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Iconic Memory-Based Omnidirectional
Route Panorama Navigation

Yasushi Yagi, Member, IEEE, Kousuke Imai, Kentaro Tsuji, and Masahiko Yachida

Abstract—A route navigation method for a mobile robot with an omnidirectional image sensor is described. The route is memorized

from a series of consecutive omnidirectional images of the horizon when the robot moves to its goal. While the robot is navigating to the

goal point, input is matched against the memorized spatio-temporal route pattern by using dual active contour models and the exact

robot position and orientation is estimated from the converged shape of the active contour models.

Index Terms—Omnidirectional vision, route panorama, localization, navigation, active contour model.

�

1 INTRODUCTION

Areal-time omnidirectional camera that can acquire an
omnidirectional (360 degrees) field of view at a video

rate has applications in a variety of fields; one such area is
that of autonomous navigation. Several researchers have
investigated geometrically-based and iconic memory-based
navigation methods using omnidirectional image sensors.
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

Iconic memory-based navigation is a common approach
for visual navigation; its basic operation is a comparison
between the present sensory input and previously memor-
ized images. It is easy to relate a robot’s action and sensory
data without a geometrical model. Zheng and Tsuji’s robot
memorized the sideof sceneof a route fromapanoramicview
while it moved along the route [13]. Matsumoto et al.’s robot
memorized the whole front view image at reference points
along the route for visual navigation [14]. The correspon-
dences between a present input image and previously
memorized images were established using dynamic pro-
gramming (DP) matching and correlation methods, respec-
tively. Ishiguro and Tsuji have proposed a compact
representation by expanding it into a Fourier series [15]. Each
input image is memorized by the coefficients of the low-
frequency components. KL transformation is another ap-
proach to compress memorized data [16], [17]. Ulrich and
Nourbakhsh memorized utilizing a simple color histogram
and navigated their mobile robot in both indoor and outdoor
environments [18].

Most of these previous iconic memory-based approaches,
in essence, select the image that corresponds to an input
image from discretely memorized images. This means that it
is impossible to estimate the position and orientation of the
robot when it substantially deviates from a memorized path

or the intervals between the memorized positions are too
great. Therefore, the precision of position and orientation of a
mobile robot depends on the spatial sampling density of a
moving space. However, to precisely estimate a robot’s
position, these methods need large numbers of images to
effectively memorize a moving space.

In this paper, we propose a new iconic memory-based
navigation method that synthesizes a corresponding image
pattern from an omnidirectional route panorama (ORP) that
can be acquired by arranging points on the horizontal plane
which passes through the virtual center of the lens and is
taken by the robot moving along a route. The proposed
method searches for a corresponding image pattern on the
ORP. In reality, active contour models (ACMs) are used, and
the position and orientation of the robot are estimated from
the converged shape of theACMs. The amount ofmemorized
image data is small and themethod is suitable for navigation
over long distances. Furthermore, the robot position and
orientation can be estimated, another definite positive
advantage of the proposed method.

In a previous work, we used an ORP for iconic memory-
based navigation [19]. However, the method transformed
the window region, in a certain number of past frames of
the ORP, which is a standard unit of a spatio-temporal
representation, to a 2D Fourier power spectrum. The route
was then memorized by a series of 2D Fourier power
spectra. While the robot is navigating towards the goal
point, it is controlled by comparisons with the pattern of the
memorized Fourier power spectrum and its principal axis
of inertia. The method can directly represent the temporal
and spatial relations between environment and the robot,
but it cannot estimate the exact robot position and
orientation. In this earlier method, the robot was controlled
by a visual-servo-like technique.

2 OMNIDIRECTIONAL ROUTE PANORAMA

A robot moving along a route can observe objects in many
directions, with a sensor being needed to view the
environment around the robot so that it can navigate safely.
We have proposed several omnidirectional image sensors
such as COPIS, MISS, and HyperOmniVision for robot
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navigation [6], [7], [5]. The method proposed here uses the
image sequence of a horizontal part of the omnidirectional
image, the ORP, while the robot continuously scans the
view along the route.

2.1 Optical Relation of HyperOmni Vision

The hyperboloidal surfaces can be obtained by revolving
hyperbola around the Z axis and having two focal points at
ð0; 0þ cÞ and ð0; 0;�cÞ, as shown in Fig. 1. Using a world
coordinates system ðX;Y ; ZÞ, the hyperboloidal surface can
be represented as:

X2 þ Y 2

a2
� Z2

b2
¼ �1

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
;

ð1Þ

where a and b define the shape of a hyperboloidal surface.

We use one of the hyperboloidal surfaces at z > 0 as a

mirror. HyperOmni Vision consists of a CCD camera and a

hyperboloidal mirror. The focal point of the hyperboloidal

mirror OM and the center of camera lens OC are fixed at the

focal points of the hyperboloidal surfaces ð0; 0; cÞ and

ð0; 0;�cÞ, respectively, and the axis of the camera is aligned

with that of the hyperboloidal mirror. The image plane is

placed at a distance f (focal length of camera) from the

camera lens center OC and is parallel to the XY plane.
A brief description of how a point P in space is reflected

by a hyperboloidal mirror and projected on an image plane
follows. A ray going from the point P ðX;Y ; ZÞ in space
toward the focal point of the mirror OM is reflected by the
mirror and passes through another focal point OC that
intersects the image plane at a point pðx; yÞ. Any point in
space in the field of view (360 degrees around the Z axis) of
the hyperboloidal projection satisfies this relation. There-
fore, an omnidirectional image of the scene on the image
plane can be obtained with a single center of projection OM .

A hyperboloidal mirror yields the image of a point in
space on a vertical plane through the point and its axis.

Thus, the point P at ðX;Y ; ZÞ is projected onto the image
point p at ðx; yÞ such that

tan � ¼ Y

X
¼ y

x
: ð2Þ

The angle in the image which can be easily calculated as

y=x shows the azimuth angle � of the point P in space. It is

also easily understood that all points with the same azimuth

in space appear on a radial line through the image center.
By simple geometrical analysis, equations relating the

point in space P ðX;Y ; ZÞ and its image point on the image
plane pðx; yÞ can be derived as follows:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y 2

p
tan�þ c

� ¼ tan�1 ðb2 þ c2Þ sin � � 2bc

ðb2 � c2Þ cos �

� ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
f

 !
;

ð3Þ

where � denotes the tilt angle of the point P from the
horizontal plane, f is the focal length of camera lens, and a, b,
and c are parameters defining the shape of the hyperboloidal
mirror. This method uses an image on a horizon and, so, the
above equations are rewritten as follows:

ðb2 þ Z2Þ sin � ¼ 2bZ

� ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
f

 !
:

ð4Þ

From (4), � is independent ofX and Y . Thismeans that the

patterns on theheightZ invariably appear on the same radius

in the omnidirectional image, as shown in Fig. 2. The black

circle is the horizontal position in the omnidirectional image.

2.2 Definition of ORP

The robot begins to move and takes an image sequence.

Each omnidirectional image is transformed into 2D polar
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Fig. 1. Hyperboloidal projection has characteristics of a single center of
projection.

Fig. 2. Points on the horizontal plane that pass through the virtual center
of the lens appear as a circle on an omnidirectional image.



coordinates (r; �) (r ¼ Rðx2 þ y2Þ), called an omnidirectional

panorama image. Points on the horizontal plane, which

pass through the virtual center of the lens, appear as a

straight line on the omnidirectional panorama image

(drawn by the white line), as shown in Fig. 3a. This straight

line is taken as a horizontal line. An ORP can be organized

by arranging horizontal lines taken by the robot moving

along the route, as shown in Fig. 3b. The ORP representa-

tion reduces the memory requirement for scene description.

For instance, let’s consider the case that the memory size of

each horizontal line is 360 byte (1byte=deg). Since the scene

is recorded every 10 cm and the robot moves 1 km, we need

just 3.6 Mbyte for scene description.

3 ROBOT LOCALIZATION BY SYNTHESIS

Under a precisely known robot motion, an arbitrary view-
point image can be synthesized by stitching parts of
consecutive images [20], [21]. Let us consider camera position
RtðxðtÞ; yðtÞÞ, where the iconic-memory is organized, virtual
view position P ðPx; PyÞ, and orientation �p relative to the
camera coordinates, as shown inFig. 4. Since thedirection of a
vertical line at P ðPx; PyÞ is �ðtÞ and the robot orientation is �p,
we can expand the vertical line toward amemorizedpath and
calculate the intersection RtðxðtÞ; yðtÞÞ. Among P ðPx; PyÞ,
�ðtÞ, �p, and RtðxðtÞ; yðtÞÞ, we have the following relation:

� tð Þ � �p ¼ arctan
Py � y tð Þ
Px � x tð Þ : ð5Þ

Then, we consider that the vertical image pattern along
azimuth angle � tð Þ at RtðxðtÞ; yðtÞÞ is the same as that at
P ðPx; PyÞ. The panoramic image at the virtual viewpoint
P ðPx; PyÞ is generated by stitching each vertical image
pattern. In this case, the image pattern at the virtual
viewpoint is estimated under given geometrical positions
such as the memorized path, the virtual viewpoint, and the
given iconic memory. From the principle of duality, if the
image at a certain viewpoint, the iconic memory, and the
memorized path are given, the position and orientation of
the robot can be estimated. Our method is based on this
concept. Fig. 5 shows an example of an ORP when the
memorized path is straight and constantly sampled. In this
case, the viewpoint is at the left side of the memorized path
and the orientation of the robot is parallel to the path; then,
the same image pattern lies on the tangent curve defined by
(5). From these relations, we can estimate the robot position
and orientation by searching tangent curves so that the
image pattern is the same as the input. In practice, a
position in the ORP where the image pattern is the same as
the input is found by using an ACM.

Here, Kawasaki et al. [22] have proposed a camera
position estimation method that matches the epipolar-plane
image (EPI) obtained from the camera motion to the EPI
generated from a CAD model by using DP matching. It is
possible to find correspondence if the difference between the
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Fig. 3. Omnidirectional route panorama.

Fig. 4. Relation between memorized path and virtual viewpoint.

Fig. 5. Relation between iconic memory (memorized ORP) and virtual
viewpoint.



two EPIs is small, but, in general, it is difficult to precisely
model a complex scene. Furthermore, an environment in
which a robot moves freely is not always stationary because
of the appearance of unknown obstacles andmoving objects.

The method we propose here does not need a
3D environmental model. By utilizing the global shape
constraints of an active contour model, our proposed
method can be applied to a dynamic environment where
objects move around.

4 ACTIVE CONTOUR MODEL (ACM) FOR

SEARCHING A CORRESPONDING IMAGE PATTERN

An image pattern on an ORP that corresponds to an input is
searched by an ACM. The advantage of using an ACM is
that several different types of contour characteristics, such
as image features, shape models, and smoothness of
contours, can be defined using simple functions. Our
proposed ACM actually consists of two ACMs. Corre-
sponding control points placed on each of the ACMs are
coupled and have a gravitational force. Then, the ACMs
converge from both sides of a desired position in the ORP
where the image pattern is the same as the input.

4.1 Outline

We assume that the rough initial position of the robot, the

memorized path, and the iconic memory of the ORP during

navigation are given and that the robot has an internal

sensor for measuring its movement. Since the rough initial

position of the robot and the iconic memory of the ORP are

given, the robot can roughly predict the position of the

image pattern on the iconic memory of the ORP from (5).

However, the predicted position usually has observational

and prediction errors; therefore, we define a certain size for

the search region around the predicted position of the

ACM. Actually, each ACM is shifted along a temporal axis

from predicted positions of the ACMs at a certain margin

�ACM , as shown in Fig. 6. The desired positions are then

estimated by converging both ACMs and we can estimate

the robot’s position and orientation by fitting the converged

control points with the tangent function defined by (5). The

tangent fitting is done using a least-square method. Once

we can estimate the robot position, the next initial position

of the robot can be predicted by adding the robot movement

measured by the internal encoder to the estimated robot

position. From our preliminary experiments, the margin

�ACM for shifting the ACMs was set as seven frames. From

our robot system the sampling interval is 2 cm=frame, and

corresponds to a 14 cm error for the robot’s position.

4.2 Definition of ACM

Our ACM is defined by the following equation:

E ¼
Z 1

0

Eint vðsÞð Þ þEimg vðsÞð Þ þEext vðsÞð Þ
� �

ds; ð6Þ

where E, Eint, Eimg, and Eext represent total energy, internal
energy representing smoothness and continuity, energy due
to image features, and external energy for contour
deformation, respectively. The internal energy is composed
of a first-order term weighted by w� and a second-order
term weighted by w�; here, vðsÞ and vs sð Þ and vss sð Þ are arc-
length, curvature, and a change of curvature, respectively.

Eint vðsÞð Þ ¼ w� vs sð Þj j2þw� vss sð Þj j2
� �

=2: ð7Þ

The image energy Eimg, which attracts ACMs to edges
with large intensity gradients, is defined by a first-order
differential filter as follows:

Eimg v sð Þð Þ ¼ wdiff rI sð Þ � rItarget � sð Þð Þ
�� ��; ð8Þ

where rItarget � sð Þð Þ is a differential value along the
horizontal line of the omnidirectional panorama image.
rI sð Þ is a differential value on the memorized ORP. wdiff is
a weighted coefficient. This energy tries to keep the ACMs
on the edges.

The external energy, which pushes or pulls control
points perpendicular to the curvature of the active contours,
controls the direction of movement of the ACMs. We define
this energy by

Eext v sð Þð Þ ¼ Epull v sð Þð Þ þ Econst v sð Þð Þ: ð9Þ

As shown in Fig. 7, Epull, which is the energy for drawing
coupled control points to each other, is defined by

@

@�
Epull v sð Þð Þ ¼ wpull �cpother sð Þ � �cpnow sð Þ

� �
@

@t
Epull v sð Þð Þ ¼ wpull tcpother sð Þ � tcpnow sð Þ

� �
;

ð10Þ
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Fig. 6. Initial positions of ACMs.

Fig. 7. Gravitational energy for converging coupled control points.



where wpull is a weighted coefficient. cpnow and cpother are
coupled control points. In the case of a straight memorized
path, the interval of the azimuth angle � between neighbor-
ing control points is constant. Therefore, we defined the
energy Econst v sð Þð Þ for a constant interval by spring models,
as shown in Fig. 8,

Econst v sð Þð Þ ¼ wconst

ðdiroutepanorama � diinput

� �
� di�1

routepanorama � di�1
input

� �
2
4

3
5; ð11Þ

where wconst and d are a weighted coefficient and the
interval of the azimuth angle between neighboring control
points, respectively. The subscript on the right shoulder is
the number of the control point.

5 EXPERIMENTS

We undertook several experiments in our laboratory. In
Sections 5.1, 5.2, 5.3, 5.4, and 5.5, we evaluated our iconic
memory-based navigation method by using an offline
experimental system. The robot moved straight for approxi-
mately 5 m and the interval for the sampling images was
2 cm. Here, we define the orthogonal coordinates o-xy along
the memorized path, in which the x axis is parallel to the
direction the robot is moving. In this experiment, we
recorded a horizontal line in the omnidirectional panorama

imageand the robot encodeddatawhile itmoved. The robot’s
movementwasgivenby the operator. Start and stoppositions
were measured by hand and the measured position and
odometer data were used for establishing ground truths.
Recorded test imageswerematchedwithmemorizedORPby
our proposed method. In Section 5.6, we show the experi-
mental results of autonomous navigation. We used a
commercial mobile robot B12 (Real World Interface, Inc) in
both experiments. Figs. 9a and 9b show the experimental
environment and the mobile robot with the HyperOmni
Vision omnidirectional image sensor.

5.1 Accuracy of the Estimation of Location and
Rotation

We evaluated the precision of the localization of the robot

under several different moving conditions. Fig. 10 shows the

experimental environment and memorized path. Fig. 11a is

the case where the robot moves along the memorized path.

Fig. 12a shows the result of the estimated robot position. The

estimated moving trajectory of the robot is drawn as a black

line. The dotted line is the correct trajectory of the robot. The

average error and the standard deviation of the estimated

positionwere1:25 cmand0:64 cm, respectively.Fig. 11b is the

casewhere the robotmoves in a direction 30 degrees from the

x-axis. Fig. 12b shows the results of the estimated position of

the robot. The average error and the standarddeviation of the

position estimation were 1:98 cm and 1:00 cm, respectively.
Next, seven different types of curved pathswere prepared

for evaluating the accuracy of position estimation and the
robot moved along the curved paths. The average error and
the standard deviation of the position estimation were
2:16 cm and 1:46 cm, respectively. The average errors of the
curved paths are similar to the average errors of the straight
paths. Fig. 13 showsoneof the results of an estimatedposition
of the robot while the robot moved along a curved path.

It can be seen from these experiments that the method
robustly estimates a robot’s position along not only a
straight path, but also along curved paths.

5.2 Evaluation of Sampling Interval along a
Memorized Path

To ascertain how accuracy is related to the sampling interval

along the memorized path, we evaluate the position estima-

tion error relative to the image sampling interval. Fig. 14

shows the relationships among azimuth angular resolution,

sampling interval, andpositionestimationerror.Theazimuth
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Fig. 8. Interval energy for keeping intervals between control points on

ACMs.

Fig. 9. Experimental environment and mobile robot with HyperOmni

Vision.

Fig. 10. Memorized path of the robot.



angular resolution is defined by the number of pixels on the

horizon.Theordinateaxis is thepositionestimationerror.The

abscissas axis shows the interval of the image samplingwhen

the ORP is memorized. Figs. 14a and 14b show the position

estimation errorswhen the robotmoves along thememorized

path and moves in a 30 degree direction, respectively. In the

case where a sampling interval is dense, such as a few

centimeters, the accuracy of position estimation is in propor-

tion to the azimuth angular resolution. Here, the width of the

experimental environment is about 6 m� 7 m. The average

distance between the camera and the environment can be

assumedasapproximately3 mand theazimuthchangewhile

the robot moves in such an environment is about 0.2 degree.

This angular resolution is lower than the input image

resolution (0.33 degree = 360 deg / 1,080 pixel). This gives

the limitation for the accuracy of position estimation. In the

case of a wide sampling interval, the temporal resolution of

ORP is lower than angular resolution of an input image. As

shown in the figures, this kind of imbalance increases the

position estimation error.

5.3 Influence of Small Perturbations in the
Ground Plane and in Calibration Errors
of the Horizon Line

In the case of mobile robot navigation, the egomotion of the
robot is usually caused by jiggling due to some unevenness
in the ground plane. In this section, we evaluate the
influence on our method of small perturbations in the
ground plane.

HyperOmni Vision has the good characteristics of having

a single center of projection. By using this characteristic, an

input image can be transformed to an image from an

arbitrarily slanting camera. Therefore, we can easily

synthesize the slanting image from the input image and

evaluate the accuracy of the localization of the robot.

Fig. 15 shows the relation between perturbation and

position estimation error. The ordinate axis is the position

estimation error. The abscissas axis shows themaximum size

of a given camera slant. The size of the slant is randomly

given. From this experiment, we find that the robot can
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Fig. 11. Experimental layout for evaluating effectiveness. (a) The robotmoved along thememorized path. (b) The robotmoved in a 30-degree direction.

Fig. 12. Results of the estimation of the robot’s position. (a) Along the memorized path. (b) Toward a 30-degree direction.

Fig. 13. The robot moves along a curved path.



estimate its position within a few cm error when the slant of

the camera is lower than 4 degree. In the case of an outdoor

environment, large slants can sometimes occur, but such a

large slant can be measured by using a gyroscope and a

clinometer. Usually, the angular resolution of such sensors is

better than 0.1 degrees; therefore, 4 degrees is sufficient for

practical use in both indoor and outdoor environments.

Next, we changed the height of the robot and evaluated

calibration errors of the horizon line. The camera position is

actually 1 cm higher than the memorized path; we prepared

six different paths for this experiment. In total, the robot

moved 12 times. The average error in the position estimation

was 1:86 cm; therefore,we feel that small calibration errors do

not present a serious problem for robot navigation.

5.4 Influence of Unknown Obstacles and the
Effectiveness of Obstacle Masking

In the real world, objects are sometimes moved by an

outsider, so a navigation system needs to be able to adapt to

changes in parts of the scene. Fig. 16a is the result of the

estimated robot position when an object in the environment

is moved to a different position. Dark curves show the

estimated trajectories of the robot’s movements. Light gray

curves are the results of applying automatic masking to an

obstacle region. Details of automatic masking are described

below. Fig. 16b shows the average and standard deviation

of an estimated position of the robot.
In this experiment, we changed the unknown obstacle

position relative to the robot and changed the texture on the
unknown obstacle. The ordinate axis is the position
estimation error. The abscissa axis shows the complexity
of the texture on the obstacle relative to a background
environment. The complexity of the texture is defined by
the number of edges on the unknown obstacle and the
background. Basically, estimated error increases, but,
especially, the position error increases when the percentage
of the edges on the obstacle is bigger than 25 percent, as
shown in Fig. 16b with a dark curve. However, it should be
considered that the correlation value of the ACM at the
obstacle region, where the scene changed, always remained
low; therefore, the robot could precisely estimate its various
positions by masking such a region. Indeed, as drawn by
the light gray curve, we applied automatic masking to an
obstacle region and estimated the robot’s position. An
algorithm of automatic masking is very simple. First, we
calculate by subtraction between inputs and the ORP along
an ACM. Next, we mask all of the control points in a period
of azimuth that the subtraction is higher than a certain
threshold and its pereiod is wider than a certain threshold.
Figs. 16c and 16d show the position estimation error relative
to obstacle direction. Ninety deg corresponds to the side
view. Zero and 180 deg correspond to the front and back. In
the case that the robot moved along the memorized path,
the shape of the converged ACM was almost a vertical line
on the ORP. The position estimation error was independent
of the obstacle direction, as shown in Fig. 16c. As a result,
the effectiveness of masking is small. In the case that the
robot moved in a 30 degree direction, the shape of the
converged ACM was a tangent curved. Both sides of the
tangent curve are more sensitive to position estimation as
shown in Fig. 16d. Anyway, Figs. 16b and 16d show that the
masking enabled robust and precise position estimation.

5.5 Influence of Illumination Change

Though the above experiments were done in daytime, the

illumination conditions can be changed by sunshine coming

through windows and by indoor lighting or a blackout.
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Fig. 14. Evaluation of sampling interval. (a) Along the memorized path. (b) Toward a 30-degree direction.

Fig. 15. Influence of small perturbations in the ground plane.



Thus, we undertook an experiment at night. Fig. 17 shows

ORPs in daytime and at night, respectively. From this

figure, the center and the bottom regions in the ORP show

different patterns which was mainly caused by sunshine

from windows. Fig. 18 shows the results of the estimated

position of the robot. The average error and the standard

deviation of the estimated position were 4:67 cm and

1:95 cm, respectively. Even if such a serious difference

occurred, the robot could still estimate its position by the

characteristics of an ACM such as a global shape constraint.

5.6 Results of Autonomous Navigation

Autonomous navigation was achieved in our experiments,

and the robot was controlled by a standard proportional

control method. Fig. 19 shows the results of autonomous

navigation. In this case, the operator gave the initial position

(100 cm; 0 cm), the subgoal position (200 cm;�50 cm) and the

goal position (300 cm; 0 cm), respectively; the robot then

automatically navigated to the goal position. The black line is

the estimated robot position and the red line shows the actual

trajectory of the robot movement. Until the subgoal position,

the robot canestimateprecisely, so the trajectoryof the robot is

almost the same as the estimated position. After the robot

reached the subgoal position, estimation errors increased a

little. The location error at the goal position was approxi-

mately 4 cm. From Fig. 14, the accuracy limitation of the

current robot system was a few centimeters. Further, as the

ACM is basically an energy minimization technique, the
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Fig. 16. Influence of unknown obstacle and effectiveness of obstacle masking. (a) Trajectory of estimated position of the robot. (b) Evaluation of

influence of the complexity of the texture on the obstacle. (c) Position estimation error relative to observed azimuth of the obstacle—In the case that

the moves along the memorized path. (d) Position estimation error relative to observed azimuth of the obstacle—In the case that the robot moves in

a 30 degree direction.

Fig. 17. Comparison of ORPs under different illumination conditions.

(a) Daytime. (b) Night.



converged position of the ACM depends on the initial

position at each frame. If the image features of the control

points areweak, it is difficult to converge these control points

to the correct positions. Generally, the response of a standard

proportional robotmethod is not so fast. Indeed, we consider

that the location error at the goal position occurs for these

reasons.

6 CONCLUSIONS

In this paper, we proposed an iconic memory-based
navigation method. A robot’s position was navigated by
comparing the input with the memorized omnidirectional
route panorama. An advantage of this method is that robot
localization can be established without knowledge of the
scene geometry. The omnidirectional route panorama saves
on iconic-memory capacity and, thus, the method has a low
memory requirement, even if the robot has to memorize a
long distance path and moves over a long time period. In
this paper, we demostrated our iconic memory-based
approach by using an ACM. The basic iconic memory-
based idea does not limit the model for fitting a tangent
curve; we can use other deformable models. The processing
time of the current system was 200 ms=frame; while this is
fast enough for indoor navigation, we are presently trying
to optimize the navigation algorithm to make the system
faster.We evaluated the precision of the localization of the
robot under several different moving conditions and
environments. From these experiments, we found that the
method could robustly estimate the robot position at an
accuracy sufficient for robot navigation. We are planning to
apply our method for long-distance autonomous naviga-
tion in both indoor and outdoor environments and to
develop a practical robot navigation system. To apply our
method in such environments, we will use our masking
technique to find and ignore occluded regions.
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Fig. 18. Trajectory of the estimated robot position when the robot moved
under different lighting conditions.

Fig. 19. Results of autonomous navigation.
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