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Abstract: This paper describes a generalized theoretical framework for
a multiplexed spatially encoded imaging system to acquire multi-channel
data. The framework is confirmed with simulations and experimental
demonstrations. In the system, each channel associated with the object is
spatially encoded, and the resultant signals are multiplexed onto a detector
array. In the demultiplexing process, a numerical estimation algorithm
with a sparsity constraint is used to solve the underdetermined reconstruc-
tion problem. The system can acquire object data in which the number
of elements is larger than that of the captured data. This case includes
multi-channel data acquisition by a single-shot with a detector array. In
the experiments, wide field-of-view imaging and spectral imaging were
demonstrated with sparse objects. A compressive sensing algorithm, called
the two-step iterative shrinkage/thresholding algorithm with total variation,
was adapted for object reconstruction.
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OCIS codes: (110.1758) Computational imaging; (110.3010) Image reconstruction tech-
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1. Introduction

Computational imaging is a powerful imaging framework integrating optical encoding and
computational decoding. Many systems based on the concept have been proposed, for exam-
ple, computed tomography, wavefront coding, light-field rendering, and so on [1–3]. Spatial
encoding is one promising extension of the framework. In this work, we studied a spatial en-
coding scheme in which copies of an image are shifted and weighted. The spatial encoding
scheme is employed in the demultiplexing process for multiplexed imaging, in which multi-
ple images are superimposed by single-shot imaging. For example, if objects located in three-
dimensional (x,y,z) space were captured by a single pinhole camera without the occlusion, the
objects are superimposed and detection of the object range is difficult. A coded-aperture imag-
ing system for single-shot object range detection consists of a single coded-aperture mask that
is used to spatially encode objects [4, 5]. In the system, the object range can be estimated with
a post-processing procedure. Depth from defocus imaging can be also considered as spatially
encoded imaging for range detection [6].

Here we apply multiplexed imaging with spatial encoding to generalized multi-channel op-
tical data acquisition with a single shot, and we reconstruct the object data by post-processing.
A channel is defined as an index of an attribute of optical signals associated with the object,
for example, depth, wavelength, and so on. The system model is presented, together with its
simulations and physical implementations. As shown in Section 3, the model is an under-
determined linear system. An algorithm based on a framework called compressive sensing
is used to reconstruct the object data. The framework is briefly mentioned in Section 2. In
compressive sensing, an underdetermined linear problem is effectively solved by employing
a sparsity constraint [7–9]. Several optical systems based on compressive sensing have been
proposed [10–14].

In this study, wide field-of-view imaging and spectral imaging based on the concept were
demonstrated. Wide field-of-view imaging systems based on multiple shots or a video sequence
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have been proposed [15–18]. In this paper, we provide a method for wide field-of-view imag-
ing with a single-shot. In previously presented single-shot spectral imaging systems, a coded-
aperture was used and it restricts the spatial resolutions by the diffractive effect of pinholes on
the mask [12, 19]. In our system, the limitation can be avoided since the proposed system dose
not utilize a coded-aperture.

2. Compressive sensing

The proposed system model is expressed as an underdetermined linear system as shown in
Section 3. Compressive sensing (CS) is a framework for solving an underdetermined linear
system [7–9]. The reconstruction scheme in this paper is inspired by CS.

In this paper, vectors and matrixes are indicated by small and capital boldface letters, respec-
tively. In CS, an underdetermined problem is expressed as

ggg = ΦΦΦ fff = ΦΦΦΨΨΨβββ = ΘΘΘβββ, (1)

where ggg ∈ RNg×1, ΦΦΦ ∈ RNg×Nf , fff ∈ RNf×1, ΨΨΨ ∈ RNf×Nβ , and βββ ∈ RNβ×1 are vectorized captured
data, a system matrix, vectorized object data, a basis matrix, and a transform coefficient vector,
respectively. RNi×Nj denotes an Ni ×Nj matrix of real numbers. In CS, Ng is smaller than Nf

and Nβ.
When the number of non-zero coefficients in βββ is s, ΘΘΘ should satisfy a sufficient condition

for any s-sparse βββ to reconstruct the object data fff accurately. The sufficient condition is called
the restricted isometric property (RIP) and is expressed as

(1− ε)||βββΛ||2 ≤ ||ΘΘΘΛβββΛ||2 ≤ (1+ ε)||βββΛ||2, (2)

where ε ∈ (0,1) is a constant and || · ||2 denotes �2-norm [20]. Λ is a subset of indices supporting
s nonzero coefficients in βββ. βββΛ and ΘΘΘΛ are elements of βββ and columns of ΘΘΘ that support the s
non-zero coefficients. Smaller ε indicates better RIP and thatΘΘΘΛΛΛ preserves the Euclidean length
of βββΛ well. When ε is larger, larger Ng, which is the number of elements in the captured data,
or smaller s is required for accurate reconstruction. A Gaussian random matrix is known as
an ideal compressive sensing matrix, and it highly satisfies RIP [8]. In that case, Ng should be
roughly four times larger than s for accurate reconstruction, regardless the numbers of elements
in the object data fff and the transform coefficient data βββ. The s non-zero coefficients in βββ can
be estimated accurately by solving

β̂ββ = argmin
βββ
||βββ||1 subject to ggg = ΘΘΘβββ, (3)

where || · ||1 denotes �1 norm. The ideal compressive sensing matrix is difficult to implement
physically. The proposed system in this paper may have worse RIP than the ideal compressive
sensing matrix and require larger Ng and smaller s for accurate reconstruction.

As indicated in Eq. (2), RIP and the reconstruction accuracy depend on not only the system
matrix ΦΦΦ but also the basis matrix ΨΨΨ [7, 21]. Therefore, it is difficult to conclude the general
limitations of the proposed system. In this paper, simulations in Section 4 show the performance
of the proposed system with selected parameters and a basis including the noise sensitivities.

3. Generalized system model

In the proposed system, shown in Fig. 1, each channel associated with the object is spatially
encoded with a scheme in which copies of the signal are shifted and weighted with initially
designed parameters, which are the number of copies, the distances and the directions of the
shifts, and the magnitudes of the weights in each of the channels. The resultant signals are
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Fig. 1. System model of multi-channel data acquisition using multiplexed imaging with
spatial encoding.

summed onto the detector array. The implementation of the proposed scheme depends on the
application. Implementation examples for wide-field imaging and spectral imaging are shown
in Section 5.

In this paper, a function is indicated by a calligraphic letter. Let F (x,c) denote a discretized
multi-channel object in RNx×Nc , where x and c represent the spatial dimension and a channel
index, respectively. For simplicity, a model with a one-dimensional detector array is introduced.
Nx and Nc are the numbers of detectors and channels, respectively. Extending to higher dimen-
sions can be readily achieved with slight modifications to the model. Let G denote captured
data in RNx×1. G can be written as

G(x) =
Nc−1∑

c=0

L(c)−1∑

l=0

W(l,c)F (x−S(l,c),c), (4)

where W(l,c) and S(l,c) represent the weights and the shifts of the l-th copy in the spatial
encoding at the c-th channel, respectively. L(c) is the number of copies at the c-th channel.
W(l,c), S(l,c), andL(c) are designed or determined initially. As indicated in Eq. (4), the image
of each of the channels is copied multiple times, the copies are weighted and spatially shifted,
and the resultant copies of all channels are superimposed.

The matrix AAAl,c ∈ RNx×Nx , which denotes the l-th copy in the spatial encoding at the c-th
channel, is expressed as

AAAl,c(p,q) =

{ W(l,c) (p = q+S(l,c)),
0 (p � q+S(l,c)),

(5)

where AAAl,c(p,q) is the (p,q)-th element in the matrix AAAl,c. The matrix EEEc ∈ RNx×Nx , which
denotes the spatial encoding at the c-th channel, is written as

EEEc =

L(c)−1∑

l=0

AAAl,c. (6)

The matrix TTT ∈ R(Nx×Nc)×(Nx×Nc), which denotes the spatial encoding for the whole object
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data, is expressed as

TTT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EEE0 OOO · · · OOO
OOO EEE1 · · · OOO
...

...
. . .

...
OOO OOO · · · EEENc−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where OOO ∈ RNx×Nx is an Nx ×Nx zero matrix. The matrix MMM ∈ RNx×(Nx×Nc), which sums all of
the channels, is written as

MMM =
[
III III · · · III

]
, (8)

where III ∈ RNx×Nx is an Nx ×Nx identity matrix. The object data is spatially encoded using TTT ,
and the result is multiplexed using MMM. Therefore, the vectorized captured data ggg ∈ RNx×1 can be
written as

ggg = ΦΦΦ fff = MMMTTT fff =
[
EEE0 EEE1 · · · EEENc−1

]
fff , (9)

where ΦΦΦ ∈ RNx×(Nx×Nc) and fff ∈ R(Nx×Nc)×1 are the system matrix and the vectorized object data,
respectively.

4. Simulations

The proposed systems with selected parameters to show the characteristics. As mentioned in
Section 2, it is difficult to show the general characteristics and limitations. An algorithm called
the two-step iterative shrinkage/thresholding algorithm (TwIST) is used to solve Eq. (3) in
this paper [22]. TwIST is an iterative convex optimization algorithm that uses two previous
estimates to improve convergence properties. In this paper, the total variation (TV) norm was
chosen as the basis function in Eq. (1) [23]. The two-dimensional TV is applied to each channel
of the estimated object. The two-dimensional TV is defined as

∑

c

∑

x

∑

y

√
(F (x+1,y,c)−F (x,y,c))2+ (F (x,y+1,c)−F (x,y,c))2. (10)

In the definition, object F has two spatial dimensions.
Three systems with selected parameters were simulated. The parameters in Eq. (4) of the

systems are shown in Table. 1. In the table, Sx(l,c) and Sy(l,c) are the shifts along the x and
the y axes. They are random integers whose ranges are shown in the tables.

Table 1. Parameters of (a) system A, (b) system B, and (c) system C in the simulations

(a)

L(c) 9
W(l,c) 1
Sx(l,c) [−20,20]
Sy(l,c) [−20,20]

(b)

L(c) 9
W(l,c) 1
Sx(l,c) [−10,10]
Sy(l,c) [−10,10]

(c)

L(c) 3
W(l,c) 1
Sx(l,c) [−20,20]
Sy(l,c) [−20,20]

Figure 2 shows simulations of the three systems with the object shown in Fig. 2(a). The size
is 128×128×6. The object consists of multiple Shepp-Logan phantoms, which are sparse in the
two-dimensional TV domain. The sparsity s in the domain of the object is 2162. The size of the
captured data is 128× 128. White Gaussian noise with a signal-to-noise ratio (SNR) of 40 dB
was added to the captured data. The peak signal-to-noise ratios (PSNRs) of the reconstructed
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(a)

(b) (c)

(d) (e)

(f) (g)

(h)

Fig. 2. Simulations with an object with a smaller sparsity s. (a) The object. The captured
data and the reconstructed results in (b), (c) system A, (d), (e) system B, and (f), (g) sys-
tem C. (h) The result reconstructed from Fig. (b) by the Richardson-Lucy method.

objects in the three systems were 27.3 dB, 24.0 dB, and 24.9 dB, respectively. The reconstructed
results in systems B and C have some artifacts at the planes on which the phantoms were not
located. Figure 2(h) shows the result reconstructed from Fig. 2(b) by the Richardson-Lucy
method [24, 25]. The reconstruction PSNR was 22.6 dB. A comparison between Figs. 2(c) and
2(h) shows one advantage of using TwIST. As indicated in Fig. 2, the contrast of the phantoms
in the reconstructed results is lower than that in the original object. The undesired characteristics
may be alleviated by optimizing the designable parameters and the basis matrix.

Figure 3 shows simulations of system A with the object shown in Fig. 3(a). The size is
128× 128× 6. The sparsity s in the two-dimensional TV domain is 4321, which is larger than
that of the previous simulation. The size of the captured data is 128× 128. The measurement
SNR is 40 dB. The reconstruction PSNR is 23.4 dB. A comparison between Figs. 2(c) and 3(c)
shows the effect of the sparsity on the reconstruction fidelity.

Figure 4 shows the relationships between the measurement SNR and the reconstruction
PSNRs of the three systems for the object in Fig. 2(a) and system A for the object in Fig. 3(a).
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(a)

(b) (c)

Fig. 3. Simulations with an object with larger sparsity s. (a) The object, (b) the captured
data, and (c) the reconstructed result in system A.
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Fig. 4. Plots of reconstruction PSNR from noisy measurements in the proposed system with
selected parameters.

In each of the three systems, five shifts were simulated according to Table 1. The error bars
and the symbols in the figure show the maximums, the minimums, and the means of the re-
construction PSNRs. The plots indicate that the larger the shift S(l, x), the larger the number
of copies L(c) in the higher measurement SNRs, and the smaller number of copies L(c) in the
lower measurement SNRs realizes higher reconstruction PSNRs. Also, the smaller sparsity s
results in a higher reconstruction PSNR.

5. Experiments

The model described in Section 3 can be applied to various optical systems, for example, range
detection, time detection, spectral imaging, polarization imaging, wide field-of-view imaging,
large dynamic range imaging, and so on. In this section, physical implementations of the pro-
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Fig. 5. Experimental setup of wide field-of-view imaging with phase grating.

posed scheme for wide field-of-view imaging and spectral imaging are described, according
to the model introduced in Section 3, and demonstrated. These initial demonstrations can be
easily extended to larger datasets or numbers of channels.

5.1. Wide field-of-view imaging

In wide field-of-view imaging based on the proposed scheme, the whole field is divided into
multiple small regions, and each region is referred to as a sub-field. Each sub-field is treated as
a channel in Fig. 1. Each sub-field is spatially encoded, and the resultant signals are multiplexed
onto a detector array.

The experimental setup is shown in Fig. 5. Two sub-fields were multiplexed on the detector
array by the beam splitter. One of the sub-fields was spatially encoded by passing through
a transmissive phase grating (GTI50-03A manufactured by Thorlabs). The line pitch was
300 lines/mm. The lens was a COSMICAR television lens with a focal length of 16 mm. The
monochrome detector array was Cool SNAP ES manufactured by Photometrics. The number
of pixels and the pixel pitch were 1392×1040 and 6.45 μm × 6.45 μm, respectively.

The impulse response from sub-field 0 is a delta function. Therefore, the number of copies in
Eq. (4) isL(0)= 1. Figure 6 shows the impulse response from sub-field 1. The impulse response
was generated using a printed dot, and the resulting images was captured. In sub-field 1, L(1)
is 2. The weight and the shift in Eq. (4) were measured manually from Fig. 6. The weight and
the shift in each of the sub-fields are shown in Table 2.

Table 2. The parameters of the impulse responses for wide field-of-view imaging

l 0 1
W(l,0) 1.0
Sx(l,0) 0
Sy(l,0) 0
W(l,1) 0.5 0.5
Sx(l,1) 0 0
Sy(l,1) -6 6

The objects were the words “Osaka” and “Univ.” printed with black ink on individual sheets
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00
1

Fig. 6. Impulse response from sub-field 1. The numbers indicate the index l of the copies
of a printed dot.

of white paper whose size was 4× 5 cm2. The objects were passively illuminated with inco-
herent interior lights. Clipped captured data, shown in Fig. 7(a), was 181× 221 pixels. The
reconstructed result, whose size was 181× 221× 2 pixels, is shown in Fig. 7(b). The two sub-
fields were separated successfully.

Another implementation for wide field-of-view imaging is shown in Fig. 8. Three sub-fields
shown by dashed lines were multiplexed onto the detector array. The right or the left halves
of the sub-fields were overlapped. This configuration is also considered as spatial encoding.
The specifications of the optical elements are the same as in the first experiment. A neutral
density (ND) filter was used to equalize the light intensities of the sub-fields. The optics can be
made more compact by using a lens array or a diffractive or refractive optical element.

The impulse response from the object is shown in Fig. 9. In this case, the number of channels
and the number of copies can be considered as Nc = 1 and L(0) = 3 in Eq. (4), respectively. The
weight and the shift in Eq. (4) were measured manually from Fig. 9. The weights and the shifts
of the copies are shown in Table 3.

Table 3. The parameters of the impulse responses for wide field-of-view imaging with
multiple overlapping sub-fields

l 0 1 2
W(l,0) 1.0 1.0 1.0
Sx(l,0) 0 -32 27
Sy(l,0) 0 -4 1

In the experiment, the object was a sheet of paper on which numerals “1”, “2”, and “3” were
printed. The objects were passively illuminated with incoherent interior lights. Figure 10(a) is
the captured image of the center sub-field indicated by black dashed lines in Fig. 8. Captured
data with all sub-fields is shown in Fig. 10(b). The images in Figs. 10(a) and 10(b) were 63×61
pixels. The reconstructed result, shown in Fig. 10(c) was 63×122 pixels. A field-of-view twice
as large was obtained with a single capture using the same-size detector array.

5.2. Spectral imaging

In spectral imaging based on the proposed scheme, individual wavelengths correspond to the
channels in Fig. 1. Each channel was spatially encoded, and the resultant signals were multi-
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(a)

 

 

(b)

Fig. 7. Experimental results of wide field-of-view imaging with phase grating. (a) Captured
data and (b) the reconstructed result.

Mirror

ND (50%)

Fig. 8. Experimental setup of wide field-of-view imaging with multiple overlapping sub-
fields. Dashed lines show fields-of-view.
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00
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2

Fig. 9. Impulse response of wide field-of-view imaging with multiple overlapping sub-
fields. The numbers indicate the index l of the copies of a printed dot.

(a) (b)

(c)

Fig. 10. Experimental results of wide field-of-view imaging with multiple overlapping sub-
fields. (a) Captured data in the center sub-field, (b) captured data with all sub-fields, and
(c) the reconstructed result.
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Grating

(a) (b)

Fig. 11. Schematic diagrams of spectral imaging demonstration. The solid lines and the
dashed lines show diffracted rays of the 0-th and the 1-st orders in (a) red and (b) green
lights, respectively.

00

1 2

(a)

00

1

2

(b)

Fig. 12. Impulse responses of (a) the red and (b) the green inks. The numbers indicate the
index l of the copies of a printed dot.

plexed onto a detector array.
The experimental setup is shown in Fig. 11. A grating was located between the object and

the lens which images the object onto the detector array. In the figure, the diffracted rays of the
0-th and the 1-st orders are shown and the others are omitted. The grating makes copies of the
object via diffraction, and the locations of the copies in the high diffraction orders are different
at each of the wavelengths, as shown in Fig. 11 [26].

In the experiment, separation between letters printed in red and green inks was demonstrated.
The specifications of the optical elements are the same as in the first experiment. The impulse
responses of the red and the green inks were captured from dot patterns printed with the inks.
The impulse responses are shown in Fig. 12. As indicated in the figure, the numbers of copies
of the channels in Eq. (4) are L(0) = 3 and L(1) = 3, where the 0-th and the 1-st channels
correspond to the red and the green inks, respectively. The weight and the shift in Eq. (4) were
measured manually from Fig. 12. The weight and the shift in each of the channels are shown in
Table 4.

Table 4. The parameters of the impulse responses for spectral imaging

l 0 1 2
W(l,0) 1.0 0.6 0.1
Sx(l,0) 0 -48 -38
Sy(l,0) 0 -18 -11
W(l,1) 0.5 0.7 0.2
Sx(l,1) 0 -42 39
Sy(l,1) 0 -16 14
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Fig. 13. Experimental results of spectral imaging. (a) Original data, (b) the captured data,
and (c) the reconstructed result.

The object was a printed word “Photo” in which letters “P”, “o”, and “o” were red, and
“h” and “t” were green, as shown in Fig. 13(a). The objects were passively illuminated with
incoherent interior lights. The captured data, shown in Fig. 13(b), was 90× 296 pixels. The
reconstructed image, shown in Fig. 13(c), was composed of a pair of images with 90× 296
pixels. The red and green characters were successfully separated.

6. Conclusions

In this study, we proposed a generalized scheme for multi-channel data acquisition using mul-
tiplexed imaging with a spatial encoding scheme. In the system, copies of each channel associ-
ated with the object are shifted and weighted, and the resultant signals are multiplexed onto the
detector array. An algorithm employing a sparsity constraint was used to solve the underdeter-
mined reconstruction problem. The system model, simulations, and physical implementations
were presented.

Some systems with selected parameters were simulated. They showed the noise sensitivity
and the effect of the sparsity of objects. Two initial demonstrations based on the concept were
shown: wide field-of-view imaging and spectral imaging. The experimental results have some
artifacts which may be removed by a more accurate estimation of the system model, for ex-
ample, the aberrations and defocus of the imaging optics. Other ways to improve the results
are to increase the number of elements in the captured data by using a higher-resolution image
sensor and to make a better RIP by optimizing the optical elements and adopting a basis. Al-
though only duplex imaging was demonstrated, the method can be extended to more than two
channels.

The proposed system can be applied to various applications, for example, range detection,
time detection, spectral imaging, polarization imaging, wide field-of-view imaging, large dy-
namic range imaging, and so on, including combinations of these.
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