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Particle-hole symmetry breaking perturbation in the two-channel pseudospin Kondo problem is
studied by the numerical renormalization-group method. It is shown that the repulsion among
conduction electrons at the impurity site and the single particle potential are relevant perturbations
against the conventional non-Fermi-liquid fixed point. Although the repulsion (potential) with realistic
strength prevents the overscreening of the pseudospin, it induces in turn areal spin, which is also
overscreened again. Thus thereal spinsusceptibility becomes anomalous, contrary to the conventional
two-channel Kondo problem.

PACS numbers: 71.27.+a, 71.28.+d, 74.70.Ad, 75.30.Mb
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The multichannel Kondo problem has attracted much
tention recently because of its anomalous non-Fermi-liq
behavior. While the problem was originally discussed lo
ago as a generalized Kondo effect with orbital degener
[1], the two-channel Kondo problem has been revived
a proposal of a quadrupolar Kondo effect as an origin
U-based heavy fermions [2]. The two-level system int
acting with conduction electrons was also recognized a
candidate for realization of the two-channel Kondo mo
[3]. The latter system has attracted much interest not o
because it offers a model explaining the anomalous tra
port properties of glassy metals [4,5] but also becaus
is expected to give a canonical model of strong coupl
electron-phonon systems [6–8].

Although the two-channel Kondo problem has be
fully solved by a variety of methods [9–15], it seems s
to remain for us to clarify the reality of the model itse
[16]. In the magnetic two-channel Kondo model, propos
quite recently for Ce31 [17], it is a straightforward con-
clusion that the magnetic susceptibility shows non-Fer
liquid behavior. In the pseudospin two-channel Kon
model, where primarily the susceptibility of the pseudos
(i.e., that of charge polarization) shows anomalous beh
ior, it is not clear whether or not the real spin suscep
bility exhibits non-Fermi-liquid behavior. However, it i
suggested that the system Th12xUxRu2Si2, which shows a
0031-9007y96y76(2)y271(4)$06.00
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c-axis logarithmically divergent magnetic susceptibilit
can be explained by the quadrupolar Kondo effect in tet
gonal symmetry [16,18]. However, it might make sense
investigate the possibility that such magnetic anomalies
related to the appearance of localized real spins in a m
general sense. For instance, a repulsion between con
tion electrons at the impurity site, which was neglected
the above pseudospin models [19], is expected to prev
overscreening [20] and to induce a real spin.

The purpose of this paper is to examine the effect
such a repulsion on the two-channel Kondo model by
numerical renormalization-group (NRG) method [21,22
It is shown that the fixed point Hamiltonian is described n
only by the conventional exchange couplingJp but also by
an impurity potentialV p, to which the repulsive interaction
Ũ is renormalized; namely, the single particle potentialṼ
is also a relevant perturbation. The competition betwe
the exchange coupling and the repulsion or the impur
potential induces the degrees of freedom of channels (
real spin) and leads to the pseudospin singlet ground s
for realistic strengths of̃U or Ṽ . It is the particle-hole
symmetry breaking that causes such competition. T
overscreening of the induced real spin again makes the
spin susceptibility anomalous, contrary to the conventio
pseudospin two-channel Kondo problem withoutŨ andṼ .

We begin with the model Hamiltonian for the Wilso
NRG calculation as follows:
spin
rees of
HN

D
­ LsN21dy2

(X
ms

N21X
n­0

L2ny2jns fy
n,msfn11,ms 1 H.c.d 1 Hint

)
, (1)

where

Hint ­ J
X

mss0

f
y
0,ms0ss0sf0,ms ? t 1 V

X
ms

f
y
0,msf0,ms 1

U
2

msfim0s0X
mm0ss0

f
y
0,msf0,msf

y
m0s0f0,m0s0 , (2)

where the indicesm ands denote a label indicating channel and pseudospin, respectively,s is the Pauli matrix vector,
and t is that for the impurity pseudospin. Our exchange Hamiltonian (2) is written in terms of the local pseudo
degrees of freedom. In the case of the quadrupolar Kondo effect, for instance, these are local quadrupolar deg
© 1996 The American Physical Society 271
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freedom, while the magnetic index of the conducti
electrons serves as a channel index. Here we have de

D ;
1 1 L21

2
D̃, J ;

1
1 1 L21 J̃ ,

U ;
8

1 1 L21
Ũ, V ;

4
1 1 L21

Ṽ , (3)

where2D̃ denotes the bandwidth of conduction electro
J̃ the exchange interaction between conduction electr
and the impurity pseudospin,̃V the potential at the
impurity site, andŨ the repulsion among the conductio
electrons at the impurity site [23]. Hereafter we s
D ­ 1; i.e., the energy levels are scaled byD and ignore
L dependence injn, i.e., jn ­ 1, becausejn ! 1 for
largen.

The conserved quantities of the HamiltonianHN , (1),
are the total number of conduction electronsQ, the real
spin j, and the total pseudospinS, defined as follows:

QN ­
X
m

NX
n­0

X
s

s fy
n,msfn,ms 2 1y2d , (4)

jN ­
1
2

X
s

NX
n­0

X
mm0

f
y
n,m0ssm0mfn,ms ;

X
s

jN
s , (5)

SN ­
1
2

"X
m

NX
n­0

X
ss0

f
y
n,ms0ss0sfn,ms 1 t

#

;
X
m

sN
m 1 t . (6)

Since both the repulsionU and the potentialV break
the particle-hole symmetry unless3Uy2 1 V ­ 0, the
degenerate eigenstates denoted by6Q are split in general.
In our calculations, we have usedL ­ 3 and retained low
lying energy states up to 300 states at each step as b
for constructing new quadruple states.

First we have investigated the caseU ­ V ­ 0 and
verified that the same energy levels are reproduced
in the work of Pang and Cox [10]. Next we hav
investigated the caseU fi 0. The flow diagram of
levels of low lying states forJ ­ 2.0 and U ­ 1.6 is
shown in Fig. 1(a). The solid (dotted) lines are for ev
(odd) iterations. Each level is labeled bysQ, j, Sd. The
ground state of the fixed point is the pseudospin dou
(S ­ 1y2), which is expected for the case where t
exchange coupling is stronger than the repulsion.
Fig. 1(b) the flow diagram forJ ­ 1.0 and U ­ 2.0
is shown. The ground state is now the pseudos
singlet (S ­ 0), because the repulsionU, larger than the
exchange couplingJ and the hoppingD ­ 1, prohibit
overscreening. It is noted that the ground state is s
degenerate due to the degrees of freedom of the cha
i.e., j ­ 1y2. It is remarked that the positions of th
energy levels at the fixed point in Figs. 1(a) and 1(
exactly coincide with each other while the nature of t
ground state is different.
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FIG. 1. The flow diagram for (a)J ­ 2.0, U ­ 1.6, V ­ 0
and (b)J ­ 1.0, U ­ 2.0, V ­ 0.

The nature of ground states for various couplin
constantsJ, U, and V ­ 0 are shown in Fig. 2. The
closed circles stand for the ground state withS ­ 0 and
while the open circles withS ­ 1y2. The line dividing
the two types of ground states is drawn by estimatin
the coupling constants which give the same energies
these two types of ground states. It is noted that th
boundary line flattens asJ ! 0 and has a constant slope
for J * 1. We can understand this result as follows. Th
energy gains for overscreening formation at the impuri
(n ­ 0) site are due to both the exchange energyJ and
the kinetic energy associated with the transferD between
the 0 and 1 sites, while the energy loss arises through t
repulsionU between overscreened conduction electron
Consequently, the boundary line is roughly determined b
the conditionU , maxsJ, Dd; namely, forŨ . J̃y8 and
D̃y4, the ground state becomes a pseudospin singlet. I

FIG. 2. The nature of ground states for various sets
coupling constants ofJ, U, andV ­ 0 in the unitD.
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the
noted that the ground state is expected to belong to tha
S ­ 0 for a realistic value ofŨ andJ̃.

Now we discuss properties of the fixed point. The fixe
point HamiltonianHp is described as

Hp ­
X̀
n­0

L2ny2s f
y
n11fn 1 H.c.d 1 Hp

int ,

Hp
int ­ 4Jpss0

1 1 s0
2d ? t 1 apss0

1 1 s0
2d2

1 bpsj0
" 1 j0

# d2 1 V pQ0 1 e , (7)

whereHp
int has the same symmetry asHint, in (1), the effec-

tive couplingsJp, ap, bp, andV p may depend on the initial
couplings in general, ande is a constant energy shift. If
we setJp ­ J, ap ­ bp ­ 2U, V p ­ 3Uy2 1 V , and
e ­ 3U 1 2V , Hp

int becomes equivalent toHint in (1).
Since the energy of low lying excited states at the fixe

point is mainly determined byHp
int, we can determine

the parametersJp , e in (7) so as to reproduce the low
lying energy levels atN ­ 39. The results for the initial
parameterssJ, U, V d (a) s0.5, 0.0, 0.0d, (b) s2.0, 1.6, 0.0d,
(c) s1.0, 2.0, 0.0d, and (d) s0.2, 0.4, 20.6d are shown in
Table I. It is noted that the effective exchange couplingJp

is independent of the initial couplingU (includingU ­ 0),
andap andbp are always zero. In the case (d), there
particle-hole symmetry so that the fixed point is the sam
as in the case (a) whereU ­ V ­ 0. The character of the
fixed point is determined mainly by the effective impurity
potentialV p which depends on the initial couplingsJ, U,
andV , i.e.,V p ­ fsJ, U, V d. Consequently, the effective
interaction at the fixed point can be written as

Hp
int ­ Jpss0

1 1 s0
2d ? t 1 V pQ0 sJp ­ 0.20d . (8)

TheJ, U dependence ofV p with V ­ 0 is shown in Fig. 3.
It is noted thatV p increases (decreases) asU (J) increases.
From this effective interaction, the “flow lines” for scal-
ing in parameter space are obtained fromfsJ, U, V ­
0d ­ const. Especially, forV p ­ Jp ­ 0.20, the “flow
line” becomes equivalent to the boundary line shown
Fig. 2, because the first excitation energy is zero for the
couplings.

In order to investigate thev and T dependences of
the susceptibility, letsQ, j, Sd be sQD , jD, SDd for V p ­
V p

D , 0.20, where the ground state is a pseudospin doub
(S ­ 1y2), and sQS , jS, SSd for V p ­ V p

S . 0.20 where

TABLE I. Effective couplings,Jp , e, which make a re-
production of the energy levels atN ­ 39 for the initial
parameters,sJ , U, V d, (a) s0.5, 0.0, 0.0d, (b) s2.0, 1.6, 0.0d, (c)
s1.0, 2.0, 0.0d, and (d)s0.2, 0.4, 20.6d.

sJ , U, V d Jp ap bp V p e

(a) s0.5, 0.0, 0.0d 0.20 0 0 0 0.80
(b) s2.0, 1.6, 0.0d 0.20 0 0 0.12 0.80
(c) s1.0, 2.0, 0.0d 0.20 0 0 0.28 0.88
(d) s0.2, 0.4, 20.6d 0.20 0 0 0 0.80
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FIG. 3. J, U dependence of the effective impurity potentia
V p, with V ­ 0 at the fixed point.

the ground state is a pseudospin singlet (S ­ 0). For each
of the low lying excited states, we can find the relatio
QS ­ 2QD 2 1, jS ­ SD , andSS ­ jD . If we setV p

S ­
2Jp 2 V p

D , the low lying excited energies at the fixed poin
for each parameter are the same, as easily seen by m
of the effective interaction (8). A prime example is th
relation between Figs. 1(a) and 1(b) as mentioned abo
According to this example, the coincidence of ener
levels occurs after 20 iterations. From this coincidenc
it is expected that thev and T svyD, TyD , L220y2d
dependence of the susceptibility of thereal spin(channel)
for V p

D coincide with those of the pseudospin forV p
S ­

2Jp 2 V p
D , which has been known as anomalous [11

and vice versa. This is a new aspect of the two-chan
Kondo problem which was not recognized as long
the conventional model without repulsion and potent
scattering (U ­ V ­ 0) had been investigated, though th
possibility of a diverging channel susceptibility has be
suggested from another point of view [24,25]. This du
nature implies that when the impurity spin is magnetic t
pseudospin susceptibility should be anomalous, toget
with the real spin susceptibility.

This remarkable aspect can be seen more vividly by
vestigating the spectral weight of the dynamical susce
tibilities for the real spin of conduction electrons at th
impurity site, x

00
j svd, and for the impurity pseudospin

x 00
t svd. They are calculated by the method of Ref. [1

as shown in Fig. 4. It is noted that, in the presence of
repulsionU, x

00
j svd shows non-Fermi-liquid behavior with

limv!0 x
00
j svd being finite, while without the repulsion

it shows Fermi-liquid behavior withx 00
j s0d ­ 0. How-

ever, if we set3Uy2 1 V ­ 0, similar calculations show
that x

00
j s0d ­ 0; namely, it is the particle-hole symmetry
273
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FIG. 4. v dependence of the imaginary part of (a) loca
real spin susceptibilityx

00
j svd and (b) impurity pseudospin

susceptibilityx 00
t svd.

breaking that givesx 00
j svd non-Fermi-liquid behavior. The

potentialV p shifts the number of conduction electrons
the impurity site from one in each channel, though the e
change works to hold the overscreening formation. Th
competition induces the degrees of freedom of the chan
(i.e., real spin). It is also overscreened again by cond
tion electrons with two channels, i.e., pseudospin degr
of freedom [26]. Thus the real spin susceptibility be
comes anomalous due to the potentialV p which breaks
the particle-hole symmetry. The caseV p , 0 is under-
stood asV p . 0 by particle-hole transformation. Since
the degrees of freedom of pseudospin, however, have
perfectly vanished, the pseudospin susceptibility is anom
lous for any strength of the repulsion includingU ­ 0.
It is noted that the enhancement ofU actually enhances
the pseudospin susceptibility despite the crossover of
ground state.

In summary, the low lying excited states at the fixe
point of the pseudospin two-channel Kondo model wi
particle-hole symmetry breaking perturbations are d
scribed not only by the exchangeJp but also by the im-
purity potentialV p. For jV pj . 0.20, i.e., Ũ . J̃y8 and
D̃y4, realistic values, a pseudospin singlet ground state
realized in contrast with the pseudospin doublet grou
state which is realized in the conventional two-chann
Kondo problem. The spectral weight of the dynamic
susceptibility of the real spin shows non-Fermi-liquid b
havior because of the overscreening of the real spin. Th
it is expected that themagneticnon-Fermi-liquid behav-
iors observed in some compounds can be understood
the particle-hole symmetry breaking perturbation, whic
induces degrees of freedom of the real spin.
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