<table>
<thead>
<tr>
<th>Title</th>
<th>One-pot electrochemical formation of meso,meso-linked porphyrin arrays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ogawa, Takuji; Nishimoto, Yoshihiro; Ono, Noboru et al.</td>
</tr>
<tr>
<td>Citation</td>
<td>CHEMICAL COMMUNICATIONS. 1998, 3, p. 337-338</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://hdl.handle.net/11094/3271</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
One-pot electrochemical formation of meso,meso-linked porphyrin arrays

Takuji Ogawa,∗a Yoshihiro Nishimoto,b Naoya Yoshida,c Noboru Ono,b and Atsuhiro Osukua∗c

Electrochemical oxidation of [5,15-bis(3,5-di-tert-butylphenyl)porphyrinato]zinc(ii) 1, [5,15-bis(4-methoxy-carbonylphenyl)porphyrinato]zinc(ii), [5,15-bis(pentafluorophenyl)porphyrinato]zinc(ii) or [10-bromo-5,15-diphenylporphyrinato]zinc(ii) in benzonitrile using a platinum net as the working electrode afforded the corresponding meso,meso-linked oligomer porphyrin arrays, and up to the octamer porphyrin array could be isolated for 1.

Polynuclear porphyrins have been attracting considerable attention as biomimetic models of photosynthetic systems as well as photonic materials and functional molecular devices.1–7

In a previous communication we reported the oxidative coupling reaction of [5,15-bis(3,5-di-tert-butylphenyl)porphyrinato]zinc(ii) 1 with silver(i) salts to give the porphyrin dimer 2, the porphyrin trimer 3 and the porphyrin tetramer 4.8 The possible mechanism proposed is an initial one-electron oxidation of zinc porphyrin with Ag+ followed by nucleophilic attack of a neutral zinc porphyrin. This mechanism suggests that electrochemical oxidation also may lead to the formation of the meso,meso-coupled porphyrin arrays. Here we report an electrochemical preparation of the porphyrin arrays, by which the usage of expensive silver salts is not required, the oxidizing potentials can be best tuned to the porphyrin used, and the long porphyrin arrays can be prepared in a one-step procedure through prolonged electrolysis.

Porphyrin 1 (n = 1) (219 mg, 0.293 mmol) was electrolyzed in dry benzonitrile (210 ml) in a single cell with NBu4ClO4 (0.1 M) as the electrolyte, a platinum net (1.8 × 2.4 cm) as the counter electrode, and a platinum net (3 × 4 cm) as the working electrode; the electricity used was 0.732 mF. The porphyrin trimer 3 was isolated at a yield of 44.0%.

Treatment of [5,15-bis(4-methoxycarbonylphenyl)porphyrinato]zinc(ii) 9 at higher oxidation potential (+0.68 V vs. Ag/AgNO3) than 1 (+0.54 V vs. Ag/AgNO3) with AgClO4 under the conditions reported previously8 did not afford the corresponding meso,meso-linked porphyrin arrays, although an unidentified complex mixture together with ca. 60% of the recovered starting material were obtained. However, when 9 (51 mg, 79 μmol) was electrolyzed using electricity of 134 μF, it afforded the meso,meso-linked porphyrin dimer 10 (34.3%), porphyrin trimer 11 (6.9%) and the starting porphyrin 9 (47.4%). Similarly, [5,15-bis(pentafluorophenyl)porphyrinato]zinc(ii) 12 (+0.77 V vs. Ag/AgNO3) and (10-bromo-5,15-diphenylporphyrinato)zinc(ii) 13 (+0.56 V vs. Ag/AgNO3), which did not give the corresponding meso,meso-linked porphyrin arrays by the silver salt method, afforded the corresponding dimers 14 and 15 under similar conditions by electrolysis in isolated yields of 11.6 and 47.5%, respectively. Thus the electrochemical method has a wider scope for the substrates than the silver salt method.

These meso,meso-linked porphyrin arrays so far isolated were quite soluble in CHCl3. Of particular note is the fact that even the arrays of porphyrin 9, 12 and 13, which have little sterical hindrance to prevent π–π stacking of the porphyrin planes, also had high solubility. This is probably because the porphyrin planes connect nearly perpendicular to each other due to their sterical requirement, and hence their intermolecular π–π stacking was largely prevented.

These results indicate that the present electrochemical method is a convenient way of preparing meso,meso-linked porphyrin arrays which should be good candidates for long ‘molecular wires’9,10 having a linear rigid structure and high solubility.

Work at Kyoto was partly supported by Grants-in Aid for Scientific Research (No. 08874074) from the Ministry of Education, Science, Sports and Culture of Japan and by the Tokuyama Science Foundation.

Scheme 1 Reagents and conditions: i, Anodic oxidation. Pt net as working electrode, Pt net as counter electrode, in benzonitrile, 0.1 M NBu4ClO4.
Notes and References

* E-mail: ogawat@ms.iifoc.kyushu-u.ac.jp

1. 5 (Ar = 3,5-di-tert-butylphenyl, R = H, n = 5): δ(H(CDC11) 1.37 (s, Bu), 1.40 (s, Bu), 1.50 (s, Bu), 7.62 (t, J = 2.0, 4 H, Ar-4-H), 7.65 (t, J = 1.5, 2 H, Ar-4-H), 7.76 (t, J = 2.0, 4 H, Ar-4-H), 8.12 (d, J = 2.0, 8 H, Ar-2,6-H), 8.15 (d, J = 1.5, 4 H, Ar-2,6-H), 8.16 (d, J = 2.0, 8 H, Ar-2,6-H), 8.19 (d, J = 4.5, 4 H, β protons), 8.32 (d, J = 4.5, 4 H, β protons), 8.35 (d, J = 5.0, 4 H, β protons), 8.36 (d, J = 5.0, 4 H, β protons), 8.75 (d, J = 5.0, 4 H, β protons), 8.82 (d, J = 4.5, 4 H, β protons), 8.84 (d, J = 4.0, 4 H, β protons), 8.85 (d, J = 4.5, 4 H, β protons), 9.22 (d, J = 4.5, 4 H, β protons), 9.53 (d, J = 4.5, 4 H, β protons) and 10.42 (s, 2 H); m/z (FAB) 3742.1 (C336H352N28Zn7 requires 3743.7).

2. 6 (Ar = tert-butylphenyl, R = H, n = 6): m/z (TOF) 4563 (C384H402N32Zn8 requires 5989).

3. 7 (Ar = tert-butylphenyl, R = H, n = 7): m/z (TOF) 5237 (C340H372N26Zn8 requires 5240). 8 (Ar = 3,5-di-tert-butylphenyl, R = H, n = 8): m/z (TOF) 6053 (C306H302N24Zn6 requires 5989).

4. 9 (Ar = 3,5-di-tert-butylphenyl, R = H, n = 9): m/z (TOF) 6503 (C366H332N26Zn6 requires 6512).

5. 10 (Ar = 4-methoxycarbonylphenyl, R = H, n = 2): δ(H(CDC11) 3.89 (s, 12 H, 8.03 (d, 4 H, J = 5.0, β protons), 8.21 (d, 8 H, 8.85 (phenyl), 8.25 (d, 8 H, 8.85, phenyl), 8.57 (d, 4 H, J = 4.5, β protons), 9.03 (d, 4 H, J = 4.5, β protons), 9.45 (d, 4 H, J = 4.5, β protons) and 10.35 (s, 2H, meso protons); m/z (FAB) 1281.1 (C132H124N26O8Zn8 requires 1282.0). 11 (Ar = 4-methoxycarbonylphenyl, R = H, n = 3): δ(H(CDC11) 3.90 (s, 6 H, inner CH3OCOC6H4), 4.04 (s, 12 H, outer CH3OCOC6H4), 8.11 (d, 4 H, J = 4.5, β protons), 8.23 (d, 4 H, J = 4.5, β protons), 8.25–8.45 (m, 24 H, CH3OCOC6H4), 8.57 (d, 4 H, J = 5.0, β protons), 8.65 (d, 4 H, J = 4.5, β protons), 9.05 (d, 4 H, J = 4.5, β protons), 9.58 (d, 4 H, J = 4.0, β protons) and 10.48 (s, 2 H, meso protons); m/z (FAB) 1921.7 (C306H372N26O8Zn8 requires 1921.9).

12. 12 (Ar = pentafluorophenyl, R = H, n = 2): δ(H(CDC11) 8.18 (s, 4 H, 8.65 (d, 4 H, J = 5.0, β protons), 8.91 (d, 4 H, J = 4.5, β protons) and 10.50 (s, 2H, meso protons); m/z (FAB) 1410 (C64H16F20N2Zn2 requires 1410). 15 (Ar = Ph, R = Br, n = 2): δ(H(CDC11) 7.5–7.7 (m, 12 H, Ph), 8.06 (d, 4 H, J = 5.0, β protons), 8.19 (dd, 8 H, J = 2.0, 2.0, Ph), 8.60 (d, 4 H, J = 4.5, β protons), 9.04 (d, 4 H, J = 5.0, β protons) and 9.85 (d, 4 H, J = 4.5, β protons); m/z (FAB) 1207.7 (C64H16BrZn2Zn2 requires 1208.0).

Received in Cambridge, UK, 23rd October 1997; 707653C