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High-accuracy optical computing based on
interval arithmetic and the fixed-point theorem

Jun Tanida, Wataru Watanabe, and Yoshiki Ichioka

A method for high-accuracy analog optical computing based on interval arithmetic and the fixed-point
theorem is considered. Two-variable simultaneous equations are studied to investigate the proposed
method. An optical implementation is considered by the use of spatial coding of intervals, affine
transformation, and image magnification. Computational simulation verifies the principle of the
method. r 1996 Optical Society of America
1. Introduction

In the course of exploring the capabilities of optical
computing, we found the analog optical scheme
attractive because of data capacity and processing
capability provided by the physical characteristics of
light. Various optical processes, such as the Fou-
rier transform and optical matched filters, are good
examples of the scheme.1 However, inherent disad-
vantages also exist in analog optical computing, such
as computational accuracy, dynamic range of data,
and difficulty of implementation. Although the digi-
tal optical scheme2,3 is a practical solution to the
disadvantages, the sampling nature of the digital
scheme greatly reduces the inherent capabilities of
optical computing.
The objective of our research is to develop a new

concept of analog computing with high accuracy and
a large dynamic range of data representation. To
this end, we consider a method for analog optical
computing based on interval arithmetic4 and the
fixed-point theorem.5 As an example, two-variable
simultaneous equations are studied to investigate
the proposed method. In Section 2 the mathemati-
cal basis of themethod is explained with an example.
In Section 3 an optical implementation for a two-
variable problem is described with a simulation
experiment. In Section 4 the features and future
issues of the proposed method are discussed.
When this study was done, the authors were with the Depart-
ment ofApplied Physics, OsakaUniversity, 2-1Yamadaoka, Suita,
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Department of Material and Life Science, Osaka University.
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2. Mathematical Basis

One effective way to accomplish high accuracy in
analog optical computing is to utilize accumulated
resources in computer science. An enormous
amount of effort has been made to improve the
accuracy and efficiency of computation on digital
computers. Among them, the authors found that
interval arithmetic4 and the fixed-point theorem5

provide effective solutions for high-accuracy analog
optical computing.

A. Interval Arithmetic

Interval arithmetic4 is a computational scheme in
which a number is represented by an interval that
includes the object number. The four fundamental
rules are defined as operations on the intervals to
grasp computational error associatedwith implemen-
tation, e.g., limited number of bits in accumulators,
rounding error, etc.
In interval arithmetic, a real number x is repre-

sented by a close interval 3a, b4 where 5x 0a # x # b6.
The four fundamental rules are defined as follows:

3a, b4 1 3c, d4 5 3a 1 c, b 1 d4, 112

3a, b4 2 3c, d4 5 3a 2 d, b 2 d4, 122

3a, b4 ? 3c, d4 5 3min1ac, ad, bc, bd2,

max1ac, ad, bc, bd24, 132

3a, b4@3c, d4 5 3a, b4 ? 31@d, 1@c4. 142

By using these rules, we can exactly grasp the
behavior of the calculated numbers, which guaran-
tees correctness of the computation.
10 March 1996 @ Vol. 35, No. 8 @ APPLIED OPTICS 1367



B. Fixed-Point Theorem

The fixed-point theorem5 indicates the existence of
fixed point x* for mapping f: X = X, if f 1X 2 , X,
where X is a space R and f 1x*2 5 x*. Although
interval arithmetic guarantees computational cor-
rectness, the intervals must be shrunk to increase
computational accuracy. For this purpose, reduc-
tion mapping around a fixed point can be utilized.
Figure 1 shows a conceptual diagram of the tech-

nique. The initial plane is converted into a shrunken
1and rotated or translated2 plane after a mapping, in
which the fixed point is transformed into the same
location. At the same time, an interval located on
the initial plane shrinks and closes to the fixed point.
Therefore, by repeating the same mapping sequen-
tially, we can shrink the area of the interval, which
results in increasing computational accuracy.

C. Computational Algorithm

Various kinds of computational algorithm have been
developed with the above technique.6 To illustrate
the technique, a solution for a simultaneous linear
equation is explained. The target equation is ex-
pressed as

A x 5 b, 152

where A is an n 3 n matrix and x and b are
unknown and known n vectors, respectively. First,
an approximate inverse matrix of A 1denoted by
R 2 and an approximate solution 1denoted by x̃2 are
calculated. It seems strange to assume the calcula-
tion of these approximate values; this assumption
might be a target of criticism, but abstract comput-
ing and accurate computing should be treated as
different techniques. Note that most optical meth-
ods are categorized into the former, but few into the
latter.
Equation 152 can be rewritten as the following

form:

R 1b 2 A x̃2 1 1 I 2 RA 2x* 5 x*, 162

where I is a unit matrix and x̃1 x* gives the correct
solution of Eq. 152.
Referring to Eq. 162, if the right-hand side is

considered as a mapping of a space Rn, x* can be
regarded as the fixed point of the mapping, namely,

g1x*2 5 R 1b 2 A x̃2 1 1 I 2 RA 2x* 5 x* 172

indicates that x* is the fixed point of the mapping g.

Fig. 1. Conceptual diagram of interval shrinking with reduction
mapping around the fixed point. The filled circles and the lines
indicate the fixed point and the intervals, respectively.
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Although Eq. 172 describes mapping of the conven-
tional number representation system, the mapping
can also be applied to interval arithmetic:

g1X2 5 R 1b 2 A x̃2 1 1 I 2 RA 2X, 182

where X is an n vector whose elements are intervals
that represent the range of individual elements of
the vector x*. According to the fixed-point theorem,
if g1X2 , X, the existence of the fixed point x* [ X is
guaranteed.
To ensure convergence of the mapping, the follow-

ing iterative calculation is applied:

X1k2 5 g3X1k2124 > X1k212,

X102 5 X, 1102

where the superscript indicates the iteration number.
As k is increased, X1k2 converges to the fixed point x*.
Consequently the solution of Eq. 152 is given by x̃ 1
X1k2 for sufficiently large k.

D. Numerical Simulation

To illustrate the above algorithm, a simple example
is given. We consider the following two-variable
simultaneous linear equation:

32 4

2 141
x0
x12 5 1322 . 1112

For Eq. 1112, the correct answer is 1x0, x12 5 15@6, 1@32,
which are infinite decimals. As the first step, ap-
proximate inverse matrix R and approximate solu-
tion x̃ are assumed 1or calculated by an appropriate
method2 as follows:

R 5 320.2 0.6

0.3 20.34 ,
x̃ 5 10.80.32 .

According to Eq. 182, the mapping for the given
problem is obtained by R and x̃:

g1x0x12 5 30.2 0.2

0 0.141
x0
x12 1 10.020.032 . 1122

Table 1 shows the time development of the inter-
vals transformed by Eq. 1122, in which the initial

Table 1. Time Development of Transformed Intervals

Iteration x0bottom x0top x1bottom x1top

0 21.0000000 1.0000000 21.0000000 1.0000000
1 20.3800000 0.4200000 20.0700000 0.1300000
2 20.0700000 0.1300000 0.0230000 0.0430000
3 0.0106000 0.0546000 0.0323000 0.0343000
4 0.0285800 0.0377800 0.0332300 0.0334300
5 0.0323620 0.0342420 0.0333230 0.0333430
6 0.0331370 0.0335170 0.0333323 0.0333343



intervals for x0 and x1 are both 321, 14. As seen from
Table 1, both intervals are shrunk as the transform
is repeated. Adding the approximate solution x̃ to
the result of the sixth transformation, we find that
the solution 1x0, x12 exists in the intervals
130.8331370, 0.83351704, 30.333323, 0.33334342.

3. Optical Implementation

The computational algorithm described in Section 2
can be applied to analog optical computing. The
authors found that a rectangle on an image plane, as
shown in Fig. 2, can be used as a representation of
intervals for two variables. For this case, optical
implementation becomes quite simple and elegant.
We consider a method for two-variable simultaneous
linear equations.
With the spatial interval representation, the map-

ping that appeared in the algorithm of Section 2 is
regarded as image transformation. Note that for
two-variable case the transformation is identical to
affine transformation:

g1 xy2 5 3a b

c d41
x

y2 1 1 ef2 . 1132

This fact indicates that the transformation can be
implemented optically with the same optical system
as that used in the optical fractal synthesizer7 shown
in Fig. 3. The optical fractal synthesizer is com-
posed of two branches in which image rotation,
reduction, and translation are executed. The input
plane is imaged onto the output plane through the
two branches. The amounts of rotation angle and
translation of the transformation are specified by the
rotation angle of the Dove prisms 1DP’s2 and the
mirrors 1M’s2, respectively. Reduction is accom-
plished by zoom lenses 1not shown in the figure2.
The output image obtained at the output plane is fed
back to the input plane for the following iteration.
The feedback line is operated either in the clocked
latch-and-transfer mode or in the continuous delay-
transfer mode. Although the feedback is achieved
by a CCD camera directly connected to a CRT
display in the experimental system,7 a parallel feed-

Fig. 2. Spatial coding for two-dimensional data.
back line based on imaging can be used for higher
performance. Consequently, in optical transforma-
tion, all points on an image are mapped at one time
without quantizing error. Therefore parallelism and
continuity of the data plane, which are attractive
features of optics, can be effectively utilized in this
method.
In addition, to extend the dynamic range and the

precision of data representation, magnification of
the image plane is introduced. Because dynamic
range and precision are determined by the spatial
resolution of the image plane, some techniques should
be used to enlarge the image plane effectively. For
this purpose, magnification is an effective and suit-
able solution for optical implementation. To clarify
the procedure, we introduce a plane of attention
1POA2 that indicates the area of observation. The
POA is defined as a rectangle 51x, y2 0x bottom # x # xtop,
ybottom # y # ytop6 that has local coordinate system
51i, j2 00 # i # s, 0 # j # t6. Figure 4 shows the rela-
tionship between the global and the local coordinate
systems. For the local coordinate system, the affine

Fig. 3. Schematic diagram of the optical fractal synthesizer.
DP’s, dove prisms for rotation; M’s, mirrors for translation; BS’s,
beam splitters.

Fig. 4. Relationship between global and local coordinate systems.
Block 1italic2 letters indicate the number in a global 1local2 coordi-
nate system.
10 March 1996 @ Vol. 35, No. 8 @ APPLIED OPTICS 1369



transformation of Eq. 1132 is rewritten as

g1 ij2 5 3 a
a

b
b

b

a
c d 41 ij2 1 1aebf2

1 3a1a 2 12 ab

bc b1d 2 1241
xbottom
ybottom2 , 1142

a 5
s

xtop 2 xbottom
, 1152

b 5
t

ytop 2 ybottom
. 1162

By the use of spatial interval representation and
image magnification, high-accuracy analog optical
computing is accomplished. The processing proce-
dure is shown in Fig. 5. First the initial interval
area is magnified to cover the POA and transformed
with Eq. 1142. Then the transformed area, which is
shrunk, is magnified to cover the POA, and the same
process is repeated. Note that the set operation in
Eq. 192 is nothing but a clipping operation with the
POA. In a usual optical system, the POA corre-
sponds to the plane of observation, e.g., the detector
plane of a CCD, so that the local coordinate system
does not change during iteration. On the other
hand, the global coordinates of POA will vary along
with the iteration. Consequently, by tracing the

Fig. 5. Processing procedure of the optical implementation of
high-accuracy computing algorithm. Block 1italic2 letters indi-
cate boundaries of the POA in a global 1local2 coordinate system.
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global coordinates of the POA, or more exactly the
boundaries of the POA, we can obtain fine intervals,
including the solution of the given equation.
To verify the above principle, an experimental

simulation is attempted. As the target equation,
Eq. 152 is used. 321, 14 is assumed for both initial
intervals. Table 2 shows the time development of
the affine parameters, a, b, c, d, e, and f, in the local
coordinate system and the boundaries of the POA,
xbottom, xtop, ybottom, and ytop, in the global coordinate
system. Figure 6 shows POA’s before and after
transformation at the first–sixth iterations. The
POA is assumed to have discrete local addresses
0–127 for i and j, which corresponds to the addresses
of an array of detectors such as a CCD. As seen
from columns 8–11 of Table 2, the POA, or the area
of the intervals, is shrunk along with the itera-
tion. After the sixth iteration, it is found that the
solution of Eq. 152 is located inside intervals
30.833101, 0.8334524 and 30.333332, 0.3333344 for x0
and x1, respectively.

4. Discussion

The number representation system used in the pro-
posed method is different from conventional ones,
namely, a number is represented by a position on the
POAspecified by the lower and the upper boundaries.
Although thismethod seems complicated, the bound-
aries of the POA have enough information to repre-
sent a number, after the concept of the interval
arithmetic. Actually, for a specific range of the
POA, important information on a number is not the
position in the POA but whether the number is
located inside the POA. If more accuracy is re-
quired, the POAwill be magnified. As a result, both
a large dynamic range and high precision are
achieved with this technique.
Convergence characteristics of the mapping that

appeared in our method depend on the quality of the
approximate inverse matrix R and the approxi-
mate solution x̃. In our simulation, when those
values are far from the correct ones, we could not
obtain the answer, that is, if the mapping provided
by Eq. 182 is not an appropriate one, its transformed
intervals go out of the POA, and the iteration will be
terminated. Therefore, for obtaining a solutionwith
high accuracy, finding good approximate values is
important.
In terms of accuracy, the spatial resolution of the

POA, i.e., the element numbers of the local coordi-
nate on the POA, is an important parameter. We
Table 2. Time Development of Parameters of Affine Transformation and Transformed Intervals

Iteration a b c d e f xbottom xtop ybottom ytop

0 0.2 0.200000 0 0.1 0.020000 0.030000 21.000000 1.000000 21.000000 1.000000
1 0.2 0.200000 0 0.1 39.680000 59.520000 20.390625 0.40625 20.078125 0.125000
2 0.2 0.050980 0 0.1 50.898824 63.212308 20.079346 0.119873 0.021851 0.040894
3 0.2 0.019118 0 0.1 56.442353 69.464615 0.007812 0.051392 0.032116 0.034050
4 0.2 0.008876 0 0.1 59.252437 72.513136 0.027900 0.036752 0.0033204 0.033400
5 0.2 0.004438 0 0.1 62.481293 75.944725 0.032187 0.033985 0.033319 0.033339
6 0.2 0.002219 0 0.1 65.054251 83.148058 0.033101 0.033452 0.033332 0.033334



examine the same simulation as described in Section
3 with three different spatial resolutions, 32, 64, and
128, for each dimension. Usually the iteration is
terminated when the transformed intervals go out of
the POA. According to the simulation result, the
iteration numbers before termination for individual
spatial resolutions are 3, 6, and 13, respectively.
In general, as the iteration number is increased, the
accuracy of the final result will be improved.
Therefore a sufficient number of spatial resolutions
are required for obtaining high accuracy, while the
quantitative relationship between spatial resolution
and accuracy remains the feature study.
There are many practical issues for implementing

the proposed method: accuracy in the controlling
optical system, processing speed, flexibility of process-
ing, etc. Although most of them are future works,
we point out two significant views on the proposed
method.
The first point is that fabrication and controlling

issues on the proposed method have something in
common with those of optical fine instruments and
apparatus. In both cases, fine mechanics plays an
important role, and a lot of resources and techniques
accumulated in the field are expected to be utilized.
The method of computation proposed in this paper is
regarded as a technique that converts a computing
scheme into a suitable form for conventional technolo-
gies in optics.
The second point is the analogy of the proposed

method with the gazing mechanism of the human

Fig. 6. Simulation result of computing of Eq. 152. POA’s before
and after transformation at first–sixth iterations are shown.
visual system. Finding and concentrating a target
is an example of sophisticatedmechanisms to accom-
plish flexibility and a large dynamic range for sens-
ing information by human visual system. The pro-
cedure executed in the proposed method is nothing
but the same operation as gazing. Therefore the
proposed scheme is expected to be a hint of optical
computing associated with human visual processing.
Finally, we comment on the limitation of the

proposed technique on the matrix size. As de-
scribed in the beginning of Section 3, the proposed
method treats two variables as a rectangle on an
image plane. This spatial encoding is an essential
idea of the proposed method and also imposes a
limitation on the variable number. Namely, accord-
ing to the dimensionality of image plane, the vari-
able number is fixed as two. This fact prevents us
from extending the size of matrices A and R to
more than two. Thus the discussion in this paper is
valid only for a two-variable problem, as shown in
Table 1. Although the authors recognize that this is
a serious drawback of our technique, we also believe
the proposed method shows a capability of analog
optical computing. A technique for extending the
matrix size is an important issue for future study.

5. Conclusion

A method for high-accuracy analog optical comput-
ing based on interval arithmetic and the fixed-point
theorem has been considered. Two-variable simul-
taneous equations have been studied to investigate
the proposed method. An optical implementation is
considered by the use of spatial coding of intervals, a
fine transformation, and imagemagnification. Com-
putational simulation verifies the principle of the
method.
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