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Abstract

This paper studies bidder collusion with communication in repeated auctions when no

side transfer is possible. It presents a simple dynamic bid rotation scheme which coordi-

nates bids based on communication history and enables intertemporal transfer of bidders’

payoffs. The paper derives a sufficient condition for such a dynamic scheme to be an

equilibrium and characterizes the equilibrium payoffs in a general environment with affili-

ated signals and private or interdependent values. With IPV, it is shown that this dynamic

scheme yields a strictly higher payoff to the bidders than any static collusion scheme which

coordinates bids based only on the current reported signals.
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1. Introduction

It is well recognized that bidder collusion is a serious problem in many auctions: Collu-

sion is documented in auctions for used machinery, timbers, frequency spectrums, Treasury

securities, the procurement of construction work, etc. (Marshall and Meurer [13], Porter

and Zona [17], Baldwin et al. [3]). Despite its significance as an empirical phenomenon,

relatively little is understood about the theory of collusion in auctions, which is distin-

guished from the standard collusion theory by the presence of asymmetric information

across bidders about their valuations of the object.

Most of the existing analysis of collusion in auctions is conducted in the one-shot

framework. One important contribution in this case is made by McAfee and McMillan

[14], who analyze bidder collusion with communication in first-price auctions under the

independent private values (IPV) assumption. Their key findings include the identification

of the most efficient collusion schemes with and without side transfer. In particular, they

show that full collusion is possible with side transfer, but that the scope of bidder collusion

is severely limited without it.

If collusion is a product of frequent interaction, however, a more appropriate frame-

work for analysis is that of repeated games, where the same set of bidders participate in a

series of auctions held sequentially over time.1 The purpose of this paper is to show that

in infinitely repeated auctions, collusion is possible through intertemporal payoff transfer

even if there is no side payment of money. In other words, bidders in repeated auctions

can collude through the adjustment of continuation payoffs in a way that partially com-

pensates for the lack of monetary transfer. We derive a sufficient condition for such a

collusion scheme to be an equilibrium and characterize the equilibrium payoffs in a general

environment with affiliated signals and private or interdependent values. Specifically, the

collusion scheme considered in this paper builds on communication between the bidders,

which we think is an integral part of many collusion practices.2 The analysis shows how

communication coordinates bidding in a dynamic environment.

We consider a model of infinitely repeated auctions with two symmetric bidders. In

1See also Hendricks and Porter [10], who emphasize the need of a repeated model of
collusion in auctions.
2The Japanese word for collusion in procurement auctions is “dangō,” which literally means
“to discuss.”
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every period, a single indivisible object is sold through the same auction format, and the

bidders’ private signals are drawn from the same distribution.

The bidders collude by coordinating their bids in each auction with the help of a

communication device referred to here as a center. In each period, the center receives

reports from the bidders about their private signals and then instructs them on what

bid to submit in the stage auction. This stage mechanism, which chooses instructions

as a function of reports, is called an instruction rule in this paper. A collusion scheme

represents the center’s choice of an instruction rule in every period contingent on history.

A collusion scheme is an equilibrium if truth-telling is incentive compatible and obedience

to the instructions is rational for each bidder. The paper’s analysis focuses on a class of

(grim-trigger) collusion schemes called bid rotation schemes. In these schemes, play begins

with the collusion phase where no more than one bidder is instructed to bid in each stage

auction, and any deviation from the center’s instruction triggers the punishment phase

where the one-shot Nash equilibrium of the stage auction is played.

The bid rotation scheme constructed in this paper is as follows: Play during the

collusion phase rotates among three (sub-)phases S, A1 and A2. In the original symmetric

phase S, the center uses the efficient instruction rule which instructs the bidder with

the higher valuation (based on the reports) to bid the reserve price R if and only if his

valuation exceeds R. It instructs the other bidder to stay out. In phase Ai (i = 1, 2),

the center uses an asymmetric instruction rule which favors bidder j 6= i in the sense that
j’s ex ante stage payoff is higher than that of bidder i. It can be seen that the efficient

instruction rule used in phase S is not incentive compatible by itself since the bidders

would overstate their signals in the hope of winning the object at the reserve price. The

incentive for truth-telling in phase S is provided through the adjustment in continuation

payoffs as follows: When bidder i’s reported signal is higher than that of j, a transition to

phase Ai takes place with positive probability so that bidder i’s continuation payoff would

be lower. The instruction rule used in phase Ai is chosen to be incentive compatible so

that no further adjustment in continuation payoffs is necessary. After a fixed number of

play in phase Ai, the game returns to phase S.

The above bid rotation scheme is dynamic in the sense that the instruction rule used

during the collusion phase is chosen as a function of past reports. In contrast, the collusion
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scheme proposed by McAfee and McMillan [14] is a static bid rotation scheme, which uses

the same instruction rule throughout the collusion phase independent of the history.3 It

should be noted that in a static scheme, incentive compatibility of the instruction rule must

hold period by period since no adjustment in continuation payoffs is possible. With this

constraint relaxed, a dynamic bid rotation scheme can be strictly more efficient. Specifi-

cally, this paper shows that when the stage auction is first-price and when we have IPV, a

dynamic bid rotation scheme as described above is an equilibrium for sufficiently patient

bidders and yields a strictly higher payoff than the optimal static scheme.

As mentioned above, most existing models of collusion in auctions are one-shot. Robin-

son [18] and von Ungern-Sternberg [20] are among the first to point out the vulnerability

of the English and second-price sealed-bid auctions to bidder collusion.4 Graham and Mar-

shall [8] and Graham et al. [9] present particular side transfer schemes for second-price and

English auctions with pre-auction communication. Subsequently, Mailath and Zemsky [12]

and McAfee and McMillan [14] identify the optimal schemes under the IPV assumption.

The former examine collusion with side transfer in second-price auctions, while the latter

look at that with and without side transfer in first-price auctions. Both papers conclude

that efficient collusion is possible with side transfer.5 More recently, Athey et al. [2], John-

son and Robert [11], and Skrzypacz and Hopenhayn [19] analyze collusion in repeated IPV

auctions without side transfer.6 Among them, Skrzypacz and Hopenhayn [19] prove the

existence of a collusion scheme without communication that performs strictly better than

the static scheme of McAfee and McMillan [14] when the stage auction is first-price and

the reserve price equals zero. While the intuition behind their results is closely related to

ours, their formal logic is specialized to the particular auction format as well as the IPV

assumption. In contrast, this paper presents a simple collusion scheme which is robust

with respect to these specifications, and characterizes the collusive payoff explicitly.

It should be noted that the collusion scheme considered in this paper does not extract

full surplus from the auctioneer since the instruction rule used in the asymmetric phase

3Note that in both “static” and “dynamic” schemes, any deviation from the instruction is
met by reversion to the one-shot Nash equilibrium.
4Brusco and Lopomo [4] and Engelbrecht-Wiggans and Kahn [5] analyze collusion in (one-
shot) multi-object ascending price auctions.
5An earlier version of this paper contains a generalization of this result.
6The present paper was developed independently of them.
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Ai is not efficient. In other words, the scheme is not first-best efficient from the point of

view of the bidders. The question of first-best efficiency in collusion without side transfer

under asymmetric information is indeed very difficult. Efficiency results are available only

in IPV models with finite signals: Fudenberg et al. [7] show that the IPV model with finite

signals and communication has the “product structure,” which guarantees the existence of

a near efficient equilibrium for sufficiently low discounting.7 In contrast, the present paper

uses the continuous signal formulation, which is most common in the auction literature.

Since conclusions based on finite signals do not necessarily extend to continuous signals in

many mechanism design problems, we think it important to gain insight into the problem

for this standard framework.8

The severest restriction of the present model is the assumption that the auctioneer

uses the same auction format every period. While this may be an adequate description of

some actual practices, it would be extremely important to analyze the alternative scenario

where the auctioneer has the ability to react to bidder collusion. In the one-shot frame-

work, Mailath and Zemsky [12] and McAfee and McMillan [14] both discuss the choice

of the reserve price as the auctioneer’s response to collusion. In repeated auctions, the

corresponding treatment is to include the auctioneer as a player of the repeated game who

chooses the reserve price as a function of history. The analysis of such a model would be

very much involved and is left as a topic of future research.

Although this paper will focus on a two-bidder model for simplicity, its qualitative

conclusions would go through with three or more bidders as long as attention is restricted

to collusion by the grand coalition. When there are more than two bidders, however, a

new set of questions will arise concerning the feasibility and profitability of collusion by a

subcoalition of bidders.

We assume that the bidders’ private signals are independent across periods. While

there are many interesting situations that involve serially correlated signals, the following

are some difficulties associated with the analysis of such a model. First, with independent

7Based on this result, Athey and Bagwell [1] present an explicit characterization of the
first-best scheme in the IPV model with binary signals.
8The finiteness of actions is critical for the type of argument used in Fudenberg et al. [7].
With communication, a mapping from the set of signals to the set of reports is part of a
player’s action. This suggests that using a finite message space in communication is not
sufficient.
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signals, bid rotation improves allocative efficiency by making the highest valuation bidder

win at the reserve price (at least in the symmetric phase). When signals are correlated over

time, on the other hand, the relationship between bid rotation and allocative efficiency is

more subtle. In the extreme case of perfect correlation where the signals stay the same

throughout the game, for example, rotating bids would only lower allocative efficiency.9

Another simplification possible with independent signals is that rules of transition between

distinct phases of the collusion scheme can be taken as a function of current reports only

and independent of past reports. With serially correlated signals, this would no longer be

the case and the determination of transition probabilities would be much more difficult.

Finally, the introduction of serial correlation also induces some fundamental asymmetries

between the bidders during the course of play.10

The organization of the paper is as follows: The next section formulates a model of

repeated auctions with the center as a mediation device. The dynamic bid rotation scheme

is described in Section 3. The main theorem in this section gives a sufficient condition for

this scheme to be an equilibrium and describes the equation that characterizes its payoff.

In Section 4, its performance is compared with that of static schemes. Section 5 analyzes

a collusion scheme based on implicit communication through winning bids.

2. Model

There are two symmetric, risk-neutral bidders 1 and 2 and a center which coordinates

their bidding in infinitely repeated auctions. A single indivisible object is sold every period

through a fixed auction format. In each period, bidder i receives a private signal si ∈ [0, 1]
about the value of the object. The probability distribution of the signal profile s = (s1, s2)

is the same in every period and represented by the density function f whose support is the

unit square [0, 1]2. The signals are independent across periods. The conditional density

of si given sj is denoted fi(· | sj), and the corresponding distribution function is denoted
Fi(· | sj) (i 6= j). With slight abuse of notation, we also use fi (resp. Fi) to denote

9Bid rotation could still improve the bidders’ expected payoffs from the one-shot Nash
equilibrium if the higher valuation bidder makes his opponent win from time to time in
return for less aggressive bidding in other periods.
10Asymmetry is problematic since it implies that incentive compatibility of a collusion
scheme is now characterized by a system of (linear) differential equations rather than one
(cf. (a7) in the Appendix). Such a system typically admits only a numerical solution and
does not yield any characterization of the equilibrium payoff.
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the marginal density (resp. distribution) of si (i = 1, 2). Throughout, we assume that

the signals s = (s1, s2) are affiliated. Affiliation includes independent signals as a special

case, and is equivalent to the monotone likelihood ratio property in the current framework

with only two signals s1 and s2. The present analysis will use the following properties of

affiliation (e.g., Milgrom and Weber [15]):

(1)
fi(si | sj)
Fi(si | sj) is (weakly) increasing in sj for any si (i 6= j),

and if H : [0, 1]2 → R is increasing, then11

(2) E[H(s̃) | s1 ≤ s̃1 ≤ s01, s2 ≤ s̃2 ≤ s02] is increasing in si and s0i (i = 1, 2)

Given the signal profile s = (s1, s2), the expected value of the object to bidder i is denoted

vi(s). We adopt the convention that the first argument of vi is si (own signal) and the

second is sj (the other bidder’s signal). The valuation function vi is the same for every

period and vi(0, 0) is normalized to zero. Symmetry implies f(s) = f(s
0) and vi(s) = vj(s0)

for every s, s0 ∈ [0, 1]2 such that (s0i, s0j) = (sj , si).
We say that the values are private if vi(s) = si for every s and i = 1, 2, and interde-

pendent if for i = 1, 2 and j 6= i, (i) vi : [0, 1]2 → R+ is continuously differentiable, (ii)
∂vi
∂si

(s) > 0 and
∂vi
∂sj

(s) > 0 for every s, and (iii) vi(s) ≥ vj(s) if si ≥ sj . Note that un-
der the symmetry assumption, (iii) is equivalent to the standard single-crossing condition:
∂vi
∂si

(s) ≥ ∂vj
∂si

(s) for every s ∈ [0, 1]2 such that vi(s) = vj(s).
A stage auction is any transaction mechanism which determines the allocation of the

good and monetary transfer according to a pair of sealed bids submitted by the bidders.

The restriction to a seal-bid mechanism is for simplicity. Participation in the stage auction

is voluntary so that the set of each bidder’s generalized bids is expressed as B = {N} ∪
R+, where N represents “no participation.” The rule of the auction is summarized by

measurable mappings ψi and pi (i = 1, 2) on the set B
2 of bid profiles b = (b1, b2): ψi(b)

is the probability that bidder i is awarded the good, and pi(b) is his expected payment

to the auctioneer. The functions ψi and pi (i = 1, 2) are symmetric (ψi(b) = ψj(b
0) and

pi(b) = pj(b
0) if (b0i, b

0
j) = (bj , bi)), and satisfy the following conditions.

11Throughout, the expectation E is with respect to random variables written with tilde.
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Assumption 1: (i) A bidder makes no payment when he chooses not to participate:

pi(b) = 0 if bi = N .

(ii) There exists a non-random reserve price R ∈ £0, vi(1, 1)¢ such that a bidder may win
the object only if he submits a bid at or above R: ψi(b) = 0 if bi ∈ {N} ∪ [0, R).
(iii) If only one bidder participates and submits bid R, then he wins the object at price R:

ψi(b) = 1 and pi(b) = R if bi = R and bj = N .

(iv) There exists a symmetric Nash equilibrium in the (Bayesian) game in which each

bidder’s strategy is a mapping ζi : [0, 1]→ B and payoff function is

E
h
ψi
¡
ζi(s̃i), ζj(s̃j)

¢
vi(s̃)− pi

¡
ζi(s̃i), ζj(s̃j)

¢i
.

Assumption 1 holds for most standard auctions including the first- and second-price auc-

tions. Let g0 be the (ex ante) symmetric Nash equilibrium payoff to each bidder in the

stage auction as described in Assumption 1(iv). Also, let g∗ be the expected payoff to each

bidder under truthful information sharing and efficient allocation with bidder i winning

the object at price R if and only if si > sj and vi(s) > R:

g∗ = E
£
1{s̃i>s̃j , vi(s̃)>R}} {vi(s̃)−R}

¤
.

Clearly, 2g∗ gives the first-best joint collusive payoff, and the bidders see a potential gain

from collusion if g0 < g∗. This is the case to be studied in what follows.

Collusion in the repeated auction takes the following form: At the beginning of each

period, the two bidders report their private signals si to the center. Upon receiving the

report profile ŝ = (ŝ1, ŝ2) ∈ [0, 1]2, the center chooses instruction to each bidder i on what
(generalized) bid to submit in the stage auction.

In general, the bidders may report a false signal, and/or disobey the instruction.

Bidder i’s reporting rule λi : [0, 1]→ [0, 1] chooses report ŝi as a function of signal si, and

his bidding rule µi : [0, 1]
2 ×B → B chooses bid bi in the stage action as a function of his

signal, report and instruction. The reporting rule is honest if it always reports the true

signal, and the bidding rule is obedient if it always obeys the instruction. Denote by λ∗i
and µ∗i bidder i’s honest reporting rule and obedient action rule, respectively.

For simplicity, we assume that the (generalized) bids in the stage auction are observ-
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able to every party including the center.12 The observability of bids implies that a bidder’s

deviation can be classified into two types: A bidder commits an observable deviation when

he chooses a bid different from the instruction given to him, and commits an unobservable

deviation when he reports a false signal.

The center is formally a communication device as formulated by Forges [6] and My-

erson [16]. Its choice of instructions to the bidders given their reports is captured by an

instruction rule q = (q1, q2) : [0, 1]
2 → B2: qi(ŝ) is the instruction to bidder i when the

report profile is ŝ. Let gi(λ, µ, q) denote bidder i’s stage payoff resulting from any profile

(λ, µ, q) of reporting and bidding rules (λ, µ) = (λ1, µ1,λ2, µ2) and instruction rule q. The

instruction rule q is one-shot incentive compatible (one-shot IC) if neither bidder has an

incentive to misreport his signal: gi(λ
∗, µ∗, q) ≥ gi(λi,λ∗j , µ∗, q) for any reporting rule λi,

i = 1, 2, and j 6= i. Note that one-shot incentive compatibility refers only to the incentive
in reporting and presumes bidders’ obedience to the given instructions. In particular, the

instruction rule that instructs bidders to play the one-shot Nash equilibrium of the stage

auction is one-shot IC. Lemma 1 in the next section identifies some other instruction rules

with this property.

Bidder i’s communication history in period t in the repeated auction game is the

sequence of his reports and instructions in periods 1, . . . , t− 1. On the other hand, bidder
i’s private history in period t is the sequence of his private signals si in periods 1, . . . , t−1.
Furthermore, the public history in period t is a sequence of instruction rules used by the

center in periods 1, . . . , t and (generalized) bid profiles in the stage auctions in periods

1, . . . , t− 1.
Bidder i’s (pure) strategy σi in the repeated auction chooses the pair (λi, µi) of re-

porting and bidding rules in each period t as a function of his communication and private

histories in t, and the public history in t. Let σ∗i be bidder i’s honest and obedient strategy

which plays the pair (λ∗i , µ
∗
i ) of the honest reporting rule and obedient bidding rule for all

histories.

The collusion scheme τ describes the center’s choice of an instruction rule in every

12The conclusions in Sections 3-5 hold if only the identity of the winner is publicly an-
nounced by the auctioneer. When we take the interpretation that the center is a simple
communication device which does not have any monitoring function, we can replicate the
same results by letting the bidders report the outcome of each stage auction to the center.

10



period as a function of communication and public histories. At the beginning of each

period, it publicly informs the bidders which instruction rule is used in that period.

Our analysis will focus on the following class of “grim-trigger” collusion schemes with

two phases: The game starts in the collusion phase, and reverts to the punishment phase

forever if and only if there is an observable deviation by either bidder in the sense described

above. In the punishment phase, the bidders are instructed to play the one-shot Nash

equilibrium of the stage auction specified in Assumption 1(iv).

A collusion scheme τ in this class is static if it chooses the same instruction rule

in every period during the collusion phase independent of the history, and is dynamic

otherwise. Furthermore, the collusion scheme τ employs bid rotation if no more than one

bidder is instructed to participate in each stage auction during the collusion phase.

Let δ < 1 be the bidders’ common discount factor, and Πi(σ, τ, δ) be bidder i’s average

discounted payoff (normalized by (1− δ)) in the repeated game under the strategy profile
(σ, τ). The collusion scheme τ is an equilibrium if the pair σ∗ = (σ∗1 ,σ

∗
2) of honest and

obedient strategies constitutes a perfect public equilibrium of the repeated game: σ∗i is

optimal against (σ∗j , τ) after any public history of the game.
13 It follows from the definition

that if τ is an equilibrium static collusion scheme, then its instruction rule in the collusion

phase is one-shot IC.

3. A Dynamic Bid Rotation Scheme

Let q∗ be the efficient instruction rule that instructs bidder i to (i) bid R if his report

ŝi is higher than j’s report ŝj , and if his valuation vi(ŝ) (computed from the report profile

ŝ) exceeds R, and (ii) stay out otherwise:

q∗i (ŝ) =
½
R if ŝi > ŝj and vi(ŝ) > R,

N otherwise.

Clearly, the (ex ante) payoff gi(λ
∗, µ∗, q∗) associated with q∗ equals the first-best level g∗

although q∗ is not one-shot IC.

Consider next the asymmetric instruction rule qi that “favors” bidder j over bidder i

as follows: Bidder j is instructed to (i) bid R if his valuation vj(ŝ) exceeds R, and (ii) stay

out otherwise. On the other hand, bidder i is instructed to (i) bid R if his valuation vi(ŝ)

13See Fudenberg et al. [7].
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exceeds R and if bidder j’s valuation vj would not exceed R even when i’s signal were 1,

and (ii) stay out otherwise:

qii(ŝ) =

½
R if vi(ŝ) > R ≥ vj(ŝj , 1),
N otherwise,

qij(ŝ) =

½
R if vj(ŝ) > R,

N otherwise.

We refer to bidder j as the primary bidder under qi and bidder i as the secondary bidder.

Let ḡ = gj(λ
∗, µ∗, qi) and g = gi(λ∗, µ∗, qi) be the expected stage payoffs to the primary

and secondary bidders, respectively, under qi. By definition, ḡ > g.

Lemma 1. qi is one-shot IC.

Proof: See the Appendix.

Since 2g∗ is the first-best joint collusive payoff, it can be readily verified that

(3) 2g∗ > ḡ + g,

where the strict inequality is the consequence of the full support of the density function f

and R < vi(1, 1). Let τ
d be a dynamic bid rotation scheme such that:

a) The collusion phase consists of three subphases S, A1 and A2: S is the original symmetric

phase where the efficient instruction rule q∗ is used, while Ai is the asymmetric adjustment

phase where the instruction rule qi is used.

b) Play begins in the symmetric phase S. After each period in phase S, transition to the

asymmetric phase Ai (i = 1, 2) takes place with probability ωi(ŝ), which is a function of

the reported signals in the current period alone and given by

ωi(ŝ) =

½
x(ŝi) if ŝi > ŝj ,

0 otherwise,

for some increasing function x : [0, 1] → [0, 1]. Play stays in phase S with probability

1− ω1(ŝ)− ω2(ŝ).

c) Each asymmetric phase Ai lasts exactly for m periods and then play returns to S.

It should be noted that the transition probability x(ŝi) depends only on the higher of

the two reports. There is a clear connection between the above collusion scheme and the

one with side transfer in McAfee and McMillan [14]. In McAfee and McMillan [14], each
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bidder is discouraged from overstating his signal by the transfer payment that is required

from the bidder with the higher report. On the other hand, the deterrent in the above

scheme is the possibility of a lower continuation payoff for such a bidder. This is a natural

modification of the side transfer scheme in view of the substitutability of continuation

payoffs for monetary transfer in repeated games.

Write vi(si, si) = v̂i(si) and recall v̂i(0) = 0 by normalization. Let r ∈ [0, 1] be the
(unique) signal such that v̂i(r) = R. Define

zi(β) =
fi(β | β)
Fi(β | β) .

It can be seen that given any transition probability function x, a bidder’s payoff ud =

Πi(σ
∗, τd, δ) from the dynamic bid rotation scheme τd satisfies the following recursive

relationship:

u = (1− δ) g∗ + δE
h
1{s̃i>s̃j}

©
x(s̃i)u+ (1− x(s̃i))u

ª
(4)

+1{s̃i<s̃j}
©
x(s̃j) ū+ (1− x(s̃j)) u

ª i
,

where ū = (1− δm) ḡ + δm u and u = (1− δm) g + δm u. On the other hand, x is obtained

as a solution to the incentive compatibility condition for truth-telling in phase S. As seen

in the Appendix, the incentive condition reduces to a linear differential equation which

has the payoff ud as a parameter. By substituting its solution into (4) and simplifying, we

obtain the following equation of u = ud:

(5) ϕ(u) ≡ u− g∗ + 2u− ḡ − g
u− g y(u) = 0,

where y : (g,∞)→ R++ is defined by

y(u) =

Z 1

r

Z si

0

Z si

r

{v̂i(β)−R} zi(β) e−
ḡ−g
u−g

R si

β
zi(γ) dγ

dβ f(s) dsj dsi.

Note that the continuity of y implies that of ϕ : (g,∞) → R. The following is our main

theorem.

Theorem 1. Assume that the values are either private or interdependent. If ϕ(u) = 0

has a solution ud strictly greater than g0, then for a sufficiently large discount factor δ,
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the dynamic bid rotation scheme τd is an equilibrium for some x(·) (transition probability
function) and m (duration of phase Ai), and yields payoff u

d.

Proof: See the Appendix.

It should be noted that (5) and its solution ud are independent of δ although low

discounting is required for τd to be an equilibrium. By construction, note that the bidders’

overall payoff ud in the dynamic bid rotation scheme is a convex combination of their (ex

ante) stage payoff g∗ in phase S, and the average of their stage payoffs in phases A1 and

A2. (Note that A1 and A2 are equally likely ex ante.) While ϕ(u) = 0 cannot be solved

analytically in general, it is possible to bound its solution from below as follows. Let

C =

Z 1

r

{v̂i(si)−R}Fj(si | si) fi(si) dsi.

Then it is shown in the Appendix that there exists a solution ud to (5) which satisfies

(6) ud > L ≡ ḡ − g
ḡ − g + 2C g

∗ +
2C

ḡ − g + 2C
ḡ + g

2
.

Note that we have L > (ḡ + g)/2 since g∗ > (ḡ + g)/2 by (3). In particular, (6) shows

that the weight on the efficient payoff g∗ in L is an increasing function of the gap between

the two asymmetric payoffs ḡ and g. With ḡ + g fixed, therefore, the lower bound on

the efficiency of the dynamic scheme τd is increased when we take the payoffs in the two

asymmetric phases farther apart.14 The following corollary is an immediate consequence

of the above observation.

Corollary 1. Assume that the values are either private or interdependent. If g0 ≤ L,
then for a sufficiently large discount factor δ, the dynamic bid rotation scheme τd is an

equilibrium for some x(·) and m.

Example 1: Suppose that the stage auction is second-price sealed-bid with the reserve

price R equal to zero. In this case, it is well known that the bidding function in the

one-shot Nash equilibrium is given by ζ0(si) = v̂i(si). Suppose further that the valuation

function vi has the linear form vi(s) = csi + (1 − c)sj , where c ∈ [1/2, 1]. As seen, the
14Conversely, this also suggests the following: While we may specify any other (static or
dynamic) path of play in phase Ai, the performance of τ

d cannot be increased by raising
just the efficiency (e.g., ḡ + g) of that phase. It is important to maintain the gap ḡ − g.
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values are private if c = 1 and interdependent otherwise. The one-shot Nash equilibrium

payoff equals

g0 =

Z
{s: si>sj}

{vi(s)− ζ0(sj)} f(s) ds = c
Z
{s: si>sj}

(si − sj)f(s) ds,

whereas g = 0 and

ḡ =

Z
[0,1]2

{csi + (1− c)sj} f(s) ds.

From these, we can verify that

1

2
(g + ḡ)− g0 =

1

2

Z
[0,1]2

{sj − c|sj − si|} f(s) ds.

Hence, the sufficient condition in Corollary 1 holds if E[s̃j ] ≥ cE[|s̃j − s̃i|]. With f fixed,
therefore, if this inequality holds under private values (c = 1), then it also holds under

interdependent values (c < 1). Furthermore, since E[s̃j ] >
1
2 E[|s̃i − s̃j |] for any f as can

be readily verified, there exists c̄ > 1/2 such that if c ≤ c̄, then there exists an equilibrium
dynamic bid rotation scheme.

The last observation in the above example has the following simple generalization.

Suppose that the two bidders have almost common values so that their valuation of the

object is similar for every signal profile. It then follows that any allocation of the object

between them leads to almost the same level of efficiency. In particular, the allocation

in phase Ai described above is almost (first-best) efficient, and so is the dynamic bid

rotation scheme τd. Formally, given any ² > 0, we say that the values are ²-common if

sups∈[0,1]2 |v1(s)− v2(s)| < ².

Corollary 2. Let ² > 0 be given, and assume that the values are interdependent and

²-common. If the dynamic bid rotation scheme τd is an equilibrium, then it is ²-efficient

in the sense that its payoff ud satisfies ud ≥ g∗ − ².

Proof: See the Appendix. //

In particular, when the stage auction is either first- or second-price sealed-bid, the

one-shot Nash equilibrium payoff g0 of an ²-common value model is bounded away from

g∗ in the limit as ²→ 0. For ² ≥ 0 small, therefore, ud > g0 holds by Corollary 2 so that
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by Corollary 1, the dynamic bid rotation scheme τd is in fact an (²-efficient) equilibrium

for δ close to one.15

4. Dynamic vs. Static Collusion Schemes

This section compares the performance of the dynamic bid rotation scheme described

in Section 3 with that of static collusion schemes. The characterization of the optimal static

collusion scheme is available only in the independent private values (IPV) environment,

and our primary focus is on this case. A brief discussion of a more general environment

is given at the end of this section. With IPV, we show that the dynamic scheme yields a

strictly higher payoff to a bidder than the optimal static scheme as identified by McAfee

and McMillan [14].

As a first step, Theorem 2 below states that the dynamic bid rotation scheme is in fact

an equilibrium for δ close to one when the stage auction is either first-price or second-price.

Recall that the reserve price R is allowed to be any number in the interval
£
0, vi(1, 1)

¢
.

Theorem 2. Assume independent private values (IPV). Suppose that the stage auction is

either first-price or second-price sealed-bid. Then for a sufficiently large discount factor δ,

the dynamic bid rotation scheme τd is an equilibrium for some x(·) and m, and its payoff
ud is strictly higher than both (ḡ + g)/2 and g0.

Proof: See the Appendix. //

McAfee and McMillan [14] identify the highest payoff achieved by a collusion scheme

with no side transfer for one-shot first-price sealed-bid auctions in the IPV environment.

Their theorem applies directly to the current repeated game framework and yields the

characterization of the most efficient static collusion scheme. Let

hi(si) =
1− Fi(si)
fi(si)

be the inverse hazard rate of si. The following theorem is stated without a proof as it is

a straightforward application of Theorem 1 of McAfee and McMillan [14].

15With ²-common values, the static bid rotation scheme that randomly allocates the object
with probability 1/2 to each bidder during the collusion phase tends to be an equilibrium
as well. As seen in Corollary 4, however, such a scheme is dominated by a dynamic scheme.
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Theorem 3. Assume independent private values (IPV). Suppose that the stage auction

is first-price sealed-bid. Let τ s be the most efficient equilibrium static collusion scheme

without side transfer for a sufficiently large discount factor δ. Then τ s is a grim-trigger

scheme, and its payoff us is as follows:

(i) If hi(·) is (weakly) increasing, then us equals the one-shot equilibrium payoff g0.

(ii) If hi(·) is (weakly) decreasing, then us equals (ḡ + g)/2.

Note that the instruction rule used in a static collusion scheme must be one-shot

IC since no incentive for truthful reporting can be provided through the adjustment in

continuation payoffs. McAfee and McMillan [14] show that the efficient static scheme τ s

when hi(·) is decreasing (case (ii) above) is described as follows: The (mixed) instruction
rule q̃ : [0, 1]2 → ∆B2 used in the collusion phase is such that

(q̃i(ŝ), q̃j(ŝ)) =


(R,N) if ŝi > R ≥ ŝj ,
1
2 (N,R) +

1
2 (R,N) if ŝi, ŝj > R,

(N,N) if ŝi, ŝj ≤ R.
In other words, the representative bidder is chosen at random with probability one-half

when both valuations exceed R. Clearly, such an instruction rule is one-shot IC. Following

any deviation from the instruction, play reverts to the punishment phase where the bidders

are instructed to play the one-shot Nash equilibrium ζ0.

Comparison of Theorems 2 and 3 immediately reveals that when hi(·) is monotone,
the dynamic bid rotation scheme τd outperforms any static bid rotation scheme. The

following corollary summarizes this observation.

Corollary 3. Assume independent private values (IPV). Suppose that the stage auction

is first-price sealed-bid, and that hi(·) is monotone. Then for a sufficiently large discount
factor δ, the dynamic bid rotation scheme τd is an equilibrium for some x(·) and m, and
yields a strictly higher payoff than any equilibrium static bid rotation scheme.

The intuition behind Corollary 3 for a decreasing hi (case (ii)) is as follows: The

instruction rule q̃ described above equals a convex combination of qi and qj defined in

the previous section: q̃ = 1
2 q

i + 1
2 q

j . It follows that the bidder’s payoff in the optimal

static scheme exactly equals the average of his payoffs in phases A1 and A2 of the dynamic

scheme τd. Since the allocation in phase S is efficient, the bidder’s overall payoff in τd is

strictly higher.
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Example 2: Suppose that the stage-auction is first-price, and that si has the uniform

distribution over [0, 1]. Assume that δ is sufficiently large.16 Since h0i(si) < 0 for every

si, the best static scheme yields u
s = (g + ḡ)/2 by Theorem 3. Table 1 below presents

the values of ud, us and the one-shot equilibrium payoff g0 as fractions of the first-best

efficiency level g∗ for various values of R. It can be seen that τd extracts at least close to

90% of the surplus.

R g∗ ud

g∗
us

g∗
g0

g∗

.0 .3333 .886 .750 .500

.1 .2835 .899 .786 .571

.2 .2347 .912 .818 .636

.3 .1878 .926 .848 .696

.4 .1440 .938 .875 .750

.5 .1042 .949 .900 .799

.6 .0693 .961 .923 .847

.7 .0405 .981 .944 .889

Table 1

In a general environment without IPV, little is known about the optimal one-shot

scheme, and hence no clear-cut comparison of dynamic and static collusion schemes is

possible. Even without IPV, however, any static scheme that uses a mixed instruction rule

as in case (ii) above is dominated by a dynamic scheme that belongs to the class described

in Section 3. Formally, let q̂1 and q̂2 be any pair of (possibly mixed) asymmetric one-shot

IC instruction rules such that q̂1
1(s) = q̂

2
2(s

0) and q̂1
2(s) = q̂

2
1(s

0) if (s01, s
0
2) = (s2, s1), and

gi(q̂
i,λ∗, µ∗) < gj(q̂i,λ∗, µ∗) i = 1, 2, j 6= i.

In other words, bidder 2 is favored over bidder 1 under q1 and their roles are exactly

reversed under q2. Suppose that τ̂ s is a symmetric static bid rotation scheme which uses

the mixed instruction rule q̂ = 1
2 q̂

1 + 1
2 q̂

2 in the collusion phase.

Corollary 4. Assume that the values are either private or interdependent. Suppose

that τ̂ s is a symmetric static bid rotation scheme as described above which yields payoff

16When R = 0, for example, τd is an equilibrium if δ ≥ .95.
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ûs < g∗ to each bidder. If τ̂ s is an equilibrium, then there exists a dynamic bid rotation

scheme τ̂d of the class described in Section 3 which is an equilibrium for some δ and yields

a strictly higher payoff than ûs.

Proof: Denote g0 = gi(q̂
i,λ∗, µ∗) and ḡ0 = gj(q̂

i,λ∗, µ∗) (i = 1, 2, j 6= i). Let τ̂d be

a dynamic bid rotation scheme as described in Section 3 with the exception that it uses

the instruction rule q̂i in phase Ai (i = 1, 2). It then follows from (6) that its payoff

ûd > (g0+ ḡ0)/2 = ûs. Since ûs ≥ g0 by assumption, we also have ûd > g0 so that τ̂d is an

equilibrium for some δ by Corollary 1. //

5. Implicit Communication through Winning Bids

In the previous sections, bidder communication is explicit in the sense that reporting

of private signals is done separately from bidding in the stage auction. This section shows

that even if there is no explicit communication, collusion may be sustained by implicit

communication through bids submitted to the stage auction when the identity of the winner

as well as his bid is publicly announced by the auctioneer. In other words, communication

studied in this section is signaling of private information with bids. It is ex post in the

sense that the messages are exchanged only after the stage auction is concluded, and will

be used to determine continuation play only.17 For simplicity, we assume that the stage

auction is first-price sealed-bid, and that a public randomization device is available.

Let wi(si) = E[vi(s̃) | s̃i = si, s̃j < si] be the expected value of the object to bidder i
with signal si conditional on the knowledge that j’s signal is lower than si. The function

wi is strictly increasing over (0, 1] since for s
0
i > si > 0,

wi(si) =

Z si

0

vi(si, sj) f(sj | si) dsj

<

Z si

0

vi(s
0
i, sj) f(sj | si) dsj

= E[vi(s
0
i, s̃j) | s̃i = si, s̃j < si]

≤ E[vi(s0i, s̃j) | s̃i = s0i, s̃j < s0i] = wi(s0i),

where the first inequality follows from the strict monotonicity of vi, and the second from

(2). We make the regularity assumption that the derivative w0i is continuous. Suppose that

17This model is a special case of the general formulation in Section 3 where the instruction
to bidder i is independent of j’s report.
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the reserve price R satisfies R < wi(1), and let ρ ∈ [0, 1] be the signal such that wi(ρ) = R.
Consider the bidding function ζ² : [0, 1]→ B such that

(7) ζ²(si) =

R+ ²
Z si

ρ

{wi(α)−R} zi(α) e−
R si

α
zi(β) dβ

dα if si ≥ ρ

N otherwise.

When si ≥ ρ, partial integration of the right-hand side of (7) yields

ζ²(si) = (1− ²)R+ ²wi(si)− ²
Z si

ρ

w0i(α) e
−
R si

α
zi(β) dβ

dα.

It follows that ζ²(si) < (1 − ²)R + ² wi(si) for si > ρ. When the bidders bid according

to ζ², hence, the winning bid is always within ² {wi(1) − R} of R. Furthermore, ζ² is
differentiable over [ρ, 1] and satisfies

(8) ζ 0²(si) = zi(si){²wi(si) + (1− ²)R− ζ²(si)}.

Since (8) implies ζ 0²(si) > 0 for si > ρ from the above observation, the private signal of

the winner (if any) is fully revealed. It can also be seen that when both bidders use ζ²,

i’s (interim) expected payoff from winning the stage auction with signal si > ρ and bid

bi = ζ²(si) is strictly positive since it equals wi(si)− ζ²(si) > 0.
Let v̄i(si) = E[vi(s̃) | s̃i = si] be the expected valuation conditional only on one’s

own signal. The collusion scheme with implicit communication through bids is described

as follows:

a) The collusion phase consists of the symmetric phase S, and the asymmetric phases A1

and A2. In phase S, bidder i with signal si bids bi = ζ²(si). In phase Ai, bidder j is

favored over bidder i and bids are determined as follows:

bi =

½
R if v̄i(si) ≥ R
N otherwise,

and bj =

½
R+ ² if v̄j(sj) ≥ R+ ²
N otherwise.

b) Play begins in phase S, and transition to phase Ai takes place with probability x(bi)

(based on the public randomization) if bidder i wins with bid bi ∈ [R, ζ²(1)].

c) Each asymmetric phase Ai lasts for m periods and then play returns to S.

In this scheme, deviations are observable if either bidder wins with a bid above ζ²(1)

in phase S, or if the primary (resp. secondary) bidder wins with a bid different from
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R + ² (resp. R) in phase A1 or A2. As before, reversion to the punishment phase takes

place following any such deviation. On the other hand, deviations are unobservable if, for

example, bidder i bids bi = ζ²(ŝi) in phase S when his true type is si 6= ŝi. Of course,

neither type of deviation should be profitable in equilibrium.

It can be seen that the absence of pre-auction information sharing entails the following

inefficiencies: First, when the values are interdependent, the winner’s valuation conditional

on both bidders’ signals could be lower than his bid (or even the reserve price). Second,

any participating bidders in phase S must bid strictly above the reserve price R (albeit by

a small amount) in order to achieve an efficient allocation. Third, the primary bidder in

phase A1 or A2 must win with a bid strictly above R in order to avoid a tie.

For any ² ≥ 0, let

g∗(²) = E
£
1{s̃i>max {s̃j ,ρ}} {vi(s̃)− ζ²(s̃i)}

¤
,

ḡ(²) = E
£
1{v̄i(s̃i)≥R+²} {vi(s̃)−R− ²}

¤
,

g(²) = E
£
1{v̄i(s̃i)≥R, v̄j(s̃j)<R+²} {vi(s̃)−R}

¤
.

When ² > 0, g∗(²) represents each bidder’s (ex ante) expected stage payoff in phase

S, and ḡ(²) and g(²) represent the (ex ante) expected stage payoffs of the primary and

secondary bidders, respectively, in the asymmetric phases. We assume that ḡ and g are

both differentiable as functions of ².

Consider the following equation of u parameterized by ² < 1:

(9) ϕ(u, ²) ≡ u− g∗(²) + 2u− ḡ(²)− g(²)
u− g(²) y(u, ²) = 0,

where

y(u, ²) =

Z 1

ρ

Z si

0

Z si

ρ

{v̂i(β)−(1−²)R−²wi(β)} zi(β) e−
ḡ(²)−g(²)

u−g(²)

R si

β
zi(γ) dγ

dβ f(s) dsj dsi.

As in Section 3, (9) characterizes the equilibrium payoff of the above dynamic bid-rotation

scheme with implicit communication. Suppose now that ϕ(u, 0) = 0 (with ² = 0) has

a solution u(0) strictly greater than the one-shot equilibrium payoff g0. By the same

argument as in Section 3, we have u(0) > {ḡ(0)+g(0)}/2 > g(0), and hence ∂ϕ
∂u
(u(0), 0) > 0

as can be readily verified. It then follows from the implicit function theorem that if ² > 0

is small, ϕ(u, ²) = 0 has a solution u(²) close to u(0). Theorem 4 describes the conditions

for u(²) to be an equilibrium payoff of the above collusion scheme.
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Theorem 4. Assume that the values are either private or interdependent, and that the

stage auction is first-price sealed-bid with the reserve price R < wi(1). If the equation

ϕ(u, 0) = 0 has a solution u(0) strictly greater than g0, then the following holds for a

sufficiently large discount factor δ: Given any κ > 0, there exists a dynamic bid rotation

scheme with implicit communication as described above that is an equilibrium and yields

payoff u > u(0)− κ.

Proof: See the Appendix.

It should be noted that the discount factor δ required is independent of the level of

approximation κ. When the values are private or when the reserve price equals zero, there

is no inefficiency associated with bidding based only on one’s own signal. In this case,

therefore, the efficiency loss caused by the absence of information sharing can be made

negligible when we take a small ² > 0.

Corollary 5. Suppose that the stage auction is first-price sealed-bid, and that one of the

following holds: (i) The values are private and the reserve price R < wi(1); (ii) The values

are interdependent and the reserve price R = 0. If the dynamic bid rotation scheme τd

with explicit communication in Section 3 is an equilibrium and yields payoff ud (for some

δ), then the following holds for a sufficiently large discount factor: Given any κ > 0, there

exists a dynamic bid rotation scheme with implicit communication as described above that

is an equilibrium and yields payoff u > ud − κ.

Proof: When the values are private or when R = 0, we have g∗(0) = g∗, ḡ(0) = ḡ, and

g(0) = g, where g∗, ḡ, and g are as defined in Section 3. It follows that (9) with ² = 0 is

equivalent to (5), and hence that ud = u(0). The conclusion then follows from Theorem 5.

//

Appendix

The following notation is used for the discussion of the interdependent values case

in the Appendix. For each si ∈ [0, 1], let ki(si) be the opponent’s signal sj such that
vi(si, sj) = R if there exists any such sj ∈ [0, 1]. Let ki(si) = 1 if vi(si, sj) < R for

every sj ∈ [0, 1], and ki(si) = 0 if vi(si, sj) > R for every sj ∈ [0, 1]. It follows from the
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continuity and strict monotonicity of vi that ki is well-defined. Also, we have by definition

vi(si, ki(si))


≥ R if ki(si) = 0,

= R if ki(si) ∈ (0, 1),
≤ R if ki(si) = 1.

Furthermore, since vi is continuously differentiable, ki(si) is continuously differentiable

itself at any si such that ki(si) ∈ (0, 1) by the implicit function theorem. Figure 1 depicts
ki for a generic (interdependent) valuation function vi.

Proof of Lemma 1: The conclusion is straightforward if the values are private. We will

show below that qi is one-shot IC for bidder i in the interdependent values case. A similar

argument proves the same for bidder j. Let Gii(si, ŝi) be bidder i’s interim stage payoff

under qi when he has signal si and reports ŝi.

Let ki be as defined above, and ξ ∈ [0, 1] denote the minimum of sj such that

vj(sj , 1) ≥ R (Figure 1). Note first that if ŝi is such that ki(ŝi) ≥ ξ, then Gii(si, ŝi) = 0

for any si since vi(ŝi, sj) ≥ R implies sj ≥ ki(ŝi) ≥ ξ so that vj(sj , 1) ≥ R. Suppose now
that ki(ŝi) < ξ. In this case, we have

Gii(si, ŝi) =

Z ξ

ki(ŝi)

{vi(s)−R} fj(sj | si) dsj .

Since vi(si, sj) ≥ R for any sj ≥ ki(si) and vi(si, sj) ≤ R for any sj ≤ ki(si), it follows
from the above equation that Gii(si, ŝi) is maximized when ŝi = si. //

Proof of Theorem 1: Let u > g0 be a solution to (5). Take any m ∈ N such that

m >
1

u− g
Z 1

r

{v̂i(α)−R} zi(α) dα.

We claim that there exists δ < 1 such that for any δ > δ,

(a1) (1− δ){v̂i(1)−R}+ δg0 < (1− δm) g + δmu,

and

(a2)
1− δ

δ(1− δm)(u− g)
Z 1

r

{v̂i(α)−R} zi(α) dα < 1.

23



This is clear for (a1) since u > g0 by assumption. For m as specified, (a2) also holds since

lim
δ→1−

1− δ
δ(1− δm) = lim

δ→1−
1

δ(1 + δ + · · ·+ δm−1)
=
1

m
.

Recall that x(α) denotes the probability of transition to phase Ai when i’s report α is

higher than that of bidder j. Take any δ > δ and let x be given by

(a3) x(α) =


1− δ

δ(1− δm)(u− g)
Z α

r

{v̂i(β)−R} zi(β) e−
ḡ−g
u−g

R α
β
zi(γ) dγ

dβ if α > r,

0 otherwise.

Note that x(α) ∈ [0, 1] by our choice of m and δ so that it is indeed a probability.

In what follows, we fix u, m, δ > δ, x as above and prove the theorem in three steps:

Step 1 shows that each bidder’s payoff is u when they play the honest and obedient strategy

σ∗i under τ
d. Steps 2 and 3 then prove the non-profitability of observable and unobservable

deviations, respectively. By the principle of optimality in dynamic programming, the latter

two steps can be accomplished by checking the profitability of one-step deviations. For

simplicity, we write ū = (1−δm) ḡ+δm u and u = (1−δm) g+δm u for the expected payoffs
of the primary and secondary bidders, respectively, at the beginning of the asymmetric

phase A1 or A2.

Step 1. Πi(σ
∗, τd, δ) = u.

Using symmetry, we can rewrite (4) as

(a4) u = g∗ − δ(1− δm)
1− δ (2u− ḡ − g)

Z 1

r

Z si

0

x(si) f(s) dsj dsi.

Substitution of (a3) into (a4) shows that the above recursive equation is equivalent to (5).

Since u solves (5) by assumption, the desired conclusion follows.

Step 2. No observable deviation (in bidding) is profitable.

When bidder i with any signal or report (whether truthful or not) disobeys the instruc-

tion, the maximal instantaneous gain from the deviation is bounded above by v̂i(1) − R
and the continuation payoff equals g0. On the other hand, the lowest payoff along the path

of play equals u = (1− δm)g + δmu (by Step 1) when phase Ai is just beginning. Hence,

(a1) implies that no observable deviation is profitable.

Step 3. No unobservable deviation (in reporting) is profitable.
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Since a bidder is made strictly worse off by disobeying the instruction, a profitable

deviation is possible only when he misreports his signal and then obeys the instruction.

Since the instructions rules q1 and q2 are one-shot IC by Lemma 1, bidder i has no incentive

to misreport a signal in phases Ai and Aj . Likewise, he has no incentive for misreporting

in the punishment phase. It remains to check the incentive for misreporting in phase S.

Let πi(si, ŝi) denote bidder i’s interim (intertemporal) expected payoff in any period

in phase S when he has signal si and reports ŝi while bidder j reports his signal truthfully.

The discussion below assumes interdependent values. Derivation in the case of private

values is similar and hence omitted. We can express πi using the continuation payoffs u,

u and ū as follows: For ŝi > r,

πi(si, ŝi) = (1− δ)
Z ŝi

ki(ŝi)

{vi(s)−R} fj(sj | si) dsj

+ δ

·Z ŝi

0

£
x(ŝi)u+ {1− x(ŝi)}u

¤
fj(sj | si) dsj(a5)

+

Z 1

ŝi

£
x(sj) ū+ {1− x(sj)}u

¤
fj(sj | si) dsj

¸
,

and for ŝi ≤ r,

πi(si, ŝi) = δ

·Z ŝi

0

£
x(ŝi) u+ {1− x(ŝi)}u

¤
fj(sj | si) dsj(a6)

+

Z 1

ŝi

£
x(sj) ū+ {1− x(sj)}u

¤
fj(sj | si) dsj

¸
.

Upon simplification, we see that (a5) is equivalent to

πi(si, ŝi)

= (1− δ)
Z ŝi

ki(ŝi)

{vi(s)−R} fj(sj | si) dsj

+ δ

·
u− (u− u)x(ŝi)Fj(ŝi | si) + (ḡ − ū)

Z 1

ŝi

x(sj) fj(sj | si) dsj
¸
.

Since ki is differentiable almost everywhere, we can differentiate the above with respect to
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ŝi to obtain

∂πi
∂ŝi

(si, ŝi)

= (1− δ)
h
{vi(si, ŝi)−R} fj(ŝi | si)− k0i(ŝi){vi(si, ki(ŝi))−R} fj(ki(ŝi) | si)

i
− δ
h
(u− u)©x0(ŝi)Fj(ŝi | si) + x(ŝi)fj(ŝi | si)ª+ (ū− u)x(ŝi)fj(ŝi | si)i

= (1− δ)
h
{vi(si, ŝi)−R} fj(ŝi | si)− k0i(ŝi){vi(si, ki(ŝi))−R} fj(ki(ŝi) | si)

i
− δ
h
(u− u) x0(ŝi)Fj(ŝi | si) + (ū− u) x(ŝi)fj(ŝi | si)

i
.

On the other hand, x given in (a3) satisfies the following linear differential equation:

(a7) x0(α) +
ḡ − g
u− g zj(α)x(α) =


1− δ

δ(u− u) {vi(α,α)−R} zj(α) if α > r,

0 otherwise.

(Heuristically, (a3) is derived as the (unique) solution to (a7) with the initial condition

x(r) = 0. (a7) is obtained as follows: The optimality of truth-telling implies the following

first-order condition for si > r:

∂πi
∂ŝi

(si, si) = (1− δ)
h
{v̂i(si)−R} fj(si | si)− k0i(si){vi(si, ki(si))−R} fj(ki(si) | si)

i
− δ
h
(u− u)x0(si)Fj(si | si) + (ū− u) x(si)fj(si | si)

i
= 0.

The first line of (a7) follows from the fact that k0(si){vi(si, ki(si))−R} = 0 almost every-
where. The similar first-order condition for si ≤ r yields the second line of (a7).)

To verify that truth-telling is (globally) optimal under (a3), we rewrite
∂πi
∂ŝi

(si, ŝi)

using (a7) as follows when ŝi > r:

∂πi
∂ŝi

(si, ŝi) = (1− δ)
h©
vi(si, ŝi)−R

ª
fj(ŝi | si)− k0i(ŝi)

©
vi(si, ki(ŝi))−R

ª
fj(ki(ŝi) | si)

i
+ δ(ū− u)Fj(ŝi | si) x(ŝi)

·
zj(ŝi)− fj(ŝi | si)

Fj(ŝi | si)
¸

− (1− δ)©v̂i(ŝi)−RªFj(ŝi | si) zj(ŝi)
= (1− δ) fj(ŝi | si) {vi(si, ŝi)− vi(ŝi, ŝi)}

+ (1− δ)
·
fj(ŝi | si)
Fj(ŝi | si) − zj(ŝi)

¸ ·
v̂i(ŝi)−R− δ

1− δ (ū− u)x(ŝi)
¸
Fj(ŝi | si)

− (1− δ)k0i(ŝi)
©
vi(si, ki(ŝi))−R

ª
fj(ki(ŝi) | si)
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Note that it follows from (a3) that

v̂i(ŝi)−R− δ

1− δ (ū− u)x(ŝi) > 0

for any ŝi > r. If ŝi > si, then k
0
i(ŝi)

©
vi(si, ki(ŝi)) − R

ª ≥ 0, vi(si, ŝi) − vi(ŝi, ŝi) < 0,

and
fj(ŝi | si)
Fj(ŝi | si) − zj(ŝi) ≤ 0. Therefore,

∂πi
∂ŝi

(si, ŝi) ≤ 0. Similarly, ∂πi
∂ŝi

(si, ŝi) ≥ 0 when

ŝi ∈ (r, si). When ŝi < r, we can similarly show from (a6) and (a7) that
∂πi
∂ŝi

(si, ŝi) ≤ 0
(resp. ≥ 0) for ŝi > si (resp. < si). In either case, πi(si, ·) is single-peaked at ŝi = si. This
completes the proof of the theorem. //

Proof of Inequality (6): We first show that (5) has a solution ud between (ḡ + g)/2

and g∗. Since y(u) > 0 for any u > g, it follows from (3) that

ϕ(g∗) =
2g∗ − ḡ − g
g∗ − g y(g∗) > 0 and ϕ

³ ḡ + g
2

´
=
ḡ + g

2
− g∗ < 0.

By the intermediate value theorem, hence, there exists ud ∈ ¡(ḡ + g)/2, g∗¢ that solves
ϕ(u) = 0. Take any such solution ud. For si > r, we then haveZ si

r

{v̂i(β)−R} zi(β) e
− ḡ−g
ud−g

R si

β
zi(γ) dγ

dβ

=

"
{v̂i(β)−R}

ud − g
ḡ − g e

− ḡ−g
ud−g

R si

β
zi(γ) dγ

#si
r

−
Z si

r

v̂0i(β)
ud − g
ḡ − g e

− ḡ−g
ud−g

R si

β
zi(γ) dγ

dβ

≤ {v̂i(si)−R}
ud − g
ḡ − g .

It follows that

y(ud) ≤
Z 1

r

Z si

0

{v̂i(si)−R}
ud − g
ḡ − g f(s) dsj dsi =

ud − g
ḡ − g C,

where C is as defined in the text. Therefore, (5) implies that

ud ≥ g∗ − 2u
d − ḡ − g
ḡ − g C.
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Solving this for ud, we obtain (6). //

Proof of Corollary 2: Note that

2g∗ − ḡ = E[1{s̃i>s̃j , vi(s̃)>R} {vi(s̃)−R}] + E[1{s̃i<s̃j , vj(s̃)>R} {vj(s̃)−R}]
−E[1{s̃i>s̃j , vi(s̃)>R} {vi(s̃)−R}]− E[1{s̃i<s̃j , vi(s̃)>R} {vi(s̃)−R}]
= E[1{s̃i<s̃j , vj(s̃)>R} {vj(s̃)−R}]−E[1{s̃i<s̃j , vi(s̃)>R} {vi(s̃)−R}]
= E[1{vj(s̃)>R≥vi(s̃)} {vj(s̃)−R}] +E[1{s̃i<s̃j , vi(s̃)>R} {vj(s̃)− vi(s̃)}]
≤ E[1{vj(s̃)<R+²} {vj(s̃)−R}] +E[1{s̃i<s̃j , vi(s̃)>R} {vj(s̃)− vi(s̃)}]
< ²P (vj(s̃) < R+ ²) + ² P (s̃i < s̃j , vi(s̃) > R)

≤ 2².

Therefore, ḡ > 2(g∗− ²), and hence (ḡ+g)/2 > g∗− ². The desired conclusion then follows
from (6). //

Proof of Theorem 2: It is clear from the discussion after Theorem 1 that ud > (ḡ+g)/2.

It will be shown below that ud > g0. It follows from (a7) that for α > R,

x(α) =
1− δ

δ(1− δm)(ḡ − g) (α−R)−
u− g

(ḡ − g)zj(α)x
0(α).

Substituting this by noting g∗ =
R 1

R (α−R)Fi(α)fi(α) dα, we haveZ 1

R

x(α)Fi(α) fi(α) dα

=
1− δ

δ(1− δm)(ḡ − g) g
∗ − u− g

ḡ − g
Z 1

R

Fi(α)
2 x0(α) dα

=
1− δ

δ(1− δm)(ḡ − g) g
∗ − u− g

ḡ − g
·
x(1)− 2

Z 1

R

x(α)Fi(α) fi(α) dα

¸
,

where the second equality follows from integration by parts. It follows that

(ḡ + g − 2u)
Z 1

R

x(α)Fi(α) fi(α) dα =
1− δ

δ(1− δm) g
∗ − (u− g)x(1).

By (a4), ϕ(u) equals

ϕ(u) = u− g∗ + (2u− ḡ − g) δ(1− δ
m)

1− δ
Z 1

R

x(α)Fi(α) fi(α) dα(a8)

= u− 2g∗ + δ(1− δm)
1− δ (u− g) x(1).
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Substituting

x(1) =
1− δ

δ(1− δm)(ḡ − g)
Z 1

R

©
1− Fi(α)

ḡ−g
u−g ª dα

from (a3) into (a8), we obtain

ϕ(u) = u−
Z 1

R

©
1− Fi(α)2

ª
dα+

u− g
ḡ − g

Z 1

R

©
1− Fi(α)

ḡ−g
u−g ª dα.

We now show that ϕ(u) = 0 has a solution in (g0, g∗). It suffices to show that ϕ(g0) < 0

since we already know from the remark before Corollary 1 that ϕ(g∗) > 0. It can be readily

verified that in both first-price or second-price sealed-bid auctions, the (symmetric) one-

shot Nash equilibrium payoff is given by

g0 =

Z 1

R

{Fi(α)− Fi(α)2} dα.

Substituting this into the first term of ϕ(g0), we get

ϕ(g0) = −
Z 1

R

©
1− Fi(α)

ª
dα+

g0 − g
ḡ − g

Z 1

R

©
1− Fi(α)

ḡ−g
g0−g ª dα.

If we define the function φα(·) : R+ → R by

φα(z) =
1

z

©
1− Fi(α)z

ª
for each α ∈ [0, 1], then it follows from the above that ϕ(g0) can be rewritten as

ϕ(g0) =

Z 1

R

n
φα

³ ḡ − g
g0 − g

´
− φα(1)

o
dα.

Since φ0α(z) < 0 for each α ∈ [0, 1) and z ∈ R+, φα(z) is a strictly decreasing function of z

for every α ∈ [R, 1). It follows that ϕ(g0) < 0 since (ḡ − g)/(g0 − g) > 1. This completes
the proof of the theorem. //

Proof of Theorem 4: Since g(²) is continuous in ² and u(0) > g(0), we can take

²̄ ∈ (0, 1) such that ²̄ < infsi>ρ v̂
0
i(si)/w

0
i(si), and g(²) < u(0) for any ² ≤ ²̄. Choose an

integer m such that

m >
2

u(0)− g(²̄)
Z 1

ρ

{v̂i(α)−R} zi(α) dα.
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As in the proof of Theorem 1, we can take δ < 1 such that for any δ > δ,

(1− δ){v̂i(1)−R}+ δg0 < (1− δm) g(0) + δm

2
{u(0) + g0},

and
1− δ

δ(1− δm)
2

u(0)− g(²̄)
Z 1

ρ

{v̂i(α)−R} zi(α) dα < 1.

Fix any δ > δ, and let κ > 0 be given. By the argument preceding the statement of

Theorem 5 in the text, we can take ² < ²̄ such that (9) with this ² has a solution u(²)

greater than each one of u(0)−κ, {u(0)+ g(²̄)}/2 and {u(0)+ g0}/2. Let x̂ : [ρ, 1]→ [0, 1]

be defined by

x̂(si) =
1− δ

δ(1− δm)
1

u(²)− g(²)

×
Z si

ρ

{v̂i(α)− (1− ²)R− ²wi(α)} zi(α) e−
ḡ(²)−g(²)

u(²)−g(²)

R si

α
zi(β) dβ

dα.

Since g(²) < g(²̄), we have

1

u(²)− g(²) <
1

u(²)− g(²̄) <
2

u(0)− g(²̄) .

Furthermore, v̂i(si) ≥ wi(si) by (2) so that x̂(si) ∈ [0, 1] from our choice of m and δ. We

now define the transition probability function x : [R, ζ²(1)]→ [0, 1] by

x(bi) = x̂(ζ
−1
² (bi)) for bi ∈ [R, ζ²(1)].

In other words, x̂(si) is the transition probability when the winner’s signal inferred from

his bid is si. The recursive relationship corresponding to (a4) in the proof of Theorem 1

is now given by

u(²) = g∗(²)− δ(1− δm)
1− δ {2u(²)− ḡ(²)− g(²)}

Z 1

ρ

Z si

0

x̂(si) f(s) dsj dsi.

Substitution of x̂ into the above yields (9). This shows that the solution u(²) to (9) is the

payoff generated by the given scheme with x as defined above.

We next check the bidders’ incentive. Note first that no observable deviation is profitable:

Bidder i’s payoff from any observable deviation at the beginning of phase Ai is less than

(1− δ){v̂i(1)−R}+ δg0, and his payoff from following the specified path equals

(1− δm) g(²) + δm u(²) > (1− δm) g(0) + δm

2
{u(0) + g0}

> (1− δ){v̂i(1)−R}+ δg0.
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It is also clear that the bidders have no incentive to commit unobservable deviations in

the asymmetric phases A1 and A2. It therefore remains to show that no unobservable

deviation is profitable in phase S. Let πi(si, ŝi) denote bidder i’s (interim) payoff in phase

S when he has signal si but bids bi = ζ²(ŝi), while bidder j uses the bidding function ζ².

It suffices to show that π(si, si) ≥ π(si, ŝi) for any si, ŝi ∈ [0, 1]. For simplicity, we write
u = u(²), ū = (1− δm) ḡ(²) + δm u(²), and u = (1− δm) g(²) + δm u(²).

i) Suppose first that ŝi ≥ ρ so that bi = ζ²(ŝi) ∈ [R, ζ²(1)]. In this case, πi(si, ŝi) can be
written as:

πi(si, ŝi) = (1− δ)E
h
1{s̃j<ŝi} {vi(s̃)− ζ²(ŝi)}

¯̄̄
s̃i = si

i
+ δ {(1− x̂(ŝi))u+ x̂(ŝi) u}P (s̃j < ŝi | s̃i = si)
+ δE

h
1{s̃j>ŝi} {(1− x̂(s̃j)) u+ x̂(s̃j) ū}

¯̄̄
s̃i = si

i
.

Differentiation of πi with respect to ŝi yields

∂πi
∂ŝi

(si, ŝi) = Fi(ŝi | si)
"
(1− δ) {vi(si, ŝi)− ζ²(ŝi)} fi(ŝi | si)

Fi(ŝi | si)
− (1− δ) ζ 0²(ŝi)− δ(u− u) x̂0(ŝi)(a9)

− δ(ū− u) x̂(ŝi) fi(ŝi | si)
Fi(ŝi | si)

#
.

Note that x̂ satisfies

x̂0(si) =
1− δ
δ

1

u− u {v̂i(si)− (1− ²)R− ²wi(si)} zi(si)−
ū− u
u− u zi(si) x̂(si).

Substitution of this and (8) into (a9) yields upon simplification

∂πi
∂ŝi

(si, ŝi) = Fi(ŝi | si)
"
(1− δ)

n
vi(si, ŝi)

fi(ŝi | si)
Fi(ŝi | si) − v̂i(ŝi)zi(ŝi)

o
− {(1− δ) ζ²(ŝi) + δ(ū− u) x̂(ŝi)}

n fi(ŝi | si)
Fi(ŝi | si) − zi(ŝi)

o#

= Fi(ŝi | si)
"
(1− δ)©vi(si, ŝi)− v̂i(ŝi)ª fi(ŝi | si)

Fi(ŝi | si)

+
n fi(ŝi | si)
Fi(ŝi | si) − zi(ŝi)

oh
(1− δ)©v̂i(ŝi)− ζ²(ŝi)ª− δ(ū− u) x̂(ŝi)i#.
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From the definitions of ζ² and x̂, we can verify that

v̂i(ŝi)− ζ²(ŝi)− δ

1− δ (ū− u) x̂(ŝi)

= ²

Z ŝi

ρ

w0i(α) e
−
R ŝi

α
zi(β) dβ

dα+ {v̂i(ρ)−R} e−
ū−u
u−u

R ŝi

ρ
zi(β) dβ

+

Z ŝi

ρ

{v̂0i(α)− ²w0i(α)} e−
ū−u
u−u

R ŝi

α
zi(β) dβ

dα

> 0.

It then follows from (1) that
∂πi
∂ŝi

(si, ŝi) > 0 (resp. < 0) if ŝi < si (resp. ŝi > si). Hence,

for any ŝi ≥ ρ, we have (a) πi(si, ρ) ≥ πi(si, ŝi) for si < ρ, and (b) πi(si, si) ≥ πi(si, ŝi)

for si ≥ ρ.

ii) Suppose next that ŝi < ρ so that bi = ζ²(ŝi) = N . In this case, i’s payoff equals

πi(si, ŝi) = δ(ū− u)E£1{s̃j≥ρ} x̂(s̃j) | s̃i = si¤+ δu.

On the other hand, bidding ζ²(ρ) = R would yield bidder i

πi(si, ρ) = E
£
1{s̃j<ρ}

©
(1− δ) {vi(s̃)−R}− δ(u− u) x̂(ρ)

ª | s̃i = si¤
+ δ(ū− u)E£1{s̃j≥ρ} x̂(s̃j) | s̃i = si¤+ δu.

Since x̂(ρ) = 0, we have

πi(si, ρ)− πi(si, ŝi) = (1− δ)E
£
1{s̃j<ρ} {vi(s̃)−R} | s̃i = si

¤
= (1− δ)E£vi(s̃)−R | s̃j < ρ, s̃i = si

¤
P (s̃j < ρ | s̃i = si).

It then follows from the definition of ρ that πi(si, ρ) ≥ πi(si, ŝi) if and only if si ≥ ρ.

This combined with the conclusion in case (i) suggests that if si ≥ ρ, then πi(si, si) ≥
πi(si, ρ) ≥ πi(si, ŝi).

The desired conclusion follows from (i) and (ii). //
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