<table>
<thead>
<tr>
<th>Title</th>
<th>培養細胞におけるC反応性たん白質（CRP）の産生機構と風疹ウイルスのCRP誘導能に関する研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>吉田, 秀夫</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/32323</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
培養細胞におけるC反応性たん白質（CRP）の産生機構と，風疹ウイルスのCRP誘導能に関する研究

吉田秀夫

（昭和 年 月 日受付）

緒言

C反応性たん白質（CRP）は，1930年にTilletとFrancisにより，A群化膿連鎖球菌あるいは黄色ブドウ球菌に感染した患者の血清中に出現し，肺炎双球菌のC多糖体と沈降反応を呈する異常たん白質として発見，記載された。

CRPが血清中に特に高頻度に出現する疾患としては，自己免疫疾患である慢性関節リウ
マチおよび全身性紅斑性狼瘡（SLE）における悪性腫瘍などがある。しかしCRPが存在する種の疾患に高頻度に現われるので、あるいはCRP出現の起源ないしは機序については、全くと言ってよい程度明らかでない。ただ病勢の推移と患者血清中のCRP量の変動がよく一致することから、臨床上重要な検査となっている10-13)。
近年、これら自己免疫疾患および悪性腫瘍の病因については、ウイルスが発症と関連している可能性が指摘されている。すなわち、慢性関節リウマチにおける風疹ウイルス14-20)、全身性紅斑性狼瘡（SLE）の麻疹ウイルス21-23)、悪性腫瘍における内因性C型ウイルス等である24-29)。
また慢性関節リウマチ患者の滑液被膜組織にはCRPが検出されており、あるいは風疹ウイルスに感染したアフリカミトリアル腎由来の培養細胞は、その培養上清中にCRPを産生すると報告されている30,31)。
以下に述べる研究は，慢性関節リウマチにおける風疹ウイルスの関与について血清疫学的に解析するとともに，各種の動物株化細胞とその風疹ウイルス感染系を用いて，CRPの産生機構をin vitroでいろいろな角度から検討を加えたものである。

実験材料ならびに実験方法

I 被検血清

CRPテスト陽性を示す慢性関節リウマチ患者血清としては，昭和50年9月から昭和53年9月までの3年間に，大阪大学医学部附属病院を訪れた患者から，臨床検査のため採取した血清の一部を同附属病院中央臨床検査部，新井加奈子技官の好意により分析を受け，実験に供した。なおこれらの血清22検体は，いずれも，臨床所見，その他の臨床検査結果に基づいて慢性関節リウマチの確定診断がな
された患者より、同附属病院での治療開始前に得たものであり、実験に使用するまで、-20°Cにて凍結、保存された。

一方頭頸部悪性腫瘍患者の血清は、昭和51年5月から昭和53年8月までの約2年間大阪大学歯学部附属病院第一口腔外科外来を訪れ、頭頸部悪性腫瘍患者から、治療開始前に採血して分離されたものであり、そのうちからCRPを保有する血清10検体を選んで実験に供した。ちなみにこれら悪性腫瘍の病理組織学的診断は、全例、扁平上皮癌であった。
また妊娠の経過を追って採血した妊娠血清のうち、妊娠8週に風疹を発症した妊娠より、発症前から風疹の消退にいたるまでの間、経時的に採取したものを選んで実験に供した。これららの血清も、実験に用いるまで-20°Cにて凍結、保存した。
なお対照としては、昭和46年9月から昭和51年9月までの5年間にわたり、主に大阪府下に居住する健康成人より採取した血清のう
ちから、先に述べた慢性関節リウマチ患者に近い年令層由来の177検体を使用した。

II C 反応性だん白質（CRP）の定量法

1 毛細管法

被検血清と抗ヒトCRPウサギ血清（日本凍結乾燥研究所，東京）とを，長さ90mm，内径0.8mmのガラス毛細管に各々30mmの長さ分を入れ，毛細管中で混合法により反応させた。すなわち毛細管をゴム粘土に垂直に立て，37℃で2時間，ついでさらに18時間静置後に，反応の有無，程度を判定した。被検血清中のCRP量は12時間後の判定の際に，形成された沈降物の高さより，次の基準に従って，区分した。すなわち，沈降物の認められないものは陰性，沈降物の高さが1mm以下のものは土，1mm以上2mm未満のものは1十，2mm以上3mm未満のものは2十とし，以下同様に5mm以上6mm未満のものは5十とし，6mm以上のものは6十とした。

2 寒天ゲル内沈降反応
Dulbecco のリン酸緩衝液（pH 7.2）（以下 D-PBS と略す）に 1％の割合に溶解した寒天（Special Agar Noble, Difco Laboratory, USA）を 26 mm × 76 mm 大のスライドグラスに流し、厚さ約 2 mm の寒天ゲル層を作った。中央に 1 mm 径の穴を 1 ケ設け、その周囲に、中心穴から 2 mm の距離を隔てて 6 ケの 1 mm 径の穴を正六角形の頂点の位置に穿った。中央の穴には被検標品の 5 μL を、周囲の穴には生理食塩水で 2 倍稀释した 5 μL ずつの抗ヒト CRP ウサギ血清を加えた。この寒天ゲル層を湿室中に入れて、4 ℃ で、24 時間から 72 時間反応させた後、沈降線の出現の有無、仕方などを観察した。

Ⅲ リウマトイド因子のヒト IgG 吸着ラテックス结合試験（RA）ならびに変性ウサギ IgG 感作ヒト IgG 吸着ポリスチレン・ラテックス浮遊液（日本凍結乾燥研究所）
（）を用いてスライドグラス法により判定した。すなわち56℃で30分間、加熱、非動化した被検血清をグリシン緩衝液（pH 8.2）で20倍に希釈し、この希釈血清の50μlを等容をの上記ラテックス浮遊液と混和し、1分後に凝集の有無を観察した。

慢性関節リウマチ患者血清が示す、変性ウサギIgG感作固定ヒツジ赤血球凝集反応（RAHA）は以下に述べるように行った。非動化した被検血清の0.1mlに、まず非特異的な赤血球凝集素を除去するために、ホルマリン固定ヒツジ赤血球と煮沸ウサギ赤血球を含む赤血球凝集素吸収液（富士薬器、東京）の1.9mlを加え、4℃で、30分間反応させた。この混合液を2,500 x gで5分間遠心して得た上清を20倍希釈血清として、次のテストに用いた。すなわちこの血清を、0.2％（w/v）牛血清アルブミン（Flow Lab. USA）D-PBS（pH 6.6）により2倍階段希釈し、この希釈血清の0.5mlに、加熱変性ウサギIgGを吸着させたホルマリン固
定ヒトザシ赤血球（高圧臓器）をD-PBSに0.25%（V/V）の割合に調製させたものの0.1mlずつを加えて、十分に混和した。室温に18時間静置後、赤血球凝集の有無を観察した。被検血清のRAHA力値は、明確な凝集反応を示す、血清の最高希釈倍数により示した。

IV 細胞ならびに培養法

ヒト無色柔細胞黑色腎由来の株化細胞であるMEC細胞（大阪大学医学部皮膚科、谷垣武彦博士より分与された）ならびにアフリカミドリザル腎由来の株化細胞であるVero細胞

いずれも、5%仔牛血清（阪大微生物病研究会、大阪）と2mM L-グルタミンを添加したEagleの最小必須培地（MEM, 日水製薬、東京）を用いて、5% CO2気中で、37℃で培養された。仔マリアンハリスキー腎由来の株化細胞であるBHK21/WI-2細胞、ならびに寒天増殖培地中で形成されたBHK21/WI-2細胞のコロニーをパスツール®ピペットで分離することにより得たクローンで、風疹ウイルスのプラック
形成に好適な BSR 細胞の両者は、MEM に 5% 程度の牛血清、2 mM L-グルタミンおよび 10% トリプトースホスヘイトブロス（Difco Lab.）を加えた増殖培養液を用い、5% CO₂培養器中、37℃ で培養した。

継代はこれらの単層培養細胞をCa²⁺、Mg²⁺ を含まないリン酸緩衝液（pH 7.2）にトリプシンおよびエチレンジアミン四酢酸をそれぞれ 0.05% および 1% の最終濃度に加えた溶液（EDTA-Trypsin）によって室温で 3 分間処理し、細胞を採取した。処理で浮遊細胞を MEM で 2 回洗浄後、増殖培養液で細胞数が 20 x 10⁶/ml に浮遊し、この浮遊液を 90 mm 径のペトリ皿に 15 ml ずつ入れて培養した。継代培養は 3 - 4 日間隔で行なった。

一方風疹に罹患した妊娠から人工妊娠中絶手術時に得た胎生 10 週の胎児の初代培養は、以下に述べる方法で行なった。すなわち無菌的に取り出した胎児組織の一部を MEM により洗浄後、ハサミで細切し、この細切組織片を
50mm径プラスチック製ペトリ皿（Falcon Co, USA）に入した。室温で約2時間静置し、組織片
ガラススライド面に付着するのを待ち、20%
仔牛血清および2mM L-グルタミンをMEM増殖
培養液の5mlを添加し、5%CO₂培養器中、37
℃で培養した。培養2週間後、組織片の周辺
より増殖してきた細胞がペトリ皿面に密着し、单
層培養が形成した。この初代単層培養
細胞から、上に述べたのと同様、EDTA-Trypsin
溶液で処理して、浮遊細胞を採集し、継代培
養を行った。細胞の継代は4-5日間隔で
行い、実験には継代数3-5代のものを用い
た。
なお口蓋形成手術時に得た口蓋組織は、ヒ
ト胎児組織の初代培養と同様な方法により、
培養した。

ウイルス

風疹ウイルスM-33株（大阪大学微生物
病研究所、峰川好一博士より分与された）な
らびに風疹ウイルスとBHK21-WI-2 細胞の内因性
Retroウイルスとの合の子である風疹ウイルス変種株HPV-RVを使用した。すなわち、風疹ウイルスを感染多度（MOI）1で感染したBHK21/WI-2单層培養細胞を5％CO₂培養器中、37℃で培養し、培養後6日目で感染単層培養細胞にウイルス感染により生じた細胞変性が単層培養細胞の70～80％に現れた時点で、培養上清を採取した。この上清を低速遠心して細胞残渣を除いた上清を種ウイルスとして使用した。なお種ウイルスは実験に使用するまで一ガラスとともに保存した。

Ⅳ 風疹ウイルス変種株持続感染MEC細胞の確立

ヒト無色素性黑色腫由来のMEC細胞を90径のガラスベトリ皿に単層培養したものに、風疹ウイルス変種株HPV-RVをMOI 1で接種した。1時間吸着後、増殖培養液を15 ml加え、この感染単層培養細胞を5％CO₂培養器中、37℃で培養した。培養後約6日目にHPV-RVの細胞変性効果が感染単層培養細胞に出現し、
らに培養を続けると大部の細胞は死亡したが、培養約1ヶ月後に一部生残した細胞が再増殖して集落を形成した。この細胞集落をEDTA-Trypsin によって処理後、継代培養を行うことにより、HPV-RV による細胞変性のほとんど出現しない風疹ウイルス変種株 HPV-RV 持続感染細胞が確立された（以下この細胞を MEC(HPV-RV) と略す）。さらに、実験には、継代数8代から20代の MEC(HPV-RV) 細胞を用いた。

Ⅲ 風疹ウイルスならびにその変種株の感染力価測定法

風疹ウイルス野生株 M-33, 風疹ウイルス変種株 HPV-RV ならびに風疹ウイルス変種株持続感染細胞 MEC(HPV-RV) より産生されているウイルス（以下このウイルスを HPV-RVpi(MEC) と略す）の感染力価は、BSR 単層培養細胞におけるプラック形成を指標として測定した。すなわち MEM により10倍段階希釈したウイルス液の0/1ml & 50 mm径ベトリ皿に形成された均一な BSR 単層培養細胞に接種し、37°c に1時間静
置した後、未吸着のウイルスを除くために感染単層培養細胞をMEMで3回洗浄した。つり
で寒天を1％の割合に含む増殖培養液を重層
し、5％CO2培養器中、37℃で培養した。6日
目に、感染単層培養細胞を93% (％) = ユートラ
ルレッドD-PBS溶液によって染色し、感染の結
果生じたプラック数を数えた。この値に基づ
いて、ウイルス原液の0.1 mlが形成するプラック
数 (Plaque forming Unit, PFU) を算出し、ウイル
ス感染力価とした。

Ⅳ 風疹ウイルス末血球凝集反応 (HA) な
らべに同抑制反応 (HAI) 42)

Stewart からの方法に準じて測定した。

HA力価の測定：まず10倍～10倍PFU/0.1mlの
感染力価の風疹ウイルス溶液に各容量の1.25
%Tween 80 (石津製薬、大阪) D-PBS (pH 6.6)
溶液を加えて0℃で5分間混和し、ウイルス
粒子を破壊した。このウイルス溶液に各容量
のエチルエーテルを加え、4℃で15分間、よく
混和した後、4000 xgで10分間遠心した。分
離した2層のうち、抗原を保有する下の方の水層部分を採取した。残余のエチルエーテルを減圧除去した後、この水層をのHA力値をマイクロ定量法により測定した。すなわちこのようにして得たHA抗原標品を0.2％牛血清アルブミンD-PBS (pH 6.6) により2倍希釈し、この希釈HA抗原液の25μlに等容摂の0.33％(％)1日令ヒヨコ赤血球浮遊D-PBS液を加えた混合液を4℃に1時間静置して反応させた後、赤血球凝集の有無を調べた。完全凝集を示すHA抗原標品の最終反応段階での最高希釈倍数をHA力値とした。

HAI力値の測定：検血清に含まれている非特異的凝集抑制物質を除く目的で、血清100μlをD-PBS (pH 7.1) により2倍に希釈した後、100μlずつの1 M塩化マンガン溶液およびヘパリン溶液（500単位/μl）を加え、0℃で十分混和し、沈殿を生成させた。ついて非特異的凝集素を除くために、D-PBSにより50％(％)に調製した1日令ヒヨコ赤血球液の50μlを加え、
0.5で30分間混和した後、300 × gで10分間遠心した。上清として得られた処理血清の25μlを、前記の牛血清アルブミンD-PBS（pH 6.6）溶液により2倍階段希釈し、希釈液に等容量の抗原（4単位/50μl）を加えて室温に1時間静置した。ついで0.33 % (v/v) の日零ヒヨコ赤血球浮遊液の50μlを加えて、さらに1時間静置した後、赤血球凝集のパターンを観察した。被検血清のHAI力値はヒト赤血球の凝集を完全に阻止する血清の最終反応における最高希釈倍数として表現された。

Ⅱ ウイルスのプラック形成能に対する中和反応

ウィルス液0.3mlにMEMにより2倍階段希釈した等容量の抗血清を加え、この混合液を37℃の温浴中で1時間反応させた。この反応混合液の0.1mlをBSR 単層培養細胞に接種し、形成されたプラック数を算定した。対照として、抗血清の代わりにMEMとウイルス液のみの混合液を同様に反応させたものについてプラ
ツク数を算定した。なお実験に使用したウィルス液は、対照においてポトリ試料あたり100-200のプロットを形成するようにウィルス濃度を調製した。また抗血清は中和反応を行う前に56℃、30分間加熱して非働化した。

エ ウイルス精製法

MEC細胞より産生されているヒトRetroウィルスは、次のようにして精製した（ちたみ、逆転写酵素を保有する内因性ウィルスは、現在一般に、Retroウィルスと分類されている）。すなわち5日間培養したMEC細胞の培養上清300mlを採取し、10,000xgで1時間遠心して細胞残渣を除いた上清をさらに100,000xgで2時間超遠心した。得られた沈殿を1mlの0.01Mトリス塩酸緩衝液（pH8.0）に懸濁し、粗ウィルス標品とした。この標品の0.5mlをcellulose nitrate ultracentrifuge tube（Beckmann Co, USA）に入れた蔗糖密度勾配溶液（上記トリス塩酸緩衝液で15-60%（%）に調製）4ml上に重層し、56,000xgで2時間遠心した。遠心管底を穿孔し
流出液を16画分として分取した。これらの各画分についてDNA合成酵素活性を測定し、高い酵素活性を示す画分を精製ウイルス標品とした。なおウイルスタン白量はLowryらの方法により、定量した。

風疹ウイルス変種株HPV-RVはBHK21/WI-2細胞で増殖したウイルス標品より、ヒトRetroウイルスの場合と同様、密度勾配遠心法により精製した。この際、分取した画分のうち、HA力価と感染力価と再者が一致して最高値を示す画分を精製HPV-RV標品とした。

Ⅻ抗血清の調製方法

風疹ウイルス変種株HPV-RVに対する抗血清は、精製HPV-RV標品1mlずつを1週間に1回の割合で3回、ウサギの耳静脈内に注入することにより調製した。最終注入1週間後、採血し、得られた血清を分注して実験に使用するまで、-20℃で保存した。

抗ヒトRetroウイルスに対する抗血清は、MEC細胞の培養上清より精製したウイルス標
品 0.5 ml ずつを、1 週間隔で 3 回、成熟ラットの腹腔内に注射することにより、調製した。

XII 間接蛍光抗体法（FA）
培養細胞に生成した CRP は、間接蛍光抗体法を利用し、次のようにして検出した。すなわち 24 mm × 32 mm のカバーグラス上に、37 ℃ で 2 日間培養した粗存単層培養細胞を、4 ℃ に冷却した D-PBS（pH 7.1）で 3 回洗浄後、アセトンにより室温で 10 分間、固定した。空気中に 1 時間放置してアセトンを完全に除いた後、固定された細胞に抗ヒト CRP ウサギ IgG（Dukopatts, Copenhagen, Denmark）を、湿室内で 37 ℃、1 時間反応させた。D-PBS により十分洗浄して未反応の抗血清を除き、ついてフルオレセニン・イソチオシアナート（FITC）を結合させた抗ウサギ IgG プタ血清（Dukopatts）を 37 ℃ で 1 時間反応させた。未反応抗血清を洗浄して除いた後、90 % (V/V) グリセリンを含む 0.5 M 重炭酸緩衝液（pH 9.5）中に入封入した
この標本は蛍光顕微鏡（日本光学，FL型，東京）を用い，UV励起下にて観察した。写真撮影には，Kodak high speed extachrome（ASA 160）を用いた。

風疹ウイルスあるいは風疹ウイルス変種株HPV-RVが持続感染した細胞に発現したウイルス抗原も，上記と同様，間接蛍光抗体法により検索した。この際，抗風疹ウイルスウサギIgG（Flow Lab., USA）あるいは抗HPV-RVウサギ血清ならびにFITCを結合させた抗ウサギIgGブタ血清を用いた。

DNA合成酵素活性測定法

ヒトRetroウイルス粒子の保有する逆転写酵素ならびにDNA依存性DNA合成酵素の活性は，Greenらの方法に準じて測定した。

逆転写酵素活性測定のため，使用した反応混合液（100μl）の組成は次のようであった：

40μMトリス塩酸緩衝液（pH 8.0），5μMデノキサヌレトール（Sigma Chemical, USA），30μMNaCl，0.1μMデオキシリボヌクレオチド（dATP，dCTP，dGTP，dTTP）を含む。
dGTP, Sigma Ch mi.) ならびに

放射能: 16.9 Cι/mm, new England Nuclear, USA), 被検
精製ウイルス標品ならびに 0.01 % (V/V) ドラ
イトンX - 100 (石津製薬)。この反応混合液
を 37℃の温浴中で反応させ、所定時間後に 1
N の過塩素酸の 150 μl を加えて反応を停止させ
た。反応生成物の粗体として仔牛胸腺 DNA (Sigma Chemi.) の 100 μg と 10 % トリクロル酢酸 (石
津製薬) の 3 ml とを加え、0℃で 30 分間静置
した後、酸不溶性画分を millipore メンプレ
ンフィルター（HA 型、孔径 0.45 μm, Millipore,
Massachusetts, USA）上に集めた。乾燥させた酸
不溶性画分を、トルエンを主体とした液体シ
ンチレーターに溶解し、この画分にとリミさ
れた放射活性を Aloka 液体シンチレーションカ
ウンター（LSC-673型、日本無線理学研究所
、東京）により測定した。なお DNA 依存性
DNA 合成酵素活性は、DNA の鋸型としてエン
ドヌクレアーゼで処理されていない仔牛胸腺
DNA 10 μg を使用し、上記と同様の方法で、測
定した。

XIV ラジオイムノアッセイ

0.1 Mリン酸緩衝液（pH 7.4）に対して一夜透析した精製ウイルス標品の50 μlに、Na¹²⁵I（放射能濃度：572 mCi/ml New England Nuclear）の50 μCiならびにクロラミンT（和光純薬、大阪）の50 μgを加え、4 ℃で5分間混和して反応させた。ついでメタ亜亜硫酸ソーダ（和光純薬）50 μgを加えて、¹²⁵Iとウイルスタン白との反応を停止させ、上記のリン酸緩衝液に対して一夜透析して遊離のNa¹²⁵Iを除去した。このようなにして得た標識ウイルス標品を、0.125 Mホウ酸緩衝液（pH 8.1）の90 μlに、約5000 cpm の放射活性を与えるように希釈し、ついで前記のホウ酸緩衝液により10倍階段希釈した抗ヒトCRPウサギIgGの90 μlと37 ℃で18時間反応させた。その後さらに抗ウサギIgG ブタ血清（Dukopatts）の90 μlを加えて、4 ℃で3時間静置し、生じた沈殿物の放射活性をカウンター（Aloka PS-201，日本無線医理学）
研究所）により測定した。
なお225で標識されたHPV-RVpi（MEC）と、抗ヒトCRP ウサギIgG との反応の特異性を検定する
ために、上記ホル酸緩衡液により最終濃度が1mg/ml となるように調製したヒトCRP（Behringwerke, W.Germany）50μlを上記の反応系に加
え、イの結合阻止率を算定した。

IV 電子顕微鏡による観察

ヒト無色素性黒色瘤由来の MEC 細胞に内在
するRetroウイルスは、以下に述べるようにし
て観察した。

すなわち37℃で5日間培養された MEC 単層
培養細胞を5mm 塩化カルシウムを含む0.1Mリ
ン酸緩衡液（pH 7.3）で3回洗浄後、上記緩衡
液に最終濃度が25%になるように希釈したグル
タルールアルデヒド（石津製薬）を用いて15
時間固定した。固定された MEC 細胞をラバー
ポリスマンを用いてガラス面より採取し、上
記のリン酸緩衡液で洗浄してグルタルールアル
デヒドを除去した。この細胞を、さらに2%
四酸化オスミウム溶液（E.Merck, Darmstadt, West Germany）により2時間, 4℃で固定し, ついで通法により, 冷エタノールの減水系列を通
過させて脱水した。その後, プロピレンオキシ
ジド（石津製薬）を浸透させた後, 固定細胞
を Luft 法 によりエポキシ樹脂（応研商事, 東京）に浸して, 37℃, 45℃, 60℃の恒温器
で順次, 各20時間ずつ, 加熱重合させた。包
埋ブロックは, LKB 型ウルトラトームを用い
て600 - 800 ㎛の超薄切片とし, 4% 酢酸ウラニ
ールならびに水酸化鉛により二重染色した。
染色標本は電子顕微鏡（HU-12A 型, 日立製作
所, 東京）を用い, 直接倍率4000倍ないし
30,000倍で観察した。写真撮影には富士電子顕
微鏡フィルムFG を用いた。

実験結果

I 慢性関節リウマチ患者血清中の風疹ウ
イルスに対する HAI 抗体価

慢性関節リウマチの病因として、風疹ウイルスの慢性感染が、近年、示唆されている。

また慢性関節リウマチ患者の滑液胞膜組織内、CRP が検出されると報告されている。

そこで CRP を保存する慢性関節リウマチ患者血清 22 検体について、風疹ウイルス HAI
抗体価を測定するとともに、この値と血清中の CRP 量、RAHA 価、および RA 試験の結果との
相関関係を調べた。

表 1 と図 1 に示すように、慢性関節リウマチ患者の風疹ウイルス HAI 抗体価の平均（以下の特有な限界）は 189.1 倍であり、対照健常成人 177 例の風疹ウイルス HAI 平均抗体価 30.2 倍と比較して、高値を示し、この差は統計学的に有意であった（P < 0.01）。

一方これら慢性関節リウマチ患者 22 例の血清中 CRP 量は 2.81 +1、RA 試験の結果
は 20 例は陽性、残り 2 例は陰陽性であり、また RAHA の平均値は 3.85 倍であった。また慢性関

...
節リウマチ患者の風疹ウイルス HAI 抗体価の分布（図1）をみると、HAI 抗体価 5/2 倍を示すものが 7 例と最も多く、HAI 抗体価 8 倍以下のものは 2 例のみであった。一方対照の健康成人では（図2）、風疹ウイルス HAI 抗体価 8 倍未満のものが 99 例と最も多く、5/2 倍以上の値を示すものは 23 例にすぎなかった。

以上述べた血清学的調査結果は、慢性関節リウマチの発症に風疹ウイルスが、何らかの風に関与する可能性を示唆すると考えられる。ただし、慢性関節リウマチ患者血清中の CRP 量と風疹ウイルス HAI 抗体価の相関関係を相関係数を求めて検討したところ、この値は 0.35 となり、推計学的に有意の相関関係は認められなかった（図3）。

さらに血清中に CRP を保有している頭頸部悪性腫瘍患者の 10 例について風疹ウイルス HAI 抗体価を測定したところ、風疹ウイルス HAI 抗体価 8 倍未満のものが 4 例、8 倍のもの
のが6例で、その平均抗体価は3.4±倍であった（表2）。なお個々の血清についてもHAI価とCRP量との間に関連は認められなかった。すなわち、CRPの産生は、風疹ウイルス感染に必ずしもよるものでないことが明らかにされることを付言しかねずならない。

II 風疹に罹患した妊婦の血清中CRP量と風疹ウイルスHAI抗体価の推移

慢性関節リウマチ患者において、風疹ウイルスHAI抗体価とCRP量との間に有意の相関関係は認められなかった。しかし血清中のCRP量も経時的に測定すると、病勢の推移にともなって、その値が大きく変動することは、臨床上よく知られている10-13。また風疹ウイルスHAI抗体価は、風疹に罹患した後の抗体価が最高値に達した後、長期間にわたりて高値を維持することが知られている47,48。したがって、ある一時点に採取した血清について測定した風疹ウイルスHAI抗体価とCRP量との間に有意の相関関係が認められない事実は
必ずしも風疹ウイルスとCRPとの生物学的因果関係も明確にすることにはつながらず、そこで風疹ウイルスが感染したVero細胞は培養上清中にCRPを産生するという最近の報告を参考にして、in vitroにおける風疹ウイルス感染がCRP産生の誘導因子になり得るか否かについて、検討を加えた。風疹に罹患した1例の妊婦について、臨床所見、血清中のCRP量と風疹ウイルスHAI抗体価との関係を、表3に示した。すなわち、この症例では、妊娠中身の発症14日前に同居者に風疹ウイルス感染による皮疹が顔面に出現し、また発熱、後頭部リンパ節腫脹が認められた。この同居者の皮疹は次第に胸部、上肢に広がり、解熱とともに癒合し、妊娠の発症7日前に消退した。この時点での妊婦の血清中の風疹ウイルスHAI抗体価は8倍であり、CRPは認められなかった。妊婦の発症後より14日後に、顔面部皮疹、発熱、後頭部なら
びに頸部リンパ節の腫脹という形で出現した。
この時の風疹ウイルス HAI 抗体価は 8 倍であった。発症 7 日目に皮疹は消退し、発熱は
平熱に復したが、四肢、腰部の関節痛が出現し、また風疹ウイルス HAI 抗体価は 32 倍と発
症時の 4 倍に上昇した。さらに発症より 14 日
後に妊娠血清の風疹ウイルス HAI 抗体価は
1024 倍と急速に上昇し、CRP 量は毛細管法で 2 +
を示した。なおこの女性の風疹発症後 28 日目
の風疹ウイルス HAI 抗体価は 1024 倍、CRP 量
は 2 + であり、90 日後での風疹ウイルス HAI
抗体価は 512 倍、CRP 量は 1 + であった。
一般に風疹ウイルス胎内感染による先天性
風疹症候群の出現は、妊娠前三半期において
その頻度が一番高いと報告されている 49, 50)。
この妊娠においても先天性風疹症候群児出産
の恐れが非常に大きいと判断されたので、妊
娠 10 週で、風疹ウイルスの感染が血清学的に
確実と考えられた時点において、人工妊娠中
絶が行なわれた。
摘出された胎児組織の一部を組織培養して
得た培養細胞について、風疹ウイルス抗原と
CRP の存在が間接蛍光抗体法により検索され
た。その結果、培養細胞の細胞質に風疹ウイ
ルス抗原の存在が明らかにされるとともに、
抗ヒト CRP ウサギ IgG と反応する特異抗原の
存在が認められた（図4，5）。なお対照と
して用いたヒト胎盤組織の初代培養細胞には、
これらの特異抗原は検出されなかった。
以上述べた所見は、風疹ウイルス感染が
CRP 産生の誘導因子になり得ることを示唆し
ている。

III 各種培養細胞における風疹ウイルスの
CRP 誘導能に関する検索

風疹ウイルスの CRP 誘導能ならびに CRP の
産生機構を in vitro の系で解析するために、以
下に述べる実験を行なった。

風疹ウイルス感染により CRP の誘導がすでに
に報告されている Vero 細胞を陽性対照とし
て、ヒト胎盤裂症児より得た培養細胞（HPF）
ヒト無色素性黒色腫由来の MEC 細胞、および風疹ウイルスの増殖に好適な BHK21/WI-2 細胞について、風疹ウイルスの CRP 誘導能を間接蛍光抗体法により調べた。

表 4 に示すように、Vero 細胞のみならず、MEC 細胞ならびに HPF 細胞についてもまた、風疹ウイルス感染により、細胞質内、または一部核内に、CRP が誘導されることが明らかにされた。さらに MEC 細胞は、風疹ウイルスが感染していない場合にも CRP が存在することも明らかとなった（図 6）。一方 BHK21/WI-2 細胞では、風疹ウイルス感染の有無を問わず、間接蛍光抗体法により CRP を検出することが出来なかった。

以上述べた実験結果より、風疹ウイルスはある種の宿主細胞に CRP を誘導するが、ウイルス遺伝子自身に CRP を産生する遺伝情報が保有されているわけではないことが示唆された。

IV MEC 細胞における CRP の産生とその誘
導因子
風疹ウイルスが感染していない MEC 細胞で CRP が間接蛍光抗体法により検出されたので、その培養上清中に CRP が産生されている可能性について検討を加えた。すなわち MEC 細胞の培養上清の 300 ml を集め、低速遠心にて細胞残渣を除去して得た上清、この上清をさらに 100,000 xg 2 時間超速遠心して分離した沈渣および上清について、それぞれの CRP の存在をゲル沈降法により調べた。その結果、100,000 xg で 2 時間、超速遠心して得た沈渣を生理食塩水に懸濁したもののみが抗ヒト CRP ウサギ IgG と反応して沈降線を生じるのを観察された（図7）。この実験結果は、CRP が MEC 細胞培養上清中で浮遊密度の高い粒子として存在していることを示している。
そこで電子顯微鏡により、無色素性黒色腫由来の MEC 細胞の超微細構造を観察したところ、細胞質内に多数の電子密度の高い粒子が存在することが明らかにされた（図8）。こ
これらの粒子は、その形態に基づいて内因性 A, B および C 型ウイルスと同定された。すなわち直径 70 - 80 nm で中央に電子密度の低い領域が存在し、群をなしている A 型ウイルス、核がやや中央から偏在し、外殻にスパイクを有する B 型ウイルス、ならびに直径 100 nm で中央に電子密度の高い核を有し、周囲を二重膜構造の外殻で被われている C 型ウイルスである。この電子顕微鏡による観察所見は、MEC 細胞培養上清中に DNA 合成酵素活性を保有するヒト Retro ウイルス粒子が産生されていることを示唆する。そこで MEC 細胞の培養上清より、蔗糖密度勾配遠心法を用いて精製ウイルス標品を調製し、精製したウイルス粒子（たん白量にして 3 μg）を用いて逆転写酵素と DNA 依存性 DNA 合成酵素活性を測定した。図 9 に示すように、反応時間が 60 分まで経時的に酸不溶分画への H-TMP の取り込みは増加し、それ以後プラトーに達した。すなわち MEC 細胞の培養上清中に上記酵素活性を保有する
ヒト Retro ウイルスの存在することが明らかにされた。以上の結果より、MEC 細胞より産生されている CRP は、この細胞より産生されている Retro ウイルス粒子の一構成部分として、あるいはこのウイルス粒子に結合した状態として、存在していると考えられる。

IV 風疹ウイルス変種株 HPV-RV 持続感染
MEC 細胞より産生されているウイルスの生物学的特性

風疹ウイルスが Retro ウイルスを保有する BHK 細胞に持続感染した場合、持続感染細胞より産生されているウイルスは風疹ウイルスと BHK Retro ウイルスとの合の子であることが報告されている。したがってヒト無色素性黑色腫由来の MEC 細胞に風疹ウイルスを持続感染させた際にも、持続感染 MEC 細胞より産生されるウイルスは風疹ウイルスと MEC 細胞の Retro ウイルスとの合の子であり、その抗原としての特性は両ウイルスのモザイクとなっていると考えられる。すなわち CRP が MEC 細胞
胞のRetroウイルス粒子の構成成分の一部として存在するならば、風疹ウイルスが持続感染したMEC細胞より産生されている感染性の子ウイルス粒子はCRPを保有していることが予想される。この可能性を検討するために、風疹ウイルス変種株HPV-RVが持続感染したMEC細胞より産生されているウイルス粒子HPV-RVpi(MEC)の抗原性を解析した。

HPV-RVウイルス粒子の抗原としての特性を、風疹ウイルスM-33株と比較して、表58に示した。すなわちHPV-RVは、風疹ウイルスに特異的な補体結合抗原を保有しているが、そのプラック形成能および赤血球凝集能は、抗風疹ウイルス血清によってではなく、抗BHK Retroウイルス血清によってそれぞれ中和され、抑制される。またHPV-RVは、野生株M-33に較べてより著明なプラックをBSR単層培養細胞で形成し、感染力価が測定しやすいので、本項に述べる実験では、HPV-RVを使用した。HPV-RVが持続感染したBSR単層培養細胞（
MEC（HPV-RV）には線維芽細胞が多数出現し、主に上皮様細胞よりなる親株 MEC 細胞と比較し、MEC（HPV-RV）細胞の形態は多形性を示した（図 10）。この MEC（HPV-RV）細胞が HPV-RV の持続感染細胞であることを証明するために、抗 HPV-RV ウサギ血清を用いる間接蛻光抗体法により、HPV-RV ウイルス抗原を検索した。図 11 に示すように、MEC（HPV-RV）細胞の主に細胞質、あるいは一部は核内に、HPV-RV ウイルスの特異抗原の存在が認められ、MEC（HPV-RV）細胞が HPV-RV 持続感染細胞であることが明らかにされた。

なお MEC（HPV-RV）細胞は、感染性ウイルス HPV-RVpi（MEC）を自発的に産生しており、このウイルスは BSR 単層培養細胞に対して、親株ウイルス HPV-RV と比べ非常に小さなプラックを形成した（図 12）。そこで抗ヒト Retro ウイルス血清の HPV-RVpi（MEC）ウイルスのプラック形成能に対する中和作用を調べた。表 2 に示すように、10 倍に希釈された抗血清により HPV-RVpi（MEC）ウイルスのプラック形成能の 83.6%
%が、また40倍希釈抗血清により38.5%のプラック形成能が中和されることが明らかになった。すなわち、HPV-RVpi(MEC)ウイルス粒子の外殻は、MEC細胞のRetroウイルス粒子の外殻の、少なくとも一部を保有していることが、示された。

このような所見が得られたので、つぎにHPV-RVpi(MEC)ウイルスのプラック形成能に対する抗ヒトCRPウサギIgGの影響を中和反応により検討したところ、8倍希釈抗血清では93.8%、32倍希釈抗血清では44.1%におよぶウイルスのプラック形成能の中和が観察された（表2）。一方対照として用いた親株ウイルスHPV-RVのプラック形成能は、抗ヒトCRPウサギIgGにより、全く中和されなかった。

以上、ヒト無色素性黑色腫由来のMEC細胞に風疹ウイルス変種株HPV-RVが持続感染した細胞から産生されているウイルスHPV-RVpi(MEC)は、その外殻にCRPを保有しており、このCRPはMEC細胞の内因性Retroウイルス粒子の
一構成部分であることを強く示唆する結果が得られた。

Ⅵ 抗ヒト CRP ウサギ IgG と CRP との特異反応のラジオイムノアッセイによる検定

HPV-RVpi(MEC) ウイルスのプラック形成能を中和する抗ヒト CRP ウサギ IgG 中に CRP に対する3特異抗体が存在することを明らかにし、その特異抗体と HPV-RVpi(MEC) ウイルス粒子との反応性を示す目的で、次の実験を行なった。

すなわち精製 HPV-RVpi(MEC) ウイルス粒子を¹²⁵I により標識した標品と抗ヒト CRP ウサギ IgG との反応を、ラジオイムノアッセイにより測定するとともに、精製ヒト CRP 標品による、この反応の阻害について検討を加えた。精製 HPV-RVpi(MEC) ウイルス標品は次のようにして調製した。すなわち図13 に示すように、

MEC(HPV-RV) 細胞の培養上清より得た HPV-RVpi(MEC) ウイルスの粗ウイルス標品を蔗糖密度勾配遠心法を用いて分画分取し、各画分について HA 力価と BSR 細胞でのプラック形成能によると感
湊力価を測定した。HA力価と感染力価が一致して最高値を示す画分WをHPV-RVpi(MEC)の精製ウイルス標品として、25Iで標識した。この得られた標品と抗ヒトCRPウサギIgGとの反応性を解析するため、硼酸緩衝液により10°から10^-6まで希釈した抗ヒトCRPウサギIgGとの25Iで標識したHPV-RVpi(MEC)との結合率を測定した。その結果（図14）、標識HPV-RVpi(MEC)が10°から10^-2希釈の抗ヒトCRPウサギIgGによっ
て、その約70％が結合されて沈澱すること、10^-3から10^-6希釈の抗血清では約24％が結合することができる判った。またこの反応系に50μgの精製CRP標品を加えた時に、抗ヒトCRPウサギIgGによる標識ウイルスの結合率は、10°から10^-2までの抗血清の希釈域においても約26％に低下し、HPV-RVpi(MEC)ウイルス粒子と抗ヒトCRPウサギIgGとの反応が、精製ヒトCRPにより、特異的に阻害されることは確認された。
考察

Tillet と Francis によって 1930 年 CRP が発見されて以来、種々の疾患に罹患した患者の血清中に CRP が出現することが明らかにされてい る。すなわち細菌あるいはウイルス感染症、全身性紅斑性狼瘡（SLE）や慢性関節リウマチなどの自己免疫疾患、ならびに悪性腫瘍などの患者血清中に CRP が検出され、さらに妊娠血清中にも CRP が出現することが報告されて いる。しかしながら、CRP が一体、どの臓器組織、あるいは細胞で、どのような目的で作られるかについて、全く不明であり、また産生された CRP の生物学的特性に関しても、ほとんど明らかにされていない。

CRP が特に高頻度に検出される疾患として自己免疫疾患と悪性腫瘍がある。最近これら疾患において、その病因として内因性 Retro ウ イルスの関与が話題となっている。すなわち
自己免疫疾患であるSLEでは、その病変組織の細胞DNAにRNAウイルスである麻疹ウイルスがプロウイルスDNAの形で組込まれていることがZedhanovによって示された23)。麻疹ウイルスRNA遺伝子がDNAに逆転写される時、宿主細胞内内因性ヒトRetroウイルスが発現し、このRetroウイルス粒子の保有する逆転写酵素が利用されると考えられる。またSLEの動物実験系のモデルシステムとして、Newzeland Black mouseがあるが、このマウスは生後SLEを自然に発症する。その後このマウスは、白血病になり死に致るが、SLE発症に際して、マウスC型ウイルスであるGrossの白血病ウイルスが発現する。また腎炎球体の病理部には、Grossの白血病ウイルス抗原が存在することが、蛍光抗体法により明らかにされている。以上のべた事実は、自己免疫疾患の誘導因子として内因性Retroウイルスが関与することを、強く示唆している。

一方悪性腫瘍の発現機構として、Todaroと
Huebner により Oncogene theory が提唱されており、彼らによると、すべての動物細胞の染色体 DNA には oncogene を保有する DNA 領域が存在し、この DNA が内因性 Retro ウイルスとして誘導される結果、発癌すると言う。この内因性 Retro ウイルスは動物の腫瘍細胞に認められ、またヒト癌組織、たとえば白血病、悪性リンパ腫、骨肉腫、肺腫などの腫瘍組織に、発現することが明らかにされている。またヒト腫瘍細胞について、電子顕微鏡による観察では内因性 Retro ウイルス粒子の存在が認められない場合にも、その染色体 DNA がサル内因性 Retro ウイルス RNA 遺伝子に相補的な DNA 領域を保有していることが報告されている。したがって近年ヒト悪性腫瘍もまた、内因性 Retro ウイルスの発現により発症するという viral carcinogenesis の概念が大きくクローズアップされている。以上のことを総合的に勘案すると、CRP の産生機構ならびにその生物学的特性を研究する場合にも、上に述べた両疾患
患の病図に関与している可能性がある内因性ヒトRetroウイルスとの関係を解析の対象とすることは、当を得ていると言われる。一方正常胎盤組織においても内因性C型ウイルスの発現が明らかにされており、また妊娠血清では高頻度にCRPが検出されるという事実より、CRPと内因性Retroウイルスとの関連性は興味ある研究対象と考えられる。

著者はまず、自己免疫疾患の一つであり、また病因として風疹ウイルスの慢性感染が示唆されている慢性関節リウマチ患者血清でCRP陽性のものについて、風疹ウイルスHAI抗体価が対照として用いた健康成人のそれと比べて有意の差で高値を示すことを見明らかにした。さらにCappelらは、風疹ウイルスが感染したvero細胞の培養上清中には、CRPが産生されていると報告している。

さて佐藤らは、風疹ウイルス慢性感染のモデルシステムとして、風疹ウイルス持続感染細胞を確立し、その確立機構を検索した。
その結果、風疹ウイルスのRNA 遺伝子がDNA に逆転写され、宿主細胞染色体DNA に組み込まれていることを示唆する所見を得るとともに、この持続感染細胞より産生されているウィルス粒子は宿主細胞のRetro ウイルスと風疹ウイルスとの合の子であることを明らかにしている。さらに風疹ウイルスが感染すると、その宿主細胞の染色体DNA から内因性Retro ウイルスが誘導されることを示した。これらの事実を念頭において着者は、風疹ウイルスをCRP の誘導因子とし、培養細胞を用いてCRP 産生機構とCRP の生物学的意義を、in vitroの実験により解析しようとした。その結果、風疹ウイルス粒子自身はCRP を保有していないこと、しかしこれあるいはサル由来の細胞に風疹ウイルスが感染した時のみ、浮遊密度の高い粒子形態をとったCRP が産生されることを明らかにした。またヒト無色素性黑色腫由来の細胞で、かっヒトRetro ウイルスを発現しているトランスホーム細胞は、風
疾ウイルス感染の有無に係らず，自発的に産生している Retro ウイルス粒子の外殻に CRP を保有していることを示した。すなわち、風疹ウイルスの感染により誘導される CRP は、風疹ウイルスの宿主細胞染色体 DNA に対する障害の結果発現される内因性 Retro ウイルス粒子の保有する CRP と同一のものと考えられる。

なお，内因性 Retro ウイルスを発現しているハムスター由来の BHK21/WI-2 細胞では，CRP が全く検出されなかった。その理由としては、この細胞の内因性 Retro ウイルスは，CRP を産生する遺伝子を欠失している可能性が考えられる。もっとも，この細胞が本研究で使用した実験手技では検出されない程の微量の CRP を保有していた可能性も否定できない。

もちろん，一般にヒト血清中に出現する CRP は，Retro ウイルスの外殻に組み込まれた形態としてではなく，均一なたん白質として検出される。この矛盾については，次のように説明できるのではないかと考えられる。
すなわち、最近ヒト血清中で補体活性を示す
ある画分がヒトRetroウイルスに対して破壊的
に働き、その結果、ヒト癌組織あるいはその
血清中には、形態学的に完全なヒトRetroウイ
ルス粒子は認められないとの報告がある。
これによると、もし自己免疫疾患が発症し、
あるいは発癌の結果ヒトRetroウイルス粒子が
発現したとしても、直ちにそのウイルス粒子
は破壊され、その結果、破壊されたヒトRetro
ウイルス粒子の構成成分が血清中に遊出し、
その一部がCRPとして検出される可能性があ
る。

内因性Retroウイルス発現機構に関しては、
現在のところ全く不明といっている。しかし
一般に、細胞の染色体DNAに障害を与える因
子は内因性Retroウイルスを誘発する。
すなわち5プロモエオキシシラリジンあるいは
は5イオドエオキシシラリジン等、宿主細胞染
色体DNAと直接作用する化学物質、または細
胞染色体異常を誘発する風疹ウイルスやヘル
ペストウイルス等は、代表的な内因性Retroウイルスの誘導因子である。
また細菌感染において炎症反応が惹起された時、その感染病変部では細胞の染色体が障害される可能性がある。そうとすれば、急性感染症のある時期に検出されるCRPもまた、誘発された内因性Retroウイルス粒子の一構成分と考えられるかもしれない。
とみられCRPの医学、生物学的意義としては、ある疾患の血清中にCRPが検出された時には、内因性Retroウイルスの発現という観点にたって、その疾患の病因ならびに予後を注意深く観察し、誤にかかった治療法を考慮する必要があるよう。

結語

C反応性タンパク質（CRP）の産生機構およびCRPの生物学的意義を明らかにするために
慢性関節リウマチ患者血清について CRP 量
風疹ウイルス HAI 抗体価の関係などについて調べるとともに、各種培養細胞における
CRP の産生を、風疹ウイルスを CRP の誘導因子として、検討した。その結果、以下に述べ
る結果と結論が得られた。

I CRP を保有する慢性関節リウマチ患者
血清 22 個の風疹ウイルス HAI 平均抗体価は 181
倍であり、対照として用いた健康成人血清 77
例の風疹ウイルス HAI 平均抗体価 30 倍に比べて、その間に推計学的に有意の差が認められ
た（P<0.01）。しかし、それぞれが示す CRP
量と風疹ウイルス HAI 抗体価との間に、有
意の相関関係は認められなかった。一方 CRP
を保有する血清でも、頭頸部悪性腫瘍患者血
清 10 個では風疹ウイルス HAI 平均抗体価は 3.5
倍に過ぎなかった。

II 風疹に罹患した妊婦血清の 1 例におい
て、風疹ウイルス HAI 抗体価の上昇に伴なっ
て CRP 量が増量するのが認められ、この妊婦
人工妊娠中絶して得た胎児培養細胞には風疹ウイルス抗原と CRP が細胞質に存在することが、間接蛍光抗体法により明らかにされた。

III. 既に報告のあるアフリカミドリザル腎由来の Vero 細胞のほか、ヒト胎盤組織より得た初代培養細胞でも、風疹ウイルス感染により CRP が誘導された。一方ヒト無色素性黒色腫由来の MEC 細胞においては、風疹ウイルス感染の有無に関係なく、CRP が検出された。一方仔シリアンハムスター腎由来の株化細胞である BHK21/WI-2 細胞は、風疹ウイルスを感染させた後にも CRP は全く検出されなかった。

IV. 上記 MEC 細胞の培養上清を 100,000 × g で 2 時間、超遠心して得た沈渣に CRP が検出され、他に MEC 細胞には内因性 A、B および C 型ウイルスが存在し、培養上清中には逆転写酵素活性を保有する Retro ワイ ルス粒子が認められた。おのおの Retro ワイ ルス粒子は庶糖密
屋外配達方法により精製した。

IV 風疹ウイルス変種株 HPV-RV が持続感染した MEC 細胞より産生されている感覚性ウイルス HPV-RVpi(MEC) のプラック形成能は、上記精製ヒト Retro ウイルスをラットに接与することにより得た抗血清ならびに抗ヒト CRP ウサギ IgG の両者により、中和された。

V すでに検出した精製 HPV-RVpi(MEC) ウイルス標品は抗ヒト CRP ウサギ、IgG と反応し、その反応は精製ヒト CRP により阻害された。

以上のようにして、ヒト無色素性黒色腫由来の MEC 細胞が産生する CRP が、MEC 細胞の Retro ウイルス粒子の外被の構成成分であることが強く示唆された。

稿を終えるにあたり、本研究課題を与えられた御指導を賜らった宮崎正教授、本研究の実施に際し、始終のわらめ御指導をいただいた口腔外科学第一講座藤田光信博士に心から感謝の意を表します。御校閲と適切な御助言をいただきました
だいた口腔細菌学講座小谷進三教授に深謝いたします。また研究の円滑な進行のために特別御配慮をいただきました口腔外科学第一講座の教員の方々に感謝いたします。

10) MacLeod, C.M. and Avery, O.T. (1941): The occurrence
during acute infections of a protein not normally present in the blood. 2. Isolation and properties of the reactive protein. J.Exp.Med. 73, 183-190.

35) 楯岡良男, 安藤清平 (1972) : 慢性関節リウマチの関接赤血球凝集反応 ; 臨床検査法講座. 17, 血清学 (清水文彦, 秋吉正豊 編) 医歯薬出版, 東京, 273-274. 昭和47.
36) 安村美博, 川喜多 愛郎 (1963) : 組織培養によるSV40の研究. 日本臨床. 21, 1201-1215. 昭和 38.

73, 646-650.

MECHANISM OF PRODUCTION OF C-REACTIVE PROTEIN (CRP)
FROM THE CULTURED CELLS
AND CRP INDUCING ABILITY OF RUBELLA VIRUS

Hideo YOSHIDA

The first Department of Oral and Maxillofacial Surgery,
Osaka University Dental School,
3-48, Nakanoshima 4-chome, Kita-ku, Osaka, Japan

C-reactive protein (CRP) is well known as a protein reactive to C-polysaccharide of pneumococcus which appears in the sera of patients affected by various types of diseases including malignant tumors and autoimmune diseases.

Recently, it has been reported that African green monkey kidney Vero cells infected with rubella virus produced CRP and that rubella virus infection functions in pathogenesis of rheumatoid arthritis.

Thus, when 22 rheumatoid arthritis patients containing CRP were assayed for the antibody level against rubella virus by hemagglutination-inhibition test (HAI), 181.1 fold of the geometric mean HAI titer was observed. This value was found to increase significantly as compared with 30.2 fold in the controls (P<0.01).

Moreover, the HAI titer and CRP in pregnant woman affected by rubella virus were found parallelly to increase.
In addition, the culture cells grown from the fetus of this woman were demonstrated to express CRP and rubella virus antigen in their cytoplasms.

Therefore, the origin of CRP and its biological properties were studied by using various cultured cells such as human amelanocytic melanoma MEC cells, primary human cells (HPC) and baby Syrian hamster kidney BHK21/WI-2 cells including Vero cells, and their rubella virus infected cells. Consequently, infection of Vero and HPC cells with rubella virus resulted in the induction of CRP whereas BHK21/WI-2 cells were not detected for CRP even in rubella virus infection.

The uninfected MEC cells were found spontaneously to express CRP and this CRP activity was observed in the pellets which were obtained by ultracentrifuging the cultured media at 100,000 xg for 2 hrs. In addition, MEC cells spontaneously produced the Retrovirus particles carrying reverse transcriptase activity. Thus, to examine association of CRP with this Retrovirus, MEC cells persistently infected with rubella variant HPV-RV were established and their released virus HPV-RVpi(MEC) were antigenically analyzed.

As a consequence, 83.6% of the plaque forming ability of HPV-RVpi(MEC) virus was neutralized by a ten-fold dilution of anti-human Retrovirus rat serum. Moreover, an eight-fold dilution of anti-human CRP rabbit serum neutralized 93.8% of plaque forming ability of HPV-RVpi(MEC) virus whereas the same concentration of serum did not affect that of wild type HPV-RV.
Furthermore, 125I-labelled HPV-RVpi(MEC) virus were found to be bound with anti-human CRP rabbit IgG and the reaction was inhibited by purified human CRP.

From these findings, it is strongly suggested that HPV-RVpi(MEC) virus particles carry the viral components of the Retrovirus and CRP, and that this Retrovirus has CRP in its viral envelope.
図説明

図1 説明
慢性関節リウマチ患者血清22例中の風疹ウイルスHAI抗体価の分布

（幾何平均HAI抗体価：1811倍）
図2 説明
健康成人血清177例中の風疹ウイルスHAI抗体価の分布

（幾何平均HAI抗体価：30.2倍）
図3 説明

慢性関節リウマチ患者血清22例中のCRP量
と風疹ウイルスHAI抗体価との相関

- 個々の血清例を示す

相関係数$r = 0.35$
図4 説明

風疹に罹患した妊婦より得たヒト胎児初代
培養細胞におけるCRPの検出

ヒトCRP特異抗原は、抗ヒトCRPウサギ
IgGとFITCを結合させたウサギIgGの
ブタ血清を用い、間接蛍光抗体法により、検索され
た。

培養細胞の細胞質ならびに一部の細胞の核
に特異蛍光がみられる。

倍率：400倍
図5 説明

風疹に罹患した妊婦より得たヒト胎児初代培養細胞における風疹ウイルス抗原の発現

風疹ウイルス特異抗原は、抗風疹ウイルスウサギIgGとFITCを結合させた抗ウサギIgGブタ血清を用い、間接蛍光抗体法により、検出された。

倍率：900倍
図6 説明

培養細胞でのCRPの発現

a) ヒト無色素性黒色素由来のMEC細胞

b) BHK21/WI-2細胞

MEC細胞を37℃で2日間培養した後、間接蛍光抗体法によりCRPを検出した。なおBHK21/WI-2細胞において風疹ウイルスをMOI 1で感染させた

倍率：400倍
図7 説明
寒天ゲル内沈降法による MEC 細胞の培養上清中の CRP の検出

MEC 細胞の培養上清 300 μL を低速遠心して細胞残渣を除去した上清を、さらに 100,000 × g 2 時間超遠心して沈澱を 1 mL の生理食塩水に懸濁したものを被験標品とした。なお抗ヒト CRP ウサギ IgG は生理食塩水により 2 倍稀釈して実験した。
図8 説明

MEC細胞の内因性ウイルス

a) : 倍率 : 9,000倍
b) : 倍率 : 70,000倍

→ : A型ウイルス
→ : B型ウイルス
→ : C型ウイルス
図9 説明

MEC細胞の培養上清に産生されている内因性RetroウイルスのDNA合成酵素活性（反応時間曲線）

●●●●：逆転写酵素

○○○○○：DNA依存性DNA合成酵素

たん白量3μgの精製ウイルス標品を含む反応液の100μlを37℃に静置した。経時的に1Nの塩酸溶液の150μlを加えて反応を停止させ、還元不溶物にとりこまれた3H-TMPの放射活性を測定した。

なおDNA依存性DNA合成酵素活性の測定に当っては、DNAの錠型として、エンドヌクレアーゼで処理されていない仔牛胸腺DNA10μgを反応液に添加した。
風疹ウイルス変種株HPV-RV持続感染MEC細胞［MEC(HPV-RV)］の形態の親株のそれとの比較

a) MEC(HPV-RV)細胞

b) MEC親株細胞

倍率：200倍
図11 説明

MEC (HPV-RV) 細胞における HPV-RV 抗原の発現

MEC (HPV-RV) 細胞の HPV-RV ウイルス抗原は、抗 HPV-RV ウサギ血清と FITC を結合させた抗ウサギ IgG ブタ血清を用いて、間接視覚抗体法により、同定した。

HPV-RV ウイルス抗原が細胞質あるいは核内に認められる。

倍率：400倍
図12説明

HPV-RVpi(MEC)ウイルスならびにHPV-RVウイルスのプラック

a) HPV-RVpi(MEC)ウイルスのプラック
b) HPV-RVウイルスのプラック
図13 説明

HPV-RVPI(MEC) ウイルス標品を蔗糖密度勾配遠心法により分取した各画分の風疹ウイルス
HA力値ならびに感染力値

○○○： HA力値
•••••: 感染力値

粗 HPV-RVPI(MEC) ウイルス溶液の0.5 ml 蔗糖密度勾配溶液 [15～60 % (m)] の4 ml に重層
し、56,000 x g で2 時間超遠心した。管底を穿孔
することにより分取した16の画分について、
HA力値ならびに BSR 単層培養細胞でのプラッ
ク形成を指標とした感染力値を測定した。
図14 説明

125Iで標識された精製HPV-RVpi(MEC)標品の抗ヒトCRPウサギIgGとの結合

--------: 125I標識精製HPV-RVpi(MEC)と抗ヒトCRPウサギIgGとの反応

○○○: 精製ヒトCRPによる反応阻害

約5000 cpmの放射活性を示すように調製した125I標識精製HPV-RVpi(MEC)標品の90μLを等容量の希釈抗ヒトCRPウサギIgGと18時間、37℃で反応させた。抗ウサギIgGブタ血清90μLを加え、4を3時間静置した後、反応系全体の放射活性、ならびに3,000 x gで10分間の遠心で得られた沈殿物に取込まれた125Iの放射活性を測定した。

125I結合率は

\[
\text{結合率} = \frac{\text{沈殿に取込まれた放射活性(cpm)}}{\text{反応系全体の放射活性(cpm)}} \times 100
\]

算定した。

なお精製ヒトCRPによる上記の反応阻害を
図1

風疹ウイルスHAI抗体価

症例数

<8 8 16 32 64 128 256 512 1024
図2

風疹ウイルスHAI抗体価

症例数

<8 8 16 32 64 128 256 512 1028
図3

CRP量

風疹ウイルスHAI抗体価

+5 +4 +3 +2 +1
図4
図5
図6

(a)

図6

(b)
図7

MEC細胞培養上清より超遠心して得た沈澱
図9

DPM（×10^{-3}）

反応時間
図 (a)
図 (b)
図 12

(a)

(b)
図14

抗ヒトCRPウサギIgG希釈倍数

125I結合率（％）
表1 慢性関節リウマチ患者血清中のC反応性蛋白自覚（CRP）量と風疹ウイルス赤血球凝集抑制（HAI）抗体価、変性ウサギIgG感作とツジ赤血球凝集（RAHA）価ならびにラテックス結合（RA）試験

<table>
<thead>
<tr>
<th>症例</th>
<th>CRP</th>
<th>RA</th>
<th>RAHA</th>
<th>RV-HAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5+</td>
<td>±</td>
<td>20480</td>
<td>512</td>
</tr>
<tr>
<td>2</td>
<td>4+</td>
<td>±</td>
<td>20480</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>2+</td>
<td>+</td>
<td>40</td>
<td>512</td>
</tr>
<tr>
<td>4</td>
<td>3+</td>
<td>+</td>
<td>320</td>
<td><8</td>
</tr>
<tr>
<td>5</td>
<td>4+</td>
<td>+</td>
<td>20480</td>
<td>1024</td>
</tr>
<tr>
<td>6</td>
<td>4+</td>
<td>+</td>
<td>40</td>
<td>256</td>
</tr>
<tr>
<td>7</td>
<td>1+</td>
<td>+</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>5+</td>
<td>+</td>
<td>160</td>
<td>512</td>
</tr>
<tr>
<td>9</td>
<td>1+</td>
<td>+</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>4+</td>
<td>+</td>
<td>40</td>
<td>512</td>
</tr>
<tr>
<td>11</td>
<td>3+</td>
<td>+</td>
<td>2560</td>
<td><8</td>
</tr>
<tr>
<td>12</td>
<td>1+</td>
<td>+</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>5+</td>
<td>+</td>
<td>20480</td>
<td>1024</td>
</tr>
<tr>
<td>14</td>
<td>4+</td>
<td>+</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>15</td>
<td>3+</td>
<td>+</td>
<td>160</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>3+</td>
<td>+</td>
<td>160</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>4+</td>
<td>+</td>
<td>80</td>
<td>1024</td>
</tr>
<tr>
<td>18</td>
<td>5+</td>
<td>+</td>
<td>640</td>
<td>64</td>
</tr>
<tr>
<td>19</td>
<td>3+</td>
<td>+</td>
<td>10240</td>
<td>128</td>
</tr>
<tr>
<td>20</td>
<td>3+</td>
<td>+</td>
<td>640</td>
<td>512</td>
</tr>
<tr>
<td>21</td>
<td>1+</td>
<td>+</td>
<td>320</td>
<td>512</td>
</tr>
<tr>
<td>22</td>
<td>2+</td>
<td>+</td>
<td>20</td>
<td>512</td>
</tr>
</tbody>
</table>

平均値 2.81+ 330.2 181.1

CRP：C反応性蛋白自覚（も細管法により測定）
RA：リウマトイド因子のヒトIgG吸着ラテックス結合試験
RAHA：変性ウサギIgG感作とツジ赤血球凝集価
RV-HAI：風疹ウイルス赤血球凝集抑制抗体価
表2 頭頸部悪性腫瘍患者血清中の
C反応性タンパク(CRP)量と
風疹ウイルスHAI抗体価

<table>
<thead>
<tr>
<th>症例</th>
<th>CRP</th>
<th>RV-HAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1+</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1+</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2+</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5+</td>
<td>＜8</td>
</tr>
<tr>
<td>5</td>
<td>3+</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>2+</td>
<td>＜8</td>
</tr>
<tr>
<td>7</td>
<td>4+</td>
<td>＜8</td>
</tr>
<tr>
<td>8</td>
<td>2+</td>
<td>＜8</td>
</tr>
<tr>
<td>9</td>
<td>1+</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1+</td>
<td>8</td>
</tr>
</tbody>
</table>

幾何平均値 1.854 3.48
表3 風疹に罹患した1例の妊娠の臨床所見

血清中のCRP量ならびに風疹ウイルスHAI抗体価

<table>
<thead>
<tr>
<th>発症日</th>
<th>妊娠期間</th>
<th>臨床所見</th>
<th>RV-HAI</th>
<th>CRPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>-14</td>
<td>6</td>
<td>同居者に風疹発症 (発熱, 皮疹,リンバ節腫脹)</td>
<td></td>
<td>8x</td>
</tr>
<tr>
<td>-7</td>
<td>7</td>
<td>同居者の皮疹消退</td>
<td>8x</td>
<td>(-)</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>妊娠に風疹発症 (発熱, 皮疹,リンバ節腫脹)</td>
<td>8x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>妊娠の皮疹消退</td>
<td>32x</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>人工妊娠中絶</td>
<td>1024x</td>
<td>(2+)</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1024x</td>
<td>(2+)</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>512x</td>
<td>(+)</td>
<td></td>
</tr>
</tbody>
</table>

a: CRPはもも筋管法により測定した
表4 間接蛍光抗体法による風疹ウイルス感染

<table>
<thead>
<tr>
<th>細胞</th>
<th>風疹ウイルス感染群</th>
<th>風疹ウイルス非感染(対照)群</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒト無色未性</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>白色隆起細胞(MEC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vero細胞 a)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>初代ヒト免疫細胞 (HPF)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>BHK21/WI-2細胞 c)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ : CRPが検出されたもの
- : CRPが検出されないもの
a) : アルカリドロジン酸由来の標化細胞
b) : ヒト組織由来の発代培養細胞
c) : 予シリアンハムスター齢由来の株化細胞

各種培養細胞に風疹ウイルスをMOI1で接種し、5% CO2
培養器中で37度にて培養した。培養2日後、感染細胞培
養細胞について、CRPの有無を抗ヒトCRPウサギIgGと
FITCを結合作でた抗ウサギIgGブタ血清を用いて、間接蛍光
抗体法により、検索した。
表5 風疹ウイルス変種株(HPV-RV)の抗原的特性

<table>
<thead>
<tr>
<th></th>
<th>抗血清</th>
<th>抗風疹ウイルス変種株</th>
<th>抗BHK Retroウイルス</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neut.</td>
<td>HAI</td>
<td>CF</td>
</tr>
<tr>
<td>風疹ウイルス野生株(M-33)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>風疹ウイルス変種株(HPV-RV)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>BHK Retroウイルス</td>
<td>ND</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Neut.：中和反応
HAI：赤血球凝聚反応
CF：補体結合反応
ND：実験が行なわれなかった
+：反応陽性
-：反応陰性
<table>
<thead>
<tr>
<th>抗血清希釈倍数</th>
<th>ブラック数</th>
<th>平均</th>
<th>ブラック形成抑制率(％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x</td>
<td>21, 19</td>
<td>20</td>
<td>83.6</td>
</tr>
<tr>
<td>20x</td>
<td>35, 38</td>
<td>36.5</td>
<td>70.1</td>
</tr>
<tr>
<td>40x</td>
<td>71, 79</td>
<td>75</td>
<td>38.5</td>
</tr>
<tr>
<td>対照</td>
<td>117, 127</td>
<td>122</td>
<td>-</td>
</tr>
</tbody>
</table>

注: ブラック形成抑制率 = \left(1 - \frac{\text{中和試験群の平均ブラック数}}{\text{対照群の平均ブラック数}}\right) \times 100

HPV-RVpi(MEC)ウイルス溶液0.3mlと等容量の希釈抗血清との混合液を1時間37℃で反応させた。ついて混合液の0.1mlをBSR単層培養細胞に接種し、プラック形成能を検定した。なお対照群は、抗血清の代わりにMEMを用いた。
<table>
<thead>
<tr>
<th>抗血清希釈倍数</th>
<th>HPV-RVpi(MEC)ウイルスプライック数</th>
<th>平均</th>
<th>プラック形成抑制率(%)</th>
<th>HPV-RVウイルスプライック数</th>
<th>平均</th>
<th>プラック形成抑制率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x</td>
<td>8, 13</td>
<td>10.5</td>
<td>93.8</td>
<td>153,141</td>
<td>147</td>
<td>3.3</td>
</tr>
<tr>
<td>16x</td>
<td>32, 45</td>
<td>38.5</td>
<td>77.2</td>
<td>134,155</td>
<td>144.5</td>
<td>4.9</td>
</tr>
<tr>
<td>32x</td>
<td>92, 97</td>
<td>94.5</td>
<td>44.1</td>
<td>137,147</td>
<td>142</td>
<td>6.6</td>
</tr>
<tr>
<td>64x</td>
<td>115,117</td>
<td>116</td>
<td>31.4</td>
<td>158,159</td>
<td>158.5</td>
<td>0</td>
</tr>
<tr>
<td>128x</td>
<td>168,162</td>
<td>165</td>
<td>2.4</td>
<td>149,158</td>
<td>153.5</td>
<td>0</td>
</tr>
<tr>
<td>256x</td>
<td>171,172</td>
<td>171.5</td>
<td>0</td>
<td>150,164</td>
<td>157</td>
<td>0</td>
</tr>
<tr>
<td>対照</td>
<td>173,165</td>
<td>169</td>
<td>-</td>
<td>144,160</td>
<td>152</td>
<td>-</td>
</tr>
</tbody>
</table>