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Two model field theories involving scalar and fermion fields with contact interactions are
analyzed. The models are solved in the large-N limit. It is shown that chiral symmetry of the La-

grangian is realized in the spectrum. The anomalous magnetic moment of the composite fermions is

shown to be m~/m&, where mF and m~ are the masses of the fermionic and bosonic preons,
respectively. Finally a semirealistic model which incorporates the known gauge interactions is con-

structed.

I. INTRODUCTION II. THE FIRST MODEL

It is widely accepted that the main problem in con-
structing composite models for quarks and leptons con-
sists in obtaining composite fermions whose mass is much
smaller than the scale of binding. In the dynamical mech-
anisms proposed so far such fermions arise as massless
"baryons" in a Yang-Mills theory with unbroken or par-
tially broken chiral symmetry, ' as Goldstone fermions of
dynamically broken supersymmetry, or as supersym-
metric partners of Goldstone bosons of a spontaneously
broken global symmetry. Although all these approaches
have contributed to the development of new ideas, they
have not produced a simple calculable model in which one
could compute quantities such as masses of the bound
states, their anomalous magnetic moments, etc.

In this paper we examine two model field theories in-
volving scalar and fermion fields with contact interac-
tions. These interactions are nonrenormalizable; there-
fore, we have to keep the cutoff as a physical parameter.
We consider ¹omponent scalar and fermion fields in
the limit of large X and solve the theory to the leading or-
der in 1/X.

We find that in this limit the chiral symmetry of the
Lagrangian is generally realized in the spectrum. The
mass of the fermion-scalar bound state is proportional to
the explicit chiral-symmetry-breaking terms such as, for
example, the mass term for the fermionic field. In partic-
ular, the mass of the bound-state fermion does not depend
on the mass of the scalar field.

We compute the electromagnetic couplings of the com-
posite fermions with particular interest focused on their
anomalous magnetic moments. They turn out to be of or-
der mF/mz, where m~ and m~ are the masses of the fer-
mionic and bosonic constituents, respectively, thus con-
firming suggestions made earlier by several authors.

Finally, we show how to incorporate the gauge interac-
tions in our model and construct a semirealistic model for
quarks and leptons.

In this section we discuss our simplest model, described
by the Lagrangian

where P=(P&, ttt2, . . . , Pz} and P= (P„Pz, . .—. , gtt) are
X-component scalar and fermion fields, respectively.
Note that the chiral symmetry is explicitly broken by the
interaction and by the fermion mass term (if m&0}. The
latter is included for the sake of generality and the zero-
fermion-mass limit of the theory is straightforward. The
Lagrangian (2.1) is the simplest one describing interacting
scalar and fermion fields. Since this theory is not renor-
malizable [g has dimension (mass) '], we shall introduce
an ultraviolet cutoff A for the momentum integrations.
Then our model is an analogy of the Nambu —Jona-
Lasinio model" with fermionic bound states.

We now proceed to solve the theory in the leading order
in I/X in the large-N limit. The dominant graphs in this
limit will be those containing the maximal number of
scalar-fermion loops (Fig. 1). In order to sum up these di-
agrams, we transform the Lagrangian (2.1) to an
equivalent Lagrangian of the Gaussian form with respect
to f and P by adding the following term to it:

(2.2)

The contribution of this term reduces to just a numerical

FIG. 1. The dominant contribution to the scalar-fermion
bound state in the large-N limit.
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constant in the path-integral formalism. The resulting
equivalent Lagrangian is given by

W=g(iP —m )P+P ( —cl —p )P ——
qq

for m «p«A.
In order to obtain the correct normalization, we intro-

duce the renorrnalized composite-quark field and the re-
normalized coupling by

+(q7 54.4' 0—A'5q) (2.3)
and

(2.12)

exp[iS, rr(q, q )j
—:f [dP;dP;dg;dP;]exp i fW(x)dx . (2.4)

After the integrations over g and P are performed, we
find

S ff = —dx qq+iXTrln 1— 1 1

Q+p i9 m-qx5 .

=SO+Slnt ~ (2 5)

where So denotes the bilinear term for q and S;„,the rest:

1 1
So ————dx qq —iX Tr qy5 y5q

g +p i 9—pal

(2.6)

and
n

1 1 I
S;„,= iN g ——Tr

~ qy, y&q . (2.7), n ~+p' i —m

If we wish to include gauge fields, we have to replace D
and 9 with the appropriate covariant derivatives in Eqs.
(2.6) and (2.7).

It is now easy to obtain the propagator of the field q de-
fined by

So ——fdtx d y q(x)iG '(x,y)q(y),

namely,

(2.8)

If we eliminate q and q from this Lagrangian by using
their equations of motion, we will recover the original La-
grangian, Eq. (2.1). As is seen from Eq. (2.2), q represents
a composite operator y5$ P, so that it describes a com-
posite fermion if its propagator has a pole.

In order to find the mass of the bound state, we in-
tegrate out g and P fields in favor of q and q and define
the effective action for q and q by

gA =Z g (2.13)

Then the renormalized composite-quark propagator is
given byi' ' Zi——G ' =p —M, (2.14)

where

M = =2m+&(p')
(2.15)

As long as m «p «A, the mass of the composite quark
depends only logarithmically on the mass of the scalar
preon and can be made arbitrarily small by having a light
fermionic preon and the large cutoff A (since
gii o:lnA/p ).

At first glance this seems surprising —we obtain a light
composite fermion by binding a light fermion and an arbi-
trarily heavy scalar. However, this result can be under-
stood in terms of the approximate chiral symmetry of the
effective action (2.5). Although our Lagrangian (2.1) does
not have chiral symmetry as we pointed out earlier in this
section, the effective action (2.5) has accidental chiral
symmetry if we put m =0 and 1/g =0. Equation (2.15)
gives the composite fermion mass in the large-N limit as
the sum of these chiral-symmetry-breaking terms. In the
higher order of 1/N expansion, the composite fermion
will acquire additional mass by the interaction (2.7).
Among others, the four-composite-fermion interaction of
order 1/N (Fig. 2) may lead to dynamical chiral-
symmetry breaking. However, it is a well known property
of the Nambu —Jona-Lasinio model that the chiral sym-
metry of the model is spontaneously broken only if the
four-fermion coupling exceeds a critical value. Chiral
symmetry is thus not spontaneously broken here because,
by insisting that N is large, we can make this coupling as
small as we wish.

It should be emphasized that the chiral symmetry of
the effective action (2.5) is an accidental symmetry and
1/g =0 is a singular limit. It is desirable to recast our
analysis in terms of a theory which is completely chiral
symmetric. We will postpone this analysis to Sec. IV and
discuss the anomalous magnetic moment of the composite
fermion.

=—pA (p') —&(p'), (2.9)

where

A(p )= — —ln —=Z1 A

(4m) 2 p
(2.10)

~ ~ ~
ii(r it i

b&VEV

and

8(p )=—+ q
ln

X Xm A'

g (4ir) p
(2.11)

FKJ. 2. Diagrams which in the Nambu —dona-Lasinio model
lead to chiral-symmetry breaking if the four-fermion coupling
exceeds a critical value. The heavy lines denote the composite-
fermion propagator.



COMPOSITE MODEI-S %ITH CHIRAL SYMMETRY

III. ELECTROMAGNETIC INTERACTIONS
AND THE ANOMALOUS MAGNETIC MOMENT

Phenomenologically, the electromagnetic interactions,
and, in particular, the anomaIous magnetic moments, are
very important tests of compositeness of quarks and lep-
tons. We investigate here the electromagnetic properties
of the composite fermions described in Sec. II.

Let eF and es denote the charges of the P and Pt fields,
respectively. The electromagnetic interactions are then in-
cluded by replacing the derivatives by the covariant
deAvatlves,

Q~Q —leFA =8
~(B„+iesA„) =D

in the quadratic term of the action, Eq. (2.6), yielding

S (qA&)= —iXTr qy5 ysq
(2) 1 1

+p lg —m

(ig i9—) .
1

i9—m
+.ig —m &0—m i9 m—

and keeping only the linear terms in A&,

Si'&(q, A„)=S'"(q)+as"'(q),

+ ~ ~ ~

ES'2'(q)= NJ —
~ I 4'( —p —k)

{2m) (2ir)

p &4
FICT. 3. The electromagnetic vertex of the composite fermion.

We expand the propagators
1 1 1 p 2 12+, (D —& ) z+B +p H+p U+p H+p

(3.1) X ri'{p,k)qg (p)A„{k) . (3.3)

The vertex f~~ction I ", diagrammatically represented in
Fig. 3, is

1
4 i+k 2 2 2 2 5 ~ ~ 5 +

2 4 ~ 2

In order to obtain the local effective Lagrangian, we expand I "(p,k) in powers of k"

r"(p, k) =rg(p)+k r" (p)+

I ~o and I " are readily computed by expanding the propagators

1 1 1, 1

V '+k)'p' p' —p' Z' —p' p' —p'

(3.4)

1 1 1

p —m p —m p —m

1

p'+ @—m

For Zl Io ~e obtain

p' 2p'I' 1 d'p' 1 1 1Zro(p)= —&eg 4,i i 2 y5, ys+~er g, 2 2 'Y5, 'Y
g ys2& P —P (2~)' (p —p')' —p' P™P™

1 A=(e, +e~)y" 2
ln

2(4m. ) p
(3.6)

and for the renormalized vertex function

rg(p) =(e, +e~)y"=—ey" . (3.7)

Z{r""—r ")= m~&'2le 1

(4m) p m
(3 &)

As expected, the bound state couples to the photon as a
fermion, with the strength determined by the total charge.

Our main goal in this section is to calculate the
anomalous magnetic moment of the bound state, which is
obtained as the antisymmetric part of ZI ""(p):

The effective Lagrangian is

2 2~8m lil(p /m ) (3.9)ff 2
1 (~2/ 2)qR qR P

where qadi =Z '~zq, with q =(g/X)y5pt. f, is the renor-
malized composite fermion field. The anomalous magnet-
ic moment is proportional to the mass of the fermionic
constituent and inversely proportional to the scalar mass.
Although this was suggested by several people, we find it
reassuring that in our model that can actually be con-
firmed by exphcit calculation.
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One might attempt to construct a realistic composite
model for quarks and leptons based on the mode proposed
here. However, there appears to be no simple way of in-
corporating the gauge theory of weak interactions. The
problem is that the interaction term in the Lagrangian
(2.1), not being chirally invariant, breaks SU(2) gauge
symmetry.

IV. THE SECOND MGDEI.

A X 1
A(p )= ln +

2(4n) p g p
(4.5)

III and the result for the propagator of the composite
field q can again be written as

The difficulties in incorporating the weak interactions
in the model described in the preceding sections are relat-
ed to the fact that the interaction is not chirally invariant.
For that reason we study here a similar model, but with a
contact interaction which is chirally invariant. The La-
grangian of the model is

(4.1)

where the notation is the same as in Scc. III, except that
the couphng constant g now has dimension (mass)
Chiral symmetry is now broken only by the possible fer-
mion mass term, and if it is not spontaneously broken we
might expect the mass of the composite fermion to be
proportional to Apl.

In order to solve the theory (4.1) in the large-X limit we
add the following term W2.

leading to the following equivalent Lagrangian:

w =g(iQ m)P+—Pt( 2 p~)P— —

This Lagrangian, except for the mass term for Q, is in-
variant under chiral rotation,

(4.4)

Since the composite fermion q transforms nontrivially
under this chiral transforination, q remains massless in
the chiral limit (m =0) if the chiral symmetry is realized
in the Wigner phase. [Another chiral-symmetric exten-
sion of Eq. (2.1) would be

~( 2) Xm
I

A

(4m. ) p
%'hen A ~~@, m, p, the bound-state propagator be-

iG '(p) =Z '(p —2m) .

Thus, the mass of the bound state is twice the mass of the
fermionic preon and independent of the mass of the scalar
preon. Chiral symmetry of the Lagrangian is realized in
the spectrum and in the presence of explicit breaking (i.e.,
m&0) the bound state acquires mass directly proportional
to the magnitude of the symmetry-breaking term.

It should be emphasized that the effective action of the
second model, obtained from Eq. (2.5) by replacing qq-
with q(i 9) 'q, is completely chiral symmetric whenI =0, reflecting the chiral symmetry of the Lagrangian
(4.1). It is interesting to note that the one-loop contribu-
tion (the second term) in Eq. (2.5) is chiral symmetric
when I =0, in spite of the symmetry-breaking interac-
tion. The origin of ibis symmetry for chiral-noninvariant
interaction is not clear to the authors at the moment.

V. A MODEL OF QUARKS AND LEPTONS

Since our model is a nonconfining one, the preon f has
to be an observed particle as well as the composite fer-
mion q. It is tempting to identify P and q with leptons
and quarks. The first model of a similar kind, in which ir'j

and q are identified as leptons and baryons, was called the
Nagoya model.

In this section we present a scrnirealistic model based
on this idea. In order to incorporate the strong, weak, and
electromagnetic interactions we have to use the chiral-
symmetric Lagrangian (4.1), since the simplest Lagrang-
ian (2.1) breaks gauge invariance. For simplicity we dis-
cuss the model of one generation of leptons and quarks.

We assume the standard assignment for leptons, name-

which is invariant under the chiral symmetry
P~e 'g, P~e' P. In this case, however, the composite
field

Ps ——vs and e~, I=O, I'=0 and I=0, I'= —2 .

Thc right-handed ncutrlno, of couIsc, docs not couple to
the gauge bosons. The scalars appear in a cooler triplet P,
with I=0 and 7 = ——, and a color singlet

transforms trivially under the chiral symmetry; thereby q
acquires Inass even in the chii'al-symmetly limit ( m =0).]

The calculations are done analogously to those in Sec.

a+
o

with I= —, and F=I.
Our model Lagrangian for these fields is
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W=QLigfl. +%zip vtt+e~ig es+P ( D— p—)P f—(QLHez+H. c. )

—
f (fr.4)&&(40')+ «~ 0)i&(es 0')+ (vR4»)i@(vs 4') 1j,

~here

D„f=(du ig—I Wq ig—' ,' yB—u)g

with I~ = —,
'

w~ for I= —,
' and zero for I=0, and

Dug=(dp ig, ——,' k~A~ ig'—, FB—p)$.

A&, W@, and B& are the gauge fields of SU(3)c, SU(2)1, and U(1) interactions.
As in the previous sections we add the following terms to the Lagrangian:

g
qs — Pg—

ghee

(I'P) qg — &Sf—I.P +—u z + Pe~—ig (i') ' ur'+ ig—es PiY

(5.1)

+—d L+ Pv~i—P (ig) ' dr'. + ig—vsPt
g

where the superscript c indicates the charge-conjugate fields, and
r r

c
qg =—&Z .e =& c

Qg Qg
L

VAth that we obtain the linearized Lagrangian

P=QL&ggI. +v~sgv~+e„&ge„+P ( D p)—P f—(QI.He—~+H. c )+ [.q ~(i—g) 'q~+uL, (i+) 'ul'. +d 1.(i+) 'dL]

(q ItVL, P —+%PL,q~ uL ez4— 0&zul.—dl. vs4—' Pvadr' —)-. (5.2)

Variations with respect to q&, uI', and dL give

(5.3)

The reason why we have to use the charge-conjugate fields
is that, e.g., P(PIP ) is a right-handed field with the
weak isospin —,', and cannot be assigned to either q~ or
q&. Hence, it is assigned to q~ which has the same quan-
tum numbers.

By eliminating the P field we obtain the Lagrangian of
the standard model for quarks and leptons as an effective
Lagrangian of our composite model, Eq. (5.1). In the

framework of our model this essentially completes the
program which the realistic model for composite quarks
and leptons will eventually have to fulfill: starting from
the fundamental Lagrangian, obtain the mass spectrum of
the composite fermion, and derive the standard model as
an effective low-energy theory.

The main purpose of this paper was to present a suffi-
ciently simple model in which this program can be carried
through explicitly. From the point of view of
phenomenology, the main criticism of the model
described here is that it does not appear to offer a clue as
to the generation problem. One could, of course, have
preons appearing in generations, but to our mind that goes
against the main philosophy of having composite quarks
and leptons. The contact interactions, Eq. (4.1), is certain-

ly too simple to produce the generation structure dynami-
cally.
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