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For the future development of molecular electronics, we should construct nanosized molecular devices 

placed on nanowiring. To obtain high-quality devices composed of a few molecules, the wiring and the 

device should be connected well to maintain a constant interface. For this purpose, a single-walled 

carbon nanotube (SWNT)/porphyrin complex was prepared and then its electronic property was 

investigated while observing a topographic image using point-contact current imaging atomic force 

microscopy (PCI-AFM). Using PCI-AFM, we can measure the current along the long axis of the wiring 

by which the quality of the device in the circuit can be determined. The I-V curves were asymmetric 

with respect to the origin where an aggregate of several porphyrin molecules was absorbed, while they 

were symmetric without them. This means the porphyrin aggregation works as a rectification device on 

SWNT wiring. This is the first study which proves the electronic property of a few porphyrin molecules 

absorbed on SWNT. 

Although many researchers have reported the conductivity of nanostructures using nanometer-size 

gaps (nanogaps) fabricated by e-beam lithography,[1] break junctions,[2] free-standing carbon 

nanowires,[3] electrochemical growth,[4] carbon nanotube masking[5] and electromigration,[6] it is very 

hard to observe whether the object contacts the electrode stably when the size of the object is less than 

10 nm.[7] For example, if a particle of less than 10 nm diameter is placed between electrodes with a gap 

of a few nm on a substrate, we have no chance to observe whether the particle connects stably to the 

electrodes, because the tip of the scanning probe microscope (SPM) cannot reach inside the gap, and the 

resolution of scanning electron microscopy (SEM) is not sufficient to observe it. From the results of the 

measurement of the nanogap electrode, it is doubtful whether the conduction of the molecule was really 

measured, since a molecule was not observed during the measurement.  

A key technique to solve the above problem is the PCI-AFM developed by Matsumoto et al. [8-10] This 

technique causes less damage to the surfaces of the tip and sample during scanning than contact-mode 

AFM in principle. The advantage of PCI-AFM is that soft materials, such as polymers (wires), can 

avoid being swept out by the scanning tip. We can also detect differences in electric property on the 
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nanoscale by PCI-AFM because topographic 

images and current-voltage (I-V) curves can be 

obtained simultaneously.  

Another key method of solving the above 

problem is to use an SWNT as an electrode 

(“SWNT-electrode method”). An SWNT is an 

excellent electrode for measurement on the 

nanoscale because it is the only high-conductivity 

material whose diameter is approximately 1 nm 

and because it is easy to observe the sample on 

the SWNT by AFM. By combining these two 

techniques, we can measure current along the 

long axis of an object while observing the 

topological images of the target. Since variable 

molecules can be absorbed on the SWNT,[11-12] 

the combined technique can be used to measure 

the electric properties of different types of 

molecular devices. 

We synthesized 5,15-Bispentylporphyrinato 

zinc(II) (BPP-Zn) (Fig. 1(a)) having two pentyl groups to increase the solubility of the complex with an 

SWNT (Fig. 1(b)) in organic solvent. SWNTs were added to a dimethyl formamid (DMF) solution of 

BPP-Zn (0.1 mM, 5 mL), and then sonicated for 30 min. The solution was centrifuged at 1000 G and 

the supernatant was collected. The SWNT/BPP-Zn complex was collected using a filter (0.5 m, 

MILIPORE) and excess BPP-Zn was removed by rinsing with CHCl3 (100 mL). SWNT/BPP-Zn was 

added to DMF (2 mL) and the solution was sonicated for 30 min. The SWNT/BPP-Zn complex was 

very stable as no precipitation was observed in the solution even after being left for one month at room 



 

4

temperature. The obtained solution was cast on a mica substrate and the surface was observed by 

tapping-mode AFM.  

Figure 1(c) shows an AFM image of the complex on the substrate. The aggregation of the 

SWNT/BPP-Zn complex having a thickness of 2.5-4.5 nm was observed on the SWNT as white dots. 

Excess BPP-Zn molecular aggregations were also observed on the whole substrate. This is the first time 

that porphyrin molecules were observed absorbing on an SWNT by AFM. From the image, it can be 

seen that the BPP-Zn strongly binds to the SWNT. Since the diameter of the SWNT is approximately 

1.1-1.5 nm, the thickness of the BPP-Zn aggregate is calculated to be approximately 1-3 nm. White 

dots observed both on the SWNT and on the substrate are estimated to be composed of aggregates of 

several BPP-Zn molecules. Almost all of the parts of the SWNT were covered by BPP-Zn, indicated by 

arrow (i). However, some exposed parts of the SWNT are also observed, indicated by arrow (ii). 

A gold electrode was deposited on half of the substrate with the other half of the substrate covered 

with a cover glass to avoid Au deposition. Au was deposited onto the substrate by thermal vacuum 

deposition. The thickness of the deposited Au layer was approximately 40 nm. By removing the cover 

glass carefully, an electrode with a sharp edge was obtained with no diffusion (see inset in Fig. 2). For 

the I-V measurement, we used PCI-AFM whose procedure is shown in Fig. 2. The PCI-AFM 

measurement was conducted using JEOL JSPM-4210 expanded with two function generators (WF1946, 

NF Corporation). Pt-coated conductive cantilevers were used to measure current. The force constant and 

resonant frequency of the cantilevers were 4.5 N/m and approximately 150 kHz, respectively. This 

measurement was performed in a nitrogen-gas-purged atmosphere to avoid humidity. When I-V 

measurement was carried out, the force between the cantilever and the sample was approximately 13 nN, 

calculated using a force curve.[9] Bias voltage was applied to the gold electrode on the substrate and the 

cantilever was grounded. 
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Figure 3(a) shows a topographic image of the complex obtained by PCI-AFM. Points A’-G’ indicate 

the position where the I-V curve is compared. BPP-Zn aggregates having approximately 3 nm thickness 

were absorbed on the surface of a bundle of SWNTs (b-SWNTs) having approximately 2.5 nm 

thickness. Since the average diameter of a single SWNT (s-SWNT) is 1.1 nm (from the product sheet; 

Sigma Aldrich), the b-SWNT consists of two s-SWNTs. Since the height of the BPP-Zn is 

approximately 0.35 nm, the BPP-Zn aggregate is assumed to be constructed of several BPP-Zn 

molecules aggregating at one position. For every point of 128 ×128 dots in Fig. 3(a), an I-V curve and 

an AFM topographic image were simultaneously obtained. At points B’, C’ and F’ (N-points as no-

porphyrin-points, hereafter), non-ohmic I-V curves symmetric with respect to the origin were obtained 

from an exposed b-SWNT. At points A’, D’, E’ and G’ (P-points as porphyrin-points, hereafter), I-V 

curves asymmetric with respect to the origin were obtained from a BPP-Zn aggregate on the b-SWNT. 

Apparently, the current at the positive voltage at the P-points is much lower than that taken at the N-

points or that in the range of negative voltage. The current through the BPP-Zn aggregate has been 

distinguished from that through the contact point of Pt and the SWNT on the nanoscale. By normalizing 

the I-V curves at -1.5 V, all the curves from points A’-F’ were perfectly coincident in the range of V < 0. 

On the other hand, in the range of V >0, they are grouped into two types: symmetric curves obtained at 

the N-points and asymmetric curves with respect to the origin obtained at P-points showing rectification.   
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To discuss the normalization, it is necessary to know the distance between Pt and the sample (Fig. 

3(c)) because the I-V curves obtained are unbraided (Fig. 3(d)). The total contact resistance between a 

sample and a cantilever is expressed as the sum of the contact resistance for a certain distance between 

the SWNT and Pt (R), and additional tunnel resistance incurred by the gap from the position (R’) 

because of an increased tunnel gap. Current passing through the interface is thus expressed as 

V = I(R+R’) = R, = 1+R’/R                       (1) 

R should be constant and  is a normalizing coefficient (Fig. 3(c)). If we know  here, we can obtain 

the ratio of R’ of each point. R’ is due to the contact between the electrode and the sample. The  values 

are 38.4, 1.1, 1.0, 6.9, 2.6, 2.1 and 2.8 for points A’-F’, respectively. The tunnel distance approximately 

changes as d’ ≈ Log(). By comparing d’, the difference in d’ between points A and C is approximately 
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0.16 nm, and that between points D’ and C’ is 0.08 nm. Although this estimation is based on the 

assumption that BPP-Zn works just as a tunnel gap, the contact condition of each point can be 

estimated relatively. Concluding from the results described above, such a small height variation does 

not affect the conduction mechanism.  

Figure 3(e) shows that this SWNT exhibits semiconductor conduction with a narrow band gap. Two 

black arrows indicate the band edge of the object. The band edge of the conduction band (CB) is at 

approximately 0.26 V and that of the valence band (VB) is at -0.26 V. The band gap of approximately 

0.52 eV corresponds to the energy gap obtained in a previous study.[13] Note that the curve obtained 

from the exposed SWNT is influenced by the absorbed porphyrin and is different from that obtained in 

reported studies[14] for an ideal SWNT. On the other hand, the orbital of the BPP-Zn hybridized with 

that of the SWNT in CB is at approximately 0.39 V and that in VB is at approximately -0.26 V. The 

band gap of the SWNT on which porphyrin is absorbed is expected to be approximately 0.65 eV. This 

band gap is wider than that of the exposed SWNT because of the orbital hybridization of the SWNT 

and porphyrin.  

By analyzing the shape of the I-V curve, it can be seen that the conducting property is Fowler-

Nordheim (FN) tunneling[15] because the I-V curve is fit using the following equation; [16] 

I(V) = A*V2 exp (-B/V)    (2) 

where A and B are constants and V is the applied voltage to the SWNT. By comparing B values of the 

equation, we can compare the conduction property at N-points and P-points, because B is related to the 

barrier heights of Pt and the SWNT.[16] By fitting the measured I-V curves at positive bias to FN theory, 

the B were 1.17 ± 0.31 V for N-points and 1.71 ± 1.40 V for P-points. We can conclude that B at P 

points is approximately 1.5 times larger than that at N-points.  

We can discuss the electric properties of porphyrin on the SWNT electrode from the results described 

above; the red arrow at 0.39 V shown in Fig. 3(e) is expected as a band edge (BE) from the hybridized 

orbital of the CB of SWNT and that of BPP-Zn. This BE is slightly higher than that of the SWNT 
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shown in Fig. 3(e) at 0.26 V. The BE of SWNT/BPP-Zn in VB are expected to be laid at the same level 

as that of the SWNT (-0.26 V) because all I-V curves agree below 0 V. 

Figure 4 shows a summarized scheme of the band structure at the interface of SWNT/ Pt and SWNT/ 

BPP-Zn/ Pt. When BPP-Zn attaches to a cantilever (Pt), a strong interaction occurs to transfer a charge 

from BPP-Zn to SWNT. Here, BPP-Zn is positively charged, which is the reason the work function is 

aligned at the interface between BPP-Zn and Pt because of electric polarization. Then, the energy level 

of Pt is aligned with the lower level at the interface between BPP-Zn and Pt. This type of phenomenon 

is reported as a results of UV photoemission spectroscopy (UPS).[17-18]  

 

The mechanism of electron conduction in this system is thought to be tunneling as described above. A 

change in conduction by absorbing BPP-Zn is induced by a change of band around a tunneling area 

because of the strong correlation between Pt and BPP-Zn. By the shape of the I-V curve at the P-points, 

the conducting property is found to be similar to the tunneling of the N-points in the negative bias, since 

the normalized I-V curve is coincident with that of the exposed SWNT. Accordingly, the potential 

barrier in Fig. 4(c) is similar to that in Fig. 4(a) although the potential barrier slightly becomes narrower. 
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On the other hand, the conduction was restrained in the positive bias. An electron is affected by the 

wider potential barrier like that shown in Fig. 4(d), which stops the electron from passing through the 

potential.  

In conclusion, a porphyrin aggregate of even 2-3 nm size behaved as a rectification device on the 

SWNT. It is very effective to combine the SWNT-electrode method and PCI-AFM for the current 

measurement of single or several molecules. This combination allows simultaneous observation of the 

topography of molecules on the electrode during measurement. Using this technique, electric 

conduction property at the interface of SWNT/ Pt and SWNT/ BPP-Zn/ Pt was distinguished in the 

nanoscale, that is; a nanorectification device is spontaneously controlled for placement on the SWNT by 

synthesis. 
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FIGURE CAPTIONS. 

Figure 1. (a) Structural formula of synthesized 5,15-Bispentylporphyrinato zinc(II) (BPP-Zn) (b) 

Model of SWNT/ BPP-Zn complex (c) Tapping-mode AFM image of BPP-Zn on SWNT electrode. 

Surplus BPP-Zn can also be observed on the whole substrate. Almost all of the SWNT was covered by 

BPP-Zn aggregates, indicated by arrow (i). Some parts of the SWNT were partially exposed, indicated 

by arrow (ii).  

Figure 2. Procedure of PCI-AFM method. (a) A topographic image was obtained by tapping-mode 

AFM. (b) The vibration of the cantilever was stopped to measure the I-V curve. (c) The AFM tip was 

pressed to the sample to make electrical contact, and then the I-V curve was measured. Steps (a)-(c) 

were repeated every 128 × 128 points of the AFM image. The inset shows an AFM image of the Au 

electrode and its height profile. A sharp edge 40 nm high was formed. 

Figure 3. (a) Topographic image of BPP-Zn absorbed on SWNT electrode. The I-V measurement was 

performed at points A’-G’. (b) Cross section of each line in Fig. 3(a). (c) Relation between a tunnel 

resistance and a distance of sample and cantilever. (d) I-V curves obtained at each point. (e) The I-V 

curves were normalized at -1.5 V. All curves are coincident below 0 V. I-V curves are classified into 

two types over 0 V. One is symmetrical with respect to the origin where no porphyrin is absorbed and 

another is asymmetrical where porphyrin is absorbed. Two types of arrow indicate the band edges (BE) 

of the objects. Black and red arrows indicate the BE of the object for N-points and P-points, 

respectively. 

Figure 4. Schematic band structures of SWNT and Pt summarized by I-V analysis in the range of (a) 

negative sample bias and (b) positive bias. A tunnel gap exists between Pt and the SWNT (Vac). 

Electrons tunnel the triangular potential barrier at the valence band of the SWNT. After BPP-Zn is 

absorbed on the SWNT, schematic band structures changed to (c) in negative sample bias and (d) in 

positive bias. The band of the tunneling area changed because the energy level aligned lower () at the 

interface between BPP-Zn and Pt[17-18] because of polarization at their interface. Electrons feel a 
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narrower potential barrier than the triangular potential in (c) and a wider potential barrier in (d), 

respectively, which is the reason for the asymmetric I-V curves. 


