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1. Introduction.

The aim of this paper is to develop a new method for establishing the
similarity for a pair of linear operators in an ordered Banach space $X$ over $C$.
Consider a pair of (in general unbounded) linear operators $B_{1}$ and $B_{2}=B_{1}+A$

with $A$ a bounded operator, and assume that both $-B_{1}$ and $-B_{2}$ generate the
bounded $C_{0}$-groups on $X$. Assume, in addition, that $e^{-tB_{1}}$ and $-A$ are positivity
preserving, and that $A$ is $(-iB_{1},1)$-smooth. Then we show that $B_{2}$ is similar
to $B_{1}$ (see Theorem 1 in section 2). The similarity of $B_{2}$ to $B_{1}$ is established
by constructing both the wave operator $W_{+}(B_{2}, B_{1})=s$-lim $tarrow+\infty^{e^{tB_{2}}e^{-tB_{1}}}$ and the
inverse wave operator $W_{+}(B_{1}, B_{2})=s$-lim $tarrow+\infty^{e^{tB_{1}}e^{-iB_{2}}}$ . To do this, we simply use
Cook’s method. Our technique depends heavily upon both $e^{-tB_{1}}$ and $-A$ being
positivity preserving.

There is some literature on the theory of smooth perturbations. Kato [7]

dealt with a perturbed operator of the form $T(\kappa)=T+\kappa V(\kappa$ being a small
complex-parameter) in a Hilbert space and established the similarity of $T(\kappa)$ to
$T$ . Kato’s result has been extended to a reflexive Banach space setting by Lin
$[9, 10]$ , and to a not necessarily reflexive Banach space setting by Evans [3].

These authors need to factorize the perturbation $V$ into the form $D^{*}C$ , where
$C$ is T-smooth and $D$ is $\tau*$-smooth. We do not use such factorization, however.

Our theory of smooth perturbations is applicable to the linear transport
operator (Boltzmann operator) in multiple scattering problem. We consider the
linear transport operator

$(-Bu)(x, \xi)=-\xi\cdot\nabla_{x}u(x, \xi)-\sigma(x, \xi)u(x, \xi)$

$+ \int_{R^{d}}k(x, \xi’, \xi)u(x, \xi’)d\xi’$ $(x\in R^{d}, \xi\in R^{d})$

as a perturbation of the collisionless transport operator $-B_{0}=-\xi\cdot\nabla_{x}$ . Here $\sigma$
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and $k$ denote the collision frequency and the scattering kernel respectively.
(For references to the literature on the transport operator in multiple scattering
problem, see Kaper-Lekkerkerker-Hejtmanek [6], Reed-Simon [12].) Our basic
assumptions are that the pair $(k, \sigma)$ is regular and has finite mean free path
(see section 3). We work in the Banach space $L^{1}(R_{x.\xi}^{2d})$ , since $L^{1}(R_{x,\xi}^{2d})$ is a
natural space fcr the linear transport operator.

While scattering theory for the transport operator has received much atten-
tion in recent years (see [2, 4, 5, 13, 14, 15]), there are no known results con-
cerning the similarity for the transport operators. We are unable to use the
results of [7, 9, 10] to establish the similarity of the transport operator $-B$ to
the collisionless transport operator $-B_{0}$ , since our work is carried out in the
non-reflexive Banach space $L^{1}$ . Even in the setting of [3], it is difficult to treat
the pair $B,$ $B_{0}$ .

In section 2 we discuss a theorem concerning smooth perturbations in ordered
Banach spaces. As an application we deal with the transport operator and
establish the similarity of $B$ to $B_{0}$ in section 3.

This research was inspired by Reed-Simon [12, section 12].

It is a pleasure to thank Professor T. Ikebe and Doctor H. Isozaki for help-
$ful$ discussions.

2. Smooth perturbations.

The task of this section is to establish the similarity for generators of some
bounded $C_{0}$-groups on ordered Banach spaces over $C$. Before stating the main
theorem of this section we give some preliminaries.

Let $(E, E_{+}, \Vert\cdot\Vert)$ be an ordered Banach space. Throughout this section we
assume that the positive cone $E_{+}$ is generating, $i$ . $e.$ ,

(2.1) $E=E_{+}-E_{+}$ ,

and that the norm is $\alpha$-monotone, $i$ . $e.$ ,

(2.2) $0\leqq a\leqq b$ implies $\Vert a\Vert\leqq\alpha\Vert b\Vert$ .

For terminology on ordered Banach spaces, we refer to Batty-Robinson [1].

We define the complexification of $(E, E_{+}, \Vert\cdot\Vert)$ to be the complex Banach
space $X=E+iE$ equipped with the norm

$\Vert u\Vert=\frac{1}{4}\int_{0}^{2\pi}\Vert(\cos\theta)a+(\sin\theta)b\Vert d\theta$

for $u=a+ib\in X$, with $a,$ $b\in E$ . Then $X$ is called an ordered Banach space over $C$.
A bounded linear operator $T$ on an ordered Banach space $X$ over $C$ is de-

fined to be Positivity preservjng $(T\geqq 0)$ if $TE_{+}\subseteqq E_{+}$ . We write $S\geqq T$ if $S-T\geqq 0$ .
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The following lemma is easy to prove.

LEMMA 2.1. Let $S,$ $T$ and $R$ be bounded linear operafOrs on an ordered
Banach space over $C$.

(a) If $S\geqq T$ and $R\geqq 0$ , then $SR\geqq TR$ and $RS\geqq RT$.
(b) If $S\geqq T\geqq 0$ , then $S^{n}\geqq T^{n}\geqq 0$ for all integers $n\geqq 1$ .

We now consider a pair $B_{1},$ $B_{2}$ of linear operators in an ordered Banach
space $X$ over $C$, where $B_{2}=B_{1}+A$ and $A$ is a bounded linear operator on $X$.
We make the following assumptions on $B_{1},$ $B_{2}$ and $A$ .

(I) The operator $-B_{1}$ generates a $C_{0}$-group on $X$ such that

$\Vert e^{-tB_{1}}\Vert\leqq M_{1}$

for all $t\in R$ , for some constant $M_{1}>0$ .
$(\Pi)$ $-A\geqq 0$ and $e^{-tB_{1}}\geqq 0$ for all $t\in R$ .
(m) There exists a constant $M_{2}>0$ such that

$\Vert e^{-tB_{2}}\Vert\leqq M_{2}$

for all $t\in R$ .

REMARK. Since $A$ is a bounded operator on $X,$ $-B_{2}$ generates a $C_{0}$-group
on $X$ ; see Kato [8, Theorem 2.1, p. 497] or Umeda [14, Proposition in Ap-
pendix].

We can now state the main theorem in this section which establishes the
similarity of $B_{2}$ to $B_{1}$ .

THEOREM 1. SuPpose (I), (II) and (m) hold. SuPpose also

(2.3) $\int_{-\infty}^{\infty}\Vert Ae^{-tB_{1}}u\Vert dt<+\infty$

for all $u\in E_{+}$ . Then the wave oPerafors $W_{+}(B_{2}, B_{1}),$ $W_{+}(B_{1}, B_{2})$ exist, and Possess
the following Properties:

(i) $W_{+}(B_{2}, B_{1})W_{+}(B_{1}, B_{2})=W_{+}(B_{1}, B_{2})W_{+}(B_{2}, B_{1})=I$ .
(ii) $B_{2}=W_{+}(B_{2}, B_{1})B_{1}W_{+}(B_{2}, B_{1})^{-1}$ .

To prove this theorem, we need a few lemmas. The following lemma plays
a crucial role in our analysis.

LEMMA 2.2. SuPpose (I) and (If) hold. Then $e^{-tB_{2}}\geqq e^{-tB_{1}}$ for all $t\geqq 0$ . In
particular, $e^{-iB_{2}}\geqq 0$ for all $t\geqq 0$ .

PROOF. Recall first that the positive cone $E_{+}$ is a closed subset of $X$.
Now the statement is immediate from Lemma 2.1 and the Dyson-Phillips

expansion of $e^{-tB_{2}}$ in terms of $e^{-tB_{1}}$ ; cf. Kato [8, Theorem 2.1, p. 497]. Q.E.D.
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LEMMA 2.3. SuPpose (I), $(\Pi)$ and (m) hold. SuPpose also

(2.4) $\int_{-\infty}^{0}\Vert Ae^{-tB_{1}}u\Vert dt<+\infty$

for all $u\in E_{+}$ . Then

$\int_{0}^{\infty}\Vert Ae^{-tB_{2}}u\Vert dt<+\infty$

for all $u\in E_{+}$ .
REMARK. In terms of smooth perturbations (see Lin [9, Definition 2.4]),

the condition (2.4) means that $A$ is $(-iB_{1},1, -)- smooth$ . So the lemma above
may be stated as follows: Suppose (1), (II) and (m) hold, and that $A$ is
$(-jB_{1},1, -)- smooth$ . Then $A$ is $(-iB_{2},1, +)$-smooth.

PROOF OF LEMMA 2.3. First, note that (2.4) holds for all $u\in X$, since $E_{+}$

is generating (see (2.1)), that is, since every $u$ belonging to $X$ can be written
in the form $u=u_{1}-u_{2}+i(u_{3}-u_{4})$ with $u_{j}\in E_{+}$ where $j=1,$ $\cdots$ , 4. Then, aPply-
ing the principle of uniform boundedness (see Kato [8, Theorem 1.29, p. 136]),

we find a constant $C>0$ such that

(2.5) $\int_{-\infty}^{0}\Vert Ae^{-tB_{1}}u\Vert dt\leqq C\Vert u||$

for all $u\in X$.
Next, let $r>0$ be given, and suppose $0\leqq t\leqq r$ . By Lemma 2.1 (a) and Lemma

2.2, we see that
$e^{-\gamma B_{2}}\geqq e^{-(r-t)B_{1}}e^{-tB_{2}}\geqq 0$ .

Using Assumption (II) and Lemma 2.1 (a), we get

$-Ae^{(r-t)B_{1}}e^{-rB_{2}}u\geqq-Ae^{-tB_{2}}u\geqq 0$

for all $u\in E_{+}$ . Hence we have by (2.2)

$\Vert Ae^{-tB_{2}}u\Vert\leqq\alpha\Vert Ae^{(r- t)B_{1}}e^{-rB_{2}}u\Vert$

for all $u\in E_{+}$ . Then, integration with respect to the variable $t$ and a change
of variable give

$\int_{0}^{\tau}\Vert Ae^{-tB_{2}}u\Vert dt\leqq\alpha\int_{-r}^{0}\Vert Ae^{-tB_{1}}e^{-rB_{2}}u\Vert dt$ .

Due to (2.5) and Assumption (m), the right-hand side of this inequality is
bounded by $\theta CM_{2}\Vert u\Vert$ . Since $r$ was arbitrary, the conclusion follows. Q. E. D.

We are in a position to prove the main theorem in this section.
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PROOF OF THEOREM 1. Since $A$ is a bounded operator on $X$, a standard
argument shows that

(2.6) $e^{tB_{2}}e^{-tB_{1}}u=u+ \int_{0}^{t}e^{sB_{2}}Ae^{-sB_{1}}uds$ ,

(2.7) $e^{tB_{1}}e^{-tB_{2}}u=u- \int_{0}^{t}e^{sB_{1}}Ae^{-sB_{2}}uds$

for all $u\in X$. By (2.3) and Assumption (m), the strong limit for $tarrow\infty$ of the
left-hand side of (2.6) exists for all $u\in E_{+}$ . Then the existence of the wave
operator $W_{+}(B_{2}, B_{1})$ follows from the fact that $E_{+}$ is generating. Similarly, the
formula (2.7), together with (2.3), Assumption (I) and Lemma 2.3, implies the
existence of the wave operator $W_{+}(B_{1}, B_{2})$ .

It remains to show the properties (i) and (ii). Notice that

$e^{tB_{2}}e^{-tB_{1}}\cdot e^{tB_{1}}e^{-tB_{2}}=e^{tB_{1}}e^{-iB_{2}}\cdot e^{tB_{2}}e^{-tB_{1}}=I$ .
By letting $tarrow\infty$ , we obtain (i). To show (ii), it suffices to note the intertwining
property

$e^{-tB_{2}}W_{+}(B_{2}, B_{1})=W_{+}(B_{2}, B_{1})e^{-tB_{1}}$ .

Indeed, by taking the Laplace transform of both sides, we can easily deduce (ii).

Q. E. D.

3. An application to the transport operators.

In this section we shall apply Theorem 1 obtained in the preceding section
in order to establish the similarity for the transport operator $-B$ to the colli-
sionless transport operator $-B_{0}$ . As mentioned in the introduction, we work in
the complex Banach space $L^{1}$ . It should be noted that $L^{1}$ equipped with the
usual norm $\Vert\cdot\Vert_{1}$ coincides with the complexification of the ordered Banach space
$(L_{R}^{1}, L_{+}^{1}, \Vert\cdot\Vert_{1})$ ; here $L_{R}^{1}$ and $L_{+}^{1}$ respectively denote the space of real functions
in $L^{1}$ and the cone of positive functions in $L^{1}$ . It should also be noted that the
positive cone $L_{+}^{1}$ is generating, and that the norm $\Vert\cdot\Vert_{1}$ is l-monotone.

We first introduce a definition. The pair $(k, \sigma)$ of the scattering kernel
and the collision frequency is defined to be admissible if the following conditions
hold:

(i) $k(x, \xi’, \xi)$ is a nonnegative measurable function on $R^{3d}$ and $\sigma(x, \xi)$ is
a nonnegative measurable function on $R^{2d}$ ;

(ii) For each $(x, \xi’),$ $k(x, \xi’, )$ is in $L^{1}(R_{\xi}^{d})$ ;

(iii) $\sigma(x, \xi)$ and $\sigma_{s}(x, \xi)=\int k(x, \xi, \xi’)d\xi’$ are bounded functions on $R^{2d}$ .
We make the following assumptions on the admissible pair.
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(A) $F( \sigma)=essx.\xi\sup\int_{-\infty}^{\infty}\sigma(x-\tau\xi, \xi)d\tau<+\infty$ .

(B) $F(\sigma_{s})<+\infty$ .

We now define the collisionless transport operator $-B_{0}$ to be the closure of
the operator defined on $C_{0}^{\infty}(R_{x.\xi}^{2d})$ by

$(-B_{0}u)(x, \xi)=-\xi\cdot\nabla_{x}u(x, \xi)$ .

It is well-known [12, p. 244] that $-B_{0}$ is the infinitesimal generator of a $C_{0^{-}}$

group of positivity preserving isometries on $L^{1}(R^{2d})$ and that

(3.1) $(e^{-tB_{0}}u)(x, \xi)=u(x-t\xi, \xi)$ .

The penetration operator $-B_{1}$ is defined to be the perturbation of the collision-
less transport operator $-B_{0}$ by the bounded operator

$(-A_{1}u)(x, \xi)=-\sigma(x, \xi)u(x, \xi)$ , $u\in L^{1}(R^{2d})$ ,

$i$ . $e.,$ $-B_{1}=-B_{0}-A_{1}$ . As mentioned in the remark following Assumption (m)

in the preceding section, $-B_{1}$ generates the $C_{0}$-group on $L^{1}(R^{2d})$ . Then it is
easily seen that $e^{-tB_{1}}$ is given by the expression

(3.2) $(e^{-tB_{1}}u)(x, \xi)=u(x-t\xi, \xi)\exp(-\int_{0}^{t}\sigma(x-\tau\xi, \xi)d_{T})$

for all $t\in R$ . Finally, we define the transport operator $-B$ to be the perturba-
tion of the penetration operator $-B_{1}$ by the bounded operator

(3.3) $-(A_{2}u)(x, \xi)=\int k(x, \xi’, \xi)u(x, \xi’)d\xi’$ $u\in L^{1}(R^{2d})$ ,

$i$ . $e.,$ $-B=-B_{1}-A_{2}$ . Then, $-B$ also generates the $C_{0}$-group on $L^{1}(R^{2d})$ .
We now state the main theorem in this section which establishes the simi-

larity for the transport operator $-B$ to the collisionless transport operator $-B_{0}$ .

THEOREM 2. Let $(k, \sigma)$ be admisstble. $SuPPose(A)$ and (B) hold. SuppOse
also

(3.4) $F(\sigma_{s})\exp(F(\sigma))<1$ .

Then the wave operatOrs $W_{+}(B, B_{0}),$ $W_{+}(B_{0}, B)$ exist, and possess the following
properties:

(i) $W_{+}(B, B_{0})W_{+}(B_{0}, B)=W_{+}(B_{0}, B)W_{+}(B, B_{0})=I$ .
(ii) $B=W_{+}(B, B_{0})B_{0}W_{+}(B, B_{0})^{-1}$ .

Physically speaking, Theorem 2 has an interesting corollary. Before stating
it, we introduce two dePnitions. The admissible pair $(k, \sigma)$ is said to be regular
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if there is a compact set $D$ in $R_{x}^{d}$ such that $k(x, \xi’, \xi)$ and $\sigma(x, \xi)$ vanish when-
ever $x\not\in D$ . The admissible pair is said to have finite mean free pafh if

$M( \sigma)=\sup_{x,\xi}\frac{1}{|\xi|}\sigma(x, \xi)<+\infty$ .

We also need $M(\sigma_{s})$ defined in the same manner as above.

COROLLARY. Let $(k, \sigma)$ be regular and have finite mean free path. Supp0se

$M(\sigma_{s})(diamD)\exp$ ( $M(\sigma)$ diam $D$) $<1$ .

Then the conclusions of Theorem 2 hold.

PROOF. By a change of variable we have

$\int_{-\infty}^{\infty}\sigma(x-\tau\xi, \xi)d\tau\leqq M(\sigma)$ diam $D$ ,

hence
$F(\sigma)\leqq M(\sigma)$ diam $D$ .

Similarly, we have
$F(\sigma_{s})\leqq M(\sigma_{s})$ diam $D$ .

Thus we can apply Theorem 2. Q. E. D.

Theorem 2 is an immediate consequence of the following two theorems.
The first establishes the similarity for the penetration operator $-B_{1}$ to the col-
lisionless transport operator $-B_{0}$ , whereas the second establishes the similarity
for the transport operator $-B$ to the penetration oPerator $-B_{1}$ .

THEOREM 3. Let $(k, \sigma)$ be admisstble. SuppOse(A) holds. Then all the wave
oPerators $W_{\pm}(B_{1}, B_{0}),$ $W_{\pm}(B_{0}, B_{1})$ exist, and possess the following Properries:

(i) $W_{\pm}(B_{1}, B_{0})W_{\pm}(B_{0}, B_{1})=W_{\pm}(B_{0}, B_{1})W_{\pm}(B_{1}, B_{0})=I$ .
(ii) $B_{1}=W_{\underline{+}}(B_{1}, B_{0})B_{0}W_{\pm}(B_{1}, B_{0})^{-1}$ .

THEOREM 4. Let $(k, \sigma)$ be admissible. SuPpose (A) and (B) hold. SuPpose
also (3.4) holds. Then the wave operators $W_{+}(B, B_{1}),$ $W_{+}(B_{1}, B)$ exist, and possess
the following Properties:

(i) $W_{+}(B, B_{1})W_{+}(B_{1}, B)=W_{+}(B_{1}, B)W_{+}(B, B_{1})=I$ .
(ii) $B=W_{+}(B, B_{1})B_{1}W_{+}(B, B_{1})^{-1}$ .

We first prove Theorem 3 which is rather trivial. The expressions (3.1)

and (3.2) enable us to show, without using Cook’s method, the existence of the
wave operators.

PROOF OF THEOREM 3. It suffices to show the existence of the wave
operators $W_{\pm}(B_{1}, B_{0})$ and $W_{\pm}(B_{0}, B_{1})$ . For $u\in L^{1}(R^{2d})$ and $t\in R$ , we have
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$e^{tB_{1}}e^{-tB_{0}}u=u \exp(-\int_{0}^{-t}\sigma(x-\tau\xi, \xi)d_{T})$ ,

$e^{tB_{0}}e^{-tB_{1}}u=u \exp(-\int_{-t}^{0}\sigma(x-\tau\xi, \xi)d_{T})$ ,

by (3.1) and (3.2). Then, the Lebesgue dominated convergence theorem, together
with (A), shows the existence of $W_{\pm}(B_{1}, B_{0})$ and $W_{\pm}(B_{0}, B_{1})$ . Q. E. D.

LEMMA 3.1. For $u\in L^{1}(R^{2d})$

$\int_{-\infty}^{\infty}\Vert A_{2}e^{-tB_{1}}u\Vert dt\leqq F(\sigma_{s})\exp(F(\sigma))\Vert u\Vert$ .

PROOF. By the definitions of $A_{2},$
$\sigma_{s}$ , and $F(\sigma)$ , we have

(3.5) $\Vert A_{2}e^{-tB_{1}}u\Vert\leqq\exp(F(\sigma))\int_{R^{2d}}|u(x, \xi)|\sigma_{s}(x+t\xi, \xi)dxd\xi$ .

Here we made a change of variables. Integrating both sides of (3.5) with
respect to the variable $t$ , and using the definition of $F(\sigma_{s})$ , we obtain the
desired inequality. Q. E. D.

Finally, we prove Theorem 4.

PROOF OF THEOREM 4. We apply Theorem 1 in the preceding section. We
take $-B_{2},$ $-B_{1}$ and $-A$ in Theorem 1 respectively to be the transport operator
$-B$ , the penetration operator $-B_{1}$ , and the $operator-A_{2}$ defined by (3.3). Then,
using (3.2) and (A), we can easily check that Assumption (I) holds. It is clear
from (3.2) and (3.3) that Assumption (II) holds. Furthermore, Lemma 3.1 implies
that (2.3) in Theorem 1 holds for all $u\in L^{1}$ . Finally, we have to verify Assump-
tion (m). To this end, we exploit Duhamel’s formula:

$e^{-iB}=e^{-tB_{1}}- \int_{0}^{t}e^{-(t- s)B}A_{2}e^{-sB_{1}}ds$ .

Now let $T>0$ be given, and suppose $0\leqq t\leqq T$. Then, we have

$|Ie^{-tB}u\Vert\leqq$ I $u \Vert+(\sup_{0\leq s\leq T}\Vert e^{-sB}\Vert)\int_{0}^{t}$ II $A_{2}e^{-sB_{1}}u$ II $ds$

for all $t\in[0, T]$ and all $u\in L^{1}$ . By Lemma 3.1, the integral in the right-hand
side of the above inequality is bounded by $F(\sigma_{s})$ exp $(F(\sigma))\Vert u\Vert$ . Hence, we get

$\sup_{0\leqq t\leq T}\Vert e^{-tB}\Vert\leqq 1+(\sup_{0\leqq t\subseteq T}\Vert e^{-tB}\Vert)M$

($M$ denoting the constant $F(\sigma_{s})\exp(F(\sigma))$ ) which by (3.4) implies that

$\sup_{0\leqq t\leq T}\Vert e^{-tB}\Vert\leqq\frac{1}{1-M}<+\infty$ .
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Similarly, we have

$\sup_{- T\leqq t\leqq 0}\Vert e^{-tB}\Vert\leqq\underline{ex}_{1^{\frac{p(F(\sigma))}{-M}<}}+\infty$ .

Since $T$ was arbitrary, Assumption (m) is verified. Thus all assumptions of
Theorem 1 are satisfied, and the conclusions of Theorem 4 follow. Q. E. D.
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