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The problem of a spin-1=2 magnetic impurity near an antiferromagnetic transition of the host lattice is
shown to transform to a multichannel problem. A variety of fixed points is discovered asymptotically near
the antiferromagnetic critical point. Among these is a new variety of stable fixed point of a multichannel
Kondo problem which does not require channel isotropy. At this point Kondo screening disappears but
coupling to spin fluctuations remains. In addition to its intrinsic interest, the problem is an essential
ingredient in the problem of quantum critical points in heavy fermions.
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FIG. 1. Exchange interaction between the host electrons and
the localized spin in the low-energy effective action. The first
line gives the complete interaction; the subsequent lines show
the first few terms of the series that is summed in each vertex in
the first line. � represents the dynamical spin susceptibility of
the host electrons.
Theories of quantum critical phenomena involving fer-
mions rely on extensions of the theory of classical critical
phenomena to quantum problems by integrating out the
fermions in favor of low-energy bosonic fluctuations [1,2].
Several experimental results on heavy fermion quantum
critical points (QCP’s) are in disagreement with such
Gaussian fixed-point theories [3,4]. Some valiant efforts
to address the problem are being made by using an ex-
tended dynamical mean field theory [5]. As an interesting
problem in itself as well as to gain insight to the difficult
problem of the lattice, we present here a systematic theory
for a single impurity in a host with a diverging antiferro-
magnetic (AFM) correlation length. We show below that
this necessarily leads to a multichannel problem with a
variety of remarkable properties.

The S � 1=2 local moment is coupled to the
d-dimensional lattice, which is near an AFM instability
due to electron-electron interactions, by the Hamiltonian
�J=2��2���2d

RR
ddkddk0 yk� k0 �S where  yk ( k0) is the

creation (annihilation) operator for the host itinerant elec-
tron with momentum k (k0), and S is the localized spin. We
assume the usual Gaussian spin fluctuations for the host
electrons. Because of the interactions among the host
electrons, the bare Kondo vertices J are renormalized.
For a Fermi liquid such vertex corrections lead only to a
numerical renormalization. However, qualitatively new ef-
fects can arise due to such renormalizations near a QCP in
the host itinerant electrons. This problem has been solved
for the case of a ferromagnetic (FM) instability of the
itinerant electrons [6,7]. The problem of the AFM insta-
bility is both physically and technically quite different.

In order to perform a renormalization group (RG)
procedure, we first derive the low-energy effective action
in which the momenta of the host itinerant electrons are
restricted within a narrow region near the Fermi sur-
face, j"kj � W ("k is the energy of the host electrons
relative to the Fermi level). Denote  k ( yk) as  < ( y<)
for j"kj�W otherwise  > ( y>), then the Hamiltonian can
be expressed as H� ; y��H� <; 

y
<�	H� >; 

y
>�	
05=95(20)=207207(4)$23.00 20720
H0� <; 
y
<; >; 

y
>�. Eliminating the modes for j"kj>W

in a path-integral formulation, we obtain the effective
action as Aeff�A�0�

eff	A�cc�
eff 	A�cf�

eff 	������; A
�0�
eff de-

scribes the free parts of the effective action, A�cc�
eff is the

mutual-interaction term among the spins of the host itin-
erant electrons and A�cf�

eff corresponds to the effective
interaction between the host electrons and the localized
spin which is represented by Fig. 1:

Figure 1 presents Feynman diagrams for A�cf�eff in which
solid and broken lines are associated with the host electron
and the local moment, respectively. The exchange coupling
in A�cf�eff has two parts: the first term j in Fig. 1 is irreducible
with respect to the propagator Dk;k0 �!� describing the
AFM spin fluctuations of the host electrons, while the
second part is reducible. The division into the two parts
is such that g starts out as J while j starts out as O�J2�, as
explained through the first few terms of the series for j, and
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FIG. 2. Perturbative corrections to (a) the self-energy of the
local moment represented in terms of pseudofermions, (b) the
vertex j, and (c) the vertex g describing the coupling of the local
moment to the magnetic fluctuations.
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g in the figure. g is the coupling of the spin fluctuations to
the local moments which are always coupled through
electron-electron interaction vertices � to the fermions.
The vertices g, and � are also irreducible with respect to
the propagator Dk;k0 . � � I�>�k; k0� where I is the bare
interaction among the spins of the host electrons and
�>�k; k0� is the one-interaction irreducible vertex part in
the spin channel for H� >;  

y
>�. Dk;k0 �!� is related to the

dynamical spin susceptibility �>k;k0 �!� of the host de-

scribed by H� >;  
y
>� as

D k;k0 �!� � �1	 I�
>
k;k0 �!��=I: (1)

Note that even in the limit of W ! 0 near the QCP, �> is
not singular (while �> is). So, we can safely neglect the
dependence of � on the cutoff as well as the momenta, after
Dk;k0 is extracted.

In the limit that the energy cutoff W ! 0, the momenta
k and k0 are restricted to be on the Fermi surface SF. If k is
represented by its projection onto SF denoted by K and the
energy shell it belongs to " � "k, we can approximate
Dk;k0 �!� 
Dk;k0 �0� �D�K;K0� as

D �K;K0� �
AN0

��W�2 	 2�d	
Pd
i�1 cos�Ki � K

0
i��
; (2)

where ��W� is the inverse magnetic correlation length, N0

is the density of states, and A is a constant of the order of 1.
The retardation of the interactions is properly included
through a cutoff which appears through ��W� / W1=z,
where z is the dynamical exponent. This procedure has
been explicitly justified in Ref. [7] where it occurs in the
same context.

Now, consider the unitary transformation which diago-
nalizes D�K;K0� on the Fermi surface SF. Assuming that
the impurity sits in a site with the full point group symme-
try of the lattice, the symmetry operations R of a point
group G (say, C4v for the 2D square symmetry) may be
used such that it is enough to find eigenvalues of D�K;K0�
with K restricted to an irreducible portion of the Brillouin
zone, � (a triangle determined by the vertices �0; 0�, ��; 0�,
and ��;�� for C4v). We obtain

Z
K02�

Xd�
m0�1

D��K;K0�m;m0ul�K0�m0 �Dl���ul�K�m: (3)

Here
R

K stands for the average over SF, N�1
0 �2��

�d �R
k ��"k�; D��K;K0�m;m0 �

P
R2GRD�K;K0����R�
m;m0 .

���R� is the unitary matrix for the irreducible representa-
tion �, the dimension of which is d�. Therefore, l can be
represented by a set of � and i in which i tells apart
eigenvalues in the space of f1; 2; . . . ; d�g � fKjK 2 �g
for each �. In the whole space of the Fermi surface, the
number of degeneracies dl is equal to d�. This general
result is always true but more interesting is the generic case
in which the AFM vectors Q, (assumed commensurate [8])
connect points on the Fermi surface (‘‘hot spots’’ in two
20720
dimensions but ‘‘hot lines’’ in three dimensions). In that
case the problem acquires larger degeneracies.

Expanding  k as  k �  K;" �
P
l;mul�K�m l;m;", the

equation represented by Fig. 1 leads to the effective inter-
action of the local moment:

1

2

X
l;m

�jl 	 g�Dl����a
y
l;m�al;m � S; (4)

where al;m �
R
 l;m;"d". At the initial cutoff W0, g �

O�J� and jl � O�J2� for all l so that g� jl for weak
couplings J. Equation (4) has the form of a multichannel
Kondo Hamiltonian with the number of channel dl for each
l, but the interactions depend explicitly on W through �.

The RG equations for Eq. (4) are now derived for any
given Dl���. Figure 2 presents perturbative corrections up
to the third order of j and g in the successive elimination of
modes forW0 < "k � W. We define a crossover parameter
W1 
 rW0; r is the distance from the QCP. For the present
case of z � 2, �=�0 �

��������������
W=W0

p
for W >W1, i.e., the

‘‘quasiclassical’’ regime while �=�0 �
���
r
p

for W <W1,
i.e., the quantum regime. �0 is a constant of the order
of 1. In this Letter we present results only for the ‘‘quasi-
classical’’ regime. It is also useful to introduce � �
�d=dt� ln��2P

ldlD
2
l �with t � ln�W0=W�. Since the imagi-

nary part of the local spin susceptibility for the host
electrons scales as Im�loc�!� 
 �2P

ldlD
2
l !
W

��!, �
determines the power of �loc��� for the long-time limit
�! 1 as �loc��� 
 1=��2���. Note that � � �4� d�=2
for W >W1, (while � � 0 for W <W1 as for Fermi
liquids). In principle, the dependence of � on W can be
derived from another RG equation of the mutual coupling
among the host electrons in the present scheme and/or
better assumptions than in the Gaussian picture for the
pure system employed.

It is convenient to write the RG equations in terms of �t �

ln��0=��2 and to rescale g and Dl as �g � g�
�����������������P
ldlD

2
l

q
and

�Dl �Dl=
�����������������P
ldlD

2
l

q
. After some manipulations the RG

equations are derived as

djl
d�t
� N0f2

l �
1

2
N2

0jl
X
l0
dl0f2

l0 ; (5a)

d �g
d�t
� �g

�
�
2
�

1

2
N2

0

X
l0
dl0f2

l0

�
; (5b)

where fl � jl 	 �g �Dl.
In order to solve Eqs. (5), we must first find �Dl��� from

Eq. (3). We have done this for two dimensions as well as
7-2



 

 
 

 
 

 

FIG. 3 (color online). �Dl �Dl=
�����������������P
ldlD

2
l

q
versus � for a

circular Fermi line at half filling in a 2D square lattice. The
largest 7dl eigenvalues for each symmetry are plotted. The inset
shows dependences of

P
ldlD

2
l =N

2
0 and

P
ldlDl=N0 on �.
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three dimensions analytically for �! 0 and checked it
numerically for a range of �. Figure 3 shows the depen-
dence of �Dl on � obtained from numerical solutions of
Eq. (3) for a circular Fermi line with radius

�������
2�
p

in a 2D
square lattice (i.e., at half filling); the Fermi line has 8 hot
spots, which are 4 pairs of points connected by the AFM
wave vector Q. In the case of C4v, there exist 5 irreducible
representations in which d� � 1 for � � A1, A2, B1, and
B2 while d� � 2 for � � E. We find quite clearly that the
absolute values of eight eigenvalues approach each other
and A1, B2, and E (A2, B1, and E) states bunch up to
constitute fourfold degenerate states with a positive (nega-
tive) value of �Dl in the limit of �! 0. From the inset,P
ldlDl � const while

P
ldlD

2
l / �

�2� with � � 1 so thatP
ldl �Dl ! 0 as �! 0.
The above realization of symmetry higher than that of

the underlying lattice near the QCP can be understood from
a general point of view; the 2D example is explained here.
Consider a Fermi line with Nh � 2nh equivalent hot spots,
divided into nh pairs with one member of the pair con-
nected to the other by Q. Let K1

h and K2
h be the vectors of

two hot spots of one such pair, i.e., K1
h � K2

h 	Q, and e1
h

and e2
h are the unit vectors tangent to the Fermi line at these

two hot spots. If we write K � K	
h 	 pe	h and K0 � K


h 	
p0e
h in which 	 � 1 and 
 � 2 or vice versa near these
hot spots, then the singular parts of D�K;K0� can be
approximated by

D �K;K0� ’
N0

�2 	 p2 	 p02 � 2pp0 cos�h

; (6)

where cos�h is given by e1
h � e2

h. Substituting Eq. (6) into

Eq. (3), and dividing it by
�����������������P
ldlD

2
l

q
/ ��1, the eigenval-

ues of �Dl��� in the limit of �! 0 can be obtained by
solving the following equation:

Z 1
�1

dy
X2


�1

�D�x; y�	
ul�y�


m � �Dl�0�ul�x�

	
m; (7)

where ul�x�
	
m � ul�K

	
h 	 �xe	h�m; �D�x; y�	
 is given by

�D�x; y�	
 �

�����������
sin�h

Nh�

s
1� �	


1	 x2 	 y2 � 2xy cos�h

; (8)

where �	
 is 1 for 	 � 
 otherwise 0. If we diagonalize
�D�x; y�	
 with respect to 	 and 
, we necessarily find two

eigenvalues of equal magnitude and opposite sign. For
Nh � 8 as in Fig. 3, the hot spots are connected by the
operations of C4v, i.e., the symmetry of the underlying
lattice. The number of degeneracies is then half of the
number of the symmetry operations in the group of the
hot spots.

Equations (7) and (8) suggest that for �h ! 0, all
�Dl��� ! 0 as �! 0 in two dimensions. We have explic-

itly found that the numerical results are consistent with this
conjecture. In this case, as we explain below, the problem
eventually acquires infinite degeneracy.
20720
The situation is actually simpler in three dimensions. It
follows from Eq. (3) that jDl���j are less singular than
! j ln�j for any l while

P
ldlD

2
l / �

�2� with � � 1=2, so
that �Dl��� ! 0 for all l as �! 0.

With this knowledge of �Dl���, we return to the RG
equations (5) to study the fixed points. It is straightforward
to prove that �Dl��� approach constants as �! 0
(d �Dl=d�t! 0 as �t! 1), as may also be seen in Fig. 3.
Therefore, it is sufficient to analyze with � �Dl�0�. There
are two possibilities for the fixed points of Eq. (5b).
(i) �g � �g
 � 0. Then, it follows from Eqs. (5) that the
usual multichannel problem is realized. Because of the
small channel anisotropy this is always unstable towards
the single channel Fermi-liquid fixed point. On the other
hand, a new class of singular or non-Fermi-liquid (NFL)
fixed points is obtained for (ii)

P
ldlN

2
0f

2
l � �. Then the

fixed-point values of �g
, f
l are solutions of the following
equations;

8=� �
X
l

dl

�
1	 �l

����������������������������������������
1� 8 �Dl�0�N0 �g
=�

q �
; (9a)

N0f
l �
�
4

�
1	 �l

����������������������������������������
1� 8 �Dl�0�N0 �g
=�

q �
: (9b)

The fixed-point values of jl are given by j
l � f
l �
�g
 �Dl�0�. In Eqs. (9), �l is either of �1 for each l.

Of these NFL fixed points, one in which all of �l are�1
can be shown to be linearly stable. For d � 2, this stable
fixed point exists only when the Fermi line is almost
tangent at the hot spots to the boundary of the magnetic
Brillouin zone, i.e., �h ! 0 [otherwise there is no solution
of Eqs. (9) with �l � �1 for all l]. For d � 3, this fixed-
point solution is always found.

When �h ! 0 for d � 2, and d � 3, a study of the
solution of Eqs. (5) reveals that the RG flow of �g and jl
is toward the single channel Fermi-liquid fixed point (i)
only for large initial coupling N0J� 1, i.e., for initial
7-3
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g� jl; the Kondo temperature is so high that AFM corre-
lations do not determine the fixed point. For the interesting
weak-coupling case N0J� 1, i.e., for initial g� jl, the
RG flow is sucked into the stable one of the new class of
NFL fixed points (ii), i.e., the fixed point of the degenerate
multichannel Kondo problem with a finite �g
, as described
below, is realized at the QCP:

In two dimensions, for 0< �h & 0:07 with 8 hot spots,
the fixed point is a multiple degenerate four-channel fixed
point, e.g., for �h � 0:05, jN0 �g
j � 0:92, and N0j



l �

0:067; 0:039; 0:029; . . . , in order of size with exactly 4
degenerate states at each N0j



l for both signs of coupling

to the localized spin. In the limit of �h ! 0, where the
Fermi surface is tangent to the magnetic Brillouin zone,
expansion of Eqs. (9) with respect to �Dl�0� ! 0 withP
ldl �Dl�0�

2 � 1 leads us to

N2
0 �g
2 � �; N0j



l � 0 for all l: (10)

So N0f
l �
���
�
p �Dl�0� ! 0 with

P
ldlN

2
0f

2
l � �. In three

dimensions, �Dl��� ! 0 as �! 0 with
P
ldl �Dl���

2 � 1 so
that the stable fixed point is also given by Eq. (10).

It is important to note that channel anisotropy is irrele-
vant at these stable fixed points for d � 2 as well as d � 3.
This can be proved by noting that

P
ldlN

2
0f

2
l � � and

d �Dl=d�t!0 as �t!1. Then Eqs. (5) lead to djfl�fl0 j=
d�t�jfl�fl0 j�2N0f
l ��=2�<0 as �t! 1 when �Dl�0� �
�Dl0 �0� for l � l0.

The other fixed points given by Eqs. (9) are unstable.
In the case of all �Dl�0� ! 0, N2

0 �g
2 � ��1� �n	=4�,
N0j
l � �=2 for �l � 1, N0j
l � 0 for �l � �1, where
n	 is the number of channels for which�l � 1. Since �1�
�n	=4�must be positive or zero, there exist four (eight) un-
stable fixed points in two (three) dimensions where � � 1
(� � 1=2). If � is assumed to be small, these may be re-
lated to the unstable fixed points of a multichannel version
of the Bose-Fermi Kondo model in the � expansion [9].

The difference of the results from those for the Bose-
Fermi Kondo model [5,9] is instructive. In the present
work, the bosons or spin fluctuations enter the theory
only as intermediate states and not in external vertices,
see Figs. 1 and 2. This is the consistent formulation of the
problem because the fluctuations arise in the first place due
to the electron-electron interaction vertex �. In Refs. [5,9],
� is implicitly included in part of the problem in defining
the fluctuations but neglected in the other part, the conver-
sion of the fluctuations back to fermions.

The correlation functions near the fixed point for W >
W1 as well as the detailed properties when approaching the
fixed point from W <W1 will be presented in a longer
paper. At this point we can only say that Eq. (10) f
l ! 0
suggests a decoupling of the local moment from the con-
duction electrons, while a finite �g
 at the fixed point
suggests that the moment responds to the AFM correlations
of the host. This is what may be expected if the Kondo
effect is deconstructed such that the local moment is at
20720
least partially recovered and the recovered moment partic-
ipates in the AFM correlations [10]. The infinite degener-
acy at the fixed point suggests that the ground state has
finite entropy. This degeneracy may also be understood as
the prelude to the participation of the moment in the
infinite range spin-wave correlations below the AFM tran-
sition. This infinite channel fixed point may be thought of
as the analog for staggered magnetization correlations of
what happens for growing FM correlations [6], where a
droplet of size ��1 around the impurity leads to a number
of channels / ���d�1� [11]. However this analogy is only
suggestive both because of the special condition of
hot spots or hot lines required to get such a fixed point as
well as the very special second property, on f
2l , noted after
Eq. (10) at the fixed point.
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