIII. Most of the calculated results has assigned the E2

v c v c
4 > Xl and 22 - 23
that the E2 structures consist of an Ml critical point at the X point and
an M2 critical point on the I axis near EO
Pollak60 have shown that the XZ > Xi transition is at 4.40 eV and the

2; > Eg transition at 4.37 eV. Moreover, Saravia and Brust49 have shown

- . . 3
critical points to the X transitions. Brust has shown

= (0.4,0.4,0.0). Cardona and

that the E

2 3 I . 71
G 13 ) critical point at G 13 ;) near the
13 1 1

KL line, and an M2 critical point at (323 X ZO in the I'XUL plane.

We cannot estimate all of the above results by our experimental results,

structures are mainly contributed by an M2 critical point at
7 7

2

0) on the I axis, an M

because the calculated ones scatter widely. However, it should be recon-
sidered that the critical point on the I axis is of type M2.

We have shown that the E2(3) critical point is one dimensional from



TABLE XII. Critical-point parameters of Si in the energy range of E2 transitions as obtained from electro-

reflectance (ER), wavelength-modulated reflectance (WMR), and thermoreflectance (TR) measurements.

This work?® Luke\s{ et al.b Zucca and Shen® Welkowsky et al.d Matatagui et al.®
ER (90K) ER (90K) WMR (5 K) WMR (80K) TR (77K)
Eg (eV) 4,336 +0.010 4,38+ 0.02 4.44 +0.01 4.26 4.30
T (ev) 0.066 + 0.010
v c v c v c
Ez(l) Symmetry 22 > 23 22 > 23 22 -+ 23
3D 3D 3D 3D
Type My My M, My
(reduced-mass l/uT2 + l/uL = 4/11,1,1
relations) uTl >0, UTZUL <0
Eg (eV) 4,459+ 0,010 4,46
I (eV) 0.086 £ 0.010
v c
E2(2) Symmetry AS - Al near X
3D 3D
Type M M

(reduced-mass

relations)

8L



TABLE XII. (Continued)

This Worka

Luke\s/ et al.b Zucca and Shenc

Welkowsky et al.d Matatagui et al.®

ER (90K) ER (90K) WMR (5 K) WMR (80K) TR (77 K)
Eg (eV) 4,598 £0.010 4.65*0.05 4,60+ 0.03 4,55
I' (eV) 0.071+0.010
v c v c
E2(3) Symmetry AS - Al near X AS > Al
3D 3D 3D
Type M M, M
(reduced-mass M << IuTI
relations) o <0, UL >0

a

b Reference 90.

Reference 35.

cReference 17.
dReference 16.

e Reference 15.

6L



TABLE XIII. Calculated critical-point energies of Si in the E, spectral region (in eV).

2

Brusta Cardona and Pollakb Cohen and Bergstresserc Kaned Herman et al.e
Transition E (PERT) E (PERT) E (PERT)
ng' > Fg, 3.8 3.8 3.3 3.35 3.8 4.2
Z; - zg A 4,37 4.0 4.15 4.3
XZ > x; 4.0 4.40 4.0 4.1 4.0 4.05 4.1
Lg, > Lg 5.4 5.2 5.3 5.05 5.0 4.95
Dresselhaus and Dresselhausf Van Vechteng Stukel and Euwemah Zucca et al.” Van DykeJ
Transition OPW Pseudo
v c
F25' > Fz, 3.74 4.10 2.75 3.65 3.63
v c
22 - 23 4,43 4,15 4,41
XZ - xi 3.74 4,50 4.00 3.97  4.01
Lg, - Lg 5.30 5.90 5,01 5.04 4.71
a d g j
Reference 3. Reference 47. Reference 115, Reference 116.
bReference 60. eR.eference 52. hReference 102.

€ Reference 113. fR.eference 48. 1Reference 50.

08
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the mass relation, u_ << |uT « This one-dimensional critical point may

L

not be related to the one-dimensional Penn gap.117 Cardona and Pollak118

have discussed more precisely about the one-dimensional critical point
in the E2 region.
C. Synthesis: Interband energy contours of Si

Figures 19 and 20 show the E (ﬁ) energy contours of Si calculated

4-5
by Kane47 and by Saravia and Brust,49 respectively. In Figs. 19 and 20,
the contours are written to be nearly flat along the A direction, which
is consistent with our experimental results, uT << |uLI. The difference
lies in the type of critical point at the L point; i.e., the M1 type in
our measurements and the MO type in their calculated results.

The flatness along the A direction is shown by Brust,59 Kane (see
Fig. 19),47 and Saravia and Brust (see Fig. 20).49 However, this pre-
diction is incompatible with our results, W << |uT|.

The contour lines nedr the critical point on the I axis shown in
Fig. 18 appear to be similar to those shown in Figs. 19 and 20. However,
they are quite different from each other: the critical point is of type
Ml in the experimental results (Fig. 18) and of type M2 in the calculated
results (Figs. 19 and 20).

Finally, we wish to comstruct the "minimal Setz" of critical points.
The critical points are constrained by topological considerations to
satisfy certain criteria, which is called the Morse's topological rela-

tions. Following Phillips,2 this relation for the three-dimensional

topological space can be written

N(M,) > 1,
N(M ) 2 2+ N(My),

N(M,) 22+ N(M;), (72)
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FIG. 19. The calculated E (ﬁ) energy contours of Si

4-5
in the TKL and T'XUL planes. Asterisks indicate optical
critical points. (After Kane.47)
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FIG. 20. The calculated E4_5(§) energy contours of Si

in the T'KWX, I'KL, and T'XUL planes. Open circles indicate

optical critical points. (After Saravia and Brust.49)
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N(My) 21,

N(MO) +N(M2) =N(M1) +N(M3),

where N(]HQ) is the number of M, critical point. The symmetry set satis-

'3
fying these equations is called the "minimal set'. It is of interest
that the number of M, critical points plus the number of M, critical

points must equal the number of M. critical points plus the number of M3

1
critical points.

In constructing the minimal set, one must take into account the num-
ber of equivalent critical points in the Brillouin zone. All points in
the Brillouin zone may be divided into classes by the symmetry proper-
ties.llo For diamond-type crystals, all points in the first Brillouin
zone may be divided into eight groups I', A, A, Z, C, O, J, A and all
points on the first-Brilluoin-zone surfaces may be divided into seven
groups X, L, W, S, Z, B, Q. The symmetries and the number of equivalent
points for these groups are listed in Table XIV.

Using Eq. (72), Table XIV, and the experimentally obtained critical

-
points, we can find the minimal set for the E4_5(k) interband energy

surfaces
My Ed[ 1T, 6A near I'y 12 near I' ],
M o: E [ 4L ], E,(1) [ 1211, E,(2) [ 6W 1, 73)
M2 : E2(3) [ 6A1,
M3 : [ 3Xx 1,

. v I LAV C s, <V c ...V _-.C LYV c
where T': FZS' - F15, A A5 > Al’ z: 22 - 23, L: L3, - Ll’ and X: X4 - Xl'

The total number of critical points in the above minimal set is 50.

In the minimal set, Ed consists of some points at ' and along A and I.

El consists of L points. Ez(l), E2(2); and E2(3) consist of L, W, and A

points, respectively. These results are consistent with the experimental

results.



TABLE XIV., Symmetry group of EO for the first Brillouin zone in

diamond-type ( Fd3m) crystals.

Internal points (Symmorphic group)

Point Coordinates Schonflies (International) Number
r (0, 0, 0) o, ( m3m) 1
A (o, O,ko) C4v ( 4mm) 6
A (ko, ko, ko) C3V (3m) 8
z (ko, ko, 0) sz (mm2 ) 12
C (ko, kO, kl) Clh (m) 24
0 (ko, kl, 0) Clh ( m) 24
J (ko, kl, ko) Clh (m) 24
A (ko, kl’ k2) C1 (1) 48

Surface points (Non-symmorphic group)

Point Coordinates Schonflies (International) Number

X (0,0, 1) 3
111

L 72 D3q 4

W G 1,0 6

S (ko, 1, ko) 12

z (ky» 1, 0 12

B (kgs 1, k;) 24
1 1 1
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VII. CONCLUSIONS

A. Theory
(i) A method of the symmetry analysis on optical-critical points
>

was explained, i.e., the location KO

dependences and the line shdpes of low-field ER spectra. Polarization

can be deduced from the polarization

dependences of longitudinal ER spectrum on the (110) face were calculated
and summarized in Table III for high-symmetry I', A, A, L, and I critical
points in diamond-type crystals. Criteria of the symmetry analysis were
also listed in Table III.

(ii) Uniaxial-stress effects on low-field ER spectra were calculated

Cc v c dPV -T

v c v c
for the degenerate A3 - Al (or L., - Ll), A5 - Al’ and Iy, 15

ical points. The results were summarized in Tables V, VI, and VII, respec-

crit-

tively.

B. Experiment
(iii) The 3.4 eV optical structures of Si were found to consist of

two critical points with different origin, E!' and E., from the line-

0 1
shape analysis. The types of the Ed and El critical points were deter-
mined to be the three-dimensional M0 and Ml’ respectively. Energies and

broadening parameters were also obtained and listed in Table VIII.
(iv) The location of the Ed critical point was not determined
uniquely by this method of symmetry analysis. However, only a possibility

A; - Ai near the I' point has remained according to the results of the

stress measurements. In this case, the effective-mass relations may be

Mp/W = 1=3, u, > 0, u > 0.

(v) The E1 critical point was assigned conclusively to the Ag - Ai
or Lg, > Li transition. The reduced-mass relations were uT << IULI’

uT > 0, and Wy < 0. Moreover, we found from the mass relation,
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<< |u

[ , that the critical point may be nearly two-dimensional M0 type.

p << g

(vi) The pair-band deformation potential parameters for the degen-

v C
erate A3 - Al

measurements. These values were presented in Table IX.

critical point have been determined from the uniaxial stress

(vii) Three structures were found in the E, spectral region from the

2
line-shape analysis. The types of these critical points were determined

to be the three-dimensional M and MZ’ respectively. Energies and

1° Ml’
broadening parameters were also obtained and listed in Table XII.

(viii) The symmetry location of the Ez(l) critical point was conclu-
sively determined to be the AZ - Ag transition. The reduced-mass rela-
tions were l/uT2 + 1/11L = A/uTl, Mog >0, Moy < 0.

(ix) The E2(3) critical point were tentatively attributed to the
Ag - Ai transition near the X point. The reduced-mass relations were
uL << luT|, uT < 0, uL > 0. Moreover, we found from the mass relation,
W << luTI, that the critical point may be nearly one dimensional.

>
(x) The E (k) energy contours of Si have been constructed from the

4-5

experimental results, for the first time.
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APPENDIX A: COMPLEX SERAPHIN COEFFICIENTS FOR THE THREE-PHASE SYSTEM

In this Appendix, we show the complex Seraphin coefficients for a
three-phase system. Consider a system consisting of three parallel layers
denoted by subscripts 0, 1, 2 as shown in Fig. 21. Let each layer 7 be

described by a complex refractive index,
1

.+ iez’i)z, (A1)

N, = n, + 1k7: = (61’7/

1

where n, is the real refractive index and ki is the real aptenuation
index. We take both layers 0 and 2 to be semi-infinite in extent and the
thickness of the layer 1 to be d.

If a plane wave propagates from a layer ¢ to the next layer J across
the interface, the wave will be divided into a reflected and a refracted
parts and the complex reflectivity rij at the interface can be described

by Fresnel's formula. In case of the normal incidence it can be written119

N, - Ni
r —l———.—

S ey (42)
J 7

The reflectivity of the three-phase system can be calculated by
considering the multi-reflection in the layer 1 as

exp(iZled/c)

I T
exp (i Zled/c)’

L+ 201719

(A3)

where w is the frequency of the plane wave.

When the properties of the layer 2 is modified by some perturbation,
the refractive index NZ will change. 1If this change is sufficiently
small, the resultant change AZV2 may be represented as a first-order cor-

rection. If once this first-order correction is known, the complex

reflectivity will be given to first order by
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[1- (2101 - (2,0 lexp (i 20l d/c) x AE

- 4(N2)2[r01 + rlzexp(iZwNId/c)][l + rOlrlzexp(iZled/c)] > (49
where the relations,

ANO =0, (A5)

AN, =0, (A6)

ar, = @)t xag, (A7)

have been used in the calculation.
On the other hand, the complex reflectivity can be defined in the

usual manner
1
r = R% exp(i0), (48)

where R and 6 are real. Then, we have

AR

Ar AR
T 2R

? + if. (A9)

Comparing Eqs. (A4) and (A9), we obtain the three-phase Seraphin coeffi-

cients

ol
"

= o - iB, (A10)

) [1 - (P11 = () e (2 200 /) .
20,) %[y, + 7y exp (i 200 d/Q) 111 + vy v jexp (i 20 d/c) ]

As a specific case, the Seraphin coefficients for the usual two-phase

system can be obtained by taking Nl = NO in Eq. (All),
2N

T o= 1 ) (A12)
s 7, (zv2 + Nl) (1\72 - Nl)

Equations (All) and (A12) are the same as derived by Afs.pnes.lzo-_122
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N/ /]

N,

No

FIG. 21. Schematic diagram of a three-phase optical system.
The complex refractive indices of the phases are denoted by

NO’ Nl’ and Nz.



90

APPENDIX B. APPLICATION TO DOPING INHOMOGENEITY MEASUREMENTS ON SEMI-
CONDUCTOR SURFACES

In this appendix, we describe the theoretical basis for measuring
doping inhomogeneity on semiconductor surfaces by the low-field ER tech-
. 123—-125 . -
nique. The expression of the relative reflectivity change AR/R

measured in the low-field modulation limit is given in Eq. (36)

A—;{eﬁm, T) = Re{% [o@w) —ieéﬁw)]z;:. Y73 T+ iI‘)} FTEZ, (36)

where the function LT(fl’m)+iI‘) mainly determines the line shape of ER spec-
trum, which is given in Eq. (37). The factor F' in Eq. (36) shows the
effects of the polarization of the light and the applied electric field,
which is given in Eq. (38). Typical examples of the factor F are listed
in Table XV for high-symmetry I', A, A, L, and Z critical points inAdiamond-
type crystals; where the cases of longitudinal configuration (ﬁ.‘.&) with
unpolarized light on the (001), (111), and (1I0) faces are given.

On the other hand, the relation between the electric field é and
the potential ¢ are written in the space-charge region by Poisson equa-

tion34

2 __2 1y (Ko kT
g " e Ma oo - 0 -
kT ed _ kT
+ Na (e exp (- kT) + ¢ e)]’ (B1)

where N d and Na are the ionized donor and acceptor impurity concentration
on semiconductor surfaces, respectively. Ereo is the static dielectric
constant. ]_(ez is the thermal voltage, which is 25.9 mV at T = 300K.
We consider an n-type sample and neglect the second term of Eq. (Bl).

kT ed.
In the fully depleted space-charge region (¢ < 0), the term (-Z-)exp (kT)

and _ke_T are negligible compared to ¢. Moreover, the inversion layer

cannot be formed in the Schottky-barrier, p-n junction, and hetero-junc-



TABLE XV. Electroreflectance form factor F for high symmetry I', A, A, L, and ¥ critical points in
diamond-type crystals., Longitudinal geometry with unpolarized light is used for the (001), (111),
and (110) faces. Hpgs Hpos and W are defined by Eq. (23).

Critical Pair Low-field electroreflectance form factor F
point state A A A _
location symmetry 8 | (0o01) 8 | (111) 8 Il (x10)

1.0 1.0 1.0
r U = = =
2 2,2 0 1 1
A Uy 'u—fo -3‘(ﬁ—+ui) f i(ui'*'-u—) 72
T T L T L
0 4,2 1 0 5
U 2=+ f sE+ Dy 7 3+ r°
T L T L T L
8,2 ' 8 , 8 0 4.5 1,0
A U S £ el S+ f
T ML T ML T ML
16,2 16,5 4 0 4.7 5, 0
U3 St 75 ) T ARl
T L T L T L
4.2 1 0 4 8 0 2,5 1.0
L Uy ENTaTRR el CATRRaTRE
T L T L T L
8,2 1 0 8,5 4 0 2,7 5 0
Uy G ) T 275, ) oG ) S
T L T L T L

T6



TABLE XV. (Continued)

Low-field electroreflectance form factor F

A A A _
€ Il (oo &l a1 el aio
1,1, .0 2,2 .3 0
sl ly 22,3 1y L6y T 43,40
“ﬂ.“n ML 3y W W 4“ﬂ.”ﬂ ML
4 1 3,3, .0
24l £ e Lady 0 L2y
Hr2 “ 3Mpp W W 2 Upy Hpo uL
2 2,2 . 1,30 3 ,7,.0
G +f;+ﬂﬁf EATaTRaTER ZﬁT_+u u)f
11 Y12 1 Fr2 Mo TL 12
0 _ ,2
f7 = <0l 0>

c6
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tion configurations, because the minority carriers, which diffuse from
the bulk and are excited thermally or optically in the space-charge region,

are extracted at the interface. Thus, Eq. (B1l) becomes

2 _ 2e .
& g gt v o

a. Modulation in the Schottky-Barrier Configuration

When an external voltage Vext is applied to a Schottky-barrier,

the surface potential ¢s may be written

¢s = vint + Vext’ (83)

where Vint is the built-in potential in the absence of external voltage.
v consists of dc bias V, and ac-modulation voltage V_ (¢). Since

ext dec ac

a time-varying signal measured by a phase-sensitive detection is observed
as the root-mean-square value of the fundamental harmonic component

(rms,fun) of the ac signal, the relative reflectivity change measured ex-

perimentally can be written using Eqs. (36), (B2), and (B3)

AR AR
—R'(‘ﬁw, F) = ['E’(’ﬁwa Fa t)]rms,fun’ (B4)
- Re{ & [othw) - 18w ] 5 1* 3 LT+ ﬂ')}‘
T
2eF
g €,€o XNy Ve O s (B3

As shown in Eq. (B5), AR/R is proportional directly to the impurity

concentration Nd’ if we hold the modulation voltage Vac(t) constant.

b. Modulation in the Electrolyte-Semiconductor Configuration
The electric properties of the electrolyte-semiconductor interface

may be similar to those of the p-n junction.126 The relation between the
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externally applied voltage Vex

written127

t and the surface potential ¢s can be

¢)s - Vint + Vext - VGouy - Velec’ (86)
= + - -
[Vint Vdc vGouy,dc Velec,dc]
H IV, B =V @) =V ()], (87)
where V is the potential drop in the Gouy layer, which is the space-

Gouy

charge region in the electrolyte. A dc bias applied externally is divided
into the semiconductor-space-charge region, the Gouy layer, and the elec-
trolyte. However, it is the purpose of dc bias for the semiconductor-
space-charge region to be fully depleted and the dc bias does not affect
the low-field ER spectra measured experimentally. The ac component

Vac(t) may be also divided into the surface potential ¢S(t), the Gouy layer

(t), and the electrolyte Ve (t). However, the latter two poten-

VGouy lec

tial drops may be negligible compared to the surface potential ¢S(t),
since the solute effectively provides a lot of carriers (1022 cme) com-
pared to the majority carriers in the usual semiconductors (1014--1021 cm—3).

Therefore, the relative reflectivity change AR/R may be written in the

same form as Eq. (B5).

e. Doping Inhomogeneity Measurements on Semiconductor Surfaces
When we fix the orientation of the applied electric field and the
polarization of the probe light, we can find the relation
AR AR
R ]fﬁm,i [_R_]-ﬁw,o

= (88)
b
Nd,ivac,i Nd,O.Vac,O

where [%§l5w~f—8hows the relative reflectivity change measured at point <%
b

using the probe light of energy “Aw. Nd,i and Vac,i = [Vac,i(t)]rms,fun

are the doping concentration and the ac-modulation voltage at point <,
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respectively. In Eq. (B8), N can be determined from the best-fit

d,0'ac,0
analysis on the low-field ER spectrum measured at point O, [-A-ﬁlifﬁw, l")]o.

4.4 at any point 7 on the sample sur-
3

face can be immediately obtained from [A—ls']'ﬁw i and Vac i
b 3

Therefore, the doping concentration N

d. Estimation of the Absolute Values of Doping Concentrations

From Eqs. (37) and (B5), the product Nd [Vac(t)]rms,fun may be
written
1
2 2 6 2 €€
Nd [Vac(t)]rms fun 41T€0 4'"41114 _Sf 8u —F{J u 2reFO C, (89)
’ e T T1 T2"L

where C is the energy-independent amplitude factor of the low-field ER
spectrum, which can be determined from the best-fit analysis.

As an example, we estimate Eq. (B9) for Si crystal. When we use the El

structure (A critical point with U, symmetry in Si), the longitudinal ER

3
geometry, unpolarized light, and the (110) face for the plane of reflec-

tion, the ER form factor F may be written from Table XV

R e Ea (B10)
T L
=281 0, - -
gy F5 Qg = Mgy = Mg B << upfy up >0, 1 <0) (B11)

where fO is the momentum matrix element between the A3 valence and the Al

conduction bands and, in this case,60 f'o = (l.Z‘ﬁ/aB)z. Using the values,
Gr = 12,34 IULI = 9.6,48 and Eq. (B1l), equation (B9) becomes
96 3
N, [V (£)] = 2,4 x10°°C [V/m]. (B12)

d " ac rms, fun
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