|

) <

The University of Osaka
Institutional Knowledge Archive

Title Programming of optical array logic. 2 :
Numerical data processing based on pattern logic

Author(s) |Tanida, Jun; Fukui, Masaki; Ichioka, Yoshiki

Citation |Applied Optics. 1988, 27(14), p. 2931-2939

Version Type|VoR

URL https://hdl. handle.net/11094/3272

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Programming of optical array logic. 2:

Numerical data

processing based on pattern logic

Jun Tanida, Masaki Fukui, and Yoshiki Ichioka

A new technique for space-variant processing with optical array logic and a new concept for parallel processing
called pattern logic are proposed. Optical array logic is a technique for achieving any parallel neighborhood
operation by simple coding, optical correlation, and parallel OR operation. Using pattern logic, various kinds
of parallel processing can be realized, which can be implemented by optical array logic. Several kinds of
numerical data processing are presented to verify the capability of pattern logic.

. Introduction

Specialized algorithms are required for parallel com-
putation on an optical computing system using the
excellent capabilities of optical parallel processing.
Optical processing has the capability of performing
massively parallel computation, making good use of
the inherent nature of light propagation. However,
direct photon control is difficult, so that an optical
computing system should be designed on a different
basis from that of electronic computers. One reason-
able architecture is that composed of alarge number of
simple processors capable of using the parallel nature

of light propagation. Insuch a system, designing and

executing operational procedures differ from those in
electronic computers. Thus a new concept is required
to use the optical computing system effectively.

One promising concept for optical parallel process-.

‘ing is coded pattern processing in which data to be
processed are converted into patterns in images, which
are processed with operations for the images. Since
pattern manipulation is required as a basic operation
for 2-D data, the coding technique is useful to increase
the usable field of optical parallel processing. Coded
pattern processing has many advantages such as flexi-
bility and capability of parallel manipulation for a
large amount of data.

Several techniques have been proposed to imple-
ment coded pattern processing. Symbolic substitu-
tion! provides a generalized concept of coded pattern

The authors are with Osaka University, Department of Applied
Physics, Suita, Osaka 565, Japan.

Received 10 August 1987.

0003-6935/88/142931-09$02.00/0.

© 1988 Optical Society of America.

processing. Whereas several practical procedures
have been developed with symbolic substitution,?3 we
aim to achieve coded pattern processing through an-
other approach, i.e., using optical array logic (OAL).+7
OAL is a technique for parallel neighborhood opera-
tions by simple coding, optical correlation, and parallel
processing. OAL can be executed effectively with the
OPALS (optical parallel array logic system).8-10 How-
ever, OAL is a SIMD (single instruction stream multi-
data flow) system, so that its field of use is restricted.
Thus, we have considered one approach to break
through the limitation.

In this paper we propose a new technique for space-
variant processing with OAL and a new concept for
parallel processing called pattern logic (PTL). In Sec.
II we explain OAL and space-variant processing by
OAL. In Sec. ITI we describe the concept of PTL and
its implementation method by OAL. In Sec. IV we
demonstrate some kinds of numerical processing to
verify the capabilities of PTL. In Sec.V the possibili-
ty of data-driven processing is presented. In Sec. VI
we discuss the computational advantages of our ap-
proach.

. OAL and Space-Variant Processing

OAL is a technique to achieve any parallel neighbor-
hood operation for two 2-D binary data.®’ Figure 1
shows the processing procedures of OAL. Two binary
images to be processed are encoded according to the
coding rule shown in Fig. 1 and converted into a coded
image. The coded image is separately correlated with
different operation kernels. The individual correlat-
ed images are spatially sampled at one-pixel size inter-
vals (double the structural cell size) in the vertical and
the horizontal directions. Parallel NAND (exactly, OR
for data expressed by negative logic) operation for all
the sampled images provides the result of a parallel
neighborhood operation.

15 July 1988 / Vol. 27, No. 14 / APPLIED OPTICS 2931

CODING CORRELATION SA¥PLING INVERTED-OR

1 e oooo
\ 1 o aoaaoo
; AT P 4—oooo —|—
4 1 J] ooaag
TNPUT A CODEL CORRELATED SAHPLED
IMAGE IMAGE #1 IMAGE #
? % OPERATION :
KERNEL # PRODUCT TERM OPERATION #]
%
INPUT 3 L
PRADUCT TERM OPERATION #2 |
CODING RULE .
N H
0| A A
- PRODUCT TERN OPERATION #K |———)
|

ouUTPYT C
Fig. 1. Processing procedures of OAL for a parallel neighborhood
operation including coding rule.

The features of OAL are as follows:

(1) Any parallel neighborhood operations can be.

designed, described, and executed systematically.

(2) Since OAL has a close relationship to both array
logic!! and cellular logic!? in electronics, their pro-
gramming resources can be used in programming OAL.

(3) SIMD type of parallel processing is achieved.

Although the third feature is attractive for global or
space-invariant processing, e.g., some kinds of image
processing,’ it restricts the usefulness of OAL. For
example, when multibit numerical data processing is
attempted, localized or space-variant processing is re-
quired, which cannot be achieved by the original pro-
cedure of OAL. Although many bit-plane memories
enable us to execute such processing,'3 we have devised
a technique for space-variant processing with OAL to
extend the application field of OAL.

The fundamental of the technique is that one of the
2-D inputs of OAL is used for data to be processed and
the other is used for the selector of the operation to be
executed. When OAL is considered as a system with
two inputs and one output, it is regarded as a space-
invariant system. However, if one of the inputs is
assigned to the selector of operation, OAL is regarded
as a space-variant system with one input and one out-
put. Therefore, using the one 2-D input image for the
selector, space-variant processing can be achieved with
OAL.

Using logical expression, the parallel neighborhood
operation by OAL is written as follows”:

K L L
Cij = Z H H fm,n;k(ai+mj+n’bi+mj+n)r (l’] =1,... ,N), (1)

k=1 m=-L n=-L
where a and b mean binary data in images A and B,
respectively; subscripts denote the location of the data
in the image. Here fy, n(a,b) refers to a two-variable
binary logic function for pixels a and b; subscripts m
and n indicate the relative address of a pixel in the
neighborhood area centering on (i,j); and % is an identi-
fier of product terms. 2 and IT denote logical sum and
logical product operators, respectively; and N, L, and
K are image size, neighborhood area size, and product
term number, respectively. Since OAL executes
SIMD processing, the same operation is used for all

2932 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988

Function Symbol Kernel Unit Function Symbol Kernel Unit

1 s a+h PP =
a+b NN g aeb 0] sy
a+b NP B b N H

a 0. oy ab 0l e
a+h PN hind a 1. had

B .0 find ab 10 hod
ash EE It ab " bas
ab 00 fad 0 0D 7
Fig. 2. Symbols for symbolic notation of OAL.

pixels in the images. Thus Eq. (1) can be written
without specifying the pixel location, i and j,

K L L
c= 2 H H fm,n;k(am,nsbm,n)' ()

k=1 m==L n=-L
This abbreviation is used in this paper to describe OAL
operations.

The proposed technique for space-variant process-
ing with OAL is explained as follows: We assign image
A to the image containing the selector of operation and
image B to that containing the data. Then Eq. (2) can
be rewritten as

K
c=" P,(ab)Qb), ®)
k=1
where
L L
Pyab) = [T [T Prstlammbma)s @
m=~L n=-L
L L
Q) =TT [T amnrnn: 5)
m==L n=-L
fm,n;k(am,mbm,n) = pm,n;k(am,mbm,n)q'n,n;k(bm,n); ‘ (6)

p(a,b) and q(b) are also binary logic functions with two
and one variables, respectively.

In Eq. (3) evaluation of Q(b) is valid only when
Py(a,b) = 1. This Py(a,b) is called a function selector,
which becomes 1 when a and b match predefined pat-
terns, respectively. Note that a and b express specific
patterns of pixels in the neighborhood area. Then
combining Py(a,b) and Qx(b), we can select operations
by patterns of a and b, so that space-variant processing
can be achieved. The reason b is applied in the func-
tion selector is to use the value of the data for the
selecting condition.

For convenient description and intuitive compre-
hension of OAL, a symbolic notation is used,” in which
a neighborhood operation is expressed as follows:

[i H] "

where the symbols in the brackets denote the two-
variable binary logical functions tabulated in Fig. 2
and the underscore indicates the origin of the neigh-
borhood area (m = 0,n = 0). Expression (7) denotes

s

¢ = agoboob_1,0 + Goboobre: ®

In Eq. (8), if agp = 1, then ¢ = boob-1 is evaluated, or
else ¢ = bg b1 is executed. Thus agp and ago work as
operation selectors, and two different operations are
selected and executed according to the value of ap.

To execute OAL efficiently, we have proposed the
OPALS. The OPALS is a parallel digital processing
system, and several kinds of optical implementation
have been discussed, for example, shadow-casting sys-
tem with electronic parallel feedback loop,® multi-im-
aging system consisting of spatial light modulators and
optical flip-flop devices.® Thus, the proposed tech-
nique for space-variant processing can be executed on
the OPALS. In other words, this technique is ad-
dressed to one of the software techniques for the
OPALS, which offers the means to execute space-vari-
ant processing on the OPALS.

The limitation of this method is the number of dif-
ferent operations to be executed. With a little
thought, it can be realized that any attempt to increase
the kinds of operations results in complication of the
logical operation expressed in Eq. (3), i.e., increase of
the product terms. In OAL, a product term corre-
sponds to a sequence of correlations with an operation
kernel (shown in Fig. 1), so that many sequences are
required for such a complicated operation and the
performance of OAL is significantly reduced. There-
fore, the proposed method is only useful when the
number of kinds of operation is few, i.e., MSIMD
(multisingle instruction stream multidata flow) pro-
cessing.

. Concept of PTL

PTL is a concept of parallel processing in which
information is expressed as a coded pattern and pro-
cessed by space-variant neighborhood operations.
Figure 3 shows a conceptual diagram of PTL. InPTL,
objects to be processed may have different data types,
e.g., numerical data, character data. One object is
coded into a binary data pattern and placed in the data
plane. Every pixel in the data pattern has its own
attribute pattern indicating its data type in the attri-
bute plane. Both data and attribute patterns may be
placed at an arbitrary location in the planes if the
location of a pixel in the data plane corresponds to that
of the origin of its attribute pattern. Many object
patterns can be placed in a processing plane as long as
the patterns do not overlap.

Here, we define the terminology for the pattern log-
ic. A 2-D image used in PTL is called a processing
plane and identified as a data plane or an attribute
plane according to its use. A pixel is a primitive ele-
ment of the processing plane. A set of localized pixels
can express various kinds of information. We refer to
the localized pixels as an object pattern, which is spe-
cifically called a data pattern (on a data plane) or an
attribute pattern (on an attribute plane). An attri-
bute pattern is defined for every pixel in a data pat-
tern, so that every pixel in a data pattern has its own
attribute pattern as shown in Fig. 4. The projected

ISEIE 4

Data & Attribute
Patterns

Data & Attribute
Planes

Objects

Fig. 3. Schematic diagram of pattern logic. Objects to be pro-
cessed are converted into pixel patterns and placed in image planes.
They are processed using parallel neighborhood operations.

Data Pattern

Attribute Pattern
for Pixel a

Attribute Pattern
for Pixel b

Attribute Pattern
for Pixel ¢

Overlaid
Attribute Pattern
Fig. 4. Data and attribute patterns. An attribute is defined for
each pixel in a data pattern. The projected pattern of all attribute
patterns is called an overlaid attribute pattern.

pattern of all attribute patterns is called an overlaid
attribute pattern, and the pixels other than object
patterns are called background pixels.

Processing in PTL is executed by space-variant
neighborhood operations for the data patterns. The
attribute pattern works as a tag assigning the opera-
tion to be executed to the pixel, namely, pixels with the
same attribute pattern are processed by the identical
operation. Then, even if various types of data are
mixed in the data plane, they can be processed by
different operations according to their attribute pat-
terns. After the processing the data patterns are de-
coded into the original form of information such as
numerical data or character data and so on.

PTL can be implemented by OAL with the tech-
nique for space-variant processing described in Sec. II.
The data plane and attribute plane of PTL are as-
signed to two input images of OAL and the attribute
pattern corresponds to the function selector. Thus
the data patterns and the attribute patterns are places
inimages B and A, respectively. Toprogram PTL, Eq.
(8) is used. After the programming, PTL is executed
according to the OAL procedure shown in Fig. 1.
Thus, the OPALS can effectively execute PTL.

The advantage of PTL is that a large amount of data,
which may be different types of data, can be collective-
ly processed without care for its location and type.

15 July 1988 / Vol. 27, No. 14 / APPLIED OPTICS 29033

1y

ol] B o] oo | x?] x| x°
i
N-1 N-2 2 1 0
Y M4 . . . Yy Y Y

Fig.5. Data structure for N-bit signed integers. For two-operand
operation, two patterns are placed side by side.

Since each data point has its own information of what
operation is applied to it, the PTL programmer does
not care about the absolute location of the data. This
becomes significant as the degree of parallelism in-
creases, namely, in a massively parallel system, much
effort is needed to calculate the addresses of data to be
processed. Inan electronic computer, a memory man-
aging unit executes this troublesome task and the pro-
grammer usually does not worry about the memory
address. However, if PTL is used with the OPALS,
such a memory management mechanism can be sim-
plified and more efficient parallel processing can be
expected. :

The limitation of PTL is the number of data types
because of the limitation of OAL as discussed in Sec. II.
However, some kinds of processing do not require so
many data types and can effectively derive the capabil-
ities of PTL as discussed below.

IV. Numerical Data Processing with PTL

To verify the capabilities of PTL, some kinds of
numerical data processing are attempted. Numerical
data are assumed to be N-bit signed integers and coded
by strip patterns as shown in Fig. 5. The signed num-
ber is represented by twos complement. For a two-
operand operation, the strip patterns are placed side
by side in the processing plane. The data flow of the
processing is assumed to be the same as that of the
OPALS as shown in Fig. 6. A feedback loop is formed
in the OPALS for efficient use of the system hardware;
the output of the system is used as one of the system
inputs at the successive processing stage.

Note that each algorithm consists of several process-
ing steps. In this paper, we use the term step for a
functional block of an algorithm and stage for each
iteration of OAL.

A. Addition and Subtraction

One of the basic and important numerical opera-
tions is addition, When two N-bit signed integers,
x:xN-1xN=-2 | .x?z) and y:yN-lyN-2 | y?z), are ad-
dends, addition is achieved by the following algo-
rithm?:

(1) Execute the sum operation

s=x @y, ©)
and the carry operation

ci+l = xiyi’ (10)

fori=0to N — 1in parallel, where s and ¢! denote the
ith bit of the sum and the carry, respectively; @ is an
XOR operator.

2934 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988

Attribute
Plane

Output

Optical Array §
Logic Proc.

&

Data
Plane

Fig. 6. Data flow in the OPALS. Algorithms presented in this
paper are assumed to be processed according to this data flow.

77

P

(a) without Pattern
Degeneracy

[«

Data & Attribute
Patterns

(b} with Pattern
Degeneracy

Fig.7. Attribute patterns for addition and their pattern degenera-
cy; data arrangements (a) without pattern degeneracy and (b) with
pattern degeneracy.

(2) Substitute

sisN-1sN=2 0
cieN-1eN-2

.. c?z) for x and y, respectively.
(3) Repeat steps 1 and 2 until x becomes zero (maxi-
mum N iteration); then y provides the result.

In this algorithm two kinds of operation, sum and
carry, are used. Referring to Eqs. (9) and (10) and to
the data arrangement in Fig. 5, we can obtain the
following neighborhood operations:

and

S(b) = by ® b_y, 1)
C(b) = by b, ;. (12)

These operations can be executed simultaneously with
PTL.

Two attribute patterns are designed as shown in Fig.
7, which are used for the attribute patterns of xs and

'y's. While the attribute patterns consist of two pixels,

they can be meshed without affecting the spacing of
the data patterns and provide one overlaid attribute
pattern as shown in Fig. 7. Thisisregarded as a sort of
pattern degeneracy, which is useful for saving space in
processing planes.

To detect the above attribute patterns, two opera-
tions are designed as operation selectors:

Pg(a,b) = a0, (13)
Pe(a,b) = aggiy (14)

Then the neighborhood operation to be executed is

¢ = Ps(a,b)S(b) + Pc(a,b)C(b)
= ag0a_1,0(boo ® b_1) + @0,001,0(bo,1b1,1)
= a,0b0,08-1,00-1,0 + G0,0b0,02-1,00-1,0
+ a,001,0b0,101,1- (15)

This operation is developed into the sum of products
for the symbolic notation.” Thus the following sym-
bolic notation is obtained:
el noale ae
S I 1

.. 10 .. Lo 11
..o 01 .. 00

The advantage of the symbolic notation is that the
operation kernels to be used in OAL can be generated
using the rule in Fig. 2, namely,

ol ol

1m

are generated from Eq. (16). Using these operation
kernels in the procedure of Fig. 1 and repeating the
procedure, we can execute the parallel addition.

Figure 8 shows a simulated result of addition; two
addends (a) are converted into the data object in the
data plane (b), where the bit data of 1 and 0 are ex-
pressed by pixels with 1 and O values, respectively.
Background pixels have 0 value. Figure 8(c) is the
overlaid attribute pattern in the attribute plane. The
data and attribute planes are coded into a coded image
in OAL [Fig 8(d)], correlated with the above operation
kernels [Figs. 8(e)—(g)], and spatially sampled [Figs.
8(h)-(j)]. A NAND operation for the sampled images
provides the result of Eq. (15) [Fig. 8(k)], which is used
as the data plane at the next stage. Repeating this
sequence we can execute addition. Figures 8(1)-(n)
show the results of Eq. (15) at individual processing
stages. After four iterations, the result of the addition
is obtained as Fig. 8(0).

While the above processing is for a data pair, two
matrices can be added with the same procedure. Fig-
ure 9 shows the result of matrix addition. Addends X
and Y are matrices of 7-bit signed integers and coded
intothe data plane. The attribute plane is also depict-
ed, which contains sixteen overlaid attribute patterns
corresponding to the data patterns coded from X and
Y. The results of Eq. (15) at each processing stage are
shown with labels of iteration numbers: After seven
iterations, the desired result is obtained. Subtraction
can also be implemented using the same algorithm for
addition with twos complement representation.

B. Multiplication

Multiplication requires a more complicated algo-
rithm than addition. Here we explain the abstract of
the algorithm using an example for 3-bit integers.
Multiplication is composed of two fundamental opera-
tions: conditional duplication and addition. For 3-
bit multiplication, x:x2x'xl, X y:y%y'yly), the following
steps are used (Fig. 10):

[1001]

[o011]

(a) Rddends (b) Data
T I
T 1

Plane (c} Attribute Plane (d) Coded object
T T T T
T T T

i

;]
1T

(e} Corrl. Img. 0 () Corrl. Img. 1 (g) Corrl. Img. 2

oogoog oooooad oocoooan

goooooo gopoooon oooaoon

gooooao gopoooao ooao®gaca

ooaaoca o@mooaa oooaoao

gogogooao oooogo gogoooao

aoQoooo ooopaoo gooooag

{h) Sampl. img. 0 (i) Sampl. Img. 1 (j) Sampi. Img. 2 (k) Iteration 1
[oooo |
{1100]

(1} Iteration2 (m) Iteration 3 (n) Iteration 4 (o) Result

Fig.8. Simulated result of addition; (a) two addends, (b) their data
plane, (c) attribute plane, (d) coded image in OAL, (e)—(g) correlated
and (h)-(j) sampled images for each product term operations in Eq.
(15), (k) result of Eq. (15) at the first iteration, (1)—(n) results of Eq.
(15) at every iteration after second, (o) final result of addition.

1] !

1 -1

8 # -8

63] -63

10 ¢ -20

[o -2 H]
L -1 B2 2 B -1
f -32 F 32 i =32 K 31

ADDEND ¥

6t 35128 26158 A 2 £l b R AR R R
5 S U G R 50 IR S R R

8 s) R
151 15958 M2 IG) 1959RA MBEEED
g::l“‘;:u! =lIll-wl

a8 51 RS RAREBAEARI
A .0 1 ML RS
8 292 W R 1 1400 RE WA AR
50 M 2 2 MMM AR
2 taeanangag aass 1 a52RaRARERY

R IR A 2026 2 AR
R AR

ITERATION 3

2 1zaRaaean ety bl ineanacasan NN R
FEEEERETEETEETEY |
52 2aanenan a8 i znnsedan asa st MY
it R o R R
i3 19paRaRARs AR I 1tag naracdadng I Y

R 2 ARENERA
6 193 R 80 R 161 MIBIREDARARARS
£ A g s et
1 g en iaaaan 16 xend Raeneaca s [53

1 L 5 S I G LR R
2 2858 BARsRA RAey I 28 R0 Banaanna o Mo
EITTTTTTEIITTITITT £
2 2apaReasranae: b nnnene e MY

ERETETTT PEFTEETT) [
| sinnaanaRentat 1 MasRARA Ranet SR
EHEEECEFE T TTTT] B

ITERATION 6

ITERATION 5 ITERATION ?

Fig. 9. Simulated result of matrix addition.

(1) Ify° = 1, duplicate x to the register Ylocated in
the data plane.

(2) If y! = 1, duplicate x to the register X also
located in the data plane with one pixel offset to the
left direction.

(3) Add the data in the registers X and Y using the
algorithm in Sec. IV.A.; then the result is obtained in
the register Y.

15 July 1988 / Vol. 27, No. 14 / APPLIED OPTICS 2935

Fig. 10. Processing sequence of 3-bit multiplication.

(2) Ify2 =1, duplicate x to the register X with two
pixels offset to the left direction.

(3’) Add the data in the registers X and Y; then the
result is obtained in the register Y.

For multiplication of more-bits numbers, steps 2
and 3 are repeated with appropriate offset in duplicat-
ing x.

The main problem in this processing is how to realize
the conditional duplication. For this purpose we use
attribute patterns as shown in Fig. 11. Then the fol-
lowing operation selectors are designed:

2
Z asby; (n=0),

j=—2
" (18)

> aboy (=12,
j==2
where Py, P, and P are operation selectors used in
steps 1, 2, and 2/, respectively. Equation (18) has
information of the data patterns (e.g., b—g or b—1), so
that conditional operation can be executed.
The duplication with shifting is expressed as follows:

(n=0),
(n=1,2).

P, (ab) =

b-—3,0

D,(b) = {b

where Dy, D,, and D, are operations used in steps 1, 2,
and 2/, respectively. Also the identity operation,

(19)

-2,n

I(b) = bo'o, (20)

is used to preserve the object patterns in the data
plane.

Assuming that the pixels to which x is duplicated are
always cleared (i.e., have 0 value), we can obtain the
neighborhood operation to be executed as

C, = P,(a,b)D,(b) + I(b)

2
b_sp z agjbogj+boy (n=0),

==

=) (21)
bﬂmEZLumu+%p(n=Lm

=2

Although Eq. (21) is sufficient for the processing, the

inverse form enables us to reduce the number of pro-
cessing stages.” Then, the sequence of

2
%&ﬂp+%pII@4J+&w)(n=m
C,= N (22)
Boob-on+ oo [| @1y +6.1) (R=12),
-2

I(b) = by (23)

2936 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988

Data Pattern

Overlaid Attribute

Pattern for Step 1

Overlaid Attribute
Pattern for Step 2

Overlaid Attribute
Pattern for Step 2°

Fig. 11. Overlaid attribute patterns for 3-bit multiplication.

is used for practical processing. Operations in Eq. (22)
are expressed by symbolic notation as follows:

0 NN NN NN NN N.
h +l:.. e e e (n=0), (24)
0 0

-0 [NN NN NN
N R
|:&] e .. 0

[” - '0]+[NN NN NN NN NN
0

NN NN] (=1, ()

Figure 12 shows a simulated result of multiplication
for an array form of 4-bit unsigned integers. The
figure depicts the attribute (left-hand side) and data
(right-hand side) planes at individual processing
stages. Theresult of a current stage is used as the data
plane at the next stage. In this processing sequence,
both operation kernels and attribute planes must be
controlled by the program. Inthe twentieth stage, the
desired result is obtained. Although this algorithm is
not for matrix multiplication, the techniques used here
are applicable in various other matrix operations.

V. Data-Driven Processing

In Sec. IV the system output is assumed to be fed
back to the data plane as the input at the next process-
ing stage. If the output is fed back to the attribute
plane, a sort of data-driven processing!‘ is possible.
Namely, one result of processing determines the con-
tents of the following processing, so that several pro-
cesses can proceed without control from outside the
system.

As a simple example of data-driven processing, we
design an algorithm to calculate the absolute value of a
signed integer, x:x¥~1xN~-2 ., x0,. Thesigned integer
is assumed to be represented by twos complement.
The algorithm is as follows:

(1) If the most significant bit of x (sign bit), xV-1, is
0, set 1 to the pixels in the attribute plane correspond-
ing to x in the data plane; or else set 0 to the pixels.

(2) Ifthe pixelin the attribute planeis 1, inverse the
value of the corresponding pixel in the data plane.

(3) If the pixel in the attribute plane is 1, set the
pattern 00...01 side by side with x.

5 1 1 L4 5 2 5 O A 0 0 i
30215 2120 0 4 N Gt 4 3 G 53 1 011
0 5 20 33 60 20 4 | R B
113315 1 25 g 1 E83EN IR mBspmes

12 QK

5 315 51 1 1 311 L 3
aad [15250 55 I ML 6 ORR
*ﬂﬂﬂllﬂﬂﬂﬂﬂﬂlﬂl:

HRARGHAR REERRRRR
51 1 ¢ 2t B
32 3015 2 . 0 0
23153, 2 1 5 1 R

1. Conditional Duplication #0

Multiplicand Multiplier
Eﬂﬂﬁﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
Eﬂgﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂ

I8 5315 50 3e nanAng 1SS 1 1 aseant
51111 R RitRa R FSIVEIGIE IR
YT TT P TTTTTy e
RRERRERA MREARREE|

18115 4 18RRRA RS U1041S1A1 aRangRy
515241651 0 LR R 1811150138 RO
EEEENANE AWARRRNY

6 515 0 i e 2
i 5 1 6 00 6 5 B
i 1 5 5 5 2 5 1V 6 |

0 1 5 5 01 3 |
1 0 AR RS 61181 2989 S

5|
RIRARARARARARY 1A RARARARARER
RERRARAE A SENRER
112012t 1 1 1 2 |
35 4 0 1 5 |
5 5 1 23 B B

53024 1 2112 102 231 1154 0 6 K 1 GG 6 GG B QU R
1231 12 2 A 1 i O 05 10010155 G LA B
i .S 1 1 O 1 5 i 0 5 0
51515115 3428 R 3 51 (180 v o I 55151 0 O O G311 MR Mt
g aRRR ZEE s RawE N a0 A RNEESE e

[

inRRARAgsRARaed MRARERaRaRaenas Ml IARARKRARKRARARY HRARARARARARARS
PETEr T R T Eree] e T e T e
015 15 1 2 1 1,2 5 0 15 e L6
11216311531 115 1000 2) N 6 5 50461 O 10 T
CEEEEEETE TR EEEEEEEE il

54 1t 2 0 3t 1 5 0 584 31 181 G102 et
1311 153t 181 001 R AU
15 0V 202 1 11 R
15 0 0 I N M O
23315 L O O 515654 1 W s 131133 |
112200 MRARAR 1ARERARSBARARERG O o 2902 M R4R2 RARARS 80 65
. G L BERERRNE SRREEmaE iR RN R
8111151 1 L0 1)1 A I 511011y 400t 20 O 1 6 B 0 G S 3 0181
1ttt Gttt T R G G 5161 21
8 0 e X aqmme 55001 G R e EStoot0 0 e e O 5 M AN 1 125 O R
215131151 By 01t FG1IERIG0I8 IR IR,

ENNANNEE SENENNEY
REARERNE NNRRRRE
21181151 30121 B 1B R 911
2 1 1 3 4B B
52 5 2050 0 1181 R

11. Rddition #1-2

10. Addition #1-1 @

ENENENER ESEEENNN
N R R SRR
3163 651 00

513 00 8 A 1 6
015 (A 2 1 5 1 2 6
5 53 1137 5 0 0 6 2 3 2 6 6

B
216311310 25 20151 104 1
3 111311t 0012 6 1 o
5 022 25 116553 512 O e 5 5 1 211 8115

12. Addition #1-3 13. Addition #1-4
12 [2211 O 0 5 0 50 O 1
. 1 e e e O 2 3 0 O 5

t 31151 2415 B!, 1V IS G0V G 1A

RARARARARARARY \EAARARARRARARY
RERERENE BERmnas)
V5 210 T 16 3 G 1 S 2 51
unmuuuuuuﬂnngnnn

51 3 0 1 51 1131151 11181181 6
14. Conditionai Duplication #3

5 5 0 0t 4 g 05 1B 0,3 SR
25 5 0 3 5 . 2 I

3t 5 3 0 3 R 0 A L
15 2t 5 2 51 0 6 AR
115303 L1 G 5 1 LI
5 L5 LA 5 G121 N W |

Tl 18R3R4 RSIRIBARAR 1RAA3EaRABERA

ERRERANA ANRARARE i RN RS SRR

| 10 5 5 e O 9,0 0 0 M B

50 0 N e 0 . 2 A | 1 1 4 2t O 1 1 S B Ul
513 22 05 1 18 5 0 6 o 1 70 1 30318 3 31522 e 3 05 5 G G0 B R

215113138) 5 5 2 A 21 11 180

K Hﬂﬂﬂglﬂ
[T
13R85 RE RIRS 26 DARARSRARSRARE
o e T e CET
2 O 0 .t B

153 1
32103000 1 R B
??g_lu.lﬂlﬂﬂ:.ll

19. Addition #2-4

125 205 3 1 M L 1 |
2 1 0 S CBLLGGIIY

ERRRARARARARAGY (AREBERABAGERHRE
nnsunumaﬂuuuulla

Product

20. Final State (b)

Fig. 12. Simulated result of multiplication for an array form of data. At each stage, attribute and data planes are shown at left- and right-
hand sides, respectively.

(4) If the pixel in the attribute plane is 1, execute
addition for x and the pattern 00...01. To obtain a
uniform data pattern, the addition provides the sum

and the carry upside down compared with the addition .

in Sec. IV.A.
The result of each stage is fed back as the data plane

at steps other than step 1; at step 1 the result is fed-

back as the attribute plane.

A simulated result is shown in Fig. 13. Figure 13
depicts the attribute and data planes at individual
stages with contents of the processing. In this pro-
cessing both attribute and data planes do not have to
be controlled from outside the system. The desired
result can be obtained for matrix data.

Extending the technique of data-driven processing,
we can effectively use the capacity of optical parallel
processing. For this purpose an extended version of
OPALS is considered. Figure 14 depicts a schematic
diagram of the extended version of OPALS. This
OPALS can execute two kinds of processing to provide
data and attribute planes at a time, and feed them back

as a data pair. The system is constructed by two
optical array logic processors. Technically, a wave-
length multiplexing technique?® is used for the imple-
mentation.

VI. Discdssion

OAL is regarded as an array of programmable logic
arrays, so that it is needed to justify the computational
capabilities of OAL in comparison with those of elec-
tronic implementation. Figure 15 shows a block dia-
gram equivalent to the function of one processing unit
in OAL and its optical implementation by a shadow-
casting system. In OAL, pixel data in two input im-
ages, @;j, Gi+1j, ..., bij, bi+ij, ...,aretheinputs,
which are coded with the corresponding pixels, e.g., a;;
and b;j. The coded signals are selected according to
the configuration signals, and the selected signals are
logically produced. Finally, the product signals are
logically summed, which will be the output of the pro-
cessing unit. In this system, the configuration signals
determine the contents of the processing.

15 July 1988 / Vol. 27, No. 14 / APPLIED OPTICS 2037

a Eﬁ:: E 2

4. Conditional Addition #0 S. Conditional Addition #1

6. Conditional Rddition #2 . Conditional Rddition #3

~

8. Final State fAibsolute Value

Fig. 13. Simulated result of absolute-value operation.

Attribute .
Plane Optical Array

™ Logic Proc. #2

Optical Array
Logic Proc. #1

’ .’
y By
&

Output #2

Cutput #1

Fig. 14. Schematic diagram of the extended version of the OPALS
for pattern logic.

The processing time for the operation in the process-
ing unit is mainly determined by the time for coding,
Tcd, that for selecting, 74, and that for logical sum, og.
Note that the time for the logical product can be ne-
glected because it is performed by overlapping of light
signals, namely, when a dark signal is assigned to a
logical one, the overlapped signal becomes a logical one
only if all the signals to be overlapped are dark; this is
nothing but the logical product. Thus, the processing
time by OAL is estimated at 7.g + 75; + ToR.

The same functional unit can be implemented by
electronics, which is known as a dynamically program-

2938 APPLIED OPTICS / Vol. 27, No. 14 / 15 July 1988

Encoders Selectors

Input A
i Tienge

input B
bige Piatjr o

from ANDs

I
Configuration

Signals
]
fnput A
I

Input B

Output

RN
from

Shadow-~casting
systems

Canfiguralion
Signals

&)
Fig. 15. Processing unit of OAL: (a) block diagram and (b) an
optical implementation using a shadow-casting system.

mable logic array. In this case its processing time is
estimated at 7.4 + 75; + TaND + ToOR, Where TanD is the
time for the logical product. Therefore, if 7.4, 751, and
7or could be the same for optical and electronic imple-
mentation, OAL will be faster than the electronic by
TAND-:

Whereas OAL could have an advantage in the pro-
cessing time, a more significant advantage is in data
and configuration signal communication. Asshownin
Fig. 15(a), there are many signal lines in and around
the processing unit. Figure 15 depicts only one unif,
so that a huge number of signal lines are required to
construct a parallel processing system with the units.
In OAL these signal lines are realized by optical paths
in free space, which are parallel and crosstalk-free
lines. On the other hand, the electronic method. is
imposed on hard-wired communication, which causes
a serious communication problem when many process-
ing units are used and each processing unit has many
inputs. Therefore, OAL has advantages in its compu-
tational capabilities especially for massively parallel
processing.

In PTL a processing plane itself is regarded as a 2-D
register which can be accessed randomly and in paral-
lel. We estimate in Table I the required number of
pixels and the iteration for three kinds of operation.
The algorithm used in this paper is based on a ripple
carry method and is not optimal. Other useful tech-
niques, such as carry look-ahead addition, afe also
available for reducing the iteration number.!5

For a hardware implementation of PTL, the re-

‘quired size of an operation kernel and the number of

kernel units are important factors, because they deter-

Tablel. Estimation of Required Numbers of Pixels and Iteration for
Numerical Processing

Operation Required Number Required Number
of Pixels of Iteration
fAddition 2(n+1) n
(n-bit Signed Integer)
Multiplication 6n ni+n-1
(n-bit Unsigned Integer)
Absolute Value 2n n+3

(n-bit Signed Integer)

Table ll. Required Size of Operation Kernel and Required Number of
Kernel Units for Numerical Processing

Operation Required Size of Required Number
‘Operation Kernel of Kernel Units
Addition
{ n-bit Signed Integer) 6*6 4
Multiplication
(n-bit Unsigned Integer) 10 * 4n-2 2n
Absolute Yalue
{ n-bit Signed Integer) 6*6 4

mine the required specifications of the optical correla-
tor for OAL. Thus we estimate their value for numeri-
cal processing (Table II). The result indicates that,
for numerical processing, a large size of operation ker-
nel is required, but the number of kernel units used is
not so many. Namely, correlation in OAL is required
to have large kernels but the number of elements in the
kernel is small. Therefore, a specific correlator for
OAL can be designed, which will be reported in a
subsequent paper.16

The extended version of the OPALS can effectively
execute PTL. In PTL information to be processed is
expressed as a set of data and attribute patterns.
Therefore, concurrent execution of OAL for both data
and attribute patterns promises effective processing.

We believe that the extended version of the OPALS is

a basic architecture for PTL.

Vil. Conclusions

We have proposed a new technique for space-variant
processing with optical array logic and a new concept
for parallel processing called pattern logic. The pro-
cessing capability of pattern logic has been verified by
several kinds of numerical data processing; a possibili-
ty of data-driven processing has also been presented.
We have shown a system architecture suitable for pat-
tern logic extended from the OPALS.

We are developing effective hardware to achieve
pattern logic and constructing a systematic procedure
for programming in pattern logic.

References .

1. A. Huang, “Parallal Algorithms for Optical Digital Computers,”
in Proceedings, Tenth International Optical Computing Con-
ference (MIT Press, Cambridge, 1983), pp. 13-17.

9. K.-H. Brenner, A. Huang, and N. Streibl, “Digital Optical Com-
puting with Symbolic Substitution,” Appl. Opt. 25, 3054 (1986).

3. M. J. Murdocca, “Digital Optical Computing with One-Rule
Cellular Automata,” Appl. Opt. 26, 682 (1987).

4. J. Tanida and Y. Ichioka, “Optical Logic Array Processor Using
Shadowgrams,” J. Opt. Soc. Am. 73, 800 (1983).

5. J.Tanida and Y. Ichioka, “Optical-Logic-Array Processor Using
Shadowgrams. II. Optical Parallel Digital Image Processing,”
J. Opt. Soc. Am. A 2, 1237 (1985).)

6. J.Tanida and Y. Ichioka, “Optical-Logic-Array Processor Using
Shadowgrams. III. Parallel Neighborhood Operations and an
Architecture of an Optical Digital-Computing System,” J. Opt.
Soc. Am. A 2, 1245 (1985).

7. J.Tanida and Y. Ichioka, “Programming of Optical Array Logic.
1: Image Data Processing,” Appl. Opt. 27, 2926 (1988).

8. J. Tanida and Y. Ichioka, “OPALS: Optical Parallel Array
Logic System,” Appl. Opt. 25, 1565 (1986).

9, J.Tanida and Y. Ichioka, “Optical Parallel Array Logic System.
2: A New System Architecture without Memory Elements,”
Appl. Opt. 25, 3751 (1986).

10. J. Tanida and Y. Ichioka, “Modular Components for an Optical
Array Logic System,” Appl. Opt. 26, 3954 (1987).

11. H. Fleisher and L. I. Maissel, “An Introduction to Array Logic,”
IBM J. Res. Develop. 19, 98 (1975).

12. K. Preston, Jr., and M. J. B. Duff, Modern Cellular Automata
(Plenum, New York, 1984).

18. T. J. Drabik and S. H. Lee, “Shift-Connected SIMD Array
Architectures for Digital Optical Computing Systems, with Al-
gorithms for Numerical Transforms and Partial Differential
Equations,” Appl. Opt. 25, 4053 (1986).

14. K. Hwang and F. A. Briggs, Computer Architecture and Paral-
lel Processing (McGraw-Hill, New York, 1985).

15. E. Swartzlander, “Digital Optical Arithmetic,” Appl. Opt. 25,
3021 (1986).

16. J.Tanida, J. Nakagawa, and Y. Ichioka, “Birefringent Encoding
and Multichannel Reflective Correlator for Optical Array
Logic,” Appl. Opt. 27:(1988), submitted.

15 July 1988 / Vol. 27, No. 14 / APPLIED OPTICS 2939

