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 This paper analyzes spin currents pumped from Rashba spin-orbit coupled 

two-dimensional electron systems in electric dipole spin resonance (EDSR), on the 

basis of the nonequilibrium Green’s function formalism.  In the ballistic transport 

regime, the EDSR-induced spin pumping efficiently occurs for the finite-sized system 

smaller than the spin precession length.  In the diffusive transport regime, the spin 

pumping is remarkably enhanced with increasing static disorder while the pumped spin 

dephases to a certain degree due to the D’yakonov-Perel’ mechanism.  The spin 

dephasing is controlled by reducing the system size compared with the precession 

length irrespective of the degree of disorder. 

 

KEYWORDS: spin pumping, spin-orbit coupling, electric dipole spin resonance, 

two-dimensional system, spin transport, spin relaxation 

 

*E-mail: hattori@ee.es.osaka-u.ac.jp 



2 

1. Introduction 

 

 Spintronics, which aims to manipulate electron spin in addition to charge in 

solid-state systems, has grown to become a very active field in condensed matter 

physics.  One central issue in this field is how to efficiently generate spin currents in 

nonmagnetic metals or semiconductors.  Many methodologies have been proposed to 

date.  Several approaches are based on purely magnetic means, including spin 

pumping from paramagnetic quantum dots or finite-sized conductors in paramagnetic 

resonance,1,2) as well as a spin battery consisting of a ferromagnet in ferromagnetic 

resonance attached to a nonmagnetic conductor.3)  The ubiquitous presence of 

spin-orbit (SO) coupling in conventional semiconductors and quantum heterostructures 

has also been considered as a tool to manipulate spin current.  The spin Hall effects in 

the SO coupled systems have been extensively investigated, providing an effective way 

to produce transverse spin flux in response to a longitudinal electric field or charge 

current.4,5)  The parametric quantum pumping by cyclic variations of system 

parameters in the presence of the SO coupling has attracted considerable interest for 

spin current generation.6-8)  A few spin pumping mechanisms have been proposed that 

utilize a time-dependent gate potential that modulates the Rashba SO coupling in an 

asymmetric quantum well.9,10) 

 It is known that a versatile and efficient spin control is enabled in the presence of 

SO coupling by electric dipole spin resonance (EDSR),11-19) where a time-dependent 

external electric field gives rise to a time-dependent internal magnetic field and couples 

to spin degrees of freedom.  An arbitrary spin rotation is feasible by an adequate 
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configuration of the time-dependent electric field and a static magnetic field defining a 

quantization axis for the spin.  This is analogous to standard paramagnetic resonance 

techniques.  This paper proposes a new spin pumping scheme exploiting EDSR, and 

pursues a detailed theoretical analysis of spin currents pumped from Rashba SO coupled 

two-dimensional (2D) electron systems, on the basis of the nonequilibrium Green’s 

function (NEGF) formalism.20-23)  Considering a specific geometry with the external 

electric and magnetic fields that are parallel and in-plane, we show that spin currents are 

efficiently generated by the EDSR mechanism in both ballistic and diffusive transport 

regimes. 

 

2. Theoretical Analysis and Formulation 

 

 In this paper we shall work in units where   e 1.  A general form of the 

Hamiltonian describing the Rashba SO coupled 2D electron gas in the xy  plane 

subjected to external electromagnetic fields is expressed as 

 

 H 
1

2m
(k  A)2  [(k  A)  ez ] S B S ,   (1) 

 

where k  is the canonical momentum operator, S  is the spin operator, m  is the 

electron mass,   is the SO coupling strength,   is the gyromagnetic ratio, and e  

(  x, y,z ) is the unit vector in Cartesian coordinates.  As shown in Fig. 1, we 

consider particularly the static magnetic field B  eyB  and the oscillating electric field 

E(t)  ey
˜ E sint , which are parallel and in-plane and amount to the associated in-plane 
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vector potential A(t)  ey ( ˜ E /)cost .  Then the total Hamiltonian H(t)  H V (t) , 

with A2  omitted for simplicity, consists of the static part H  H0  HSO  HZ  and the 

time-dependent part V (t) V0(t) VSO(t) , including H0  k 2 /2m , HSO  BSO  S , 

HZ  B  S , V0(t)  A(t)  k /m , and VSO(t)   ˜ B (t)  S , where the internal magnetic 

fields induced by the SO coupling are defined by BSO  k  ez  and 

 ˜ B (t)  A(t)  ez . The oscillating internal field ˜ B (t)  that is in-plane and 

perpendicular to the static external field B constitutes a standard EDSR setup.15) 

 The Schrödinger equation i /t  H  in terms of the fermion field operator 

  leads to the usual sourceless continuity equation 

 

 

t
(r, t)    j(r, t)  0,      (2) 

 

for the charge density operator  †  and the charge current density operator 

j  Re†v  A /m .  In the latter equation, v  v0  vSO  is the kinetic velocity 

operator consisting of the canonical velocity v0  k /m  and the spin-dependent 

anomalous velocity due to the SO coupling vSO  ez S, and   ReA  is defined as 

  ReA  (A A †) /2 .  Note that in a second-quantized form, the time-dependent 

potentials are expressed as V0(t)   drj0(r,t) A(t)  and VSO(t)   drjSO(r,t) A(t) , 

where j0  Re†v0  and jSO 
†vSO .  The spin density operator  

†S  and 

the spin current density operator j  Re†Sv  A /m  obey 

 

 

t
 (r,t)    j (r, t)  g (r,t),     (3) 
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where the operator g  e Re†(BSO  B ˜ B ) S  represents the spin- S  

component of spin torque density.  Each component is explicitly expressed as 

 

 gx  Re†Szkx z ,     (4a) 

 gy  Re†Szky  2 ˜ z cost ,     (4b) 

 gz  Re†S k x  2 ˜ y cost ,    (4c) 

 

where  B  and ˜   ˜ E /2 .  In view of the spin-current continuity equation, the 

spin pumping can be interpreted as being due to the spin torque that causes spin 

nonconservation.2) 

 First of all, we deal with the spatially-integrated spin torque G (t)   drg (r, t) 

generated in an infinitely-large homogeneous system.  Because of the translation 

invariance, the Hamiltonian H(t)  H V (t)  is diagonal in the momentum basis.  

The static part H  H0  HSO  HZ  forms the spin-split subbands with the energy 

k,s  k  sk /2  ( s  1), where k  k 2 /2m  denotes the free-particle dispersion and 

k  (ky )2  ( kx )2  is the Zeeman energy splitting due to the total static field 

BSO  B.  Treating the time-dependent part V (t) V0(t) VSO(t)  as a perturbation, the 

Kubo formula 22) is used to evaluate the spin torque G (t) .  It is obvious that there is 

no contribution due to V0(t) since it is spin-independent.  The dc component of spin 

torque, G  lim
T 

T1  T / 2
T / 2 dt G (t) , arises from the coupling between oscillations 

involved in the operators G (t) and VSO(t) , and is found to be 
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 Gy 

2

˜ 2 [ f (k 
k

2
)  f (k 

k

2
)]sink[( k )  ( k )]

k

 , (5) 

 

and Gx Gz  0 , where f ()  is the Fermi-Dirac distribution function and 

tank  ( kx ) /ky .  The delta function ( k )  explains the spin resonance 

produced by the electron transition between the spin-split subbands k   k k /2.  

The resonance occurs only when the condition   k  is met, which tends to restrict 

momentum states contributing to the spin torque Gy .  It is easily found that neglecting 

the SO coupling term HSO  in H  results in an approximation to Gy  in lowest 

nonvanishing order in .  In such a case, Gy  becomes 

 

 Gy 

2

˜ 2[( )  ( )] [ f (k 

2

)  f (k 

2

)]
k

 ,  (6) 

 

which is divergent at   .  It can be seen from comparing these two expressions 

that the spin torque Gy  is significantly diminished by HSO  contained in H .  The 

implications derived for infinitely large systems will be reexamined quantitatively when 

discussing the numerical results obtained for finite-sized systems. 

 The oscillating field ˜ B (t)  ex (2 ˜ /)cost  can be decomposed into two 

components 
˜ B ()(t)  ( ˜ /)(ex cost  ez sint)  rotating in the xz  plane.  The 

counterclockwise component ˜ B ()(t) and the clockwise component ˜ B ()(t)  (seen from 

the positive y -side) are interchanged by simply reversing the sign of  .  For 

mathematical convenience, the analysis of the spin resonance customarily employs 
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˜ B ()(t) instead of ˜ B (t) .24)  We here briefly summarize the analytical results derived 

for the rotating fields ˜ B ()(t) .  Defining the corresponding operators VSO
()(t)  and 

G
()(t) by simply replacing ˜ B (t)  with ˜ B ()(t), the time-averaged spin torques G

()  

for the rotating fields ˜ B ()(t) are calculated to be 

 

 

Gy

() 

8

˜ 2 [ f (k,s)  f (k ,s)](sink  s)2(  sk )
k ,s

 ,  (7) 

 

and again Gx
()  Gz

()  0.  Equations (5) and (7) satisfy the simple decomposition 

Gy Gy
() Gy

() for ˜ B (t)  ˜ B ()(t)  ˜ B ()(t).  Notice that this property is not a direct 

consequence from the perturbation theory because the time-dependent potentials 

VSO
()(t)  and the spin torque operators G

( )(t) are simultaneously adapted to ˜ B ()(t). 

 We next turn to the theoretical analysis for finite-sized systems.  A finite-sized 

spin pumping system is modeled by considering a sample with the SO coupling in 

contact with two semi-infinite ideal leads maintained at the same electrochemical 

potential.  In practice, the electric field can be generated by a pair of gates as sketched 

in Fig. 1, between which an ac voltage of frequency   is applied from an external 

circuit (not shown).  In the leads that transport spin, the SO coupling is removed in 

order to probe the spin current.  In the tight-binding representation on a square lattice 

with lattice spacing a , the Hamiltonian describing the sample region reads 

 

 H0  t0 (cr
† cra  cr

† crb )



r,
  4t0 cr

† cr
r,
 ,   (8a) 

 

HSO 


4a

(cr
† cra,  icr

† crb, )



r,
 ,    (8b) 
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 HZ 

2i

cr
† cr,

r,
 ,      (8c) 

 

VSO

()(t) 
˜ 
2

(cr
† cr, cost cr

† cr sint)
r,
 ,   (8d) 

 

where cr  (cr
† )  is the annihilation (creation) operator of an electron at position r  

with spin   ( 1 corresponding to spin- and  states for the quantization axis 

along z ), a  aex  and b  aey  are the unit lattice vectors, and t0 1/2ma2 is the 

hopping energy.  The Larmor frequency ˜  for the internal magnetic field is 

expressed as ˜  /2a  with   ˜ E a / .  In what follows, we consider the spin 

current produced by a general harmonic potential V (t) V exp(it)V † exp(it), on 

the basis of the NEGF formalism.  Note that the pumping potential V (t)  is 

spin-dependent when considering EDSR. 

 Two nonequilibrium one-particle propagators, the retarded Green’s function 

G(t, t ) and the lesser Green’ function G(t, t ) , are defined by 

 

 [G(t, t )]r ; r   i {cr (t),c r 
† ( t )} (t  t ),   (9) 

 [G(t, t )]r ; r   i c r 
† ( t )cr (t) .     (10) 

 

The retarded Green’s function obeys the following equation of motion: 

 

 i

t

G(t, t )  H(t)G(t, t )  d t (t  t )G( t , t )


  (t  t ),  (11) 

 

where (t)   
 (t)  with 

 (t)  being the retarded self-energy due to lead   



9 

connected to the sample.  After applying the double-time Fourier transformation, the 

equation of motion becomes 

 

 G(, )  2(  )g( )  G(,  )Vg( ) G(,  )V †g( ) , (12) 

 

where g()  [  H  ()]1  is the Fourier transform of the retarded Green’s 

function g(t  t )  that corresponds to G(t, t )  in the absence of the pumping 

potential V (t) and hence depends only on the time difference t  t .  The solution of 

eq. (12) is restricted to the form Gn
()  G(,  n), which contains a couple of 

frequencies shifted by n  (where n  is an integer), reflecting multi-quantum 

contributions from V (t).  Therefore, the equation of motion is reduced to 

 

 Gn
()  2(n)gn

()  Gn1
 ()Vgn

()  Gn1
 ()V †gn

() ,  (13) 

 

with gn
()  g(  n).  Equation (13) can be solved in an iterative manner 8,25) by 

ˆ G 0
  [(g0

)1  0
]1 for n  0 , ˆ G n

  ˆ G n1
 V †gn

n  for n 1, and ˆ G n
  ˆ G n1

 Vgn
n  for 

n  1 .  Here, Gn
  2(0) ˆ G n

 , 0
 V †g1

1V Vg1
 1V

† , and the dimensionless 

coefficients n  and n  follow the relations n (1V †gn1
 n1Vgn

) 1  and 

n (1Vgn1
 n1V

†gn
) 1, which form solutions expressed as continued fractions. 

 The spin- S  component of spin current flowing into lead   is defined by 

J
 (t)  dS

 (t) /dt  with the spin operator S
  r  ,  cr

† [S ]  cr   for electrons 

in lead  .  We postulate the conservation of spin S  in the isolated lead   

(otherwise, the pumped spin current J
  can not be probed).  Then, the Heisenberg 
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equation for S
  leads to 

 

 J
 (t)  2Re d t Tr{S[G(t, t )

 ( t  t)  G(t, t )
 ( t  t)]}



 , (14) 

 

where 
 (t)  [

 (t)]†  and 
 (t)  is the lesser self-energy due to lead  .  The 

lesser self-energy is expressed as 
 ()  if () ()  in the Fourier space, where 

 ()  2Im
 ()  and   ImA  (A A †) /2i .  The lesser Green’s function satisfies 

the Keldysh equation 

 

 G(t, t )  dt1 dt2G
(t, t1)

(t1  t2)G(t2, t )




 ,   (15) 

 

with (t)   
 (t) , and is related to the retarded Green’s function 

G(t, t )  [G( t , t)]† .  The time-averaged spin current, J
  lim

T 
T1  T / 2

T / 2 dtJ
 (t) , is 

eventually formulated as 

 

 J
 

1

2
dTr[S () ˆ G n

()n () ˆ G n
()][ fn ()  f ()]




n



 ,  (16) 

 

where ˆ G n
()  [ ˆ G n

()]† , n ()  2Im(  n) , and fn ()  f (  n) .  An 

extension to more general cases when the electrochemical potential is different for each 

lead is straightforward, for which we obtain 

 

 J
 

1

2
dTr[S () ˆ G n

()n () ˆ G n
()][ fn ()  f ()]







n



 , (17) 
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where n ()   (  n) , fn ()  f (  n) , and f ()  is the Fermi function in 

lead  .  It is easily shown that eqs. (16) and (17) reproduce the previous results 

obtained for the parametric quantum spin pumping in the presence of the SO coupling,8) 

as well as for the spin pumping due to paramagnetic resonance in the absence of the SO 

coupling.1,2) 

 There are two limiting cases where reduced expressions are derived from eq. (16).  

In the adiabatic regime (   0 ), the pumped spin per one pumping cycle, 

P
  (2 /)J

 , can be written as 

 

 P
   n Tr[S (E) ˆ G n

(E)n (E) ˆ G n
(E)]

n



 ,    (18) 

 

at zero temperature, indicating that the spin pumping takes place via current-carrying 

states at the Fermi level E .  In the perturbative regime (V  0), one obtains 

 

 
J
 

1

2
dTr[S ()g()V †A1()Vg()][ f1() f ()]






1

2
dTr[S ()g()VA1()V †g()][ f1()  f ()]




,  (19) 

 

where An ()  gn
()n ()gn

() is the spectral function.  This expression clearly shows 

a quadratic dependence on the magnitude of the pumping potential.  It is also 

demonstrated from eq. (19) through the unitary transformation: Sy  Sz  and Sz Sy  

that J
x  J

z  0 and J
y  J

y()  J
y()  when H  H0  HZ  and V (t) VSO

()(t) VSO
()(t) .  

These relations indicate that if   is sufficiently small, only the spin- Sy  current is 
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pumped, and the spin current J
y  generated by the oscillating field ˜ B (t)  is 

decomposed into two contributions J
y() due to the rotating fields ˜ B ()(t).  In this 

case, we find that the total outward flow of spin current, Jy
()   J

y(), is expressed 

simply with the spin quantization axis along y  as 

 

 Jy
() 

˜ 2

8
dTr{[A0()][A1()]}[ f ()  f1()]



 ,   (20) 

 

where the trace is taken over orbital degrees of freedom. 

 Before ending this section, we compare the perturbative result for spin current 

based on the NEGF formalism with that for spin torque derived from the Kubo formula 

for an infinitely-large homogeneous system.  The perturbation analysis for the spin 

torque can be generalized for an arbitrary pumping potential V  by introducing the spin 

torque operator G  i[S ,H] in terms of the Heisenberg equation.  Then, the Kubo 

formula yields the time-averaged spin torque represented as 

 

 
G  2 dTr[SV

†( H )V( H )][ f1()  f ()]



2 dTr[S( H )V( H )V †][ f1()  f ()]




.  (21) 

 

Comparing eq. (21) with eq. (19) leads to the equality J   J
 G  for an infinite 

system when [S ,H ]  0 .2)  Clearly, the simple identity J G  no longer holds for 

infinitely-large Rashba SO coupled systems with   0, since HSO  does not commute 

with S . 
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3. Numerical Calculation and Discussion 

 

 Numerical calculations based on the NEGF formalism have been performed for a 

quantitative study of the EDSR-induced spin pumping from Rashba SO coupled 

electron systems.  The model system consists of a central square sample of size L  L  

with SO coupling, to which two semi-infinite leads (labeled by  1,2) of width L  

are attached, as shown in Fig. 1.  The two leads are of the same electrochemical 

potential.  We neglect the spin-independent potential V0(t), which does not contribute 

to the time-averaged spin torque.26)  The Zeeman interaction HZ  due to the static 

field B and the time-dependent pumping potential V (t) VSO
()(t) due to the rotating 

field ˜ B ()(t) are assumed to exist only in the sample region.  The pumping potential 

VSO
()(t)  can be employed without loss of generality, since the bulk of the numerical 

analysis in this study addresses a small   case where J
  J

()  J
()  for 

˜ B (t)  ˜ B ()(t)  ˜ B ()(t) .  For conciseness, the notation ()  is omitted for the spin 

current J
  and the pumped spin P

  for the remainder of this paper.  The calculation 

assumes zero temperature and the perturbative regime where J
  is a quadratic function 

of   ˜ E a / .  The numerical results shown below are presented in the normalized 

form ˆ J 
  J

 /2 and ˆ P 
  P

 /2.  In the following, the hopping energy is taken as 

the energy unit ( t0 1), and the lattice spacing as the length unit ( a 1).  The 

parameters are normally E  0.1,  0 , and   0  (which corresponds to the 

adiabatic regime), unless otherwise stated. 

 Before discussing the numerical results, it may be appropriate to describe some 

general results proven from the symmetry of the two-terminal model assumed for the 
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calculation.  Consider the unitary transformation: y y , z z , Sx Sx , and 

Sz Sz , and the simultaneous sign change of the electric field: ˜ E  ˜ E .  The total 

Hamiltonian including the pumping potential is invariant under this transformation.  

Since the pumped spin current J
  is an even function of ˜ E , the transformation simply 

reverses J
x,z , leading to the relation that J

x  J
x  and J

z  J
z .  Obviously, this 

means that 

 

 J
x  J

z  0,       (22a) 

 P
x  P

z  0.       (22b) 

 

The absence of spin- Sx,z  currents accidentally coincides with the approximation 

derived in lowest nonvanishing order in   without assuming a specific model.  

Following the consideration given above, this property arises only from the symmetry 

of the system and holds irrespective of the SO coupling strength.  Consider the unitary 

transformation: x x , z z , Sy Sy , and Sz Sz , and the simultaneous 

sign changes of the static magnetic field and the pumping frequency:  and 

  .  The total Hamiltonian including the pumping potential is invariant under 

this transformation.  The transformation interchanges the leads 1 and 2 and reverses 

the spin- Sy  current, yielding 

 

 J1
y (,)  J2

y (,) ,      (23a) 

 P1
y (,)  P2

y (,).      (23b) 
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These analytical results equally apply to ˆ J 
  and ˆ P 

 , and help to understand the 

numerical results described below. 

 Figure 2 displays the pumped spin ˆ P 
y  calculated as a function of  in the 

adiabatic limit   0  for various sample sizes L , assuming  /4 104 .  The 

absence of spin- Sx,z  currents indicated by eq. (22) is confirmed by numerical 

calculation (not shown).  The curves for ˆ P 1
y  and ˆ P 2

y  are nearly the same and exhibit 

a resonance peak around  0.  A higher peak and a narrower linewidth are observed 

for larger samples.  Figure 3 illustrates the sample-size dependencies of ˆ P 1,2
y  at 

resonance.  An oscillation observed in the numerical results is due to the subband 

formation in the finite-sized systems subjected to the lateral confinement.  The sharp 

peak occurs when the bottom of the 1D subband (at which the density of states is 

singular) coincides with the Fermi energy E  0.1.  Except for the oscillation, the 

overall feature suggests that the pumped spin basically follows a power-law dependence 

on L .  A semiclassical consideration may be useful for interpreting these 

observations.2)  For a finite-sized sample connected to two leads into which an electron 

can escape, the retarded self-energy can be approximately treated as   i /F , where 

F  L /2vF  represents the average time an electron with Fermi velocity vF  remains in 

the sample.21)  Applying the semiclassical approximation to eq. (20) leads to an 

analytical expression 

 

 Jy 
˜ 2

2

F

1 [( )F ]2
N(E) ,     (24) 

 

for   and  /2  E , where N()  Tr(  H0) is the density of states per spin.  
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This formula neglects the SO coupling term HSO  included in H  and is validated for a 

sufficiently small  .  Equation (24) deals with the nonadiabatic regime, and evaluates 

the resonance linewidth at 2 /F  for finite-sized systems, which quantitatively agrees 

with the numerical results shown in Fig. 2.  Assuming a free-particle dispersion, eq. 

(24) predicts 

 

 Py 
2


Jy 
m ˜ 2L3

4vF

,      (25) 

 

at resonance  .  In Fig. 3, the analytical result ( ˆ P y /2 per lead) is shown by 

dashed line, which satisfactorily explains the sample-size dependence observed in the 

numerical calculation. 

 Figure 4 compares the  -dependencies in the limit   0  and the 

 -dependencies at  0 calculated for different SO coupling strengths  .  When 

  is sufficiently small, the resonance occurs at  0 for ˆ P 
y (0,) and   0 for 

ˆ P 
y (,0), and these spectra are well overlapped with each other, as expected from eq. 

(24).  When   becomes large, they are separated appreciably.  The curve ˆ P 1
y (0,) 

shifts toward the negative -side, while the curve ˆ P 1
y (,0) shifts toward the positive 

 -side.  The opposite behaviors are exhibited by ˆ P 2
y (0,) and ˆ P 2

y (,0), respectively.  

These displacements are almost the same in magnitude, showing the property 

 

 ˆ P 1
y (,0)  ˆ P 1

y (0,)  ˆ P 2
y (,0)  ˆ P 2

y (0, ) .    (26) 

 

The peak frequency shifting with   may be explained in terms of the resonance 
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condition derived from the Kubo formula.  The energy separation between the 

spin-split subbands approximates to k   kx  up to first order in  .  In such a 

case, eq. (7) indicates that EDSR is produced via the momentum state satisfying the 

condition that   ( kx )  for Gy
() .  Considering two representative points 

(kx,ky )  (kF ,0) on the Fermi circle amounts to the resonance condition   kF  

for Gy
() , which becomes  kF  for   0  and   kF  for  0 .  This 

argument is applicable particularly to a quasi-1D system, and reasonably accounts for 

the peak frequency of ˆ P 
y  ( ˆ P 

y()) observed for the two-terminal model.  Equation 

(23) is also useful for interpreting the numerical results because it immediately predicts 

that ˆ P 1
y (,0)  ˆ P 2

y (,0)  and ˆ P 1
y (0,)  ˆ P 2

y (0,) .  In addition to these relations, the 

observation includes the similarity between ˆ P 
y (,0)  and 

ˆ P 
y (0,), implying that 

ˆ P 
y (,)  is simply a function of the detuning from resonance   ( kF ) . 

 Generally, the Rashba SO coupling induces the spin precession at the frequency 

SO  BSO  k  ez  in the course of electron transport.  It may be convenient here to 

introduce the precession length LSO  vF /SO 1/m  over which spin precesses by 

one radian.  Note that this definition differs from the conventional one, which 

considers the precession angle  , i.e., the evolution of the spin- () state to the 

spin- () state.27)  The electron lifetime F  L /2vF  in the sample region of size L  

is used to estimate the mean precession angle at SO SO F  L /2LSO .  In the 

two-terminal model assumed for the numerical calculation, the precession occurs 

predominantly around the y -axis and does not oscillate the spin- Sy  current.  

Nevertheless, the spin precession is an important concept for understanding the spin 

pump operation in the finite-sized system.  The precession frequency SO coincides 
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with the energy separation between the Rashba spin-split subbands.  This means that if 

SO 1, the Rashba energy splitting is well established without being smeared out by 

the finite-size effect.  In such a case, the Kubo formula implies that the driving spin 

torque for spin pumping diminishes significantly.  Figure 5 shows the pumped spin 

ˆ P 1
y  calculated as a function of   for L  55.  When SO 1, ˆ P 1

y  shows a quadratic 

dependence on  .  This behavior is accounted for by the lowest-order approximation 

to J
y  for a sufficiently small  , which predicts that J

y 2 through a factor ˜ 2 .  

On the other hand, the increase of ˆ P 1
y  is appreciably suppressed for SO 1, showing a 

clear deviation from the 2-dependence.  The numerical results for different L  are 

similar (not shown).  This observation corroborates the interpretation based on the spin 

torque and the spin precession. 

 Thus far, we have addressed a clean Rashba SO coupled system in the ballistic 

transport regime.  The remaining part of this paper deals with how the static disorder 

affects the spin transport and the spin pumping.  Since the precession frequency SO 

is momentum dependent, the successive scattering from impurities randomizes the spin 

precession process, yielding the so-called D’yakonov-Perel’ spin relaxation in two 

dimensions.27,28)  The electron spin rotates by an angle SO SO  during the 

momentum relaxation time  , leading to the spin relaxation time expressed as 

 spin 1/SO
2  for SO 1  in terms of a Brownian rotational diffusion.  This 

expression describes the motional narrowing effect,24) i.e., the frequent impurity 

scattering slows down the spin relaxation.27,28)  The spin diffusion length may be 

defined as Lspin  D spin  with D  2 /2  (where   vF  is the elastic mean free 

path), which is almost the same as the precession length LSO .  Recall that the 
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precession frequency SO coincides with the Rashba energy splitting.  This means 

that if SO 1, the energy splitting is smeared out by the disorder effect.  The angle 

SO  is re-expressed as SO   /LSO  so that the criterion corresponds to   LSO in the 

length scale. 

 It may be helpful for elucidating the spin transport in the presence of static disorder 

to employ the spin-resolved transmission coefficients.27)  The transmission coefficient 

from the spin-  channel in lead   to the spin-  channel in lead   is defined by 

t
   Tr[

  g
 g] , where 

   p 
 p 

 and p 
1/2 S  is the 

projection operator onto the eigenstate of spin S .  The spin-resolved transmission 

coefficients t
   are used to introduce the normalized spin transmittance expressed as 

 

 T
 

t
   t

   t
   t

 

t
   t

   t
   t

 


4Tr[SgSg]

Tr[gg]
,  (27) 

 

which describes a correlation between the spin- S  current in lead   and the spin- S  

current in lead  , and varies between 1 and 1, depending on the spin precession and 

the spin relaxation during the electron transport.  Figure 6 summarizes the spin 

transmittances T12
  calculated for the two-terminal systems of the same width 

Ly 100 having a disordered and SO coupled region of different length Lx .  The 

static disorder caused by nonmagnetic impurities is taken into account by introducing a 

random on-site potential U(r) uniformly distributed in the range U(r) W /2.  The 

parameters W 10 and  /4  0.1 assumed for the calculation amount to   0.15 

and LSO  5 , respectively, which realize a fully diffusive regime where   Lx  and 

  LSO .  The numerical results collected in the top panel illustrate the spin 
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transmittances T12
x  (  x, y,z).  The spin precession during the transport takes place 

predominantly in the xz  plane so that T12
xx  and T12

zx  oscillate while T12
yx  remains 

around zero.  The oscillation gradually decays due to the spin relaxation.  

Consequently, all the transmittances T12
x  tend to vanish for a sufficiently large Lx , 

indicating that the static disorder significantly deteriorates the spin coherence between 

two leads.  The damped oscillation is reasonably represented by a simple expression, 

cos(Lx /LSO  )exp(L /Lspin ) , with   0  for the diagonal transmittance T12
xx  and 

   /2 for the off-diagonal transmittance T12
zx , which quantifies the associated spin 

diffusion length to be Lspin  5LSO .  The observations for T12
z  (bottom panel) are 

essentially similar, except for    /2  for T12
xz .  The absence of an oscillatory 

behavior for the diagonal transmittance T12
yy  (middle panel) is simply accounted for by 

the spin precession around the y-axis.  A fit to the corresponding numerical result 

with an exponential function exp(L /Lspin )  gives the estimate Lspin  3LSO .  These 

observations demonstrate that the spin diffusion is anisotropic in practice, and is not 

quantitatively described by the simple relation Lspin  LSO.27)  The shorter diffusion 

length found for T12
yy  is seemingly problematic for the spin pumping considered in this 

study since it principally generates the spin- Sy  current. 

 Now we proceed to the discussion of the spin pumping in the presence of static 

disorder.  First of all, it should be noticed that the symmetry under the transformation 

y y  is broken in the presence of the random potential U(r) so that eq. (22) no 

longer holds.29)  For convenience, we here define the magnitude ˆ P   ˆ P   and the 

polar angle from the y -axis   cos1 ˆ P 
y / ˆ P   of the pumped spin ˆ P    e

ˆ P 
 .  

Figure 7 illustrates the magnitude ˆ P 1 and the angle 1 for the sample-size L  35 
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calculated as a function of the disorder strength W  for various SO coupling strengths 

 .  The magnitude ˆ P 1 is little affected by a weak disorder, whereas the broken 

symmetry produces a finite angle 1, which increases with W  as well as  .  The 

magnitude ˆ P 1 shows a small step-like increase around the transition between the 

ballistic transport regime where   L  and the diffusive transport regime where   L .  

This behavior is attributable to the disorder-induced smearing of the density of states in 

quasi-1D systems, since the density of states N(E)  for L  35  forms a local 

minimum at E  0.1 (as implied from Fig. 3) so that it tends to increase with moderate 

increases in disorder.  A step-like increase is indeed observed for N(E) around   L  

in the numerical calculation (not shown).  In the diffusive regime, the magnitude ˆ P 1 

increases with W  by orders of magnitude for all values of   assumed for the 

calculation.  This increase is too large to be explained by the smeared density-of-states.  

On the other hand, the angle 1 tends to saturate in this region.  The saturation angle 

sat  is approximately linear in  , and follows the relation that sat  (0.2  0.3) SO.  

The observations for ˆ P 2  and 2 are similar (not shown).  Figure 8 displays a typical 

example of ˆ P 1
y  calculated as a function of  in the presence of disorder.  The 

resonance line clearly exhibits the motional narrowing, indicating that the 

D’yakonov-Perel’ mechanism substantially affects the EDSR-induced spin pumping in 

the diffusive regime. 

 As for a weak SO coupling such that  /4  0.01 (SO  0.35 ), the enhancement 

of spin pumping is qualitatively explained in terms of a Brownian electron motion in 

real space, which inevitably prolongs the average time an electron remains in the 

sample region and is exposed to the pumping field, giving a greater probability of spin 
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flip.  This interpretation is quantitatively supported by the diagrammatic perturbation 

analysis in the framework of the weak localization theory.  (This argument is based on 

the identity J  G  for HSO  0.  The weak-localization correction to the spin torque 

G , which can be expressed as a spin-spin correlation function, is discussed in ref. 2.)  

The enhancement observed for  /4  0.1 (SO  3.5) may be largely helped by the 

disorder-induced broadening that collapses the Rashba energy splitting when 

SO   /LSO 1, which corresponds to W  2 for  /4  0.1.  In addition to the weak 

localization effect, it is also likely that the motional narrowing assists the enhancement 

at resonance.  A classical treatment may be instructive for considering the saturation 

angle sat  observed in the diffusive regime.  In this regime, an electron remains in the 

sample region of size L  during the time D  L2 /3D.  The electron spin follows a 

random walk and fluctuates around the y-axis before escaping into the leads.  After 

the time D , the standard deviation of polar angle evolves to spin  D / spin  by 

experiencing D /  steps of the random walk.  This expression can be rewritten as 

spin  L / 3Lspin .  For instance, Lspin  3LSO  evaluated from the spin transmittance 

T12
yy  gives spin  0.4SO, which does not largely differ from the observation for sat .  

An important implication from this argument is that the pumped spins projected onto 

the xz  plane are essentially random (there is no preferred direction in this plane), and 

the saturation angle sat  represents the degree of spin dephasing in the diffusive 

transport regime.  A small dephasing is desired for practical application.  It is 

suggested from the numerical results that this is realized by reducing SO  L /2LSO 

even for a strong disorder. 

 Finally, we evaluate the spin current pumped from realistic systems.  In order to 



23 

minimize the spin dephasing caused by the disorder, the sample-size L  should be 

sufficiently small.  In view of this, we here suppose a sample of size L  2LSO, for 

which sat  0.2  0.3.  In this case, eq. (24) leads to the spin current expressed as 

Jy  n ˜ E 2 /2m2SO  at resonance  , where n  N /L2 is the density of states per 

unit area.  It is implied from this expression that a weaker SO coupling substantially 

results in a larger spin current.  This is due to the constraint on L , and opposite to an 

expectation directly from the pumping field induced by the SO coupling.  The SO 

coupling strengths   have been theoretically and experimentally estimated for some 

conventional semiconductors.30-33) For example,  /2  5 1015  eVm  for Si, 

1013  eVm  for GaAs, and 1011 eVm  for InAs, which amount to the precession 

frequencies, SO /2  0.1 GHz , 4 GHz , and 400 GHz , respectively, assuming an 

electron density of 1011 cm-2 .  Clearly, Si is a suitable material for the EDSR-induced 

spin pumping.  For Si-based 2D systems, we expect the pumped spin current 

Jy 1013  s1  for  /2 1 GHz , B = 36 mT , and ˜ E  5 V/cm.  These parameters 

are chosen to ensure that SO   and ˜ .  It should be noticed that eq. 

(24) is valid only in the ballistic regime.  In the diffusive regime, it is possible that the 

pumped spin current is increased further. 

 

4. Conclusions 

 

 The spin pumping from Rashba SO coupled 2D electron systems in the xy  plane 

exploiting the EDSR mechanism has been studied on the basis of the NEGF formalism 

and the Kubo formalism.  An oscillating internal magnetic field in the x  direction 
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induced by an oscillating external electric field in the y  direction through the SO 

coupling forms the driving spin torque for generating the spin- Sy  current in the EDSR 

setup.  The Rashba spin-splitting generally tends to diminish the spin torque in 

infinitely-large clean systems, while this effect becomes less significant for a 

finite-sized system when the mean precession angle SO  L /2LSO is smaller than unity.  

The spin- Sy  current is pumped without Sx,z  components from the two-terminal system 

with a transport channel along x  insofar as the system is symmetric under the 

transformation y y .  In the diffusive transport regime, the EDSR-induced spin 

pumping is strongly enhanced with increasing static disorder.  The enhancement is 

accompanied by motional narrowing as well as spin decoherence due to the 

D’yakonov-Perel’ mechanism.  The degree of spin dephasing depends on the electron 

diffusion time D  and the spin dephasing time  spin , and is controllable by varying the 

precession angle SO irrespective of the disorder strength. 
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FIGURE CAPTIONS 

 

Fig. 1 

(Color online) Schematic of a setup for EDSR-induced spin pumping from a 

two-terminal Rashba SO coupled system.  The system is exposed to a static magnetic 

field B.  The gates 1 and 2 are used to generate an oscillating electric field E(t) , 

which produces the internal magnetic field ˜ B (t)  through the SO coupling.  Spin 

currents J1,2
y  pumped at resonance flow into the leads 1 and 2. 

 

Fig. 2 

(Color online) Pumped spin ˆ P 
y  ( 1,2) calculated as a function of Larmor frequency 

of static field  for various sample-sizes L .  The parameters used in the calculation 

are indicated in the figure. 

 

Fig. 3 

(Color online) Pumped spin ˆ P 
y  ( 1,2) at resonance calculated as a function of 

sample-size L .  The parameters used in the calculation are indicated in the figure.  

The dashed line represents the theoretical plot according to eq. (25). 

 

Fig. 4 

(Color online) Pumped spin ˆ P 
y  ( 1,2) versus Larmor frequency of static field  

(solid line) and pumping frequency   (dot) calculated for three different SO coupling 

strengths: (a)  /4 104 , (b) 102 , and (c) 2 102 .  The parameters used in the 



29 

calculation are indicated in the figure. 

 

Fig. 5 

(Color online) Pumped spin ˆ P 1
y  calculated as a function of SO coupling strength  .  

The solid line represents the numerical result ˆ P 1
y (0)  obtained at  0 while the dot 

shows the maximum value of ˆ P 1
y ().  They follow a 2-dependence shown by the 

dashed line when   is sufficiently small.  The parameters used in the calculation are 

indicated in the figure.  The upper horizontal axis is scaled with L /2LSO. 

 

Fig. 6 

(Color online) Spin transmittances T12
  (,  x,y,z)  calculated for two-terminal 

disordered systems as a function of channel length Lx .  The three panels correspond to 

(a)   x , (b) y , and (c) z , respectively.  The parameters used in the calculation are 

indicated in the figure.  In the calculation, the disorder average is performed over 1000 

random configurations.  The upper horizontal axis is scaled with Lx /LSO. 

 

Fig. 7 

(Color online) Pumped spin calculated as a function of disorder strength W  for 

various SO coupling strengths  .  The two panels show (a) magnitude ˆ P 1 and (b) 

angle 1.  The parameters used in the calculation are indicated in the figure.  In the 

calculation, the disorder average is performed over 1000 random configurations.  The 

upper horizontal axis is scaled with the elastic mean free path   estimated from the 

lowest-order Born approximation as a reference. 
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Fig. 8 

(Color online) Comparison of resonance lines ˆ P 1
y () in the presence and absence of 

static disorder.  In the calculation, the disorder average is performed over 1000 random 

configurations.  The parameters used in the calculation are indicated in the figure. 
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